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Abstract

Written language provides a snapshot of linguistic, cultural, and current events information
for a given time period. Aggregating these snapshots by studying many texts over time
reveals trends in the evolution of language, culture, and society. The ever-increasing amount
of electronic text, both from the digitization of books and other paper documents to the
increasing frequency with which electronic text is used as a means of communication, has
given us an unprecedented opportunity to study these trends. In this dissertation, we use
hundreds of thousands of books spanning two centuries scanned by Google, and over 100
billion messages, or ‘tweets’, posted to the social media platform, Twitter, over the course
of a decade to study the English language, as well as study the evolution of culture and
society as inferred from the changes in language.

We begin by studying the current state of verb regularization and how this compares
between the more formal writing of books and the more colloquial writing of tweets on Twit-
ter. We find that the extent of verb regularization is greater on Twitter, taken as a whole,
than in English Fiction books, and also for tweets geotagged in the United States relative
to American English books, but the opposite is true for tweets geotagged in the United
Kingdom relative to British English books. We also find interesting regional variations in
regularization across counties in the United States. However, once differences in population
are accounted for, we do not identify strong correlations with socio-demographic variables.

Next, we study stretchable words, a fundamental aspect of spoken language that, until
the advent of social media, was rarely observed within written language. We examine
the frequency distributions of stretchable words and introduce two central parameters that
capture their main characteristics of balance and stretch. We explore their dynamics by
creating visual tools we call ‘balance plots’ and ‘spelling trees’. We also discuss how the
tools and methods we develop could be used to study mistypings and misspellings, and may
have further applications both within and beyond language.

Finally, we take a closer look at the English Fiction n-gram dataset created by Google.
We begin by explaining why using token counts as a proxy of word, or more generally, ‘n-
gram’, importance is fundamentally flawed. We then devise a method to rebuild the Google
Books corpus so that meaningful linguistic and cultural trends may be reliably discerned.
We use book counts as the primary ranking for an n-gram and use subsampling to normalize
across time to mitigate the extraneous results created by the underlying exponential increase
in data volume over time. We also combine the subsampled data over a number of years as a
method of smoothing. We then use these improved methods to study linguistic and cultural
evolution across the last two centuries. We examine the dynamics of Zipf distributions
for n-grams by measuring the churn of language reflected in the flux of n-grams across
rank boundaries. Finally, we examine linguistic change using wordshift plots and a rank
divergence measure with a tunable parameter to compare the language of two different time
periods. Our results address several methodological shortcomings associated with the raw
Google Books data, strengthening the potential for cultural inference by word changes.
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Chapter 1

Introduction

Human language is in a constant state of evolution, partly driven both by random drift

(Newberry et al., 2017) and by cultural and societal factors. Words, or more generally,

‘n-grams’, are the building blocks of language, and changes in their meanings and usage

patterns reflect, and provide insight into, cultural and societal evolution. The increase in

digitized text, both current and historical, allows for the large-scale analysis of language,

both of its current state and of its evolution, which, in turn, provides a lens through which

to observe current and changing sociocultural trends.

In this dissertation, we use both hundreds of thousands of digitized books and over 100

billion social media messages to study various aspects of the English language, and use

this to gain insights into cultural evolution. We begin with a study of verb regularization,

followed by an analysis of stretchable words, and finish with an investigation into the lexical

turbulence of language. The remainder of this chapter provides an overview of our data

and each of these three studies.

1.1 Description of the datasets

In this paper, we use subsets of two different large corpora: (1) Two centuries of published

books scanned by Google (1800–2008), and (2) a decade of social media messages posted

to Twitter (2008–2017).

1



1.1.1 Google Books

Google underwent a process whereby they scanned millions of books and digitized them

using optical character recognition (OCR), creating the Google Books corpus (Michel et al.,

2011). They chose a subset of these digitized books based on their metadata and the quality

of their OCR and split the texts into ‘n-grams’, creating the Google Books n-grams datasets

(Lin et al., 2012; Michel et al., 2011). A 1-gram is often, but not always, the same as a

word. A punctuation mark is a 1-gram. Google also chose to split certain words apart

into multiple 1-grams. For example, possessives are split off from the word as a separate

1-gram. ‘Bob’s’ would get split into the two 1-grams ‘Bob’ and ‘’s’. Similarly, words like

‘can’t’ get split into the two 1-grams ‘can’ and ‘not’. Hyphenated words get split into three

1-grams, with the hyphen, ‘-’, being one of them. An ‘n-gram’ is made up of n 1-grams.

For example, ‘on the way’ is a 3-gram made up of the three 1-grams ‘on’, ‘the’, and ‘way’,

and can be split into the two 2-grams ‘on the’ and ‘the way’.

A ‘token’ is an individual occurance of a word or n-gram. For example, the phrase ‘the

cat and the dog’ is a 5-gram made up of five tokens but four words, or four individual

1-grams, with the 1-gram ‘the’ showing up twice, giving it a token count of two. The other

three 1-grams each have a token count of one.

For each n-gram that occurs within the corpus at least 40 times overall, the total number

of individual occurrences for that n-gram in each year (token count) and the total number

of books it was found in for each year (book count) were recorded by Google and are freely

available to the public (The Google Ngram Viewer Team, 2013c). A number of recent

studies have used the Google Books data to study different aspects of language and culture

(Gerlach and Altmann, 2013; Gray et al., 2018; Michel et al., 2011; Pechenick et al., 2017;

Petersen et al., 2012a,b).

However, a closer inspection of the data has identified troubling issues with the Google

Books n-grams corpus. There is a large prevalence of scientific works in both the 2009 and

2



2012 versions of the English corpus and in the 2009 version of the English Fiction corpus

(Pechenick et al., 2015). Furthermore, due to its library-esque nature, where each book

contributes roughly one time (not counting reprints and different editions), the data fails to

reflect information about the popularity of n-grams based on readership views (Pechenick

et al., 2015).

Despite these setbacks, as we show in Chapter 4, the Google Books n-grams data still

contains a wealth of information from which we are able to extract meaningful results if we

keep the preceding limitations in mind. In this dissertation, when studying English in gen-

eral, we use the English Fiction 2012 corpus as suggested by Pechenick et al. (2015), which

uses “books predominantly in the English language that a library or publisher identified

as fiction.” In order to allow for the study of regional variations in language, we also use

both the American English 2012 corpus, which uses “books predominantly in the English

language that were published in the United States,” and the British English 2012 corpus,

which uses “books predominantly in the English language that were published in Great

Britain” (The Google Ngram Viewer Team, 2013a).

1.1.2 Twitter

Twitter is a social media site that allows people to post short messages, called ‘tweets’,

of originally up to 140 characters in length, and more recently, up to 280 characters in

length. Although not all demographic groups are equally represented, in 2015 20% of adult

Americans used Twitter (Duggan, 2015), providing a large sample of English language data

of a more colloquial nature ripe for linguistic analysis. As such, in recent years there have

been a number of papers studying different aspects of language with Twitter data (Donoso

and Sanchez, 2017; Eisenstein et al., 2010, 2014; Gonçalves et al., 2018; Gonçalves and

Sánchez, 2014; Gray et al., 2018; Huang et al., 2016).
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Since September of 2008 we have collected a 10% random sample of tweets from Twitter’s

‘gardenhose’ (now called ‘decahose’) dataset, totaling over 100 billion tweets from over

750 million distinct accounts. Furthermore, a fraction of these tweets have corresponding

location data, allowing us to perform regional analyses of language. In this dissertation, we

use this Twitter dataset as a representation of a more colloquial form of language, closer

to that of everyday speech than the edited language found in books. In various parts of

our analysis we use (1) all tweets, (2) tweets tagged with the geographic coordinates of the

location the tweet is sent from (‘geotagged’) when the coordinates are located in the United

States to study American English, (3) tweets geotagged in the United Kingdom to study

British English, and (4) tweets with user provided location information, entered as free text,

matching towns in the United States to study regional variations in language across U.S.

counties.

1.2 Verb regularization

While many aspects of language variation and change are being investigated in the pursuit

to further our collective understanding of language (Greenhill et al., 2017; Lieberman et al.,

2007; Michel et al., 2011; Newberry et al., 2017; Ramiro et al., 2018; Reali et al., 2018),

one particular area of study has been English verb regularization (Lieberman et al., 2007;

Michel et al., 2011; Newberry et al., 2017). These studies have shown that English verbs are

going through a process of regularization, where English speakers are using the regular form

for the past tense of a verb, formed with the suffix -ed, rather than the original irregular

past tense form.

For example, the irregular past tense of the verb ‘burn’ is ‘burnt’ and the regular past

tense is ‘burned’. As another example, the verb ‘help’ had the irregular past tense ‘holp’,

compared to the regular past ‘helped’. Although for some verbs, like ‘burn’, the irregular

and regular past tense both seem reasonable, for others, like ‘help’, the original irregular
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form is no longer recognizable to most people and has been forgotten to society. In general,

across many English verbs, the regular past tense has become more popular, and for some

verbs, like ‘help’, the regular form has overtaken the irregular form to become the popular

past form used by speakers of the language.

In a 2007 study, Lieberman et al. explored the regularization of English verbs since

Old English using the CELEX corpus, which gives word frequencies from several textual

sources. They used a set of 177 verbs that were all irregular in Old English and examined

how the rate of verb regularization relates to frequency of usage, finding that more common

verbs regularize at a slower rate. They calculated half-lives for irregular verbs binned by

frequency of usage and found that irregular verbs regularize with a half-life proportional to

the square root of frequency.

In a 2011 paper, Michel et al. studied the regularization of verbs, along with other

cultural and language trends, as an accompaniment to their introduction of the Google

Books corpus. They found that most of the verb regularization over the last two centuries

came from verbs using the suffix -t for the irregular form, like ‘burn’, and that British

English texts were less likely than American English ones to use the regular form.

In a more recent study, Newberry et al. proposed a method for determining the un-

derlying mechanisms driving language change, including the regularization of verbs (2017).

Using the Corpus of Historical American English and inspired by ideas from evolution, the

authors described a method to determine if language change is due to selection or ran-

dom drift. They used a null hypothesis of stochastic drift and checked if selection would

be strong enough to reject this null hypothesis. Of the 36 verbs Newberry et al. studied,

only six showed statistical support for selection by their methods. They also claimed that

rhyming patterns might be a driver of selection.

These prior studies of verb regularization have only focused on language data resulting

from a formal editorial process, such as that of a published book. This editorial process will
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tend to normalize language in some way, reflecting the linguistic opinions of authors and

editors, rather than portray the language used by everyday people. For example, maybe the

irregular form of a particular verb is considered proper by scholars, but a vast majority of the

English-speaking population uses the regular form. While it is not a verb, one illustrative

example is ‘whom’. Although ‘whom’ is the correct word to use in the objective case, it is

common for everyday speakers to use ‘who’.

In Chapter 2, we take tweets to be a closer representation of everyday language. For

the vast majority of accounts, tweets are authored by individuals without being edited. As

such, the language used therein should more accurately represent average speakers than the

language found in books.

We use data from both Twitter and Google Books, measuring the current state of

verb regularization within each, to compare regularization between the more colloquial,

unedited language of Twitter to the more formal, edited language of books. We also study

the regional variation in regularization, both on a country scale, between the United States

and the United Kingdom, and on a smaller scale, across counties within the United States.

1.3 Stretchable words

Watch a soccer match, and you are likely to hear the announcer shout

‘GOOOOOAAAAAAAAAL’. Stretched out words, also called elongated words (Wiktionary

contributors, 2019a), are a fundamental part of spoken language, often used to modify the

meaning of the base word in some way, such as to emphasize or exaggerate the meaning

(e.g., ‘huuuuuge’), imply sarcasm (e.g., ‘suuuuure’), show excitement (e.g.,‘yeeeessss’), or

communicate danger (e.g., ‘nooooooooooooo’).

Despite their being an integral part of spoken language, stretched words are much rarer

in written language. They are not often found in literature or lexicons. The word ‘hahaha-

hahahaha’ is not in the Oxford English Dictionary (Simpson and Weiner, 1989). However,
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with the advent and rise of social media, stretched words have finally made it into written

text on a large scale.

In Chapter 3, we study stretchable words on Twitter, collecting all stretchable words

matching our criterion from September 9, 2008 through the end of 2016. We examine their

frequency distributions and introduce two central parameters that quantify their indepen-

dent properties of ‘balance’ and ‘stretch’. We develop ‘spelling trees’ as a way to visualize

the many ways in which words involving two intermingling repeated characters stretch. We

then discuss how the tools and methods we developed can be used to study the patterns of

mistypings and misspellings.

The tools and methods we develop have many other potential applications, including

the possible use by online dictionaries to finally include this natural part of language largely

overlooked by lexicons. The online dictionary, Wiktionary, has already discussed the in-

clusion of some stretched words, and has made a policy on what to include (Wiktionary

contributors, 2019b,c). An adoption of our methods may allow for a more inclusive pol-

icy and more informative entries. Other potential applications include improvements to

language processing and the study of sequence construction generally.

1.4 Unlocking Google Books

In the modern era, digitized text sources such as the Google Books corpus (Lin et al., 2012;

Michel et al., 2011) and increased computational power provide profound opportunities for

the study of linguistic evolution, and the study of cultural and societal changes inferable

from language changes. As such, there have been a number of recent papers focusing on

observations found in the Google Books n-grams corpus. For example, studies include

analyses of Zipf’s and Heaps’ laws (Gerlach and Altmann, 2013), verb regularization (Gray

et al., 2018; Michel et al., 2011), culture changes (Michel et al., 2011), new words in a
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language (Petersen et al., 2012b), and word births, deaths, and general changes in word use

over time (Pechenick et al., 2017; Petersen et al., 2012a).

Patterns in large scale corpora like Google Books would seem to be a reflection of culture

and language, either through the collective voice of authors or the collective attention of

readers. However, in Chapter 4 we find that by using token counts as a proxy for n-

gram importance, both of these views are gravely distorted. Using token counts leads to

nonsensical irregularities in terms of n-gram prevalence that do not accurately represent

natural language.

We develop a revised method focused on book counts rather than token counts to reveal

the collective author’s voice so that meaningful linguistic and cultural trends may be reliably

discerned. Using this improved method, we are able to study the temporal evolution of the

English Fiction corpus (The Google Ngram Viewer Team, 2013a).

We calculate the flux of n-grams across rank boundaries in Zipf distributions as a mea-

sure of ‘lexical turbulence’, summarizing the change in the distribution of n-gram ranks

over time. We also perform a fine-grained analysis of the changes in language between time

periods using wordshift plots and a rank divergence measure with a tunable parameter.

Tuning this parameter allows us to resolve the changes from the most functional parts of

language to those in n-grams that best represent cultural evolution and important historical

events.
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Chapter 2

English verb regularization in books and
tweets

The English language has evolved dramatically throughout its lifespan, to the

extent that a modern speaker of Old English would be incomprehensible with-

out translation. One concrete indicator of this process is the movement from

irregular to regular (-ed) forms for the past tense of verbs. In this study we

quantify the extent of verb regularization using two vastly disparate datasets:

(1) Six years of published books scanned by Google (2003–2008), and (2) A

decade of social media messages posted to Twitter (2008–2017). We find that

the extent of verb regularization is greater on Twitter, taken as a whole, than

in English Fiction books. Regularization is also greater for tweets geotagged in

the United States relative to American English books, but the opposite is true

for tweets geotagged in the United Kingdom relative to British English books.

We also find interesting regional variations in regularization across counties in

the United States. However, once differences in population are accounted for,

we do not identify strong correlations with socio-demographic variables such as

education or income.

9



2.1 Introduction

Human language reflects cultural, political, and social evolution. Words are the atoms of

language. Their meanings and usage patterns reveal insight into the dynamical process by

which society changes. Indeed, the increasing frequency with which electronic text is used

as a means of communicating, e.g., through email, text messaging, and social media, offers

us the opportunity to quantify previously unobserved mechanisms of linguistic development.

While there are many aspects of language being investigated towards an increased un-

derstanding of social and linguistic evolution [1–6], one particular area of focus has been on

changes in past tense forms for English verbs [1–3]. These investigations have collectively

demonstrated that English verbs are going through a process of regularization, where the

original irregular past tense of a verb is replaced with the regular past tense, formed using

the suffix -ed.

For example, the irregular past tense of the verb ‘burn’ is ‘burnt’ and the regular past

tense is ‘burned’. Over time, the regular past tense has become more popular in general, and

for some verbs has overtaken the irregular form. For example, in Fig. 2.1, we use the Google

Ngram Online Viewer to compare the relative frequency of ‘burnt’ with that of ‘burned’

over the past 200 years. (As shown in an earlier paper involving two of the present authors

[7], and expanded on below, the Google Ngram dataset is highly problematic but can serve

as a useful barometer of lexical change.) In the first half of the 19th century, the irregular

past tense ‘burnt’ was more popular. However, the regular past tense ‘burned’ gained in

popularity and in the late 1800s became the more popular form, which has persisted through

to today.

Looking at several examples like this, in a 2011 paper Michel et al. studied the regu-

larization of verbs, along with other cultural and language trends, as an accompaniment to

their introduction of the Google Books Ngram corpus (hereafter Ngrams) and the proto-
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Figure 2.1: Relative word frequencies for the irregular and regular past verb forms for ‘burn’
during the 19th and 20th centuries, using the Google Ngram Online Viewer with the English
Fiction 2012 corpus. Google Ngram trends can be misleading but capture basic shifts in a lan-
guage’s lexicon [7, 8]. The irregular form ‘burnt’ was once more popular, but the regular form
‘burned’ overtook it in the late 19th century and its popularity has steadily increased ever since
while that of ‘burnt’ has decreased. The dynamics of verb tense changes are rich, reflecting
many processes at play in the Google Books Ngram data. An interactive version of this graphic
can be found at https://books.google.com/ngrams/graph?content=burned%2Cburnt&year start=
1800&year end=2000&corpus=16&smoothing=3.

field ‘Culturomics’ [2]. They found that most of the verb regularization over the last two

centuries came from verbs using the suffix -t for the irregular form, and that British English

texts were less likely than American English ones to move away from this irregular form.

In a 2007 study, Lieberman et al. explored the regularization of English verbs using the

CELEX corpus, which gives word frequencies from several textual sources [1]. Focusing on

a set of 177 verbs that were all irregular in Old English, they examined how the rate of verb

regularization relates to frequency of usage, finding that more common verbs regularized

at a slower rate. They calculated half-lives for irregular verbs binned by frequency, finding

that irregular verbs regularize with a half-life proportional to the square root of frequency

of usage.

In a more recent study, Newberry et al. proposed a method for determining the under-

lying mechanisms driving language change, including the regularization of verbs [3]. Using

the Corpus of Historical American English and inspired by ideas from evolution, the authors
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described a method to determine if language change is due to selection or drift, and applied

this method to three areas of language change. They used a null hypothesis of stochastic

drift and checked if selection would be strong enough to reject this null hypothesis. Of the

36 verbs Newberry et al. studied, only six demonstrated statistical support for selection.

They also claimed that rhyming patterns might be a driver of selection.

Unfortunately, the corpora used in these studies have considerable limitations and cor-

ruptions. For example, early versions of the Ngrams data includes scientific literature,

whose explosive growth through the 20th century is responsible for the decreasing trend in

relative word usage frequency observed in many common search terms [7]. Moreover, the

library-like nature of the corpus admits no accounting for popularity: Lord of the Rings

and an unknown work contribute with equal weight to token counts.

Another general concern with large corpora of a global language like English is that

language use varies tremendously with culture and geography. Ngrams allows only for

the regional exploration of the English language with the British English corpus and the

American English corpus. Twitter data enables us to focus on much smaller spatial regions

(e.g., county or state).

Prior studies of verb regularization have also focused on data reflecting a formal editorial

process, such as the one undergone by any published book. This editorial process will tend

to normalize the language, reflecting the linguistic opinions of a small minority of canon

gatekeepers, rather than portray the language used by everyday people. For example, maybe

the irregular form of a particular verb is considered proper by scholars, but a vast majority

of the English-speaking population uses the regular form. While it is not a verb form, one

illustrative example is ‘whom’. Although ‘whom’ is the correct word to use in the objective

case, it is common for everyday speakers to use ‘who’.

In the present study we take tweets to be a closer representation of everyday language.

For the vast majority of accounts, tweets are authored by individuals without undergoing
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a formal editing process. As such, the language therein should more accurately represent

average speakers than what is found in books.

The demographic groups contributing to Twitter are by no means a carefully selected

cross-section of society, but do offer natural language use by the roughly 20% of adult

English speakers who use Twitter [9]. When exploring temporal changes in language use,

the Ngrams and CELEX datasets evidently cover a much longer period than the decade

for which social media is available. As a result, we are unable to infer anything about the

temporal dimension of regularization looking at Twitter.

In this paper we use the Ngrams and Twitter datasets to establish estimates of the

current state of English verb regularization. We structure our paper as follows: In Sec. 2.2,

we describe the datasets we use. In Sec. 2.3, we present our results. We study verb regu-

larization in English in general in Sec. 2.3.1. We compare verb regularization in American

English (AE) and British English (BE) using both Ngrams and geotagged Twitter data

in Sec. 2.3.2. In Sec. 2.3.3, we employ methods to study regional variation in verb usage,

leveraging county level user location data in the United States. We also explore correlations

between verb regularization and a number of socio-demographic and economic variables. Fi-

nally, in Sec. 2.4, we provide concluding remarks.

2.2 Description of datasets

To be consistent with prior work, we chose the verb list for our project to match that of

Michel et al. [2]. When comparing BE with AE, we use the subset of verbs that form the

irregular past tense with the suffix -t. When calculating frequencies or token counts for the

‘past tense’ we use both the preterite and past participle of the verb. See Table 2.A1 in

Appendix 2.6.1 for a complete tabulation of all verb forms.

The Ngrams data reflects relative frequency, providing, for a verb and a given year,

the percentage of corpus tokens that are the given verb, where a token is an individual
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occurrence of a word. The Google Ngram Online Viewer also has a smoothing parameter,

s, which averages the relative frequency for the given year with that of each of the s years

before and after the given year, if they exist. For example, Fig. 2.1 uses a smoothing of

3 years and shows that, averaged across the years 1997–2000 (the value displayed for the

year 2000), the word ‘burned’ appeared with relative frequency 0.004321% (roughly once

every 23,000 tokens), while ‘burnt’ appeared with relative frequency 0.000954% (roughly

once every 105,000 tokens).

We downloaded the Ngrams verb data for the most recent 6-year period available (2003–

2008) [10]. Specifically, we chose the 2008 values of relative frequency with a smoothing of

5 years, resulting in an average case insensitive1 word frequency for the years 2003–2008.

For general English, as suggested by [7], we queried the English Fiction 2012 corpus, which

uses “books predominantly in the English language that a library or publisher identified as

fiction.” For AE we used the American English 2012 corpus, which uses “books predomi-

nantly in the English language that were published in the United States.” For BE we used

the British English 2012 corpus, which uses “books predominantly in the English language

that were published in Great Britain” [11].

The Twitter messages for our project consist of a random sample of roughly 10% of all

tweets posted between 9 September 2008 and 22 October 2017. This ‘decahose’ dataset

comprises a total of more than 106 billion messages, sent by about 750 million unique

accounts. From this larger set, we performed a case-insensitive search for verb forms of

interest, also extracting geographic location when available in the meta-data associated

with each tweet.

Tweets geotagged by mobile phone GPS with a U.S. location comprise about a 0.27%

subset of the decahose dataset; United Kingdom locations comprise about a 0.05% subset.

Many individuals provide location information, entered as free text, along with their bio-
1When Ngrams computes a case insensitive word frequency it uses “the yearwise sum of the most common

case-insensitive variants of the input query” [11].
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graphical profile. We matched user specified locations of the form ‘city, state’ to a U.S.

county when possible, comprising a 2.26% subset of the decahose dataset. Details on this

matching process can be found in Appendix 2.6.2.

For general English, we counted the number of tokens in the decahose dataset for each

verb. For AE, we used the tweets whose geotagged coordinates are located in the United

States, and for BE we used the tweets whose geotagged coordinates are located in the

United Kingdom. For the analysis of verbs by county, we used the tweets with the user

entered location information. Table 2.1 summarizes the datasets used for both Ngrams and

Twitter.

Ngrams Twitter
(I) English Fiction 2012

corpus
All tweets

(II) American English
2012 corpus

All tweets geolocated
in the U.S.

(III) British English 2012
corpus

All tweets geolocated
in the U.K.

(IV) N/A All tweets with user
entered location
matching ‘city, state’

Table 2.1: A summary of the verb datasets.

The demographic data for U.S. counties comes from the 2015 American Community

Survey 5-year estimates, tables DP02–Selected Social Characteristics, DP03–Selected Eco-

nomic Characteristics, DP04–Selected Housing Characteristics, and DP05–Demographic

and Housing Estimates, which can be found by searching online at https://factfinder.census.

gov/. These tables comprise a total of 513 usable socio-demographic and economic variables.

We compute the regularization fraction for a verb as the proportion of instances in which

the regular form was used for the past tense of the verb. More specifically, for Ngrams we

divide the relative frequency for the regular past tense by the sum of the relative frequencies

for the regular and irregular past tenses. Similarly, for Twitter we divide the token count
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for the regular past tense by the sum of the token counts for both the regular and irregular

past tenses. If the resulting regularization fraction is greater than 0.5, the regular past tense

is more popular and we call the verb regular. Otherwise we call the verb irregular.

When calculating an average regularization across all verbs, we first compute the regu-

larization fraction for each verb individually. Then we compute the average of the regular-

ization fractions, with each verb contributing the same weight in the average, irrespective

of frequency. We perform this ‘average of averages’ to avoid swamping the contribution of

less frequent verbs.

2.3 Methods and results

2.3.1 Verb regularization using Ngrams and Twitter

Using the datasets in row (I) of Table 2.1, we begin by comparing Ngrams and Twitter with

respect to regularization of English verbs in Fig. 2.2, where we find that 21 verbs are more

regular in Ngrams, and 85 are more regular on Twitter. A Wilcoxon signed rank test of the

data has a p-value of 7.9× 10−6, demonstrating strong evidence that verbs on Twitter are

more regular than verbs in Ngrams.

What mechanisms could be responsible for the observed increase in regularity on Twit-

ter? One possibility is that authors of fiction published in the 2000s, along with their

editors, being professional users of English, have a larger vocabulary than the typical user

of Twitter. If so, their commitment to proper English would contribute to the appearance

of relatively more irregular verbs in books. The average Twitter user may not know, or

choose to use, the ‘correct’ past tense form of particular verbs, and thus use the default

regular past tense.

Another driver may be that non-native English speakers writing English tweets may

be more likely to use the default regular form. We will find quantitative support for this
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Figure 2.2: Comparison of verb regularization for Ngrams and Twitter. We calculate verb regular-
ization fractions using the datasets in row (I) of Table 2.1. Verbs are centered at their regularization
fraction in Ngrams (horizontal) and Twitter (vertical). Both axes are on a logit scale, which spreads
out both extremes of the interval (0, 1). Verbs to the right of the vertical dashed line are regular in
Ngrams; verbs above the horizontal dashed line are regular on Twitter. The diagonal dashed line
separates verbs that are more regular on Twitter (those above and to the left of the line) from those
that are more regular in Ngrams (those below and to the right of the line). For example, compared
with ‘knew’, the word ‘knowed’ appears roughly 3 times in 1000 in Ngrams, and 2 times in 10,000 on
Twitter, making ‘know’ irregular in both cases, but more than an order of magnitude more regular
in Ngrams than on Twitter.
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mechanism below. As a preview, we note that Fig. 2.2 shows that ‘burn’ is predominantly

regular on Twitter globally, but we see later (Fig. 2.3B) that ‘burn’ is irregular on Twitter

for both American English and British English. Thus, it is likely that non-native speakers

are contributing to this difference.

2.3.2 American and British English

We next study how verb regularization varies with geographic region. In this subsection

we use the datasets in row (II) of Table 2.1 for AE and row (III) for BE and the subset of

verbs that form the irregular past tense with the suffix -t.

In Fig. 2.3A, we compare American and British English in Ngrams. The average reg-

ularization fraction is 0.49 in AE and 0.42 in BE. For 17 out of 22 verbs, AE shows more

regularization, with a Wilcoxon signed rank test p-value of 9.8 × 10−4, giving statistical

support that AE verbs are more regular on average in Ngrams than BE verbs.

As we show in the inset scatter plot of Fig. 2.3A, regularization in AE and BE are

also strongly positively correlated with a Spearman correlation coefficient of 0.97 (p =

2.3 × 10−14). Verbs that are more regular in AE are also more regular in BE, just not to

the same extent.

In Fig. 2.3B, we compare regularization in AE and BE on Twitter. For Twitter, the

average regularization fraction is 0.54 for AE, higher than Ngrams, and 0.33 for BE, much

lower than Ngrams. As with Ngrams, 17 verbs out of 22 show more regularization in AE

than in BE. The Wilcoxon signed rank test gives a weaker but still significant p-value of

1.9× 10−3.

The inset in Fig. 2.3B also shows a positive correlation, although not as strong as

Ngrams, with a Spearman correlation coefficient of 0.87 (p = 1.1 × 10−7). Generally, on

Twitter, regular AE verbs are also regular in BE, but the difference in regularization fraction

is much greater than for Ngrams.
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Figure 2.3: American and British English verb regularization fractions for (A) Ngrams and (B)
Twitter. We use the subset of verbs that form the irregular past tense with the suffix -t and the
datasets in rows (II) and (III) of Table 2.1. The inset scatter plot has a point for each verb. The
dashed diagonal line separates verbs that are more regular in AE (below the line) from those that
are more regular in BE (above the line).

In Fig. 2.4A, we demonstrate the difference in regularization between AE and BE for

both Ngrams and Twitter. The values in this figure for Ngrams can be thought of as, for

each verb in Fig. 2.3A, subtracting the value of the bottom bar from the top bar, and

likewise for Twitter and Fig. 2.3B. Positive numbers imply greater regularization in AE, the

more common scenario. When the difference is near zero for one corpus, it is usually close

to zero for the other corpus as well. However, when Ngrams shows that AE is notably more

regular than BE, Twitter tends to show a much larger difference.

The average difference in regularization fraction between AE and BE for Twitter is 0.21,

whereas it is only 0.08 for Ngrams. Again, we find that these averages are significantly

different with a Wilcoxon signed rank p-value of 1.9× 10−2.

The inset scatter plot tells a similar story, with a cluster of points near the origin. As

the difference in regularization fraction between regions increases in Ngrams, it also tends
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Figure 2.4: Differences in verb regularization fractions. The bar chart gives the difference for each
verb in each corpus. The inset scatter plot has a point for each verb. (A) The difference between
verb regularization fractions for AE and BE in Twitter and Ngrams. The dashed diagonal line of
the inset scatter plot separates verbs for which this difference is greater in Ngrams (below the line)
from those for which it is greater in Twitter (above the line). (B) The difference between verb
regularization fraction for Twitter and Ngrams in AE and BE. The dashed diagonal line of the inset
scatter plot separates verbs for which this difference is greater in AE (below the line) from those for
which it is greater in BE (above the line).

to increase in Twitter, with Spearman correlation coefficient 0.65 and p-value 1.0 × 10−3.

The steep rise shows that the difference increases faster on Twitter than in Ngrams.

Fig. 2.4B returns to comparing Ngrams and Twitter, but now between AE and BE.

For each verb, the bar chart shows the difference between the regularization fraction for

Twitter and Ngrams in both AE and BE, with positive values showing that regularization

for Twitter is greater. In this case, the values can be thought of as subtracting the values

for the bars in Fig. 2.3A from the corresponding bars in Fig. 2.3B. As we find for English

in general, regularization is greater on Twitter than in Ngrams for AE, with an average

difference of 0.04. However, for BE, regularization is greater in Ngrams than on Twitter,

with an average difference in regularization fraction of −0.09.

20



Twitter Ngrams Difference
AE 0.54 0.49 0.04
BE 0.33 0.42 −0.09

Difference 0.21 0.08

Table 2.2: A summary of the average regularization fractions for AE and BE on Twitter and Ngrams.
Note that the differences were taken prior to rounding.

We summarize our findings in Table 2.2. We found again that verbs on Twitter are more

regular than in Ngrams for American English, likely for many of the same reasons that

verbs on Twitter are more regular than Ngrams in general. However, we find that in British

English the opposite is true: Verbs on Twitter are less regular than in Ngrams. In decreasing

order by average regularization fraction, we have AE Twitter, then AE Ngrams, then BE

Ngrams, and finally BE Twitter. Knowing that the general trend is towards regularization

[1, 2], it seems that regularization is perhaps being led by everyday speakers of American

English, with American published work following suit, but with a lag. Then, it may be

that British English authors and editors are being influenced by American publications and

the language used therein. Indeed, some studies have found a general ‘Americanization’

of English across the globe [12, 13], meaning that the various varieties of English used

across the world are becoming more aligned with American English. Finally, it may be that

average British users of Twitter are more resistant to the change. Indeed, from the figures

in the study by Gonçalves et al., one can see that the ‘Americanization’ of British English is

more pronounced in Ngrams than on Twitter [12], agreeing with what we have found here.

2.3.3 Regularization by U.S. county

In Sec. 2.3.2, we demonstrated regional differences in verb regularization by comparing BE

and AE. Here, we consider differences on a smaller spatial scale by quantifying regularization

by county in the United States using the dataset in row (IV) of Table 2.1. We use methods

inspired by Grieve et al. to study regional variation in language [14].
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We only include counties that had at least 40 total tokens for the verbs under consider-

ation. We plot the average regularization fraction for each county in the continental U.S. in

Fig. 2.5A, where counties with not enough data are colored black. To control for the skewed

distribution of samples associated with county population (see below for more details), we

use residuals for this portion of the analysis. After regressing with the log10 of data volume

(total number of tokens) for each county, we compute the average regularization fraction

residual, which is plotted in Fig. 2.5B.

That is, if we let di be the total number of tokens for verbs in tweets from county i;

α and β be the slope and intercept parameters computed from regression; and Ri be the

average regularization fraction for county i, then we compute the average regularization

fraction residual for county i, rreg
i , as

rreg
i = Ri − (β + α log10 di) . (2.1)

Using the average regularization residual at the county level as input, we measure local

spatial autocorrelation using the Getis-Ord Gi∗ z-score [15],

G∗i =
∑
j wijr

reg
j − rreg∑

j wij

σ

√[
n
∑
j w

2
ij −

(∑
j wij

)2
]
/(n− 1)

, (2.2)

where

σ =

√∑
j(r

reg
j )2

n
− (rreg)2, (2.3)

rreg = 1
n

∑
i r

reg
i , n is the number of counties, and wij is a weight matrix. To obtain the

weight matrix used in this calculation, we first create a distance matrix, sij , where the

distance between each pair of counties is the larger of the great circle distance, sGC
ij , in
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Figure 2.5: (A) The average verb regularization fraction by county for the lower 48 states, along with
(B) residuals and (C) Gi∗ z-score. A higher Gi∗ z-score means a county has a greater regularization
fraction than expected. Counties colored black did not have enough data. We used the dataset in
row (IV) of Table 2.1.
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miles between the centers of the bounding box for each county and 10 miles. That is,

sij = max
(
sGC
ij , 10

)
. (2.4)

We make the minimum value for sij 10 miles to prevent a county from having too large of

a weight. We then compute the weight matrix as

wij = 1
√
sij
. (2.5)

Fig. 2.5C shows the results for the lower 48 states, where black represents counties left

out because there was not enough data. For each county, the Gi∗ z-score computes a local

weighted sum of the residuals, rreg
j , for the surrounding counties and compares that to the

expected value of that weighted sum if all the counties had exactly the average residual,

rreg, as their value, where the weighting is such that closer counties have a higher weight.

Areas that are darker blue (positive z-score) belong to a cluster of counties that has higher

regularization than average, and those that are darker red (negative z-score) belong to a

cluster that has lower regularization than average. So, Fig. 2.5C shows that, in general,

western counties show less regularization than average and eastern counties show more,

except that the New England area is fairly neutral.

As usual, the z-score gives the number of standard deviations away from the mean.

For this we would do a two-tail test for significance because we are looking for both high

value and low value clusters. For example, a z-score greater in magnitude than 1.96 is

significant at the .05 level. If we do a Bonferroni correction based on 3161 counties (the

number included for this part of the analysis), then a z-score greater in magnitude than

4.32 is significant for a two-tail test at the .05/3161 ≈ 1.58× 10−5 level.

We do this same process looking at individual verbs as well. However, when looking

at individual verbs, we use the regularization fraction rather than residuals, because the
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Figure 2.6: The Gi∗ z-score for verb regularization by county for the verb ‘dream’ for the lower
48 states. Counties colored black did not have enough data. People tweet ‘dreamed’ rather than
‘dreamt’ more often than expected in the southeastern U.S.

data skew is not as problematic. This is because the main problem with data volume

comes when averaging across verbs that have different frequencies of usage, as explained

below. Also, here we include counties that have at least 10 tokens. Fig. 2.6 gives an

example map showing the Gi∗ z-scores for the verb ‘dream’. The maps showing local

spatial autocorrelation for the complete list of verbs can be found in the Online Appendix

A at http://compstorylab.org/stretchablewords/.

For many of the counties in the U.S., there is a small sample of Twitter data. We restrict

our analysis to counties with a total token count of at least 40 for the verbs we consider.

Even for the counties meeting this criterion, the volume of data varies, leading to drastically

different sample sizes across counties.

More common verbs tend to have popular irregular forms (e.g., ‘found’ and ‘won’), and

less common verbs tend to be regular (e.g., ‘blessed’ and ‘climbed’) [1]. As a result, samples
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taken from populous counties are more likely to contain less common verbs. Our ‘average

regularization’ is an average of averages, resulting in an underlying trend toward higher

rates for more populous counties due to the increased presence of rarer regular verbs.

Fig. 2.7 demonstrates the relationship between data volume and regularization. To

explore the connection further, we perform a synthetic experiment as follows.

To simulate sampling from counties with varying population sizes, we first combine

all verb token counts (using the Twitter dataset from row (I) of Table 2.1) into a single

collection. We then randomly sample a synthetic county worth of tokens from this collection.

For a set of 1000 logarithmically spaced county sizes, we randomly draw five synthetic

collections of verbs (each is a blue circle in Fig. 2.7). For each sample, we compute the

average regularization fraction, as we did for U.S. counties. The goal is to infer the existences

of any spurious trend introduced by the sampling of sparsely observed counties.

The resulting simulated curve is comparable to the trend observed for actual U.S. coun-

ties. As the data volume increases, the simulated version converges on roughly 0.17, which

is the average regularization fraction for all of Twitter.

We also explored correlations between verb regularization and various demographic vari-

ables. Fig. 2.7 showed a strong relationship between data volume and verb regularization.

It has been shown elsewhere that tweet density positively correlates with population density

[16], and population size is correlated with many demographic variables. As a result, we

use partial correlations as an attempt to control for the likely confounding effect of data

volume.

For each demographic variable, we compute the regression line between the log10 of

data volume, di, and regularization, and compute the residuals as in Eq. 2.1. Then, if

the demographic variable is an ‘Estimate’ variable, where the unit is number of people, we

similarly compute the regression line between the log10 of data volume and the log10 of the
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Simulated Version

Figure 2.7: (A) Scatter plot of average verb regularization for counties. For each county, the hori-
zontal coordinate is the total token count of verbs found in tweets from that county, and the vertical
coordinate is that county’s average regularization fraction. For a version with verbs split into fre-
quency bins, see Fig. 2.A1 in Appendix 2.6.3. (B) We created synthetic counties by sampling words
from the collection of all occurrences of all verbs on Twitter (using the dataset from row (I) of
Table 2.1). The point’s horizontal position is given by the total sample token count in a synthetic
county; the vertical position is given by its average regularization fraction.
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demographic variable2 and compute the residuals, rdem
i , as

rdem
i = log10(Di)− (δ + γ log10 di) , (2.6)

where Di is the value of the demographic variable for county i, and γ and δ are the slope

and intercept parameters calculated during regression.

Otherwise, the demographic variable is a ‘Percent’ variable, with units of percentage,

and we compute the regression line between the log10 of data volume and the demographic

variable, and compute residuals as

rdem
i = Di − (δ + γ log10 di) . (2.7)

The correlation between residuals rreg
i and rdem

i gives the partial correlation between average

regularization and the demographic variable.

Our findings suggest that data volume is a confounding variable in at least some of

the cases because, after controlling for data volume, there is generally a large decrease in

the correlation between verb regularization and the demographic variables. The largest in

magnitude Pearson correlation between verb regularization and a demographic variable is

0.68, for the variable ‘Estimate; SCHOOL ENROLLMENT - Population 3 years and over

enrolled in school’, whereas the largest in magnitude partial correlation is only −0.18, for

the variable ‘Percent; OCCUPATION - Civilian employed population 16 years and over -

Management, business, science, and arts occupations’. Table 2.3 lists the 10 demographic

variables with largest in magnitude partial correlation.

Fig. 2.8 shows an example for one of the demographic variables, the ‘Percent’ variable

with largest simple correlation. Fig. 2.8A is the scatter plot of the demographic variable

with average regularization, which corresponds to simple correlation. Fig. 2.8B is the scatter
2We do not include any county that has a value of zero for the demographic variable here to prevent

errors when taking the log10.
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Rank Partial Correlation Demographic Variable
1 −0.18 Percent; OCCUPATION - Civilian employed population

16 years and over - Management, business, science, and
arts occupations

2 −0.16 Percent; UNITS IN STRUCTURE - Total housing units
- 10 to 19 units

3 −0.16 Percent; CLASS OF WORKER - Civilian employed
population 16 years and over - Self-employed in own not

incorporated business workers
4 −0.16 Percent; UNITS IN STRUCTURE - Total housing units

- 20 or more units
5 0.16 Percent; COMMUTING TO WORK - Workers 16 years

and over - Car, truck, or van – drove alone
6 0.15 Percent; BEDROOMS - Total housing units - 3

bedrooms
7 −0.15 Percent; COMMUTING TO WORK - Workers 16 years

and over - Worked at home
8 −0.15 Percent; INDUSTRY - Civilian employed population 16

years and over - Agriculture, forestry, fishing and
hunting, and mining

9 −0.15 Percent; BEDROOMS - Total housing units - 1 bedroom
10 0.14 Percent; OCCUPATION - Civilian employed population

16 years and over - Production, transportation, and
material moving occupations

Table 2.3: Top demographic variables sorted by the magnitude of their partial correlation with
verb regularization in U.S. counties. For example, regularization is positively correlated with the
percentage of workers driving alone to work, and anti-correlated with the percentage of individuals
working from home. Statistics for all of the demographic variables can be found in the Online
Appendix B at http://compstorylab.org/stretchablewords/.
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Figure 2.8: (A) Average verb regularization for counties as a function of the percentage of civilians
employed in agriculture, forestry, fishing, hunting, and mining. Several hundred such plots are
available in an interactive online appendix. (B) For each county, the horizontal coordinate is given
by the residual left after regressing the demographic variable with the log10 of data volume and the
vertical coordinate is given by the residual left after regressing that county’s average regularization
fraction with the log10 of data volume. Data volume, for a county, is the total token count of all
verbs found in tweets from that county.
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plot of the residuals, rdem
i and rreg

i , after regressing with the log10 of data volume, and

corresponds with partial correlation. We can see that there is a strong simple correlation

(−0.52), but after accounting for data volume that correlation largely vanishes (−0.15).

Similar plots for all of the demographic variables can be found in the Online Appendix B

at http://compstorylab.org/stretchablewords/.

2.4 Concluding remarks

Our findings suggest that, by and large, verb regularization patterns are similar when

computed with Ngrams and Twitter. However, for some verbs, the extent of regularization

can be quite different. If social media is an indicator of changing patterns in language use,

Ngrams data ought to lag with a timescale not yet observable due to the recency of Twitter

data. Very reasonably, Ngrams data may not yet be showing some of the regularization

that is happening in everyday English.

We also found differences in verb regularization between American and British English,

but found that this difference is much larger on Twitter than Ngrams. Overall, and in

American English specifically, verbs are more regular on Twitter than in Ngrams, but the

opposite is true for British English. In the U.S., we also find variation in average verb reg-

ularization across counties. Lastly, we showed that there are significant partial correlations

between verb regularization and various demographic variables, but they tend to be weak.

Our findings do not account for the possible effects of spell checkers. Some people,

when tweeting, may be using a spell checker to edit their tweet. If anything, this will likely

skew the language on Twitter towards the ‘correct’ form used in edited textual sources. For

example, in Fig. 2.2 we see that ‘stand’ is irregular for both Ngrams and Twitter, and likely

most spell checkers would consider the regular ‘standed’ a mistake, but we see that ‘stand’

is still over 100 times more regular on Twitter than in Ngrams. So, the differences between
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edited language and everyday language may be even larger than what we find here suggests.

Future work should look into the effects of spell checkers.

Our study explored the idea that edited written language may not fully represent the

language spoken by average speakers. However, tweets do not, of course, fully represent

the English-speaking population. Even amongst users, our sampling is not uniform as it

reflects the frequency with which different users tweet (see Fig. 2.A2 in Appendix 2.6.4).

Furthermore, the language used on Twitter is not an unbiased sample of language even

for people who use it frequently. The way someone spells a word and the way someone

pronounces a word may be different, especially, for example, the verbs with an irregular

form ending in -t, because -t and -ed are close phonetically. However, the fact that we found

differences between the language of Ngrams and the language of Twitter suggests that the

true language of everyday people is not fully represented by edited written language. We

recommend that future studies should investigate speech data.
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the Americanization of English in space and time. PLOS ONE, 13(5):1–15, 05 2018.

33

http://www.pewinternet.org/2015/08/19/the-demographics-of-social-media-users/
http://www.pewinternet.org/2015/08/19/the-demographics-of-social-media-users/
https://books.google.com/ngrams/
https://books.google.com/ngrams/
https://books.google.com/ngrams/info
https://books.google.com/ngrams/info


[13] Paul Baker. American and British English: Divided by a Common Language? Cam-
bridge University Press, 2017.

[14] Jack Grieve, Dirk Speelman, and Dirk Geeraerts. A statistical method for the iden-
tification and aggregation of regional linguistic variation. Language Variation and
Change, 23(2):193–221, 2011.

[15] J. K. Ord and Arthur Getis. Local spatial autocorrelation statistics: Distributional
issues and an application. Geographical Analysis, 27(4):286–306, 1995.

[16] Rudy Arthur and Hywel T. P. Williams. Scaling laws in geo-located Twitter data.
CoRR, abs/1711.09700, 2017.

34



2.6 Appendix

2.6.1 Table of verb forms

Table 2.A1

Regular Irregular

Verb Preterit & Past Participle Preterit Past Participle Token Count

abide abided abode abode 146,566

alight alighted alit alit 56,306

arise arised arose arisen 164,134

awake awaked awoke awoken, awoke 423,359

become becomed became become 50,664,026

begin beginned began begun 5,942,572

bend bended bent bent 4,777,019

beseech beseeched besought besought 3,390

bleed bleeded bled bled 252,225

blend blended blent blent 436,029

bless blessed blest blest 22,547,387

blow blowed blew blown 9,155,246

break breaked broke broken 54,506,810

breed breeded bred bred 1,040,854

bring bringed brought brought 15,303,318

build builded built built 8,521,553

Continued on next page

Table 2.A1: A tabulation of all verb forms used in this study. The Token Count column gives the
sum of all the tokens for the past tense forms of the verb, both regular and irregular, in our Twitter
dataset (see row (I) of Table 2.1 in Sec. 2.2).
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Table 2.A1: (continued)

Regular Irregular

Verb Preterit & Past Participle Preterit Past Participle Token Count

burn burned burnt burnt 7,457,942

buy buyed bought bought 24,841,526

catch catched caught caught 24,891,188

choose choosed chose chosen 10,290,205

clap clapped clapt clapt 405,837

climb climbed clomb, clom clomben 635,122

cling clinged clung clung 49,742

creep creeped crept crept 698,405

deal dealed dealt dealt 1,181,974

dig digged dug dug 941,656

dream dreamed dreamt dreamt 2,794,060

drink drinked drank drunk, drank 37,295,703

drive drived drove driven 5,745,497

dwell dwelled dwelt dwelt 25,725

eat eated ate eaten 25,084,758

fall falled fell fallen 25,224,815

fight fighted fought fought 3,625,297

find finded found found 80,709,195

flee fleed fled fled 405,295

freeze freezed froze frozen 7,454,847

Continued on next page

Table 2.A1: A tabulation of all verb forms used in this study. The Token Count column gives the
sum of all the tokens for the past tense forms of the verb, both regular and irregular, in our Twitter
dataset (see row (I) of Table 2.1 in Sec. 2.2).
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Table 2.A1: (continued)

Regular Irregular

Verb Preterit & Past Participle Preterit Past Participle Token Count

get getted got got, gotten 500,591,203

give gived gave given 58,697,198

grow growed grew grown 17,951,273

hang hanged hung hung 3,991,956

hear heared heard heard 52,605,822

hide hided, hidded hid hid, hidden 7,829,276

hold holded held held 10,080,725

inlay inlayed inlaid inlaid 44,811

keep keeped kept kept 11,785,131

kneel kneeled knelt knelt 83,765

know knowed knew known 58,175,701

lay layed laid laid 5,828,898

leap leaped leapt leapt 91,620

learn learned learnt learnt 18,134,586

lose losed lost lost 72,695,892

mean meaned meant meant 26,814,977

pay payed paid paid 21,150,031

plead pleaded pled pled 193,553

ride rided rode ridden 1,710,109

seek seeked sought sought 888,822

Continued on next page

Table 2.A1: A tabulation of all verb forms used in this study. The Token Count column gives the
sum of all the tokens for the past tense forms of the verb, both regular and irregular, in our Twitter
dataset (see row (I) of Table 2.1 in Sec. 2.2).
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Table 2.A1: (continued)

Regular Irregular

Verb Preterit & Past Participle Preterit Past Participle Token Count

sell selled sold sold 14,251,612

send sended sent sent 26,265,441

shake shaked shook shaken 3,223,316

shoe shoed shod shod 47,780

shrink shrinked shrank, shrunk shrunk, shrunken 296,188

sing singed sang, sung sung 6,767,707

sink sinked sank, sunk sunk, sunken 927,419

slay slayed slew slain 2,153,981

sleep sleeped slept slept 9,252,446

slide slided slid slid 530,659

sling slinged slung slung 38,320

slink slinked slunk slunk 5,772

smell smelled smelt smelt 1,089,814

smite smitted, smited smote smitten, smote 176,768

sneak sneaked snuck snuck 797,337

speak speaked spoke spoken 8,502,050

speed speeded sped sped 216,062

spell spelled spelt spelt 3,812,137

spend spended spent spent 17,603,781

spill spilled spilt spilt 1,627,331

Continued on next page

Table 2.A1: A tabulation of all verb forms used in this study. The Token Count column gives the
sum of all the tokens for the past tense forms of the verb, both regular and irregular, in our Twitter
dataset (see row (I) of Table 2.1 in Sec. 2.2).
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Table 2.A1: (continued)

Regular Irregular

Verb Preterit & Past Participle Preterit Past Participle Token Count

spin spinned spun spun 342,022

spoil spoiled spoilt spoilt 3,891,576

spring springed sprang, sprung sprung 626,400

stand standed stood stood 3,942,812

steal stealed stole stolen 11,884,934

sting stinged stung stung 391,053

stink stinked stank, stunk stunk 1,556,197

stride strided strode stridden 17,811

strike striked struck struck, stricken 2,167,165

strip stripped stript stript 837,967

strive strived strove striven 33,705

swear sweared swore sworn 1,902,662

sweep sweeped swept swept 931,245

swim swimmed swam swum 356,842

swing swinged swung swung 295,360

take taked took taken 83,457,822

teach teached taught taught 9,379,039

tear teared tore torn 4,238,865

tell telled told told 71,562,969

thrive thrived throve thriven 43,612

Continued on next page

Table 2.A1: A tabulation of all verb forms used in this study. The Token Count column gives the
sum of all the tokens for the past tense forms of the verb, both regular and irregular, in our Twitter
dataset (see row (I) of Table 2.1 in Sec. 2.2).
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Table 2.A1: (continued)

Regular Irregular

Verb Preterit & Past Participle Preterit Past Participle Token Count

throw throwed threw thrown 13,197,226

tread treaded trod trodden 56,624

vex vexed vext vext 139,411

wake waked woke woken 30,796,918

wear weared wore worn 8,552,191

weep weeped wept wept 200,690

win winned won won 45,276,202

wind winded wound wound 1,340,267

wring wringed wrung wrung 29,141

write writed wrote written, writ, wrote 23, 926, 025
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2.6.2 Details on user location matching

To study regularization by county, we extracted location information from the user-provided

location information, which was entered as free text in the user’s biographical profile. To

do this, for each tweet we first checked if the location field was populated with text. If so,

we then split the text on commas, and checked whether there were two tokens separated

by a comma. If so, we made the assumption that it might be of the form ‘city, state’. Then

we used a python package called uszipcode, which can be found here: pythonhosted.org/

uszipcode/. We used the package’s method to search by city and state. If the package

returned a location match, we used the returned latitude and longitude to determine which

county the detected city belonged to.

The package allows for fuzzy matching, meaning the city and state do not have to be

spelled correctly, and it allows for the state to be fully spelled out or be an abbreviation.

In the source code of the package there was a hard-coded confidence level of 70 for the

fuzzy matching. We modified the source code so that the confidence level was an input to

the method, and running tests found we were satisfied with a confidence level of 91. We

checked by hand the matches of 1000 tweets that this method returned a match for, 100

from each year in the dataset, and found the only potential error in these matches was when

the user typed in ‘Long Island, NY’, or a similar variant. For this, the package returned

Long Island City, NY, which is on Long Island, but there are multiple counties on Long

Island, so the user may actually live in a different county. None of the other 1000 tweets

were inappropriately or ambiguously assigned.
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2.6.3 Average verb regularization for verbs binned by

data volume
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Figure 2.A1: The scatter plot of average binned verb regularization for counties. Verbs with a token
count in the interval [106, 108] in the Twitter dataset from row (IV) of Table 2.1 in Sec. 2.2 are
considered ‘high frequency’, those in the interval [104, 106) are ‘mid frequency’, and those in the
interval [102, 104) are ‘low frequency’. The bins contain 37, 55, and 14 verbs, respectively. For each
county (with at least 40 total tokens), the average regularization fraction of the verbs in each of the
three bins is calculated (if it is not empty) and plotted against the total token count for all verbs
for that county.
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2.6.4 User tweet frequency count

Figure 2.A2: The frequency counts of tweets by unique users in our Twitter decahose dataset (row (I)
of Table 2.1 in Sec. 2.2). Users are ranked by their total number of tweets along the horizontal axis
and the vertical axis gives the total number of tweets we have associated with each user’s account.
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Chapter 3

Hahahahaha, Duuuuude, Yeeessss!: A
two-parameter characterization of
stretchable words and the dynamics
of mistypings and misspellings

Stretched words like ‘heellllp’ or ‘heyyyyy’ are a regular feature of spoken lan-

guage, often used to emphasize or exaggerate the underlying meaning of the root

word. While stretched words are rarely found in formal written language and

dictionaries, they are prevalent within social media. In this paper, we examine

the frequency distributions of ‘stretchable words’ found in roughly 100 billion

tweets authored over an 8 year period. We introduce two central parameters,

‘balance’ and ‘stretch’, that capture their main characteristics, and explore their

dynamics by creating visual tools we call ‘balance plots’ and ‘spelling trees’. We

discuss how the tools and methods we develop here could be used to study

the statistical patterns of mistypings and misspellings, along with the potential

applications in augmenting dictionaries, improving language processing, and in

any area where sequence construction matters, such as genetics.

3.1 Introduction

Watch a soccer match, and you are likely to hear an announcer shout

‘GOOOOOOOOOAAAAAAAAL!!!!!!’. Stretched words, sometimes called elongated
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words [17], are an integral part of spoken language, often used to modify the meaning of

the base word in some way, such as to strengthen the meaning (e.g., ‘huuuuuge’), imply

sarcasm (e.g., ‘suuuuure’), show excitement (e.g., ‘yeeeessss’), or communicate danger

(e.g., ‘nooooooooooooo’). We will refer to words that are amenable to such lengthening as

‘stretchable words’.

However, despite their being a fundamental part of spoken language, stretched words

are rarely found in literature and lexicons: There is no ‘hahahahahahaha’ in the Oxford

English Dictionary [18]. With the advent and rise of social media, stretched words have

finally found their way into large-scale written text.

With the increased use of social media comes rich datasets of a linguistic nature, granting

science an unprecedented opportunity to study the everyday linguistic patterns of society.

As such, in recent years there have been a number of papers published that have used data

from social media platforms, such as Twitter, to study different aspects of language [19–25].

In this paper, we use an extensive set of social media messages collected from Twitter—

tweets—to investigate the characteristics of stretchable words used in this particular form

of written language. The tools and approach we introduce here have many potential ap-

plications, including the possible use by dictionaries to formally include this intrinsic part

of language. The online dictionary Wiktionary has already discussed the inclusion of some

stretched words and made a policy on what to include [26, 27]. Other potential applica-

tions include the use by natural language processing software and toolkits, and by Twitter

to build better spam filters.

We structure our paper as follows: In Sec. 3.2, we detail our dataset and our method

of collecting stretchable words and distilling them down to their ‘kernels’. In Sec. 3.3.1,

we examine the frequency distributions for lengths of stretchable words. We quantify two

independent properties of stretchable words: Their ‘balance’ in Sec. 3.3.2 and ‘stretch’ in

Sec. 3.3.3. In Sec. 3.3.4, we develop an investigative tool, ‘spelling trees’, as a means of
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visualizing stretchable words involving a two-character repeated element. We comment

on mistypings and misspellings in Sec. 3.3.5. Finally, in Sec. 3.4, we provide concluding

remarks.

3.2 Description of the dataset and method for

extracting stretched words

The Twitter dataset we use in this study comprises a random sample of approximately 10%

of all tweets (the ‘gardenhose’ API) from 9 September 2008 to 31 December 2016. We

limited our scope to tweets that either were flagged as an English tweet or not flagged for

any language. All tweets in this time period have a maximum length of 140 characters. To

collect stretchable words, we begin by making all text lowercase and collecting all tokens

within our dataset from calendar year 2016 that match the Python regular expression

r‘(\b\w*(\w)(\w)(?:\2|\3){28,}\w*\b)’. This pattern will collect any token with at least

30 characters that has a single character repeated at least 29 times consecutively, or two

different characters that are repeated in any order at least 28 times, for a total of at least

30 consecutive repeated occurrences of the two characters. The choice of 28 in the regular

expression is a threshold we chose with the goal of limiting our collection to tokens of words

that really do get stretched in practice.

After collecting these tokens, we remove any that contains a character that is not a letter

([a-z]), and distill each remaining token down to its ‘kernel’. Table 3.1 gives a few examples

of this distillation process. Proceeding along the token from left to right, whenever any pair

of distinct letters, l1 and l2, occur in the token where 1. l1 occurs followed by any sequence

of l1 and l2 of total length at least three, and 2. such that l1 and l2 each occur at least twice

in the sequence, we replace the sequence with the ‘two-letter element’ (l1l2). For example,

see the first cell in Table 3.1.
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1. hahhahahaahahaa
→ (ha)

2. gooooooaaaaaaal
→ g[o][a]l

3. ggggoooooaaaaallllll
→ [g][o]aaaaallllll
→ [g][o][a][l]

4. bbbbbaaaaaabbbbbbyyyyyyy
→ [b][a][b]yyyyyyy
→ [b][a][b][y]

5. awawawaaawwwwwesssssommmmmeeeeee
→ (aw)esssssommmmmeeeeee
→ (aw)essssso[m][e]
→ (aw)e[s]o[m][e]

Table 3.1: Examples of distilling tokens down to their kernels. The first line of each cell is the
example token. The following lines show the result after every time a replacement of characters by
the corresponding single letter element(s) or double letter element is made by the code, in order.
The final line of each cell gives the resulting kernel for each example.

Exceptions to the preceding are: 1. The case where the sequence is a series of l1 followed

by a series of l2, which is replaced with the pair of ‘single letter elements’ [l1][l2]. For

example, see the second cell in Table 3.1. And 2., the case where the sequence is a series

of l1 followed by a series of l2 followed by a series of l1, which is replaced with [l1][l2][l1].

For example, see the first step in the fourth cell of Table 3.1 where ‘bbbbbaaaaaabbbbbb’

is replaced with [b][a][b].

Following this process, whenever a single letter, l3, occurs two or more times in a row,

we replace the sequence with the single letter element [l3]. For example, see the last step

of the fourth cell in Table 3.1 where ‘yyyyyyy’ is replaced with [y], or the last step in the

fifth cell where ‘sssss’ is replaced with [s].

We collected tokens in batches of seven consecutive days at a time throughout 2016

(with the last batch being only two days). If a kernel is not found in more than one batch,

or within the same batch but from at least two distinct stretched words, then it is removed

from consideration.

47



Different but related stretched words (that is, different stretched words, but both

stretched out versions of the same base word) may distill to different kernels. We com-

bine these into a single kernel for each word such that it covers all cases observed in the

collected tokens. For example, the kernels g[o]a[l] and go[a][l] would be combined as g[o][a][l].

The kernels h[a] and (ha) would be combined as (ha).

After processing our dataset, we obtained a collection of 7,526 kernels. We then rep-

resented each kernel with a corresponding regular expression and collected all tokens in

our entire gardenhose dataset that matched the regular expressions. To go from the kernel

to the regular expression, we replaced ] with ]+, replaced (l1l2) with l1[l1l2]*l2[l1l2]*, and

we surrounded the kernel with word boundary characters \b. So, for example, the kernel

g[o][a][l] goes to the Python regular expression r‘\bg[o]+[a]+[l]+\b’ and the kernel (ha) goes

to the Python regular expression r‘\bh[ha]*a[ha]*\b’.

Once we collected all tokens matching our kernels, we carried out a final round of

thresholding on our kernel list, removing those with the least amount of data and least

likely to represent a bona fide stretchable word. For each kernel, we calculated the token

count as a function of token length (number of letters) for all tokens matching that kernel.

For example, Fig. 3.1 gives the plot of the token count distribution for the kernel (to).

Then, with the token counts in order by increasing token length, as in Fig. 3.1, we found

the location of the largest drop in the log10 of token counts between two consecutive values

within the first 10 values. We call the words with lengths coming before the location of

the drop ‘unstretched’ versions of the kernel and those that come after ‘stretched’ versions.

For most kernels, the largest drop will be between the first and second value. However, for

some kernels this drop occurs later. For example, in Fig. 3.1 we see that for the kernel (to),

which covers both the common words ‘to’ and ‘too’, this drop is between the second and

third value (between tokens of length three and four). Thus, the unstretched versions of (to)
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Figure 3.1: Token count distribution for the kernel (to). The horizontal axis represents the length
(number of characters) of the token and the vertical axis gives the total number of tokens of a given
length that match this kernel. The included statistics give the kernel rank, r (see Sec. 3.2), the
value of the balance parameter (normalized entropy, H; see Sec. 3.3.2), and the value of the stretch
parameter (Gini coefficient, G; see Sec. 3.3.3) for this kernel. The large drop between the second
and third points denotes the change from ‘unstretched’ versions of (to), located to the left of this
drop, to ‘stretched’ versions of (to), located to the right of this drop.

are represented by the first two points in Fig. 3.1, with the remaining points representing

stretched versions of (to).

We then ranked the kernels by the sum of the token counts for their stretched versions.

Fig. 3.2 shows this sum as a function of rank for each kernel. Inspired by the idea of a cutoff

frequency [28], we estimate a cutoff rank for the kernels. Using the values between rank 10

and 103, we found the regression line between the log10 of the ranks and the log10 of the

summed token counts (straight line, Fig. 3.2). We calculated the cutoff as the first rank

(after 103) where the summed token count is less than 1/10 of the corresponding value of

the regression line. This occurs at rank 5,164, which is shown by the vertical dashed line in

Fig. 3.2. For the remainder of this study, we used the kernels with rank preceding this cutoff,

giving us a total of 5,163 kernels, and, unless otherwise specified, a kernel’s ‘rank’, r, refers to
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Figure 3.2: Total token counts for stretched versions of all kernels. Kernels are ranked by their
descending total token count along the horizontal axis. The diagonal line gives the regression line
calculated using the values between ranks 10 and 103. The vertical dashed line denotes the first
location after rank 103 where the distribution drops below 1/10 of the corresponding value of the
regression line, denoted by the red interval, giving the cutoff rank for the final threshold to decide
which kernels to include in the study.
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the rank found here. See Online Appendix A at http://compstorylab.org/stretchablewords/

for a full list of kernels meeting our thresholds, along with their regular expressions and

other statistics discussed throughout the remainder of this paper.

3.3 Analysis and results

3.3.1 Distributions

For each kernel, we plotted the corresponding distribution of token counts as a function

of token length. Most of the distributions largely follow a roughly power-law shape. For

example, Fig. 3.3 gives the frequency distribution for the kernel [g][o][a][l]. From the elevated

frequency of the first dot, we can see that the unstretched word ‘goal’ is used about two

orders of magnitude more frequently than any stretched version. After the first point, we

see a rollover in the distribution, showing that if users are going to stretch the word, they

are more likely to include a few extra characters rather than just one. We also see that

there are some users who indeed fill the 140-character limit with a stretched version of the

word ‘goal’, and the elevated dot there suggests that if users get close to the character limit,

they are more likely to fill the available space. The other dots elevated above the trend

represent tokens that likely appear in tweets that have a small amount of other text at the

beginning or end, such as a player name or team name, or, more generally, a link or a user

handle.

In Fig. 3.4, we show the frequency distribution for the kernel (ha) as an example of

a distribution for a two-character repeated element. For this distribution we observe an

alternating up and down in frequency for even length tokens and odd length tokens. This

behaviour is typical of distributions with a two-character repeated element, likely resulting

from an intent for these tokens to be a perfect alternating repetition of ‘h’ and ‘a’, hahaha. . . ,

to represent laughter. Under this assumption, the correct versions will be even length. Then,
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Figure 3.3: Token count distribution for the kernel [g][o][a][l]. The horizontal axis represents the
length (number of characters) of the token and the vertical axis gives the total number of tokens
of a given length that match this kernel. See Fig. 3.1 caption for details on the included statistics.
The base version of the word appears roughly 100 times more frequently than the most common
stretched version.
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Figure 3.4: Token count distribution for the kernel (ha). The horizontal axis represents the length
(number of characters) of the token and the vertical axis gives the total number of tokens of a given
length that match this kernel. See Fig. 3.1 caption for details on the included statistics.
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any incorrect version could be odd or even length depending on the number of mistakes.

We look at mistakes further in Sec. 3.3.5.

We note that there is also an initial rollover in this distribution, showing that the four-

character token, with dominant contributor ‘haha’, is the most common version for this

kernel. We also again see some elevated counts near the tail, including for 140 characters,

along with some depressed counts just short of 140, which again suggests that when users

approach the character limit with stretched versions of (ha), they will most likely fill the

remaining space. We did not perform a detailed analysis of this area, but it is likely that the

other elevated points near the end are again due to the inclusion of a link or user handle, etc.

Similarly, the general flattening of the distribution’s right tail is likely a result of random

lengths of short other text combined with a stretched word that fills the remaining space.

Similar distributions for each kernel can be found in Online Appendix B at http://

compstorylab.org/stretchablewords/.

3.3.2 Balance

For each kernel, we measure two quantities: 1. The balance of the stretchiness across char-

acters, and 2. the overall stretchiness of the kernel. To measure balance, we calculate the

average stretch of each character in the kernel across all the tokens within a bin of token

lengths. By average stretch of a character, we mean the average number of times that

character appears. Fig. 3.5 shows the balance for the kernel [g][o][a][l] partitioned into bins

of logarithmically increasing sizes of length. The horizontal dashed lines represent the bin

edges. The distance between the solid diagonal lines represents the average stretch, or av-

erage number of times each character was repeated, and are plotted in the same order that

they appear in the kernel. From this figure we see that ‘g’ is not stretched much on average,

‘o’ is stretched the most, and ‘a’ and ‘l’ are both stretched around 2/3 as much as ‘o’.
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Figure 3.5: Balance plot for the kernel [g][o][a][l]. The vertical axis represents the length (number
of characters) of tokens, and is broken into bins of lengths, with boundaries denoted by horizontal
dashed lines, which increase in size logarithmically. For all the tokens that match the kernel and fall
within a bin of lengths, the average number of times each character was stretched in those tokens
was calculated, and is shown on the plot as the distance between two solid lines in the same order
as in the kernel. Thus, for a given bin, the distance between the vertical axis and the first solid line
is the average stretch for the letter ‘g’, the distance between that first line and the second line is the
average stretch for the letter ‘o’, and so on. For example, the last bin contains tokens with lengths
in the interval [131, 140], with average length roughly 137. On average, tokens falling in this most
celebratory bin contain roughly 3 ‘g’s, 57 ‘o’s, 41 ‘a’s, and 36 ‘l’s.
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When part of the kernel is a two-letter element of the form (l1l2), we still count the

number of occurrences of l1 and l2 corresponding to this element in the kernel separately,

even though the letters can be intermingled in the stretched word. When we display the

results, we display it in the same order that the letters appear in the kernel. So in Fig. 3.6,

which shows the results for the kernel (ha), the first space represents the average stretch for

‘h’ and the second space is for ‘a’. From this figure, we can see that the stretch is almost

perfectly balanced between the two letters on average.

Similar balance plots can be found for each kernel in Online Appendix C at http://

compstorylab.org/stretchablewords/. In general, for these balance plots, we stop plotting

at the first bin with no tokens, even if later bins may be nonempty.

For each kernel, we also calculate an overall measure of balance. To do this, we begin

by binning the tokens by length. Then, for each bin (containing tokens longer than the

kernel) we calculate the average stretch for each character across tokens within the bin

as before. Then, we subtract one from each of these values (removing the contribution

from each base character; counting just the number of times each character was repeated)

and normalize the values so they sum to 1 and can be thought of like probabilities. We

then average the probabilities across the bins, weighing each bin equally, and compute the

normalized entropy, H, of the averaged probabilities as our overall measure of balance. This

measure is such that if each character stretches the same on average, the normalized entropy

is 1, and if only one character in the kernel stretches, the normalized entropy is 0. Thus,

higher entropy corresponds with more balanced words. (For a comparison with an alternate

entropy measure where tokens contribute equally rather than equally weighing each length

bin, and an explanation of the different corresponding views, see Appendix 3.6.1.)

Fig. 3.7 shows two ‘jellyfish plots’ [29] for balance. Fig. 3.7A is the version containing

all words and for Fig. 3.7B we remove the words that have a value of 0 for entropy. The top

of the left plot in Fig. 3.7 shows the frequency histogram of the normalized entropy for each
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Figure 3.6: Balance plot for the kernel (ha). See the Fig. 3.5 caption for plot details. For two-letter
elements, even though the letters can alternate within a given token, we still count the number of
occurrences for each letter separately and display the average number of total repetitions in the same
order as the letters appear in the kernel. Thus, for a given bin, the distance between the vertical
axis and the first line is the average number of times the letter ‘h’ occurred in the tokens, and the
distance between that first line and the second line is the average number of times the letter ‘a’
occurred in the token. This plot clearly shows that (ha) is well balanced across all bins of token
lengths.
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Figure 3.7: Jellyfish plots for kernel balance for (A) all kernels, and (B) excluding kernels with
entropy exactly 0. Corresponding histograms are given at the top of each plot. Kernels are plotted
vertically by their rank, r, and horizontally by their balance as given by normalized entropy, H, where
larger entropy denotes increased balance. The deciles 0.1, 0.2, . . . , 0.9 are calculated for rolling bins
of 500 kernels and are plotted as the ‘tentacles’.
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kernel. The spike containing value 0 comes largely from kernels where only one character

stretches, giving that kernel an entropy of exactly 0. The main plot shows the normalized

entropy values as a function of word rank, where rank is given, as before, by the sum of

stretched token counts. The ‘tentacles’ give rolling deciles. That is, for rolling bands of

500 words by rank, the deciles 0.1, 0.2, . . . , 0.9 are calculated for the entropy values, and

are represented by the solid lines. These plots allow us to see how stable the distribution is

across word ranks.

We can see from Fig. 3.7A that the distribution largely shifts towards smaller entropy

values with increasing rank, mostly drawn in that direction by the kernels with only a single

repeated letter and entropy exactly 0. For Fig. 3.7B, we remove all kernels with entropy 0.

Everything else remains the same, including the rank of each kernel (we skip over ranks of

removed kernels) and the rolling bands of 500 kernels for percentile calculations still have

500 kernels, and thus tend to be visually wider bands. In contrast to Fig. 3.7A, we now see

a small left-shift in the earlier ranks, and then the distribution tends to stabilize for lower

ranks. This shows that the highest ranked kernels tend to have a larger entropy, meaning

the stretch of the kernel is more equally balanced across all characters. We also see that

not many of the high ranked words stretch with just one character. It appears that these

kernels that stretch in only a single character become more prevalent in the lower ranks.

Table 3.2 shows the kernels with the ten largest entropies and Table 3.3 shows those

with the ten smallest nonzero entropies. We observe that the kernels with largest entropies

are mostly of the form (l1l2) and are almost perfectly balanced. The least balanced kernels

tend to be more recognizable English or Spanish words and names, with one exclamation

also appearing in the bottom ten.
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H Kernel Example token
1 0.99998 (kd) kdkdkdkdkdkdkd
2 0.99998 (ha) hahahahahaha
3 0.99997 [i][d] iiiiiiiddddd
4 0.99997 (ui) uiuiuiuiuiui
5 0.99997 (ml) mlmlmlmlmlmlml
6 0.99995 (js) jsjsjsjsjsj
7 0.99990 [e][t] eeeeetttttt
8 0.99988 (ox) oxoxoxoxoxox
9 0.99980 (xq) xqxqxqxqxqxqxq
10 0.99971 (xa) xaxaxaxaxaxa

Table 3.2: Top 10 kernels by normalized entropy, H.

H Kernel Example token
1 0.01990 [b][o][b]ies booooooobies
2 0.02526 [d][o][d]e doooooooode
3 0.03143 infini[t][y] infinityyyyy
4 0.03342 che[l]se[a] chelseaaaaaa
5 0.03587 tay[l]o[r] taylorrrrrr
6 0.03803 f(re) freeeeeeeeeeeee
7 0.03930 [f]ai[r] fairrrrrrrr
8 0.05270 regr[e][s][e] regreseeeeee
9 0.05271 herm[a][n][a] hermanaaaaaaaa
10 0.05323 sq[u][e] squueeeeeeee

Table 3.3: Bottom 10 kernels by normalized entropy, H.
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3.3.3 Stretch

To measure overall stretchiness for a kernel we calculated the Gini coefficient, G, of the

kernel’s token length frequency distribution. (For a comparison with another possible mea-

sure of stretch, see Appendix 3.6.2.) If the distribution has most of its weight on the short

versions and not much on stretched out versions, then the Gini coefficient will be closer to

0. If more tokens are long and the kernel is stretched longer more often, the Gini coefficient

will be closer to 1. Fig. 3.8 gives the jellyfish plot for the Gini coefficient for each kernel.

The horizontal axis has a logarithmic scale, and the histogram bins have logarithmic widths.

From this plot, we see that the distribution for stretch is quite stable across word ranks,

except for perhaps a slight shift towards higher Gini coefficient (more stretchiness) for the

highest ranked kernels.
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Figure 3.8: Jellyfish plots for kernel stretch as measured by the Gini coefficient, G, of its token count
distribution, where higher Gini coefficient denotes increased stretch. The histogram is given at the
top of the plot (with logarithmic width bins). Kernels are plotted vertically by their rank, r, and
horizontally (on a logarithmic scale) by their stretch. The deciles 0.1, 0.2, . . . , 0.9 are calculated for
rolling bins of 500 kernels and are plotted as the ‘tentacles’.
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Figure 3.9: Kernels plotted in Balance-Stretch parameter space. Each kernel is plotted horizontally
by the value of its balance parameter, given by normalized entropy, H, and vertically (on a logarith-
mic scale) by its stretch parameter, given by the Gini coefficient, G, of its token count distribution.
Larger entropy implies greater balance and larger Gini coefficient implies greater stretch.

Table 3.4 shows the top 10 kernels ranked by Gini coefficient and Table 3.5 shows the

bottom 10. The top kernel is [k], which represents laughter in Portuguese, similar to (ha)

in English (and other languages). Containing a single letter, [k] is easier to repeat many

times, and does not have an unstretched version that is a common word. We also see (go)[l]

on the list, where ‘gol’ is Spanish and Portuguese for ‘goal’. Interestingly, (go)[l] has a much

higher Gini coefficient (G = 0.5171) than [g][o][a][l] does (G = 0.1080). The kernels with

lowest Gini coefficient all represent regular words and all allow just one letter to stretch,

which does not get stretched much.

In Fig. 3.9, we show a scatter plot of each kernel where the horizontal axis is given by

the measure of balance of the kernel using normalized entropy, and the vertical coordinate
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G Kernel Example token
1 0.66472 [k] kkkkkkkkkkkkkkk
2 0.63580 [w][v][w] wwwwwwwwwwvwwww
3 0.62843 [m][n][m] mmmmmmmmmmmmnm
4 0.53241 [o][c][o] oooooooooco
5 0.52577 wa(ki) wakikikikkkikikik
6 0.51706 (go)[l] goooooooooool
7 0.51273 [m][w][m] mmmmmwmmmmmmmmm
8 0.50301 galop[e]ir[a] galopeeeeira
9 0.50193 [k][j][k] kkkkkjjkkkkkkkkkk
10 0.49318 [i][e][i] iiiiiieeiiiiiii

Table 3.4: Top 10 kernels by Gini coefficient, G.

G Kernel Example token
1 0.00001 am[p] amppppppppp
2 0.00002 m[a]kes maaaaaaaaakes
3 0.00002 fr[o]m frooooooooooom
4 0.00002 watch[i]ng watchiiiiiing
5 0.00003 w[i]th wiiiiiiiith
6 0.00004 pla[y]ed playyyyyyed
7 0.00004 s[i]nce siiiiiiiince
8 0.00006 eve[r]y everrrrrrrrrry
9 0.00006 manage[r] managerrrrr
10 0.00007 learnin[g] learninggggg

Table 3.5: Bottom 10 kernels by Gini coefficient, G.
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is given by the measure of stretch for the kernel using the Gini coefficient. Thus, this plot

positions each kernel in the two-dimensional space of balance and stretch. We see that the

kernels spread out across this space and that these two dimensions capture two independent

characteristics of each kernel.

We do note that there are some structures visible in Fig. 3.9. There is some roughly

vertical banding. In particular, the vertical band at H = 0 is from kernels that only

allow one character to stretch and the vertical band near H = 1 is from kernels where all

characters are allowed to stretch and do so roughly equally, which especially occurs with

kernels that are a single two-letter element. Fainter banding around H ≈ .43, H ≈ .5, and

H ≈ .63 can also be seen. This largely comes from kernels of length 5, 4, and 3, respectively,

that allow exactly two characters to stretch and those characters stretch roughly equally. If

the stretch was perfectly equal, then the normalized entropy in each respective case would

be H = 1/ log2(5) ≈ .43, H = 1/ log2(4) = .5, and H = 1/ log2(3) ≈ .63.

3.3.4 Spelling trees

So far we have considered frequency distributions for kernels by token length, combining the

token counts for all the different words of the same length matching the kernel. However,

different tokens of the same length may of course be different words—different stretched

versions—of the same kernel. For kernels that contain only single letter elements, these

different versions may just have different amounts of the respective stretched letters, but

all the letters are in the same order. However, for kernels that have two-letter elements,

the letters can change order in myriad ways, and the possible number of different stretched

versions of the same length becomes much larger and potentially more interesting.

In order to further investigate these intricacies, we introduce ‘spelling trees’ to give us a

visual method of studying the ways in which kernels with two-letter elements are generally

expanded. Fig. 3.10 gives the spelling tree for the kernel (ha). The root node is the first
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Figure 3.10: Spelling tree for the kernel (ha). The root node represents ‘h’. From there, branching to
the left (light gray edge) is equivalent to appending an ‘h’. Branching to the right (dark gray edge) is
equivalent to appending an ‘a’. The edge width is logarithmically related to the number of tokens that
pass along that edge when spelled out. A few example words are annotated, and their corresponding
nodes are denoted with a star. This tree was trimmed by only including words with a token count
of at least 10,000. The code used to create the figures for these spelling trees is largely based on the
algorithm presented by Wetherell and Shannon [30]. We note that Mill has written a more recent
paper based largely on this earlier work specialized for Python [31], and an implementation for it as
well [32], but they both contain algorithmic bugs (detailed in Appendix 3.6.3).
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letter of the two-letter element, which in this case is ‘h’. Then, recursively, if the next letter

in the word matches the first letter of the pair, it branches left, represented by a lighter gray

edge, and if it matches the second letter of the pair then it branches right, represented by a

darker gray edge. This branching continues until the word is finished. The first few nodes

are highlighted with the letter corresponding to that point of the tree. The edge weights

are logarithmically related to the number of tokens flowing through them. In Fig. 3.10, a

few nodes, denoted by stars, are annotated with the exact word to which they correspond.

The annotated nodes are all leaf nodes, but words can, and most do, stop at nodes that are

not leaves. We also trimmed the tree by only including words that have a token count of at

least 10,000. This threshold of pruning reveals the general pattern while avoiding making

the spelling tree cluttered.

The spelling tree for (ha) has a number of interesting properties. Most notable among

them is the self-similar, fractal-like structure. The main branch line dropping down just

right of center represents the perfect alternating sequence ‘hahahahaha. . . ’, as shown by the

annotated example at the leaf of this line. There are also many similar looking subtrees that

branch off from this main branch that each have their own similar looking main branch.

These paths that follow the main branch, break off at one location, and then follow the

main branch of a subtree represent words that are similar to the perfect alternating laugh,

but either have one extra ‘h’ (if the branch veers left) or one extra ‘a’ (if the branch leads

right). For example, the middle left annotation shows that the fourth letter was an extra

‘h’, and then the rest of the word retained an accurate alternating pattern. This word,

‘hahhahahahahahaha’, appeared 13,894 times in our dataset.

The tree also shows that ‘haaaaa. . . ’ is a strong pattern, as can be seen farthest right

in the (ha) spelling tree. The subtrees on the right show that users also start with the back

and forth pattern for a stretch, and then finish the word with trailing ‘a’s. Many other

patterns also appear in this tree, and additional patterns are occluded by our trimming of
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the tree, but likely most of these come from users trying to follow one of the patterns we

have already highlighted and introducing mistypings.

We made similar trees for every kernel that had a single occurrence of a two-letter

element, where the tree represents just the section of word that matches the two-letter

element. These trees are trimmed by only including words that have a token count of at

least the fourth root of the total token count for the stretched tokens.

Fig. 3.11 gives eight more examples of these spelling trees. The trees for (ja) and (xo)

have many of the same characteristics as the tree for (ha), as do most of the trees for

kernels that are a two-letter element where tokens predominantly alternate letters back and

forth. For the tree for (xo), the pattern where the first letter of the two-letter element

is stretched, followed by the second letter being stretched, such as ‘xxxxxooooo’, is more

apparent. This type of pattern is even more notable in the trees for (aw), and especially

(fu). The tree for (mo) has stretched versions for both ‘mom’ and ‘moo’. Similarly, the

tree for h(er) shows stretched versions of both ‘her’ and ‘here’, where we see that both ‘e’s

and the ‘r’ all get stretched. In the tree for (to), the word ‘totoo’ has a much larger token

count then words stretched beyond that (noticeable by the fact that the edges leaving

that node are much smaller than the edge coming in). The word ‘totoo’ is Tagalog for

‘true’. Finally, every example tree here does show the back and forth pattern to at least

some extent. All of the trees created are available for viewing in Online Appendix D at

http://compstorylab.org/stretchablewords/.

3.3.5 Mistypings and misspellings

Mistypings appear often in tweets and we see evidence of them in stretched words. For

example, the kernel n[o](io) is likely a result of mistypings of n[o]. On at least some plat-

forms, holding down the key for a letter does not make that letter repeat, so one must

repeatedly press the same key. For the standard QWERTY keyboard layout, the letter ‘i’
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Figure 3.11: A collection of example spelling trees. From left to right, top to bottom, trees for the
kernels (to), (ja), (aw), (do), h(er), (fu), (mo), and (xo).
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Figure 3.12: (A) Token count distribution, (B) balance plot, and (C) spelling tree for the kernel
n[o](io). In general, these types of plots offer diagnostic help when studying mistypings. In this
case, they provide evidence towards the conclusion that the words that match this kernel were likely
meant to be stretched versions of the word ‘no’ with a few mistaken ‘i’s included. Note that ‘i’ is
next to ‘o’ on a standard QWERTY keyboard.

is next to the letter ‘o’, so it would be easy to accidentally press the letter ‘i’ occasionally

instead of ‘o’ when trying to repeat it many times, especially on the small keyboards ac-

companying mobile phones. This sort of thing could lead to a kernel like n[o](io) when users

try to stretch the word ‘no’. Similarly, the letters ‘a’ and ‘s’ are next to each other on a

QWERTY keyboard, so a kernel like (ha)s(ha)(sh)(ah) likely comes from mistypings of the

much simpler kernel (ha).

However, it is not always clearly apparent if a kernel is from mistypings or on purpose,

or perhaps comes as a result of both. For example, the letter ‘b’ is close to the letter ‘h’,

so the kernel (ha)b(ah) could come from mistypings of (ha). But, this form could also be

intentional, and meant to represent a different kind of laughter. For example, (ba)(ha)

is a highly ranked kernel (rank 211) representing a comedically sinister kind of laughter.

Similarly, (ja) is a core component of laughter in Spanish, but ‘j’ is next to ‘h’ on the

QWERTY keyboard, so it is not apparent if a kernel like (ha)j(ah)(ja)(ha) comes from

mistypings or from switching back and forth between English and Spanish as the word

stretches.
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Our methodology may enable further study of mistypings. For example, Fig. 3.12 shows

the distribution, balance plot, and spelling tree for the kernel n[o](io). The distribution

shows that it is not a strong kernel, with the lower rank of 4,858, compared to a rank of 8

for (no). The balance plot shows that the letter ‘i’ is not stretched much, and the spelling

tree shows that the word is mostly just a repetition of ‘o’s. On the whole, the evidence

suggests that the kernel n[o](io) is mainly a result of mistypings.

These tools can also be used to help study what are likely misspellings, rather than

mistypings. For example, Fig. 3.13 shows the spelling tree for the kernel hear(ta)ck (which

does not actually fall within our rank cutoff, as described in Sec. 3.2, but provides a good

example). The word ‘attack’ has two ‘t’s. Thus, the word ‘heartattack’ (if written as one

word; usually it is two) should, under normal spelling, have a double ‘t’ after the second

‘a’. From Fig. 3.13 we can see from the weights of the branches that it is often written as

‘heartatack’, with a single ‘t’ instead of the double ‘t’.

t

a

a

t

t

at

hear(ta)ck

Figure 3.13: Spelling tree for the kernel hear(ta)ck. From this tree, we can see the relative number
of times the word ‘heartatack’ is written rather than ‘heartattack’, indicating a common misspelling.
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3.4 Concluding remarks

In this paper, we have studied stretched words, which are often used in spoken language.

Until the advent of social media, stretched words were not prevalent in written language

and largely absent from dictionaries. The area of stretchable language is rich, and we have

discovered that these words span at least the two-dimensional parameter space of balance

and stretch.

The tools we have developed not only help uncover the hidden dynamics of stretchable

words, but can be further applied to study phenomena such as mistypings and misspellings,

and possibly more. Online dictionaries, such as the Wiktionary [33], could use our kernels

as a general entry for each type of stretchable word, and include the balance and stretch

parameters as part of their structured word information, as they do, for example, with part

of speech. Natural language processing software and toolkits could use the techniques we

developed to help with processing stretched words, e.g., in their approach to stemming.

Similarly, spell checking software may be able to use our methods to help prevent marking

stretched words as misspellings. Our procedures could also be used to help prevent ty-

posquatting [34]. Twitter could use our methods to help improve their spam filter, looking

for slight variations of tweets. Also, spelling trees could more generally be used to analyze

the construction of any sequence, such as genome sequences.

However, much more could be done. We have restricted our study to words containing

only Latin letters. Future work could extend this to include all characters, including punc-

tuation and emojis. We also limited the way we constructed kernels, focusing only on one

and two-letter elements. This can be expanded to three-letter elements and possibly beyond

to capture the characteristics of words like ‘omnomnomnom’. Furthermore, our methodol-

ogy for creating kernels leads to situations where, for example, we have both (ha)g(ah) and
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(ha)(ga)(ha) as kernels. Expanding to three-letter elements and beyond in the future could

collapse these forms, and related kernels, into a kernel like (hag).

Along with more advanced kernels, similar but more advanced spelling trees could be

developed. We only created spelling trees for kernels with a single two-letter element. Future

work could explore kernels with more than two-letter elements. They could also be created

for every kernel, where the branching of even the single letter elements is shown, where one

branch would signify the repetition of that letter and the other branch would signify moving

onto the next letter of the kernel. Furthermore, to go with three-letter elements, ternary

trees could be developed. Among other things, this would reveal mistypings like (ha)(hs),

for example, if this became a kernel with a three letter element like (has), and we assume

that the ‘s’ is mostly a mistyping of the letter ‘a’ in the kernel (ha). This situation should

be discernible from the case where the word ‘has’ is stretched.

Another interesting phenomenon to look at is the distinction between phonetic and

visual stretching. When verbally stretching a word, only certain sounds can be stretched

out, whereas when typing a word, any letter can be repeated. For example, compare

‘gooooaaaaal’ with ‘ggggggooooooooaaaaaalllll’. Both stretched words can be typed, but

only the first can be said because of the plosive ‘g’. Relatedly, looking at what parts of

words, such as the end of words, or which letters get stretched more could be interesting.

Finally, our methodology could be used to explore linguistic and behavioural responses

to changes in Twitter’s protocol (e.g., character length restrictions) and platform (e.g.,

mobile vs. laptop). For example, what are the effects of auto-correct, auto-complete, and

spell check technologies? And what linguistic changes result from platform restrictions

such as when a single key cannot be held down anymore to repeat a character? Also, we

only considered tweets before the shift from the 140- to 280-character limit on Twitter.

Some initial work indicates that the doubling of tweet length has removed the edge effect

that the character limit creates [35]. Further work could study how this change has affected
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stretchable words, and in particular, the tail of their distributions.

3.5 Acknowledgments

We thank Margaret Lima for her help, support, and the use of her classroom, which allowed

the early stages of this collaboration and research to happen, and for just being a great

teacher and lady. CMD and PSD were supported by NSF Grant No. IIS-1447634, and

TJG, CMD, and PSD were supported by a gift from MassMutual.

72



Bibliography

[17] Appendix: Glossary — Wiktionary, the free dictionary. https://en.wiktionary.org/w/
index.php?title=Appendix:Glossary&oldid=51610328. Accessed: 2019-03-24.

[18] J. A. Simpson and E. S. C. Weiner, editors. The Oxford English Dictionary. Oxford
University Press, Oxford, 2nd edition, 1989.

[19] Yuan Huang, Diansheng Guo, Alice Kasakoff, and Jack Grieve. Understanding US
regional linguistic variation with Twitter data analysis. Computers, Environment
and Urban Systems, 59:244–255, 2016.

[20] Tyler J. Gray, Andrew J. Reagan, Peter Sheridan Dodds, and Christopher M. Danforth.
English verb regularization in books and tweets. PLOS ONE, 13(12):1–17, 12 2018.
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3.6 Appendix

3.6.1 Alternate balance measure

As a comparison to our normalized entropy measure for balance discussed in Sec. 3.3.2, we

also compute an alternate normalized entropy measure, Halt, that measures balance from a

different view.

To compute Halt, we first calculate the overall average stretch for each character as

before, but now do so across all tokens at once. Then, we subtract one from each of these

values and normalize them so they sum to 1 and can be thought of like probabilities. We

then compute the normalized entropy, Halt, of these values as a measure of overall balance.

Halt is similar to H in that if each character stretches the same on average, the normalized

entropy is 1, and if only one character in the kernel stretches, the normalized entropy is 0.

Again, higher entropy corresponds with more balanced words.

The difference is the view, and what is meant by ‘on average’. For Halt, each token is

weighted equally when calculating balance. Thus, this measure corresponds to the view

that one randomly samples tokens and looks at how balanced they are on average.

By contrast, for H, as calculated in Sec. 3.3.2, tokens are grouped by length, and then

each group gets an equal weight regardless of the group size. This view looks at how well

balance is sustained across lengths, and corresponds to sampling tokens by first randomly

picking a length, and then randomly picking a token from all tokens of that length, and

then looking at how balanced the sampled tokens are on average.

For example, for the kernel (pa), Halt = 1.00000, signifying nearly perfect balance.

However, looking at the balance plot for (pa) in Fig. 3.A1, we see that perfect balance is

not sustained across lengths. Because most of the tokens are short, and short stretched

versions of (pa) are well balanced, all of the weight is on the well-balanced short ones when

randomly picking tokens. However, as people create longer stretched versions of (pa), they
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Figure 3.A1: Balance plot for the kernel (pa). See the Fig. 3.6 caption for plot details. Even though
Halt = 1.00000 for (pa), this plot clearly shows perfect balance is not sustained as tokens increase
in length.

tend to use more ‘a’s than ‘p’s, and near perfect balance is not maintained. This is better

captured by the measure H = 0.80982.

As our main measure of balance, we chose the view better representing how well-balanced

tokens are as they are stretched, equally weighing lengths. This does have the limitation

that groups of tokens with different lengths have different sizes, and some of them may

contain a single token, possibly increasing the variance of the measure. It is possible this

could be improved in the future by only including lengths that have a certain number of

examples, or possibly creating larger bins of lengths for the longer tokens like we do in the

balance plots.

We include the same plots and tables for Halt as we did with H, and many of the

observations are similar. Fig. 3.A2 shows the two jellyfish plots for Halt. Similar to before,

Fig. 3.A2A is the version containing all words and for Fig. 3.A2B we remove the words
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Figure 3.A2: Jellyfish plots for kernel balance based on an alternate entropy measure for (A) all
kernels, and (B) excluding kernels with entropy exactly 0. Corresponding histograms are given at the
top of each plot. Kernels are plotted vertically by their rank, r, and horizontally by their balance as
given by an alternate normalized entropy, Halt, where larger entropy denotes increased balance. The
deciles 0.1, 0.2, . . . , 0.9 are calculated for rolling bins of 500 kernels and are plotted as the ‘tentacles’.
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Halt Kernel Example token
1 1.00000 (ba) baaaaaaaaaaa
2 1.00000 (pa) ppppppppppppa
3 1.00000 (uo) uouuuuuuuuuuuuu
4 0.99998 (pr) prrrrrrrrrrr
5 0.99998 (du) duduudduududududuuu
6 0.99995 (xa) xaxaxaxaxxa
7 0.99995 (ai) aaaaaaaaaaaaaaaai
8 0.99993 (he) hehehheheheh
9 0.99986 (bi) biiiiiiiiii
10 0.99985 (wq) wqwqwqwqwqw

Table 3.A1: Top 10 kernels by an alternate normalized entropy, Halt.

that have a value of 0 for entropy. The top of the plots in Fig. 3.A2 shows the frequency

histograms in each case. As before, after removing kernels with an entropy of 0, we see a

small left-shift in the highest ranked kernels, and then the distribution largely stabilizes.

Again, the highest ranked kernels tend to be more equally balanced, and kernels only

stretching a single character tend to be lower ranked.

Table 3.A1 shows the kernels with the ten largest entropies and Table 3.A2 shows those

with the ten smallest nonzero entropies as measured in this alternate way. We observe that

the kernels with largest entropies are all of the form (l1l2) and are almost perfectly balanced

given the view of equally weighing all tokens. The kernels with lowest entropies all expand

to regular words that when spelled in the standard way contain a letter that is repeated,

plus these kernels allow other letters to stretch.

Finally, Fig. 3.A3 shows the scatter plot of each kernel where the horizontal axis is given

by this alternate measure of balance, Halt, and the vertical coordinate is again given by the

measure of stretch for the kernel using the Gini coefficient, G. We again see that the kernels

span the two-dimensional space.

We still get the same kind of rough vertical banding that we saw in Fig. 3.9 for the same

reason, but we also see a curved dense band at lower entropy values, which seems to mostly
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Halt Kernel Example token
1 0.00115 [t][e][t]h teeeeeeeeeth
2 0.00119 f[e]l[i]ng feeeeeeling
3 0.00170 c[a][l]ing calllllling
4 0.00196 a[c]ep[t] accepttttttt
5 0.00197 fa[l][i]ng falllllling
6 0.00217 hi[l]ar[y] hilllllaryy
7 0.00227 m[i][s][i]ng missssssssssing
8 0.00271 ba[n]e[d] baneddddddddd
9 0.00277 t[h][r][e] threeeeeeeee
10 0.00302 th(er) therrrreeeee

Table 3.A2: Bottom 10 (nonzero) kernels by an alternate normalized entropy, Halt.
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Figure 3.A3: Kernels plotted in Balance-Stretch parameter space using an alternate measure of
normalized entropy for balance. Each kernel is plotted horizontally by the value of its balance
parameter, given by an alternate normalized entropy, Halt, and vertically (on a logarithmic scale)
by its stretch parameter, given by the Gini coefficient, G, of its token count distribution. Larger
entropy implies greater balance and larger Gini coefficient implies greater stretch.
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contain kernels whose base word is spelled with a double letter, like ‘summer’ (with kernel

[s][u][m][e][r]).

3.6.2 Stretch ratio

For each kernel, we also measure a ‘stretch ratio’, ρ. This is simply the ratio of the total

number of stretched tokens, ns, to the total number of unstretched tokens, nu, for that

kernel. That is,

ρ = ns
nu
. (3.1)

Fig. 3.A4 gives the jellyfish plot for the stretch ratio. Like Fig. 3.8, the horizontal axis

has a logarithmic scale and the histogram bins have logarithmic widths. The stretch ratio
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Figure 3.A4: Jellyfish plots for kernel stretch ratio, ρ, as given by the ratio of the sum of the kernel’s
stretched tokens to the sum of its unstretched tokens. The histogram is given at the top of the plot
(with logarithmic width bins). Kernels are plotted vertically by their rank and horizontally (on a
logarithmic scale) by their stretch ratio. The deciles 0.1, 0.2, . . . , 0.9 are calculated for rolling bins
of 500 kernels and are plotted as the ‘tentacles’.
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Figure 3.A5: Scatter plot comparing two measures of stretch for each kernel. For each kernel, the
horizontal axis gives its stretch as measured by the Gini coefficient, G, of its token count distribution
and the vertical axis gives its stretch ratio, ρ. Both axes have a logarithmic scale.

distribution stays fairly stable across ranks, except for the highest ranked kernels, which

tend to have a larger ratio.

This stretch ratio can be thought of as a simple measure for the stretchiness of a ker-

nel, with a larger ratio representing stretchier words. As stretched versions of the word

are used more, the numerator increases and the ratio value increases. Conversely, as un-

stretched versions of the kernel are used more, the denominator increases, and the ratio

value decreases. However, this simpler measure uses less information from the full distri-

bution than a measure like the Gini coefficient does, so we would expect some differences

between the two. Indeed, Fig. 3.A5 shows that there are some kernels for which the two

measures seem to disagree. Yet, Fig. 3.A5 shows that the stretch ratio and Gini coefficient

are quite well correlated, with Pearson correlation coefficient 0.89 (p < 10−100), so there
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ρ Kernel Example token
1 76.04717 s[o][c][o][r][o][k] socorrokkkkkk
2 29.94863 mou(ha) mouhahahaha
3 21.93369 p[f](ha) pffhahahaha
4 19.82821 bu(ha) buhahahahaha
5 15.15702 (ha)j(ah)(ja)(ha) hahahahajahajaha
6 10.32701 pu(ha) puhahahahaa
7 8.63055 (ha)(ba)(ha) habahahhaha
8 8.47429 (ha)b(ha) hahahhahabha
9 8.13269 (ah)j(ah) ahahahjahah
10 7.72953 a[e]h[o] aehooooooooooooo

Table 3.A3: Top 10 kernels by stretch ratio, ρ.

ρ Kernel Example token
1 0.00002 am[p] amppppppppp
2 0.00004 fr[o]m froooooooom
3 0.00004 m[a]kes maaaaaaakes
4 0.00007 w[i]th wiiiiiiiiiiiiith
5 0.00009 eve[r]y everrrrrrrrrry
6 0.00011 p[r]a prrrrrrrrrrra
7 0.00011 watch[i]ng watchiiiing
8 0.00011 s[i]nce siiiiiiiince
9 0.00012 pla[y]ed playyyyyyyed
10 0.00012 vi[a] viaaaaaaaaaaaaaaa

Table 3.A4: Bottom 10 kernels by stretch ratio, ρ.

is not much gained by including both. We choose to use the Gini coefficient as our main

measure of stretchiness both because of its wide usage and because of the fact that it uses

more information from the full distribution than the simpler stretch ratio.

Table 3.A3 shows the top 10 kernels by stretch ratio and Table 3.A4 gives the bottom

10. The correlation between stretch ratio and Gini coefficient, at least for the least stretchy

kernels, can be seen further when comparing this to Table 3.5. Many of the kernels that

show up as the least stretchy words (lowest Gini coefficients) also show up here in the list

of kernels with smallest stretch ratio.
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3.6.3 “Drawing presentable trees” algorithmic bugs

Wetherell and Shannon presented an algorithm for drawing large trees in a nice way in their

paper “Tidy drawing of trees” [30]. The article “Drawing presentable trees” [31] by Mill

and related code [32], based largely on the earlier work of Wetherell and Shannon, provide

a version of the algorithm written in the Python syntax, but both the article and the code

contain algorithmic bugs. In the following, we present the bugs we found.

We will discuss Listing 5 in Mill’s paper [31], as that is the version that most closely

resembles Algorithm 3 of Wetherell’s and Shannon’s paper [30], which is what our code to

create the spelling trees is based off of.

In Listing 5, the definition of setup contains the code:

elif len(tree.children) == 1:
place = tree.children[0].x - 1

This needs to be split into a left case and a right case. If the only child node is a left

child, then the parent should be placed to the right by one, and if the only child node is a

right child, then the parent should be placed to the left by one. The DrawTree class needs

a way to tell if a node has a left or right child. Let us assume the class DrawTree has an

attribute left properly implemented that is set to True iff the node has a left child. Then

the code should be something more like the following:

elif len(tree.children) == 1:
if tree.left:

place = tree.children[0].x + 1
else:

place = tree.children[0].x - 1

Compare the above fix to the corresponding code in the right visit case in the first

while loop in Algorithm 3 in “Tidy drawing of trees” [30]:
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elseif current↑.left_son = nil
then place := current↑.right_son↑.x - 1;

elseif current↑.right_son = nil
then place := current↑.left_son↑.x + 1;

Later in Listing 5 in the definition of setup is the following line:

nexts[depth] += 2

However, we want the next available spot, recorded in nexts, to be two spots to the

right of the current placement, and the current placement is sometimes different from the

current next available spot. Thus, the line should look something like the following:

nexts[depth] = tree.x + 2

Again, compare this to the corresponding code found near the end of the right visit

case of the first while loop of Algorithm 3 in “Tidy drawing of trees”:

next_pos[h] := current↑.x + 2;

The final bug in Listing 5 is not an algorithmic bug, but merely a typo. In the definition

of addmods is the line of code:

modsum += tree.offset

However, tree does not have the attribute offset. Instead the mod attribute should be

added to the accumulated sum as follows:

modsum += tree.mod
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Chapter 4

Culturomics Redux: Rebuilding the
Google Books n-gram dataset to reveal
the hidden collective voice of English
fiction authors

The large-scale quantification of the dynamics of words and phrases in books

written across centuries should provide an extraordinary platform for a rich

study of language evolution and changes in culture and society. The Google

Books n-grams corpora for a range of languages has promised as much but

has proved unreliable due to (1) An increasing prevalence of scientific material

through the 20th Century, and (2) An inherent failure to represent the popu-

larity of language and culture from the perspective of authors or readers. In

this paper, we show how the specific Google Books n-grams corpus for English

Fiction can be reconstructed to afford a view into the mind of the ‘collective

author’ (but not that of the ‘collective reader’). We are then able to properly ex-

plore, at the resolution of years, the topics authors and editors have historically

deemed to be of interest to readers, along with the language they favored to do

so. We first explain why raw n-gram counts are a fundamentally flawed proxy

for word and phrase importance within the Google Books n-gram framework.

We then devise a method using book-appearance count of n-grams to rebuild
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the Google Books corpus so that meaningful linguistic and cultural trends, ac-

cording to the standpoint of the collective author, may be reliably discerned. We

measure and examine the dynamics of ‘lexical turbulence’, a summary statistic

for churn in word rank, by looking at the flux of n-grams across rank boundaries

in Zipf distributions. We show that lexical turbulence decreases for the origi-

nal Google Books version but is roughly constant for our revised version—there

is no apparent slowing down or speeding up. We then examine linguistic and

sociocultural changes between time periods using wordshift plots and a rank

divergence measure with a tunable parameter. We show how tuning our rank

divergence parameter allows us to systematically explore n-gram usage changes

ranging from n-grams used in functional parts of language to n-grams that best

represent cultural evolution and important historical events. In parallel with

this paper, we make our revised version of the Google Books English Fiction

n-gram dataset freely available, along with an interactive online viewer.

4.1 Introduction

Language is in a constant state of evolution, driven in part by both random drift [36] and

sociocultural factors. Snapshots of the current linguistic state are created when words are

printed in books. The continuous recording and aggregation of text over time allows us to

examine the linguistic and cultural trends of the past, and provides insight into the future

trajectories of such trends.

In the modern era, digitized text sources such as the Google Books corpus [37, 38] and

increased computational power provide profound opportunities for the study of linguistic

evolution over the last two hundred years in a number of major languages. Indeed, a number

of recent studies have focused on an array of observed trends in the Google Books corpus,

including analyses of Zipf’s and Heaps’ laws [39], verb regularization [37, 40], culture changes
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[37], new words in a language [41], and word births, deaths, and general changes in word

use over time [42, 43].

In this paper, our goal is to carefully examine the Zipf distributions [44] of 1-grams,

2-grams, and 3-grams in the Google Books corpus and the trends of n-grams over time.

Through a proper statistical treatment of n-gram frequency changes over time, we reveal

the topics common to authors over the last 200 years, and gain insight into linguistic and

cultural changes.

Unfortunately, studies have identified troubling issues with the Google Books corpus

[40, 45]. There is a large prevalence of scientific works in both the 2009 and 2012 versions of

the English corpus and in the 2009 version of the English Fiction corpus [45]. Furthermore,

due to its library-esque nature, where each book contributes roughly one time (not counting

reprints and different editions), the data fails to reflect information about the popularity

of words based on readership views [45]. Finally, it has been shown that the edited form

of language found in books does not necessarily match the colloquial language of everyday

speakers [40].

Despite these setbacks, the Google Books corpus still contains a wealth of information

from which we are able to extract meaningful results if we keep the preceding limitations in

mind. In this paper, we use the 2012 English Fiction corpus [46] as suggested by [45]. We

begin by showing that the straightforward method of constructing the Zipf distributions

using token counts, as is used by Google’s Ngram Viewer [47], reveals nonsensical irregu-

larities in terms of n-gram prevalence. We then develop an improved method, focused on

book counts rather than token counts, that affords a more meaningful output. Using this

improved method, we are then able to study the temporal evolution of the English Fiction

corpus.

We structure our paper as follows: In Sec. 4.2, we describe the data. In Sec. 4.3, we

explain the problems associated with using token counts to study language. We provide a
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revised method for using the Google Books corpus to study language in Sec. 4.4, explaining

how we use book counts as the primary unit to rank tokens in Sec. 4.4.1, and developing

methods of subsampling and smoothing in Sec. 4.4.2. We provide our analysis of language

in Sec. 4.5. We begin our analysis by studying the Zipf distributions in Sec. 4.5.1 and rank

flux in Sec. 4.5.2. Then, in Sec. 4.5.3, we use wordshift plots to provide fine-grained analysis

of the changes in language between two time periods. Finally, in Sec. 4.6, we present our

concluding remarks.

4.2 Description of the dataset

In this paper, we use the English Fiction 2012 Google Books corpus [37, 38, 46, 48]. This

data consists of “books predominantly in the English language that a library or publisher

identified as fiction” [46] that have been split into ‘n-grams’. A 1-gram is often, but not

always, the same as a word. The set of 1-grams also includes lexical structures such as

punctuation and numbers. An n-gram is made up of n 1-grams. For example, ‘the sun.’

is a 3-gram made up of the three 1-grams ‘the’, ‘sun’, and the period, ‘.’. A token is an

individual occurrence of an n-gram.

For each n-gram that occurs within the corpus at least 40 times overall, the total number

of times that n-gram is found in each year (token count) and the total number of books it

was found in (book count) are recorded [48]. Within the raw data, there are also n-grams

that are annotated with information like part of speech, and some that contain wildcards

[38, 46]. From our inspection, these seem to be either subsets or supersets of the pure

n-grams, so we only use the pure n-gram data.

Also provided in the data, for each year, are the total token counts for 1-grams, the

total number of sentences, and the total number of books. Google does not provide total

token counts for n-grams with n greater than 1. We calculate these counts ourselves and

confirm by comparison with the online viewer.

88



To do so, we must handle a complication in that Google does not permit n-grams to

cross sentence boundaries. For n-grams with n greater than 1, Google artificially inserts

a special n-gram denoting the start of each sentence, and one denoting the end of each

sentence [38].

Totals may then be calculated as follows: The number of 2-grams in a particular year

should be: the number of 1-grams minus the number of sentences (because a sentence splits

into 1 less 2-gram than it does 1-grams) plus two times the number of sentences (because

Google added two special 1-grams to each sentence). The resulting total count for 2-grams

is then equal to the number of 1-grams plus the number of sentences. For each increase in

n, the total number of n-grams should be the number of sentences less than the previous

number of n-grams. So, for example, the number of 3-grams is then the same as the number

of 1-grams.

We checked our calculations by retrieving the time series of relative token frequency

values for several 2-grams and 3-grams from the online viewer. The yearly token frequency

values from the online viewer agree with the values obtained by taking the counts from the

raw data divided by our theorized yearly totals.

Fig. 4.1 gives the total number of books used to generate the dataset for each year from

1800-2008. The plot for total token counts has a nearly identical shape, but is vertically

multiplied by about 105, representing an average of roughly 105 n-grams per book. Fig. 4.1

also shows that the data volume is increasing exponentially over time.

4.3 The problem with using token counts

We began by creating Zipf distributions, or relative frequency distributions where the hor-

izontal position gives the rank of the n-gram, and the n-gram with the greatest frequency

has the highest rank of 1. To construct Zipf distributions for n-grams, we started with the

most natural thing, which is to use the token counts that underlie Google’s Ngram viewer.
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Figure 4.1: Yearly book counts for the Google Books English Fiction 2012 corpus. Overall, the
number of books being sampled by Google has grown exponentially. However, during the first half
of the 20th century the number of books stayed relatively level, and even experienced a significant
dip during the Great Depression Era into the time of World War II. The dashed horizontal line
represents the number of books used during our subsampling process (see Sec. 4.4.2).

Fig. 4.2 shows the Zipf distributions for 2-grams and 3-grams with each decade-initial year

from 1800–2000 plotted on the same axes. The way the distributions overlay each other

suggests a general overall consistency in the distributions over time. The distributions for 3-

grams is flatter with a longer right tail because of the combinatorial increase in possibilities

for 3-grams (see Sec. 4.5.1 for more information).

We explore language churn further with the Jensen-Shannon divergence (JSD). JSD

allows us to compare distributions and rank n-grams by their largest contribution to JSD.

As we will show, visual inspection of the JSD contributions reveals several examples indi-

cating that the natural use of token counts is extremely problematic. This straightforward

construction of Zipf distributions based on token counts leads to nonsensical irregularities

in terms of the prevalence of n-grams.

In Fig. 4.3 we give the JSD wordshift plot for subsampled (see more about subsampling

in Sec. 4.4.2) 2-grams comparing the distribution from combining the 10 years starting in
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Figure 4.2: Zipf distributions for (A) 2-grams and (B) 3-grams based on token counts in the Google
Books English Fiction 2012 corpus. We rank n-grams based on their relative token frequency. We
overlay Zipf distributions for the initial year of each decade, 1800, 1810, 1820, ..., 2000, with more
recent years being plotted in darker gray.

1934 to that from combining the 10 years starting in 1944. The wordshift plot indicates

which n-grams were the largest contributors to the JSD between these time periods. The

years we examine here cover the Great Depression, World War II, the start of the Post War

era, and the Korean War. However, any influence these events had on language is largely

unapparent. For example, one of the 2-grams contributing the most to the JSD is ‘Raintree

County’, which is simply the title of a single book, and one that does not explicitly involve

any of these crucial world events. The relative token frequency time series for ‘Raintree

County’ (Fig. 4.4) shows a giant spike in 1948, the first year this roughly 1000-page book

was published. The spike represents a total of 3430 ‘Raintree County’ tokens counted in

only five books. This anomalous spike is likely a result of Google scanning the same book

more than once and the title being printed on the top of every page (or every other page)

and is not at all representative of a jump in the use of this bigram in natural language.

We find these kinds of anomalous n-gram patterns across all time periods. In the JSD

wordshift plot for 3-grams comparing the distributions from 1979 and 1980 (Fig. 4.5), we

see the trigrams ‘on copyright page’, ‘No statement of’, and ‘of printing on’. The 3-gram
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Figure 4.3: The top contributors to the Jensen-Shannon divergence (JSD) between subsampled
frequency distributions of 2-grams for the periods 1934–1943 and 1944–1953. The bars to the right
of zero represent the percentage contribution to the JSD of n-grams that have a higher relative
frequency in the more recent time period. Bars to the left are n-grams with a higher relative
frequency in the earlier time period. In parentheses next to each n-gram is its earlier rank based on
token counts followed its more recent ranking. The inset plot shows the cumulative sum of JSD by
summing the decreasing contributions of n-grams. ‘Raintree County’ (highlighted in red), the title
of a book, is the 44th largest contributor to the JSD between these two decades.
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Figure 4.4: Relative token frequency time series for the bigram ‘Raintree County’. The spike in 1948
represents 3430 ‘Raintree County’ tokens in only five books.

‘on copyright page’ appeared an enormous 5990 times in just one book in 1979. Similarly,

in 1979 ‘No Statement of’ shows up 2359 times in a single book and ‘of printing on’ is

found 2231 times in three books. We show the spikes in 1979 for these trigrams in Fig. 4.6.

We also include the 3-grams ‘the house and’ and ‘thought it was’; both of these 3-grams

appear about the same number of times in 1979 as ‘on copyright page’, with ‘the house and’

showing up 6016 times and ‘thought it was’ showing up 6027. However, they are found in

many more books: 19791 for ‘the house and’ and 2189 for ‘thought it was’, giving an average

of about three occurrences per book rather than thousands. Furthermore, their time series

look more like what one might expect, with an overall trend and minor fluctuations from

year to year rather than an anomalous spike in a single year.

The examples we have illustrated above are not isolated. They are a small sample

of many spurious time series that became apparent during our initial analysis, and are

representative of many more similar anomalies existing within the data. The anomalous
1Yes, 1979 is not only the year, but also happens to be the book count for ‘the house and’ in 1979.
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Figure 4.5: The top contributors to the JSD between the relative token frequency distributions
for 3-grams in 1979 and 1980. See Fig. 4.3 for details. The 2nd largest contributing 3-gram, ‘on
copyright page’, appeared 5990 times in a single book in 1979.

94



1800 1850 1900 1950 2000

Year

0. 0

0. 5

1. 0

1. 5

2. 0

2. 5

R
e
la

ti
ve

 t
o
k
e
n

 f
re

q
u

e
n

cy

×10 5

the house and
thought it was
on copyright page
No statement of
of printing on

Figure 4.6: Relative token frequency time series for a select collection of 3-grams. The 3-grams ‘on
copyright page’, ‘No statement of’, and ‘of printing on’ all spike anomalously in 1979, whereas the
3-grams ‘the house and’ and ‘thought it was’ have more representative, healthy looking time series.

spikes shown here can be thought of as examples of data acquisition errors of a certain

kind. They are likely a result of an individual n-gram (e.g., the book title, or copyright

information) being printed at the top or bottom of every page in a book. Or perhaps an

error occurred during data collection, where a single page was reread multiple times during

the optical character recognition (OCR) process. These examples do not reflect statistical

or linguistic intuition when looking at time series of n-grams. The spikes in the time series

are in no way representative of a spike in the use of these n-grams in the collective language

of English speakers, nor are they representative of any shift in culture.

We also see that, overall, many of the n-grams at the top of these JSD wordshifts are

names of characters in books. Again, the use of a single name many times within a single

book or a few books does not represent a shift in the popularity of that name in society. Yet,
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by using raw token counts as a proxy for the importance of an n-gram, names collectively

appear as the largest change in language over time.

Of course, an increased usage of an individual name (or any other n-gram) by several

authors could represent a legitimate shift in that n-gram’s importance. That is, if the

number of unique books an n-gram appears in is changing over time, then it seems more

likely that the societal usage of that n-gram in language is changing (e.g., ‘Frankenstein’).

This realization inspires a different method of measuring language change over time.

4.4 Unlocking the secrets

4.4.1 Using book counts to rank n-grams

In the preceding section we showed that an analysis of language change in Google Books

using JSD and token counts is fundamentally flawed. However, the Google Books corpus

still contains a wealth of information from which we aim to extract goodness. Our solution

to the issues described in Sec. 4.3 is to use unique book counts as the primary measure for

the importance of an n-gram, and token counts as a secondary measure. That is, we use a

composite ranking where we rank an n-gram first based on the number of books it appears

in, and then break ties with the token count for the n-gram.

For example, there is a set of function 1-grams (e.g., ‘the’, ‘a’, ‘.’, etc.) that will likely

appear in every book for a given year. If we only ranked according to book counts, these

function 1-grams would all be tied for the top rank. In this case we then split the tie based

on token counts, giving higher ranks to those with higher token counts.

In Fig. 4.7, we compare the rank for 2-grams in 1948 based on token counts to their

rank based on our composite ranking. The points appearing farther to the right from the

diagonal axis are those that have a disproportionately high token count given the number of
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Figure 4.7: A comparison of the token count rank and composite rank for bigrams in 1948. Bigrams
farther right from the diagonal have a larger token count than their corresponding book count
suggests. For example, ‘Raintree County’, highlighted in red, appears an average of 686 times per
book, which is far more frequent than most bigrams with a similar book count.
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books they appear in. Because this plot has logarithmic axes, the imbalance farther down

the diagonal is much larger than a visually comparable distance farther up the diagonal.

The point corresponding to the bigram ‘Raintree County’ is annotated in Fig. 4.7. Based

on token counts, ‘Raintree County’ has a rank in the thousands. Our composite ranking,

based primarily on book counts, drops the rank down into the millions, which corresponds

closer to the relative importance of this n-gram in 1948. The time series for this n-gram

based on its book count (not shown) no longer exhibits the spike found in its token count

time series (Fig. 4.4).

In Fig. 4.8, we show the token count time series for the 1-grams ‘Lanny’ and ‘Hitler’.

Lanny Budd is a character in a series of 11 books authored by Upton Sinclair in the 1940s

and early 1950s. The plot shows that even though World War II and Hitler unarguably

dominated the history of the 1940s, a single character from a few books by a single author

ranks higher in importance when ranking with token counts. However, when using book

counts, the rank of ‘Lanny’ becomes inconsequential while ‘Hitler’ is clearly ranked much

higher, as we show in Fig. 4.9. Our reranking thereby more accurately represents the relative

historical importance of these two 1-grams during that time period.

While we cannot infer reader popularity from Google Books [45], we can approximate the

collective attention of authors on individual topics. Using book counts, we find a measure of

n-gram popularity among authors, where each book gets one vote, so that the importance

of a single n-gram is not artificially inflated by its overrepresentation from a single author.

Linguistic and cultural shifts, or important events like World War II, will affect authors

generally, and our method will capture this shift while filtering out inconsequential spikes

in token counts generated by the choices of single authors or from scanning-related errors.

Thus, this method of composite ranking provides a more meaningful output when studying

language using the Google Books data.
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Figure 4.8: Relative token frequency time series for the 1-grams ‘Lanny’ and ‘Hitler’. Although
Lanny was only a story book character, the token frequency for Lanny is much greater than that of
Hitler during the WWII era.
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Figure 4.9: Relative book frequency time series for the 1-grams ‘Lanny’ and ‘Hitler’. Using book
counts, the relative frequency for ‘Lanny’ drops to near zero while ‘Hitler’ appears in nearly 20% of
books sampled by Google since the 1940s, more accurately representing the relative importance of
these two figures throughout modern history.
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Figure 4.10: Flux time series for 1-grams. For each of the composite rank thresholds, rthreshold = 102,
103, 104, and 105, the number of 1-grams moving up across that threshold (which is the same as the
number moving down across the threshold) between consecutive years is plotted at the point for the
more recent year.

4.4.2 Subsampling and smoothing

Although our composite ranking for n-grams based primarily on book counts corrects many

irregularities, the exponential growth in data volume of Google Books over time presents

additional challenges for statistical inference.

Fig. 4.10 shows the flux across select composite rank thresholds, rthreshold, for 1-grams

over time. It shows that the number of 1-grams crossing the various rank thresholds is

decreasing with time, exhibiting less rank churn, and representing less change in language

in more modern years. By this measure, the English language appears to be cooling down

[41].

However, the size of the underlying dataset is largely increasing over time. As we saw

in Fig. 4.1, the total number of books in the Google Books dataset for each year from 1800
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onward has followed a roughly exponential growth. We must account for how the increasing

sample size greatly decreases the uncertainty in the distribution for n-grams.

Let us imagine that there is a single underlying probability distribution for n-grams from

which every user of the language draws, and each book is a sampling of this distribution. As

more books are included in the sample for a year, the sample distribution will become more

solidified, and better match the underlying distribution from which samples are drawn. The

probability estimates for n-grams, especially the more popular ones, become more precise,

and the variance of these estimates decreases. Looking at two years with a small number

of sampled books will require a comparison of distributions where the n-grams are not

necessarily converged onto their ‘true’ underlying ranks, and some of the flux could simply

be a result of n-grams moving around because of the small sample size. When the sample

size increases, the ranks settle down, and comparison between years reflect changes in the

underlying distribution rather than mainly changes due to sampling, and therefore the flux

will be less.

Comparing Figs. 4.1 and 4.10, we see a general flattening during the first half of the 20th

century in both figures. More recent years demonstrate the fastest increases in book counts

and correspondingly the fastest decreases in flux, providing additional evidence towards this

connection between flux and data volume.

To overcome the non-stationary sample, we attempt to normalize the sample size across

years. We chose a subsample size of 100 books for each year, represented by the dashed

horizontal line in Fig. 4.1. Note that there really are not as many English Fiction books

sampled by Google as one might think, and this subsample size is actually larger than the

true sample size in the earlier years (roughly before 1830). Thus, we picked 100 as a balance

between being a true subsample for most of the years and not being excessively small.

We created the yearly subsample in the following way: For a given year, y, for n-gram

i, let its raw book count be nb,i and raw token count be nt,i. Then, if Nb,y is the total
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number of books for year y, we obtain the sampled book count, n′b,i, where 0 ≤ n′b,i ≤ 100,

from a binomial distribution with 100 trials and probability of success nb,i/Nb,y. That is,

P

(
n′b,i; 100, nb,i

Nb,y

)
=
(

100
n′b,i

)(
nb,i
Nb,y

)n′
b,i
(

1− nb,i
Nb,y

)100−n′
b,i

. (4.1)

Then, the sampled token count, n′t,i, is

n′t,i = nt,i

(
n′b,i
nb,i

)
. (4.2)

That is, we are effectively sampling 100 books from all the books used for the given

year, with each book equally likely to appear in our subsample. Each n-gram appears in

some number of books in the full sample. We use the binomial distribution to estimate how

many of these books for n-gram i are in our 100-book subsample. To find the sampled token

count, we make the simplifying assumption that the tokens for the n-gram are distributed

equally across the books it shows up in.

Fig. 4.11 shows the flux across the same rank thresholds for 1-grams using the sampled

version of the data. Indeed, we now see that flux in the later years has largely increased

compared to Fig. 4.10, and flux has largely flattened out over time, and even now seems to

be increasing some in the highest ranked 1-grams.

We are unable to subsample in a way that would fully undo the effects of Google’s sam-

pling, seeing as we do not have the n-gram distribution for individual books. Furthermore,

due to the very low book counts in the earlier years of Google’s sample, we do not trust

the representativeness of the data before 1850, where the true sample is smaller than our

subsample. However, our sampling method does seem to largely undo the effects of the

increasing sample size, especially in the later years, and gets us much closer to having a

true normalized sample across years. Thus, we will use the sampled version of the data for
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Figure 4.11: Flux for 1-grams between consecutive years using the sampled version of the data. See
Fig. 4.10 caption for details. Using the sampled data largely flattens the flux time series.

the remainder of the language analysis, and will focus on the data after 1900 where we feel

more confident in the results given the larger sample size.

Our subsampling allows us to normalize the data across years, and enables comparison

of the Zipf distributions between years. However, because they still come from samples,

there is uncertainty in the distributions, and some of the deviations between years are likely

a result of this uncertainty. To deal with this, we smooth out some of the uncertainty

by aggregating the distribution over some number of years. Because the subsample size is

the same for all years and we are using ranks, we do not average, but just add the token

counts and book counts for n-grams across the years, but the effect is the same. For the

remainder of the study we will often use the subsampled data combined across 10 years for

our analyses.

In Fig. 4.12 we again show the flux for 1-grams over time, but now using the subsampled

data combined across 10 years. A point on the plot represents the flux across rank thresholds

103



1800 1850 1900 1950 2000

Year

100

101

102

103

104

105

F
lu

x

102

103

104

rthreshold = 105

1-grams, Lookback = 1, Composite Rank,
Sampled, Combined

Figure 4.12: Flux for 1-grams using the sampled, combined data. A point plotted at year y measures
flux crossing composite rank boundaries going from the distribution resulted from combining the
ten years starting at year y − 1 to that from combining the ten years starting at year y.

comparing the distributions resulting from combining the subsampled data for 10 years.

That is, for a point at year y, we measure the flux between the distribution resulting from

combining the subsampled data for the 10 years y to y + 9 and the distribution resulting

from combining the subsampled data for the 10 years y − 1 to y + 8. Like the version

using subsampled data in Fig. 4.11, the flux is relatively constant over time. However, we

see that flux has largely decreased by an order of magnitude, both due to smoothing out

some of the uncertainty in the distribution and the fact that these smoothed versions now

overlap in many of the years making up the distribution. We study flux more in Sec. 4.5.2,

both looking at other values of n, and other values of the lookback—the number of years

separating the first year of each distribution.
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4.5 Lexical turbulence

Now that we have a method to extract meaningful information from the Google Books

dataset, we are able to study the linguistic and cultural evolution of language over the past

two centuries.

4.5.1 Zipf distributions

In Fig. 4.13 we provide the relative book frequency Zipf distributions for 1-grams, 2-grams,

and 3-grams. For each plot, the distribution for the decade initial year for each decade from

1800–2000 is plotted in increasingly darker gray as time increases. All of the distributions

have a flat plateau for the highest ranked n-grams. This plateau results from functional

n-grams that appear in all or almost all of books, such as ‘the’, ‘and’, ‘of the’, ‘.’, ‘,’, ‘”’, ‘,

and the’, etc. The distributions then roll over into a roughly power-law shaped tail.

For smaller n, the distributions have a flatter, longer plateau area, rolling over to a

steeper tail. As n increases, the number of options for n-grams grows exponentially. Even

among the most functional n-grams, few show up in every book like ‘the’ does, hence the

shorter, less flat plateau. Also, with more options, there are more choices for roughly equally

frequent n-grams, for example, ‘of the’, ‘in the’, ‘at the’, ‘on the’, etc., or ‘he said’, ‘she

said’, ‘they said’, ‘we said’, ‘I said’, etc. The extra options extend the tail and reduce its

slope.

If we think of the limiting case of these distributions as n increases, e.g., for 100-grams

or 1000-grams, every n-gram will be unique, and the front part of the distribution will drop

to 1 divided by the number of books, and the tail will extend straight out so the distribution

is just a flat line at 1 divided by the number of books.

For a given n, looking at the Zipf distributions across years in Fig. 4.13, we see that

they stay fairly consistent. The more recent ones appear as though they may generally be
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Figure 4.13: Zipf distributions for (A) 1-grams, (B) 2-grams, and (C) 3-grams based on book
counts in our subsampled version of the data. The n-grams are ranked based on their relative book
frequencies. Overlaying each other are distributions for every decade-initial year from 1800–2000,
with more recent years plotted in darker gray.
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shifted down relative to the older years, but this may be an artifact still of the increased

volume of books in more recent years. With more books in the sample, and as the sample

distribution approaches the true underlying distribution, it is more likely that a particular

n-gram will not appear in all of the books, and the relative book frequency for the n-gram

will decrease.

Thinking backwards and to the limiting case, if we reduce the number of books in our

sample down to a single book, every n-gram will then have a relative frequency of 1, and

we get a flat line at 1. So, as we increase the sample size, the Zipf distribution will curve

down and approach the true underlying distribution, with some amount of variance that

will decrease with an increased sample size. Also, the tail of the distribution will extend as

more novel n-grams are encountered with each book added to the sample.

The distributions in Fig. 4.13 are based on our subsampled version of the data. However,

as mentioned previously, even with the subsampling we are not able to completely undo all

of the effects resulting from the changes in the underlying data size. Also, note that it is

because of our subsampling down to a more effectively equal data size of 100 books that we

do not see the tails for the more recent years extend much farther than the earlier years.

4.5.2 Rank flux

Even though we saw that the Zipf distribution for n-grams is fairly stable over the years, we

would like to measure how much turbulence there is under the surface. As one measure of

turbulence, we consider the ‘rank flux’ [43]. That is, when comparing the ranks of n-grams

from one time period to another, how many n-grams cross a given rank threshold.

For this part of the analysis, we use the sampled, 10-year combined version of the data.

Fig. 4.14 gives the rank flux for 1-grams, 2-grams, and 3-grams for selected rank thresholds

with a lookback of 10 years. So, a point on the plot at year y gives the rank flux between
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Figure 4.14: Rank flux for (A) 1-grams, (B) 2-grams, and (C) 3-grams using the sampled, combined
data comparing distributions combined over 10 years and separated by 10 years. A point plotted at
year y for a composite rank threshold gives the number of n-grams whose composite rank crosses that
threshold (in one direction) when comparing the distribution from combining the 10 years starting
at year y to the 10 years starting at year y − 10.
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the sampled data combined across the 10 years starting with year y to the sampled data

combined across the 10 years starting with year y − 10.

In Fig. 4.14 we see that, generally, the flux has remained constant over time. That is,

language is churning at the same rate. Locally, however, we do see time periods of increased

flux. We also see that the patterns of flux are quite similar across the values of n, with

the largest exception being that we do not see the local bumps in flux in the lower ranked

1-grams.

In comparing Figs. 4.12 and 4.14, the local bumps in flux are not visible in 1-grams

when the lookback is 1 year. Fig. 4.12 looked at rank flux with the 10-year combined

sampled data with a lookback of only 1 year, so, for a given point, the two time spans being

compared overlap by 9 years. So, in that case, we are comparing two dates that are ten

years apart, but dampened by the overlap of the 9 years in between. However, the lack of

spikes in Fig. 4.12, and also in Fig. 4.11, show that the local increases of flux in Fig. 4.14

are not due to large 1-year changes, but more so due to a gradual extra change (compared

to the long-run average) over many years that add up to make one decade extra different

from the previous decade. The figures are not included, but the 1-year lookback figures and

comparison with 10-year ones are similar for 2-grams and 3-grams.

4.5.3 Detailed analysis of language changes with rank

divergence wordshift plots

Now we begin a more detailed analysis of the specific changes between a few selected time

periods. To measure the change in the n-gram rank distribution between two time periods

we use a rank divergence measure. Let r(1)
i be the rank of n-gram i in the first time period

and r
(2)
i be the rank of n-gram i in the second time period. Then, we compute the rank
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divergence,

DR
α =

∑
i

∣∣∣∣∣∣ 1(
r

(1)
i

)α − 1(
r

(2)
i

)α
∣∣∣∣∣∣
1/α

, (4.3)

where α is a tunable parameter.

DR
α is a sum of contributions from each n-gram, allowing us to sort n-grams by decreasing

contribution to the total rank divergence. Fig. 4.15 is an example wordshift plot that shows

the top 60 contributors to the total rank divergence with α = 0.3 for 1-grams between the

sampled, combined 10 years starting in 1925 to those starting in 1935. The n-grams to the

right of 0 had a higher rank in the second time period and those to the left of 0 had a higher

rank in the first time period. The inset plot shows the cumulative sum of rank divergence

when summing in decreasing order of contribution.

Similarly, Figs. 4.16 and 4.17 show contributions using α = 0.2 and α = 0.1 respectively.

Comparing these three plots, we can see how larger α emphasizes changes in higher ranked,

more functional n-grams such as ‘was’, ‘he’, and ‘but’ for example. Smaller α puts more

emphasis on n-grams making large jumps in ranks, but from farther down the distribution,

and tends to surface n-grams more representative of cultural changes or important events.

For example, when α = 0.2 we see n-grams related to the Great Depression, like ‘C.I.O’

and ‘WPA’, and n-grams related to WWII, like ‘Gestapo’, ‘Fuhrer’, and ‘Fiihrer’ (likely an

OCR mistaken translation of Führer). When α = 0.1, even more n-grams related to these

events appear in the top 60, and n-grams that showed up in the α = 0.2 list, like ‘Gestapo’,

move up even higher. We see other n-grams representing cultural and societal changes

besides those related to the Great Depression and World War II as well. For example,

‘stooge’ shows up, perhaps a result of The Three Stooges, which began as a comedy group

in the 1930s [49]. We also get n-grams like ‘screwball’, a type of film that became popular

in the Great Depression Era [50], ‘checkroom’, ‘receptionist’ and ‘baloney’. However, even

with α = 0.1, we still see some of the more functional n-grams that made the largest jumps

in rank, like ‘was’.
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Figure 4.15: The top 60 1-grams contributing to rank divergence, Eq. 4.3, with α = 0.3 between the
sampled, 10-year combined distribution starting in 1925 to that starting in 1935. The n-grams to
the right of zero represent those with a larger composite rank in the more recent time period and
those to the left of zero had a larger composite rank in the earlier time period. In parentheses next
to each n-gram is its earlier composite rank followed by its newer composite rank. The inset plot
gives the cumulative sum of rank divergence, summed in order of decreasing contribution.
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Figure 4.16: The top 60 1-grams contributing to rank divergence with α = 0.2 between the sampled,
10-year combined distribution starting in 1925 to that starting in 1935. See Fig. 4.15’s caption for
details.
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Figure 4.17: The top 60 1-grams contributing to rank divergence with α = 0.1 between the sampled,
10-year combined distribution starting in 1925 to that starting in 1935. See Fig. 4.15’s caption for
details.
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Figs. 4.18 and 4.19 give the wordshift plots for the same comparison years for bigrams

with α = 0.3 and α = 0.1, respectively. Similarly, Figs. 4.20 and 4.21 are for trigrams.

Here, we still generally see the same stories emerging. Namely, for α = 0.3 the largest

contributors to rank divergence are more functional n-grams, and for α = 0.1 we get many

more n-grams related to cultural changes and current events. ‘New Deal’ and many Hitler

and Nazi related bigrams show up for α = 0.1, but so does ‘slacks .’, perhaps representative

of a change in popular clothing style. Besides the abundance of World War II related

3-grams in Fig. 4.21, we also see 3-grams related to drugstores, ‘air - conditioned’, ‘first

World War’, which prior to World War II was called the Great War, and copyright related

information.

Fig. 4.20 shows an interesting linguistic shift with α = 0.3. We see that 3-grams like ‘to

- day’, ‘to - morrow’, and ‘to - night’ are decreasing in rank. Correspondingly, in Fig. 4.16

with α = 0.2 we see the increase in the 1-gram ‘today’. We see that the early 1930s are

a transition point in English where hyphenating these words loses popularity. A word like

‘today’ would have started its life as two separate words, but because it was such a common

construction, the two words begin to appear hyphenated, indicating two words that are

becoming more of a single unit of meaning. Then, over time, as this connection becomes

stronger, the hyphen is dropped and the two words fully morph into a new single word,

and the original way of thinking about the concept in relation to two other independent

concepts is completely lost.

This is a repeated process through the history and evolution of language, with a more

recent example being the transition from ‘electronic mail’ to ‘e-mail’ to ‘email’. Email, being

a new concept, started by relating back to a known concept. It was thought of as being an

electronic form of regular mail, and its two-word name reflected that. Then, over time, it

developed its own identity, and no longer required reference to an older concept.
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Figure 4.18: The top 60 2-grams contributing to rank divergence with α = 0.3 between the sampled,
10-year combined distribution starting in 1925 to that starting in 1935. See Fig. 4.15’s caption for
details.
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Figure 4.19: The top 60 2-grams contributing to rank divergence with α = 0.1 between the sampled,
10-year combined distribution starting in 1925 to that starting in 1935. See Fig. 4.15’s caption for
details.
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Figure 4.20: The top 60 3-grams contributing to rank divergence with α = 0.3 between the sampled,
10-year combined distribution starting in 1925 to that starting in 1935. See Fig. 4.15’s caption for
details.
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Figure 4.21: The top 60 3-grams contributing to rank divergence with α = 0.1 between the sampled,
10-year combined distribution starting in 1925 to that starting in 1935. See Fig. 4.15’s caption for
details.
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Next, we look at changes over the 20th century by comparing the sampled, combined

data for the first decade of the 1900s to that of the last decade. Figs. 4.22 and 4.23 give

the 1-gram wordshift plots for α = 0.3 and α = 0.1, respectively. For changes in the more

functional parts of language, we see ‘that’ rose in ranks while ‘which’ fell; the functionality

of this pair of words is often confused. Also, we see the decrease of ‘morrow’, being part

of ‘to - morrow’, and the complementary increase of ‘today’ again. The less formal words

‘Yeah’ and ‘okay’ jumped up in ranks over the century. We also see ‘parked’ showing up

in the top 60 for α = 0.3, representative of the dramatic change in personal transportation

over the century.

Fig. 4.23 is rich with words whose rank fluxes reflect our expectations regarding cul-

tural and societal changes. The list contains new technology including electronics (e.g.,

‘computer’ and ‘television’) as well as transportation words (e.g., ‘airport’, ‘windshield’,

‘parking’, and ‘motel’) and other technological changes (e.g., ‘fridge’). There is also an

increase in profane language. The newer concept of the teenage phase of life is apparent

with the increase of n-grams like ‘teenage’, ‘boyfriend’, and ‘girlfriend’. We see changes in

attire with words like ‘sunglasses’ and ‘slacks’. We even see food changes including a large

rank increase for ‘pizza’. There are more n-grams here reflecting different aspects of societal

evolution that we have not highlighted, and there would be even more if we went farther

along the list.

Figs. 4.24 and 4.25 compare the first and last decades of the 20th century for bigrams

with α = 0.3 and α = 0.1, respectively. They tell much the same story. We see the increase

of more colloquial, less formal conversational language with the increased use of ‘okay’ and

‘yeah’ showing up in multiple bigrams on the list. We also see increased appearance of

phone related bigrams, radio related bigrams, the concept of a weekend, and ‘World War’

(‘Vietnam’ appeared in the 1-grams).
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Figure 4.22: The top 60 1-grams contributing to rank divergence with α = 0.3 between the sampled,
10-year combined distribution starting in 1900 to that starting in 1990. See Fig. 4.15’s caption for
details.
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Figure 4.23: The top 60 1-grams contributing to rank divergence with α = 0.1 between the sampled,
10-year combined distribution starting in 1900 to that starting in 1990. See Fig. 4.15’s caption for
details.
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Figure 4.24: The top 60 2-grams contributing to rank divergence with α = 0.3 between the sampled,
10-year combined distribution starting in 1900 to that starting in 1990. See Fig. 4.15’s caption for
details.
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Figure 4.25: The top 60 2-grams contributing to rank divergence with α = 0.1 between the sampled,
10-year combined distribution starting in 1900 to that starting in 1990. See Fig. 4.15’s caption for
details. 123



Figs. 4.26 and 4.27 make the same comparison across the century for trigrams for α = 0.3

and α = 0.1. We again see the change in words like ‘today’ and ‘tomorrow’. There is an

increase in trigrams with ‘not’ in them. The increased use of ‘okay’ and ‘yeah’ is also quite

prevalent in these trigrams. The increased popularity of T-shirts is apparent. Technology

terms are present, but they are not as prevalent for trigrams as they were for bigrams and

unigrams.

Many of the trigrams appearing in Fig. 4.27 come from the copyright page of books.

Some are obvious, like ‘All rights reserved’, but even ones like ‘retrieval system ,’ and

‘recording , or’ are from the copyright page. Also, the warning about buying ‘stripped

books’ [51] that appears on copyright pages is responsible for many of the trigrams here.

The prevalence of these copyright related trigrams is exemplary of a problem that still

exists within the Google Books corpus that our improved method does not sort out. Namely,

n-grams that occur in many books, but only about once per book, which do not occur in

natural language, but are a result of book features like standardized front matter in books

that was scanned in with the rest of the book. We call these n-grams ‘pathological hapax

legomena’.

Fig. 4.28 gives one other example where the problem of n-grams appearing only once

per book but in many books is apparent. Besides the copyright related n-grams in this

wordshift we also see many n-grams specifically related to what library the book comes

from and library checkout information, such as ‘CALIFORNIA LIBRARY BERKELEY’,

‘book is DUE’, and ‘Return to desk’.

4.6 Concluding remarks

In this paper, we have shown that using token counts in the Google Books corpus to study

language is fundamentally flawed. In an effort to resurrect the dataset, we have provided
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Figure 4.26: The top 60 3-grams contributing to rank divergence with α = 0.3 between the sampled,
10-year combined distribution starting in 1900 to that starting in 1990. See Fig. 4.15’s caption for
details. 125
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recording , or (11936840.0->8082.0)
to check on (21951996.5->10915.0)
did not want (2731.0->61.0)
, okay ? (21951996.5->11518.0)
" Actually , (11936840.0->8741.0)
not want to (1073.0->33.0)

(674.0->105295.5) - day .
the hell out (21951996.5->11953.0)
's okay , (21951996.5->11955.0)
I 'm fine (7172213.0->7134.0)
do not know (100.0->6.0)
just fine . (21951996.5->12547.5)
the phone . (2673880.5->4402.0)
as " unsold (21951996.5->12770.0)
author nor the (21951996.5->12990.0)
nor the publisher (21951996.5->13167.0)
's okay . (21951996.5->13174.0)
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It 's okay (21951996.5->13874.0)
the bathroom . (5589786.5->7057.0)
still had not (11936840.0->10366.0)
" No problem (21951996.5->13995.0)
okay . " (21951996.5->14109.0)
any form or (7100876.0->8325.0)
one more time (11936840.0->10917.0)
this " stripped (21951996.5->14802.0)
York , NY (21951996.5->14811.0)
may be reproduced (3327848.0->5729.0)
purchased this book (21951996.5->15026.0)
full - time (21951996.5->15038.0)
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Figure 4.27: The top 60 3-grams contributing to rank divergence with α = 0.1 between the sampled,
10-year combined distribution starting in 1900 to that starting in 1990. See Fig. 4.15’s caption for
details.
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, 1959 ) (23517608.0->73916.0)

(2.0->10.0) , but the

, 1960 . (23517608.0->107322.0)

, 1956 ) (7857682.5->60839.0)

, 1961 , (23517608.0->127571.0)

(146569.5->23026089.0) DUE on the

(158470.5->23026089.0) is DUE on

, 1959 . (7706101.5->84585.0)

, 1957 ) (5971742.0->76704.0)

, 1961 ) (23517608.0->182263.0)

Copyright © 1964 (23517608.0->195168.5)

1956 ) . (13411932.5->138272.5)

© 1963 by (23517608.0->202311.5)

(199912.5->23026089.0) book is DUE
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Figure 4.28: The top 60 3-grams contributing to rank divergence with α = 0.1 between the sampled,
10-year combined distribution starting in 1947 to that starting in 1957. See Fig. 4.15’s caption for
details.
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a method that produces more meaningful results, and used this method to study linguistic

and cultural trends, reflective of a ‘collective author’s voice’.

With our revised method, due to the construction of the corpus there are still some

results that do not reflect natural language. For example, we find an increase in copyright

and publishing related n-grams in later years. We have also observed n-grams showing

up related to library information. However, even with these remaining issues, our revised

method does clear up many of the problems present within the Google Books corpus, and

future work can likely result in a further improved method that discounts pathological hapax

legomena, those n-grams that appear in many books, but only roughly once per book.

Future work might include looking at time series for n-grams and seeing which ones

change the most based on the composite ranking, rather than a token count based time

series. It would also be interesting to see in what ways studying language using the token

counts has deceived us and what has been missed by using token counts.
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Chapter 5

Concluding remarks

In this dissertation we have used two large text-based datasets to study the patterns

and evolution of language, culture, and society. Both of these datasets, the Google Books

corpus and the collection of messages, or ‘tweets’, from Twitter, provide a view of language

for a given time period. However, they give slightly different views in that the data of

Google Books is from a more formal edited form of language and the data from Twitter is a

closer representation of the colloquial language used by everyday speakers. Furthermore, the

Google Books dataset covers a longer period of time allowing for the study of temporal trends

in ways that cannot be done with Twitter, and similarly, Twitter provides the possibility

of more fine-grained location information, allowing for regional analyses that cannot be

done using Google books. When choosing any dataset to study language, it is important to

identify and keep in mind both the benefits and the limitations of each corpus.

For example, with our study on verb regularization, we found that the current state of

verb regularization differed between Google Books and Twitter, showing that the edited text

of books does not necessarily reflect the colloquial language of everyday speakers. Also, the

advent of social media has allowed for the study of stretchable words, which are prevalent

in natural spoken language, but are rarely found in books, and thus cannot be studied with

a corpus like Google Books. The ability to study stretchable words has now led to methods

and tools that have potential applications in further areas of language analysis, natural

language processing, and beyond.

Finally, our restructuring of the Google Books corpus, focusing on the collective au-

thorial voice provided by the utilization of book counts as the main proxy for word rank,
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has overcome many of the problems and irregularities associated with this dataset. This is

an unprecedented dataset, rich with information, used by many researchers in the study of

language and culture (Gerlach and Altmann, 2013; Gray et al., 2018; Michel et al., 2011;

Pechenick et al., 2017; Petersen et al., 2012a,b). However, it is important when studying

language in this way that the results correspond to the questions asked. It is important that

we, as scientists, are not misled by spurious results due to irregularities that exist within

our datasets. It is for these reasons that the Google Books corpus required an in-depth

examination to make sure it is used appropriately and that the results derived from it are

justified. This examination led to our revised methods for analyzing the Google Books

dataset, and these revised methods now finally allow for a more meaningful output, better

reflective of natural language, and the ways in which language has been affected by cultural

and social factors as well as important historical events.
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