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Abstract

Identifying temporal linguistic patterns and tracing social amplification across com-
munities has always been vital to understanding modern sociotechnical systems. Now,
well into the age of information technology, the growing digitization of text archives
powered by machine learning systems has enabled an enormous number of interdisci-
plinary studies to examine the coevolution of language and culture. However, most
research in that domain investigates formal textual records, such as books and news-
papers. In this work, I argue that the study of conversational text derived from social
media is just as important. I present four case studies to identify and investigate soci-
etal developments in longitudinal social media streams with high temporal resolution
spanning over 100 languages. These case studies show how everyday conversations on
social media encode a unique perspective that is often complementary to observations
derived from more formal texts. This unique perspective improves our understand-
ing of modern sociotechnical systems and enables future research in computational
linguistics, social science, and behavioral science.
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2.B.1 Margin of error for contagion ratios. We compute the annual
average of contagion ratios R for all messages in the top 30 ranked
languages as classified by FastText-LID and described in Sec. 2.5.3.
Similarly, we compute the annual average of contagion ratios Rα for
the subset of messages that both classifiers have unanimously labeled
their language labels. We display the absolute difference δ = |R −
Rα| to indicate our margin of error for estimating contagion ratios as
a function of the agreement between FastText-LID and Twitter-LID
models. White cells indicate that δ is below .05, whereas colored cells
highlight values that are equal to, or above .05. We show the top 10
languages with the highest average values of δ’s per year in Table 2.B.3.
We also show the bottom 10 languages with the lowest average values
of δ’s per year in Table 2.B.4. . . . . . . . . . . . . . . . . . . . . . . 53

2.C.1 Language identification uncertainty as a function of tweet-
length for top 10 most used languages on Twitter. We display
the number of messages that were classified differently by Twitter-LID
model and FastText-LID for the top-10 prominent languages as a func-
tion of the number of characters in each message. Unlike Twitter, we
count each character individually, which is why the length of each mes-
sage may exceed the 280 character limit. The grey lines indicate the
daily number of mismatches between 2020-01-01 and 2020-01-07 (ap-
proximately 32 million messages for each day for the top-10 used lan-
guages), whereas the black line shows an average of that whole week.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.C.2 Confidence scores of the FastText-LID neural network predic-
tions for the month before and after the shift to 280 charac-
ters. We categorize messages into four classes based on the confidence
scores we get from FastText-LID’s neural network. Predictions with
confidence scores below .25 are labeled as Undefined (und). Messages
with scores greater or equal to .25 but less than .5 are flagged as pre-
dictions with low confidence (low). Predictions that have scores in the
range [.5, .75) are considered moderate (mid), and messages with higher
scores are labeled as predictions with high confidence (high). We note
a symmetry indicating that the shift did not have a large impact on the
network’s predictions across organic and retweeted messages. . . . . . 57
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2.C.3 Weekly rate of usage for short and long messages. A. Rate of
usage for the top-10 used languages averaged at the week scale for the
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3.A.2 Kernel density estimations. A–C. Distributions of unique uni-
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Chapter 1

Introduction
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1.1 Background

A sociotechnical system is a complex system that involves social and technological

elements. Historically, the term is grounded in system theories that were primarily

developed to optimize the workflow of industrial workers during the aftermath of

World War II [90, 287]. In the age of information technology, the term provides a

macroscopic description of social and interactive digital infrastructures (e.g., online

services, e-commerce, social media) [103]. Indeed, social structures have evolved

because of a growing rate of automation and innovations [107, 286]. Studying the

interplay between society and technology is vital in light of these rapid technological

changes. Understanding the throughput of a sociotechnical system is particularly

helpful to study long-term societal changes and the coevolution of technical domains

and social sciences [18].

Language is a key component of these sociotechnical systems—the technology

that enables participants to communicate through a complex system. Consequently,

a sociotechnical system is a medium through which language and culture co-evolve [97,

137]. Recent advances in natural language processing (NLP) such as optical character

recognition (OCR), and automatic speech recognition (also known as, speech-to-text),

have enabled a vast collection of rich and interdisciplinary studies (e.g., books [197]

and news [132]). The emerging digitization of text archives has also empowered new

NLP applications such as machine translation, speech tagging, question answering,

text summarization, and sentiment analysis—most of which are primarily powered

by artificial neural networks and machine learning [189, 315].
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1.1.1 Culturomics

Data mining of digital archives enables users to scan through an extensive collection

of databases for words, tracing their inception and tracking their rate of usage over

time. The term ‘culturomics’—originally proposed by Michel et al. [197]—is often

used to refer to this vast collection of studies of human behavior and sociocultural

trends portrayed in language usage. The Google n-grams viewer [197], which inspires

the work presented here, is a notable example that provides year-scale n-gram usage

time series derived from most books printed over the past century. While the cultural

significance of the time series provided by the Google Books project has been duly

noted in the scientific literature, researchers have also highlighted some pitfalls [156,

195].

The Google Books framework records n-gram usage once for each book per year,

which fails to encode the cultural popularity of these n-grams, ignoring the millions

of copies sold of these books [221]. Of course, measuring cultural popularity is re-

markably difficult. Databases that track sales of books over time are sparse, and

large-scale archives that attempt to capture the popularity of n-grams are rare be-

cause the data needed to compile such records is limited, prohibitively expensive,

and often proprietary [4]. Nevertheless, identifying linguistic patterns in digitized

archives has proven to have a tremendous societal impact beyond the readily seen

observations. Researchers show it is possible to predict political unrest by analyzing

temporal trends found in a large digital news archive [132, 173]. Other studies extend

this form of computational lexicology, assessing the foreseeable cultural impact of

conservation interventions [166], and examining gender bias in newspapers [96].
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Availability of data is arguably one of the key drivers of these technical advances.

The positive feedback loop between machine learning systems and computational lin-

guistics has been essential to further enlighten our understanding of language usage

in sociotechnical systems. Despite the recent accomplishments, most large-scale stud-

ies focus on stylized and copyedited corpora such as books, news articles, and other

formal records [132, 197, 198, 257, 308]. Google has also created a similar framework

to track n-gram usage time series in search data, aptly named Google Trends.1 Many

studies have showed the utility of using search data to predict and forecast sociotech-

nical trends [263], such as economic indicators [54], disease outbreaks [45], and health

care [211].

1.1.2 Social media

Over the past decade, however, we have observed an unprecedented growth of social

media, giving birth to large-scale sociotechnical systems with billions of activities

taking place in real time across the entire globe [152]. The rise of social media

platforms has enabled people, media outlets, organizations, and chatbots to share

content freely, transcending physical boundaries. Messages are shared instantly within

nanoseconds, featuring a high temporal resolution to capture and study sociocultural

phenomena.

The decentralized nature of various activities shared on these platforms forms a

distributed sociotechnical sensor system, providing a rich lexicon, with emerging per-

ils, to track and trace trending storylines in real time [9, 146, 212]. Unlike mainstream

media outlets, social media platforms provide unique conversational data streams to
1https://googleblog.blogspot.com/2007/09/its-all-about-today.html
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examine daily discussions and reactions by millions of people on a scale that is inade-

quately captured and analyzed [13, 260]. Social media encodes casual daily conversa-

tion in a format that is simply unavailable through other outlets such as newspapers,

and books. The ever-growing compendium of daily discourse on Twitter, and other

social media platforms, have already made an unprecedented impact on modern in-

dustrial societies (e.g., #ArabSpring, #MeToo, and #BlackLivesMatter) [146].

Mining social media data, particularly Twitter, is useful for marketing, product

development, risk management, and brand interactions [43, 218]. Combined with

sentiment analysis, researchers show that analyzing social media data can be used to

predict box office sales [204], and global financial trends [35]. Beyond these notable

applications, researchers also show how the complementary signal derived from social

media can be brought into play for gauging public opinion on pending policies [171,

283], and monitoring inflammatory discourse [217].

Importantly, these platforms support various communication channels through

which people can discuss and share content—encoding an essential property that

allows researchers to quantify the popularity (i.e., social amplification) of trending

topics [147]. When sharing mechanisms are native to these platforms, we can quan-

tify the collective attention of the public to certain topics. Social amplification is also

rarely encoded in historical text archives. It not only allows us to track and poten-

tially predict trending storylines, but it can also help us disentangle how information

flows and spreads across communities, identifying misinformation, and tracing dis-

information. Many studies have addressed theoretical models of social amplification

but without adequate data [40, 118, 126, 277].
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1.2 A brief overview

With the exception of Google Trends, existing tools have only focused on easily ac-

cessible and formal digital archives, such as folklore [198], government records [308],

newspapers [257], books [197], radio transcripts [19], and TV news transcripts [132].

However, there is a growing volume of text data on social media that renders human

annotation infeasible for real-time data streams. Sophisticated instruments would be

needed to help us understand how information flows and persists across communities

on social media platforms. While some data streams that are derived from predom-

inant outlets such as Facebook and Instagram are locked behind corporate doors,

Twitter and Reddit, among a few others, share their data with researchers across

disciplines.

Building on the state-of-the-art research of culturomics, I describe the develop-

ment of a couple of new tools to help researchers, journalists, and data scientists study

the vast universe of stories on social media, particularly Twitter. I present Storywran-

gler, an evolving research instrument powered by machine learning and a staggering

computing cluster to track and trace usage rates of words for the majority of spoken

languages in trillions of messages on Twitter. In a series of case studies, I show how

Storywrangler can document world events in real time, capturing narratively trend-

ing storylines to examine heated political debates, rising social movements, emerging

developments and outbreaks, neologisms, memes, emojis, and the quotidian.

Vitally, and problematically absent from existing text corpora such as books and

news archives, Storywrangler also encodes popularity (i.e. social amplification) of n-

grams by tracking their rate of usage across retweets. To explore the interplay of social
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contagion on Twitter, we investigate the relative amplification of n-grams visualized

through ‘contagiograms’, a bespoke Python package to examine word rankings and

social amplification. Although Storywrangler leverages Twitter data, our method of

extracting and tracking dynamic changes of n-grams can be extended to any similar

social media platform.

Finally, I describe the integration of Storywrangler into existing sociotechnical

instruments, particularly, the Hedonometer—an instrument that measures the daily

rate of happiness on Twitter [80]. Using word embeddings and transfer learning, I

present a new tool for augmenting semantic dictionaries, such as labMT [81]. The

proposed framework reduces the need for crowdsourcing annotations and provides

better accuracy when compared with a random set of reviewers from Amazon Me-

chanical Turk. While the new method can be fine-tuned to predict scores for any

semantic lexicon, we focus on predicting happiness scores for the Hedonometer to

capture the emotional valance of various events on social media.

1.2.1 Sociocultural significance

Although other topics, such as breaking news and major stories, are documented in

mainstream media, social media provides a unique outlet for ephemeral conversations

that are not well captured using other data sources. While it might seem frivolous

to track discourse on Twitter ranging from political movements to K-pop to sports

to music and favorite movie stars, the banal everyday sociocultural trends encode a

unique perspective that is often complementary to observations derived from more

formal texts to examine the coevolution of language and culture. Storywrangler

features a data-driven approach to index what regular people are talking about in
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everyday conversations, in addition (or contrast) to what reporters and authors have

shared with the public.

Storywrangler tracks the periodic signal of words related to religious festivals and

the collective attention for international sports events. It shows how n-grams con-

nected with new movies and TV series burst into social media then slowly decay,

making direct comparisons with their worldwide box-office earnings. Storywrangler

revels how marketing campaigns can take advantage of the periodic nature of narra-

tively trending n-grams, exploiting popular hashtags to amplify their message (e.g.,

including #FF and #TGIF as trending hashtags for Friday promotions).

The time series derived from Storywrangler can also be cross-referenced with other

data repositories to enable data-driven, computational versions of journalism, lin-

guistics, history, economics, and political science. For example, changes in salient

word usage (e.g., ‘rebellion, and ‘crackdown’) are significantly associated with future

changes in geopolitical risk and lower stock returns (see Appendix 3.E). We show

how words that are linked to the COVID-19 outbreak and the percent change in how

frequently they are used can be correlated with similar volatility in the number of

reported coronavirus cases and deaths a couple of weeks later across 24 languages

on Twitter [6]. Expressions and hashtags associated with political movements can

be directly compared with recorded incidents of fatal police violence [309]. Tracking

hurricane name mentions, we find different temporal patterns of collective attention

correlated with deaths and damage reportings [8].

Social media, as an example of a growing large-scale social structure, is essentially

a platform whereby individuals can form, share, and reshape their social behavior and

others [107]. For instance, a single n-gram can embody a sociocultural change (e.g.,
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#MeToo, #BlackLivesMatter), leaving a remarkable footprint on social media before

it ever became part of the formal, mainstream conversation. Storywrangler creates a

digital record of the collective attention on social media to these emerging sociotech-

nical phenomena, documented in the daily n-gram usage rates. Having a large-scale

daily record of such trends creates a transformative potential for the humanities and

social sciences.

1.2.2 Implications and limitations

Sample size For a primary social media source, we use Twitter as it provides

an open research platform while acknowledging its limitations. Twitter’s userbase

is not representative of all voices [193], but It provides an outlet for all people to

voluntarily carry out conversations that matter to their lives. We use roughly 10%

of all tweets ever posted on the platform, thus our tool presents an approximate

daily leaderboard of heavy-tailed n-gram Zipf distributions [322]. Researchers have

inspected ways to study Zipf distributions and estimate the robustness and stability

of their tails [33, 120, 229, 234]. Investigators have also examined various aspects

of Twitter’s Sample API [227], and how that may affect the observed daily n-gram

frequency-of-usage distributions [303]. We provide a brief analysis of the lexicon in

Appendix 3.A, describing the distributions of n-grams in our dataset. It is a modest

attempt to explore and examine the temporal lexical distributions of n-grams.

However, half of the words that appear in a corpus will appear only once [120,

234, 322]. While the length of phrases is limited on Twitter (140 characters prior

to the last few months of 2017, 280 thereafter2), the numbers of unique bigrams and
2https://blog.twitter.com/en_us/topics/product/2017/tweetingmadeeasier.html
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trigrams strongly outweigh the number of unique unigrams because of the combinato-

rial properties of language. Future work can shed light on the changes in the lexicon

over time. Tweet sampling may render this task difficult in practice, especially for

less-used languages on the platform. Regardless, we are unable to make assertions

about the size of Twitter’s user base or message volume. We do not have knowledge

of Twitter’s overall volume (and do not seek to per Twitter’s terms of service). We

deliberately focus on ranks and relative usage rates for n-grams away from the tails of

their distributions. Raw frequencies of exceedingly rare words are roughly one-tenth

of the true values regarding all of Twitter, however, rankings are likely to be subject

to change.

Language coverage In the first case study, we describe how we detect language

labels of all tweets in our collection using FastText-LID [32, 144]. A uniform language

re-identification is necessary as Twitter’s real-time identification algorithm was intro-

duced in late 2012 and then adjusted over time, resulting in temporal inconsistencies.

The word embeddings provided by FastText span a wide set of languages, includ-

ing some regional dialects (see Table 2.A.1 for the full list of languages detectable

by FastText-LID). However, language detection of short-text remains an outstanding

challenge in NLP. While we hope to expand our language detection in future work,

we still classify messages based on the languages identified by FastText-LID. We use

FastText-LID as a light, fast, and reasonably accurate language detection tool to

overcome the challenge of missing language labels in our Twitter historical feed. Al-

though Storywrangler can detect continuous-script languages, such as Japanese and

Chinese, it is unable to parse their tweets into n-grams because of technical limita-

tions. However, we would like to emphasize that Storywrangler still features a wide
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range of non-western languages such as Hindi, Indonesian, Korean, Bengali, Nepali,

Arabic, Turkish, Persian, and Hebrew.

Social amplification There are substantive limitations to Twitter data, some of

which are evident in many large-scale text corpora. Our n-gram dataset contends with

popularity, allowing for the examination of story amplification, and we emphasize the

importance of using contagiograms as visualization tools that go beyond presenting

simple time series. Popularity, however, is notoriously difficult to measure. The

main proxy we use for popularity is the relative rate of usage of a given n-gram

across originally authored tweets, examining how each term or phrase is socially

amplified via retweets. While Twitter attempts to measure popularity by counting

impressions, it is increasingly difficult to capture the number of people exposed to a

tweet. Twitter’s centralized trending feature is yet another dimension that alters the

popularity of terms on the platform, personalizing each user timeline and inherently

amplifying algorithmic bias. We have also observed a growing passive behavior across

the platform, leading to an increasing preference for retweets over original tweets for

most languages on Twitter during the past few years [7].

Ethical considerations In building Storywrangler, we have prioritized privacy by

aggregating statistics to day-scale resolution for individual languages, truncating dis-

tributions, ignoring geography, and masking all metadata. We have also endeavored

to make our work as transparent as possible by releasing all code associated with

the API. Although we frame Storywrangler as a research focused instrument akin to

a microscope or telescope for the advancement of science, it does not have built-in

ethical guardrails.
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There is potential for misinterpretation and mischaracterization of the data, whether

purposeful or not. We strongly caution against cherry picking isolated time series

that might suggest a particular story or social trend. Words and phrases may drift

in meaning and other terms take their place. For example, ‘coronavirus’ gave way to

‘covid’ as the dominant term of reference on Twitter for the COVID-19 pandemic in

the first six months of 2020 [6]. To in part properly demonstrate a trend, researchers

would need to at least marshal together thematically related n-grams, and do so in

a data-driven way, as we have attempted to do for our case studies. Thoughtful con-

sideration of overall and normalized frequency of usage would also be needed to show

whether a topic is changing in real volume.

1.2.3 Outline

The work is organized into a series of four case studies, illustrating the crucial value

of developing NLP instruments to study social media platforms at scale. In the first

case study, we investigate the dynamics of social amplification in a sociotechnical

system, examining the daily usage of over 100 languages on Twitter throughout the

past decade. Building on our previous work, we present Storywrangler in the sec-

ond case study, an instrument that extracts sociotechnical time series of words and

phrases from social media data streams, automatically capturing narratively trending

storylines.

In the third case study, we curate a set of 2000 day-scale time series of unigrams

and bigrams across 24 languages that are most salient to the COVID-19 pandemic as

a data repository for current and retrospective investigations. Using Storywrangler

and the proposed dataset of the most narratively dominant n-grams we upgrade the
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Hedonometer [80], amplifying the tool’s utility to capture the sentiment of unfolding

events in real time.

In the fourth and last case study, we propose a framework for augmenting semantic

lexicons using transfer learning, reducing the need for crowdsourcing scores from

human annotators. Although our framework can be used in a more general sense, we

focus on predicting happiness scores for the Hedonometer and the labMT dataset [81].

Throughout each chapter, I discuss direct applications of the proposed instru-

ments in multilingual and longitudinal social media data streams. Comparing the

utility of these instruments with similar frameworks, I highlight their benefits while

acknowledging existing limitations and outlining future developments.
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world’s collective attention is being paid to a pandemic: COVID-19 related

n-gram time series for 24 languages on Twitter. Plos One (2021).
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Chapter 2

Exploring sociolinguistic amplifi-

cation in textual archives
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2.1 Abstract

Working from a dataset of 118 billion messages running from the start of 2009 to

the end of 2019, we identify and explore the relative daily use of over 150 languages

on Twitter. We find that eight languages comprise 80% of all tweets, with English,

Japanese, Spanish, Arabic, and Portuguese being the most dominant. To quantify

social spreading in each language over time, we compute the ‘contagion ratio’: The

balance of retweets to organic messages. We find that for the most common languages

on Twitter there is a growing tendency, though not universal, to retweet rather than

share new content. By the end of 2019, the contagion ratios for half of the top 30

languages, including English and Spanish, had reached above 1—the naive contagion

threshold. In 2019, the top 5 languages with the highest average daily ratios were, in

order, Thai (7.3), Hindi, Tamil, Urdu, and Catalan, while the bottom 5 were Russian,

Swedish, Esperanto, Cebuano, and Finnish (0.26). Further, we show that over time,

the contagion ratios for most common languages are growing more strongly than those

of rare languages.
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2.2 Introduction

Users of social media are presented with a choice: post nothing at all; post something

original; or re-post (“retweet” in the case of Twitter) an existing post. The simple

amplifying mechanism of reposting encodes a unique digital and behavioral aspect

of social contagion, with increasingly important ramifications as interactions and

conversations on social media platforms such as Twitter tend to mirror the dynamics

of major global and local events [40, 125, 208, 277].

Previous studies have explored the role of retweeting in the social contagion liter-

ature, though the vast majority of this research is limited to either a given language

(e.g., English tweets) or a short period [40, 118, 126, 277]. Here, drawing on a 10%

random sample from over a decade’s worth of tweets, we track the rate of originally

authored messages, retweets, and social amplification for over 100 languages.

We describe distinct usage patterns of retweets for certain populations. For ex-

ample, Thai, Korean, and Hindi have the highest contagion ratios, while Japanese,

Russian, Swedish, and Finish lie at the other end of the spectrum. While there is a

wide range of motives and practices associated with retweeting, our object of study

is the simple differentiation of observed behavior between the act of replication of

anything and the act of de novo generation (i.e., between retweeted and what we will

call organic messages).

We acknowledge two important limitations from the start. First, while it may be

tempting to naively view ideas spreading as infectious diseases, the analogy falls well

short of capturing the full gamut of social contagion mechanisms [25, 47, 66, 69, 77,

78, 108, 111, 259, 295], and a full understanding of social contagion remains to be
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established. And second, while higher contagion ratios are in part due to active social

amplification by users, they may also, for example, reflect changes in Twitter’s design

of the retweet feature, changes in demographics, or changes in a population’s general

familiarity with social media. Future work will shed light on the psychological and

behavioral drivers for the use of retweets in each language across geographical and

societal markers, including countries and communities.

2.3 Background and motivation

Social contagion has been extensively studied across many disciplines including mar-

keting [15, 139, 289, 297], finance [59, 93, 123, 150], sociology [39, 114], and medicine [55,

219, 233]. Because it can be easier to access data on human social behavior from social

media outlets than from other sources such as in-person or text-message conversations,

social contagion dynamics are often examined in the context of messages posted and

subsequently re-posted on social media platforms [36, 89, 94, 159]. Indeed, the flow

of information in the context of social contagion on digital media outlets, especially

Twitter, has been widely studied over the last decade [126, 174], with attention paid

to the spreading of certain kinds of messages, such as rumours [38, 145, 165, 214, 324],

misinformation and “fake news” [70, 262, 268, 285]. Several models have also been

proposed to predict the spread of information on Twitter [318], while other models

have shown the differences in which various topics can propagate throughout social

networks [247, 301]. Studies have also investigated the extent to which information

spread on Twitter can have an echo chamber effect [14, 61].

The body of research shows overwhelming evidence that retweeting is a key instru-
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ment of social contagion on Twitter [208, 273]. One of the earliest analysis of Twitter

by Kwak et al. [164] suggests that a retweet can reach an average of a thousand users

regardless of the social network of its original author, spreading its content instantly

across different hubs of the full Twitter social network. While seemingly simple,

there are different styles and drivers of retweeting [40]. The practice of retweeting

has become a convention on Twitter to spread information, especially for celebrities.

Researchers argue celebrities can act as hubs of social contagion by studying the flow

of retweets across their focal networks [118]. Recent work shows how retweets of offi-

cials can be either alarming or reassuring amid the COVID–19 pandemic [207, 239].

Statistical features of retweets reveal a strong association between links and hashtags

in most retweeted messages [277]. Retweeting is not only an act in which users can

spread information, but a mechanism for actors to become involved in a conversa-

tion without being active participants [40]. The use of retweets empirically alters the

visibility of information and how fast messages can spread on the platform [125].

Other studies have quantified language usage on social media [48, 95], particu-

larly on Twitter [34, 153]. While investigators have studied the use of retweets in the

context of social contagion using network-based approaches [91, 174, 207, 247], little

research has been done regarding the statistical variability of retweets across the vast

majority of languages. In this study, by applying an updated language identification

(LID) process to over a decade of Twitter messages, we explore a macroscopic de-

scription of social contagion through the use of retweets across languages on Twitter.

Our study addresses a unique property of social contagion on Twitter by statisti-

cally quantifying the rate of retweets in each language. We show how the practice of

retweeting varies across different languages and how retweeting naturally lends itself
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to micro-level discussions of social contagion on Twitter, which can also be extended

to other social media outlets with similar features.

We structure this chapter as follows. First, we discuss the state-of-the-art tools

presently used for language detection of short and informal messages (e.g., tweets).

We then describe our dataset and processing pipeline to answer some key questions re-

garding social contagion through the use of retweets. Based on our considerations, we

deploy FastText-LID [32, 143] to identify and explore the evolution of 100+ languages

in over 118 billion messages collected via Twitter’s 10% random sample (decahose)

from 2009 to 2020 [292].

For messages posted after 2013, we also analyze language labels provided by Twit-

ter’s proprietary LID algorithm and justify using FastText-LID as an alternative LID

tool to overcome the challenge of missing language labels in the historical feed from

Twitter (see also Hong et al. [133]).

We study the empirical dynamics of replication: The rate at which users choose

to retweet instead of generating original content; and how that rate varies across

languages temporally. We quantify the ratio of retweets to new messages (contagion

ratio) in each language. In most common languages on Twitter, we show that this

ratio reveals a growing tendency to retweet.

Finally, we present a detailed comparison with the historical data feed in Ap-

pendix 2.A. We conclude with an analytical validation of our contagion ratios (Ap-

pendix 2.B), and the impact of tweet-length on language detection (Appendix 2.C).

We also provide an online appendix at: http://compstorylab.org/storywrangler/

papers/tlid/.
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2.4 Data and methods

Twitter is a well-structured streaming source of sociotechnical data, allowing for the

study of dynamical linguistics and cultural phenomena [75, 323]. Of course, like many

other social platforms, Twitter represents only a subsample of the publicly declared

views, utterances, and interactions of millions of individuals, organizations, and auto-

mated accounts (e.g., social bots) around the world [149, 194, 205, 305]. Researchers

have nevertheless shown that Twitter’s collective conversation mirrors the dynamics

of local and global events [216] including earthquakes [254], flu and influenza [67, 168],

crowdsourcing and disaster relief [102, 231], major political affairs [271], and fame dy-

namics for political figures and celebrities [82]. Moreover, analyses of social media

data and digital text corpora over the last decade have advanced natural language pro-

cessing (NLP) research [122, 245, 246] such as language detection [23, 183, 184, 302],

sentiment analysis [57, 79, 151, 161, 163], word embeddings [72, 112, 201, 223], and

machine translation [11, 186, 220].

LID is often referred to as a solved problem in NLP research [113, 135, 182, 185,

191], especially for properly formatted documents, such as books, newspapers, and

other long-form digital texts. Language detection for tweets, however, is a challenging

task due to the nature of the platform. Every day, millions of text snippets are posted

to Twitter and written in many languages along with misspellings, catchphrases,

memes, hashtags, and emojis, as well as images, gifs, and videos. Encoding many

cultural phenomena semantically, these features contribute to the unique aspects of

language usage on Twitter that are distinct from studies of language on longer, edited

corpora [196].
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A key challenge of LID on Twitter data is the absence of a large, public, annotated

corpus of tweets covering most languages for training and evaluation of LID algo-

rithms. Although researchers have compiled a handful of manually labeled datasets

of Twitter messages, the proposed datasets were notably small compared to the size

of daily messages on Twitter and limited to a few common languages [23, 184, 302].

They showed, however, that most off-the-shelf LID methods perform relatively well

when tested on annotated tweets.

As of early 2013, Twitter introduced language predictions classified by their in-

ternal algorithm in the historical data feed [248]. Since the LID algorithm used by

Twitter is proprietary, we can only refer to a simple evaluation of their own model.1

Our analysis of Twitter’s language labels indicates Twitter appears to have tested

several language detection methods, or perhaps different parameters, between 2013

and 2016.

Given access to additional information about the author of a tweet, the LID task

would conceivably be much more accurate. For example, if the training data for

prediction included any or all of the self-reported locations found in a user’s ‘bio’, the

GPS coordinates of their most recent tweet, the language they prefer to read messages

in, the language associated with individuals they follow or who follow them, and

their collective tweet history, we expect the predictions would improve considerably.

However, for the present investigation, we assume the only available predictors are

found in the message itself. Our goal is to use the state-of-the-art language detection

tools to get consistent language labels for messages in our data set to enable us to

investigate broader questions about linguistic dynamics and the growth of retweets
1https://blog.twitter.com/engineering/en_us/a/2015/evaluating-language-identification-performance.

html
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on the platform over time.

2.4.1 Open-source tools for language detection

Several studies have looked closely at language identification and detection for short-

text [46, 88, 110, 210, 242, 272, 288, 299], particularly on Twitter where users are

limited to a few characters per tweet (140 prior to the last few months of 2017,

280 thereafter [249]). Researchers have outlined common challenges specific to this

platform [17, 106].

Most studies share a strong consensus that language identification of tweets is

an exceptionally difficult task for several reasons. First, language classification mod-

els are usually trained over formal and large corpora, while most messages shared

on Twitter are informal and composed of 140 characters or fewer [23, 184] (see Ap-

pendix 2.C for more details). Second, the informal nature of the content is also a

function of linguistic and cultural norms; some languages are used differently over

social media compared to the way they are normally used in books and formal doc-

uments. Third, users are not forced to choose a single language for each message;

indeed messages are often posted with words from several languages found in a sin-

gle tweet. Therefore, the combination of short, informal, and multilingual posts on

Twitter makes language detection much more difficult compared to LID of formal

documents [232]. Finally, the lack of large collections of verified ground-truth across

most languages is challenging for data scientists seeking to fine-tune language detec-

tion models using Twitter data [23, 29, 325].

Researchers have evaluated off-the-shelf LID tools on substantial subsets of Twitter

data for a limited number of languages [23, 29, 184]. For example, Google’s Compact
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Language Detector (versions CLD-12 and CLD-23) offer open-source implementations

of the default LID tool in the Chrome browser to detect language used on web pages

using a naive Bayes classifier. In 2012, Lui and Baldwin [183] proposed a model

called langid that uses an n-gram-based multinomial naive Bayes classifier. They

evaluated langid and showed that it outperforms Google’s CLD on multiple datasets.

A majority-vote ensemble of LID models is also proposed by Lui and Baldwin [184]

that combines both Google’s CLD and langid to improve classification accuracy for

Twitter data.

Although using a majority-vote ensemble of LID models may be the best option to

maximize accuracy, there are a few critical trade-offs including speed and uncertainty.

The first challenge of using an ensemble is weighing the votes of different models. One

can propose treating all models equally and taking the majority vote. This becomes

evidently complicated in case of a tie, or when models are completely unclear on a

given tweet. Treating all models equally is an arguably flawed assumption given that

not all models will have the same confidence in each prediction—if any is reported.

Unfortunately, most LID models either decline to report a confidence score, or lack

a clear and consistent way of measuring their confidence. Finally, running multiple

LID classifiers on every tweet is computationally expensive and time-consuming.

Recent advances in word embeddings powered by deep learning demonstrate some

of the greatest breakthroughs across many NLP tasks including LID. Unlike previous

methodologies, Devlin et al. [72] introduces a new language representation model

called BERT. An additional output layer can be added to the pre-trained model

to harvest the power of the distributed language representations, which enables the
2http://code.google.com/p/chromium-compact-language-detector/
3https://github.com/CLD2Owners/cld2
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model to carry out various NLP tasks such as LID.

FastText [32, 143] is a recently proposed approach for text classification that uses

n-gram features similar to the model described by Mikolov et al. [199]. FastText

employs various tricks [32, 112, 201] in order to train a simple neural network using

stochastic gradient descent and a linearly decaying learning rate for text classification.

While FastText is a language model that can be used for various text mining tasks,

it requires an additional step of producing vector language representations to be

used for LID. To accomplish that, we use an off-the-shelf language identification

tool [32] that uses the word embeddings produced by the model. The proposed tool

uses a hierarchical softmax function [143, 199] to efficiently compute the probability

distribution over the predefined classes (i.e., languages). For convenience, we will

refer to the off-the-shelf LID tool [32] as FastText-LID throughout the paper. The

authors show that FastText-LID is on par with deep learning models [62, 319] in terms

of accuracy and consistency, yet orders of magnitude faster in terms of inference

and training time [32]. They also show that FastText-LID outperforms previously

introduced LID tools such as langid.4

2.4.2 Processing pipeline

While there are many tools to consider for LID, it is important for us to ensure that the

language classification process stays rather consistent to investigate our key question

about the growth of retweets over time. In light of the technical challenges discussed

in the previous section, we have confined this work to using FastText-LID [32] due to

its consistent and reliable performance in terms of inference time and accuracy.
4https://fasttext.cc/blog/2017/10/02/blog-post.html
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To avoid biasing our language classification process, we filter out Twitter-specific

content prior to passing tweets through the FastText-LID model. This is a simple

strategy originally proposed by Tromp and Pechenizkiy [288] to improve language

classification [24, 184]. Specifically, we remove the prefix associated with retweets

(“RT”), links (e.g., “https://twitter.com”), hashtags (e.g., “#newyear”), handles

(e.g., “@username”), html codes (e.g., “&gt”), emojis, and any redundant whites-

paces.

Once we filter out all Twitter-specific content, we feed the remaining text through

the FastText-LID neural network and select the predicted language with the highest

confidence score as our ground-truth language label. If the confidence score of a given

prediction is less than 25%, we label that tweet as Undefined (und). Similarly, if no

language classification is made by the Twitter-LID model, Twitter flags the language

of the message as undefined [228, 293]. We provide a list of all language labels assigned

by FastText-LID compared to the ones served by Twitter-LID in Table 2.A.1.

We subsequently extract day-scale time series and Zipf distributions for uni-

grams, bigrams, and trigrams and make them available through an analytical in-

strument entitled Storywrangler. Our tool is publicly available online at: https:

//storywrangling.org. See Alshaabi et al. [5] for technical details about our

project.
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2.5 Results

2.5.1 Temporal and empirical statistics

We have collected a random 10% sample of all public tweets posted on the Twitter

platform starting January 1, 2009. Using the steps described in Sec. 2.4.2, we have

implemented a simple pipeline to preprocess messages and obtain language labels

using FastText-LID [32]. Our source code along with our documentation is publicly

available online on a Gitlab repository.5 Here, we evaluate our results by comparing

the language labels obtained by FastText-LID to those found in the metadata provided

by Twitter’s internal LID algorithm(s). Our initial analysis of the Decahose metadata

indicated missing language labels until 2013, when Twitter began offering a language

prediction (we offer an approach to detecting corrupted time series [84]).

We find that our classification of tweets using FastText-LID notably improves the

consistency of language labels when compared to the labels served with the historical

streaming feed. In Fig. 2.1A, we display a weekly rolling average of the daily number

of languages detected by each classifier over time. We see that Twitter’s language

detection has evolved over time. The number of languages stabilized but continued to

fluctuate in a manner that is not consistent, with uncommon languages having zero

observations on some given days. By contrast, the FastText-LID time series of the

number of languages shows some fluctuations in the earlier years—likely the result of

the smaller and less diverse user base in the late 2000s—but stabilizes before Twitter

introduces language labels. We note that the fluctuations in the time series during the
5https://gitlab.com/compstorylab/storywrangler
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Figure 2.1: Language time series for the Twitter historical feed and FastText-LID
classified tweets. A. Number of languages reported by Twitter-LID (red) and classified by
FastText-LID (black) since September 2008. Fluctuations in late 2012 and early 2013 for the
Twitter language time series are indicative of inconsistent classifications. B. Rate of usage
by language using FastText-LID maintains consistent behavior throughout throughout that
period. The change in language distribution when Twitter was relatively immature can be
readily seen—for instance, English accounted for an exceedingly high proportion of activity
on the platform in 2009, owing to Twitter’s inception in an English-speaking region.
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early years of Twitter (before 2012) and the first week of 2017 are primarily caused

by unexpected service outages which resulted in missing data.

FastText-LID classifies up to 173 languages, some of which are rare, thus the

occasional dropout of a language seen in this time series is expected. On the other

hand, Twitter-LID captures up to 73 languages, some of which are experimental and

no longer available in recent years. Nonetheless, Fig. 2.1B shows that the overall rate

of usage by language is not impaired by the missing data, and maintained consistent

behavior throughout the last decade.

We compute annual confusion matrices to examine the language labels classified

by FastText-LID compared to those found in the historical data feed. Upon inspec-

tion of the computed confusion matrices, we find disagreement during the first few

years of Twitter’s introduction of the LID feature to the platform. As anticipated,

the predicted language for the majority of tweets harmonizes across both classifiers

for recent years (see Fig. 2.A.1). We notice some disagreement between the two clas-

sifiers on expected edge-cases such as Italian, Spanish, and Portuguese where the

lexical similarity among these languages is very high [37, 142, 244, 255]. Overall, our

examination of average language usage over time demonstrates that FastText-LID is

on par with Twitter’s estimation. We show the corresponding Zipf distribution of

language usage for each classifier, and highlight the normalized ratio difference be-

tween them for the most used languages on the platform in Figs. 2.A.2–2.A.3. We

point the reader’s attention to Appendix 2.A for further details of our comparison.

Furthermore, we display a heatmap of the number of messages for each language

as classified by FastText-LID in our data set (see Fig. 2.2). We have over 118 billion

messages between 2009-01-01 and 2019-12-31 spanning 173 languages. English is the
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Figure 2.2: Overall dataset statistics. Number of messages captured in our dataset as
classified by the FastText-LID algorithm between 2009-01-01 and 2019-12-31, which sums
up to a approximately 118 billion messages throughout that period (languages are sorted by
popularity). This collection represents roughly 10% of all messages ever posted.
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Figure 2.3: Annual average rank of the most used languages on Twitter between
2009 and 2020. English and Japanese show the most consistent rank time series. Spanish,
and Portuguese are also relatively stable over time. Undefined—which covers a wide variety
of content such as emojis, links, pictures, and other media—also has a consistent rank time
series. The rise of languages on the platform correlates strongly with international events
including Arab Spring and K-pop, as evident in both the Arabic and Korean time series,
respectively. Russian, German, Indonesian, and Dutch moved down in rank. This shift is
not necessarily due to a dramatic drop in the rate of usage of these languages, but is likely an
artifact of increasing growth of other languages on Twitter such as Thai, Turkish, Arabic,
Korean, etc.

most used language on the platform with a little under 42 billion messages throughout

the last decade. Although the number of Japanese speakers is much smaller than the

number of English speakers around the globe, Japanese has approximately 21 billion

messages. Spanish—the third most prominent language on Twitter—is shy of 11

billion messages. Arabic and Portuguese rank next with about 7 billion messages

for each. We note that the top 10 languages comprise 85% of the daily volume of

messages posted on the platform.
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In Fig. 2.3, we show the flow of annual rank dynamics of the 15 most used lan-

guages on Twitter between 2009 and 2020. For ease of description, we will refer

to Undefined as a language class. The top 5 most common languages on Twitter

(English, Japanese, Spanish, Undefined, and Portuguese) are consistent, indicating

a steady rate of usage of these languages on the platform. The language rankings

correspond with worldwide events such as the Arab Spring [65, 74, 136, 307], K-pop,

and political events [82]. “Undefined” is especially interesting as it covers a wide

range of content such as emojis, memes, and other media shared on Twitter but can’t

necessarily be associated with a given language. Russian, however, starts to grow on

the platform after 2011 until it peaks with a rank of 7 in 2015, then drops down to

rank 15 as of the end of 2019. Other languages such as German, Indonesian, and

Dutch show a similar trend down in ranking. This shift is not necessarily caused by

a drop in the rate of usage of these languages, but it is rather an artifact prompted

by the growth of other languages on Twitter.

2.5.2 Separating organic and retweeted messages

We take a closer look at the flow of information among different languages on the

platform, specifically the use of the “retweet” feature as a way of spreading informa-

tion. Encoding a behavioral feature initially invented by users, Twitter formalized

the retweet feature in November 2009 [275]. Changes in platform design and the

increasing popularity of mobile apps promoted the RT as a mechanism for spreading.

In April 2015, Twitter introduced the ability to comment on a retweet message or

“Quote Tweet”(QT) [264] a message, distinct from a message reply [274].

To quantify the rate of usage of each language with respect to these different
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means by which people communicate on the platform, we categorize messages on

Twitter into two types: “Organic Tweets” (OT), and “Retweets” (RT). The former

category (OT) encompasses original messages that are explicitly authored by users,

while the latter category (RT) captures messages that are shared (i.e. amplified) by

users. We break each quote tweet into two separate messages: a comment and a

retweet. We exclude retweets while including all added text (comments) found in

quote tweets for the OT category.

For each day t and for each language `, we calculate the raw frequency (count) of

organic messages f (OT)
`,t , and retweets f (RT)`,t . We further determine the frequency of

all tweets (AT) such that: f (AT)`,t = f
(OT)
`,t + f

(RT)
`,t . The corresponding rate of usages

(normalized frequencies) for these two categories are then:

p
(OT)
t,` =

f
(OT)
t,`

f
(AT)
t,`

, and p(RT)
t,` =

f
(RT)
t,`

f
(AT)
t,`

. (2.1)

2.5.3 Measuring sociolinguistic wildfire through

the growth of retweets

To further investigate the growth of retweets, we use the ratio of retweeted messages

to organic messages as an intuitive and interpretable analytical measure to track this

social amplification phenomenon. We define the ‘contagion ratio’ as:

R`,t = f
(RT)
`,t

/
f
(OT)
`,t . (2.2)

In 2018, the contagion ratio exceeded 1, indicating a higher number of retweeted
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Figure 2.4: Timeseries for organic messages, retweeted messages, and aver-
age contagion ratio for all languages. A. Monthly average rate of usage of or-
ganic messages (p(OT)

t,` , blue), and retweeted messages (p(RT)
t,` , orange). The solid red

line highlights the steady rise of the contagion ratio R`,t. B. Frequency of organic mes-
sages (f (OT)

`,t , blue), compared to retweeted messages (f (RT)`,t , orange). The areas shaded
in light grey starting in early 2018 highlights an interesting shift on the platform where
the number of retweeted messages has exceeded the number of organic messages. An in-
teractive version of the figure for all languages is available in an online appendix: http:
//compstorylab.org/storywrangler/papers/tlid/files/ratio_timeseries.html.
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messages than organic messages (Fig. 2.4). The overall count for organic messages

peaked in the last quarter of 2013, after which it declined slowly as the number of

retweeted messages climbed to approximately 1.2 retweeted messages for every organic

message at the end of 2019. Thereafter, the contagion ratio declined through 2020

with the exception of a surge of retweets in the summer amid the nationwide protests

sparked by the murder of George Floyd.6

In 2020, Twitter’s developers redesigned their retweet mechanism, purposefully

prompting users to write their own commentary using the Quote Tweet [99], along

with several new policies to counter synthetic and manipulated media [98, 250, 251].

While the long upward trend of the contagion ratio is in part due to increasingly active

social amplification by users, the recent trend demonstrates how social amplification

on Twitter is highly susceptible to systematic changes in the platform design. Twitter

has also introduced several features throughout the last decade, such as tweet ranking,

and extended tweet length that may intrinsically influence how users receive and share

information in their social networks.7 We investigate the robustness of our findings

regarding contagion ratios in light of some of these changes in Appendix 2.B and

Appendix 2.C. Future work will shed light on various aspects of social amplification

on Twitter with respect to the evolution of the platform design, and behavioral drivers

for the use of retweets in each language across communities.

Finally, we show weekly aggregation of the rate of usage of the top 30 ranked

languages of 2019 in Fig. 2.5. The time series demonstrate a recent sociolinguistic

shift: Several languages including English, Spanish, Thai, Korean, and French have

transitioned to having a higher rate of retweeted messages than organic messages.
6https://www.nytimes.com/2020/05/31/us/george-floyd-investigation.html
7https://help.twitter.com/en/using-twitter/twitter-conversations
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Figure 2.5: Weekly rate of usage of the top 30 languages (sorted by popular-
ity). For each language, we show a weekly average rate of usage for organic messages
(p(OT)
t,` , blue) compared to retweeted messages (p(RT)

t,` , orange). The areas highlighted in
light shades of gray represent weeks where the rate of retweeted messages is higher than
the rate of organic messages. An interactive version featuring all languages is available in
an online appendix: http://compstorylab.org/storywrangler/papers/tlid/files/
retweets_timeseries.html.
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Thai appears to be the first language to have made this transition in late 2013. In

Fig. 2.6, we show a heatmap of the average contagion ratio for the top 30 most used

languages on Twitter per year. With the exception of Indonesian, which showed a

small bump between 2010 and 2013, most other languages began adopting a higher

ratio of retweeted content in 2014. Thai has the highest number of retweeted mes-

sages, with an average of 7 retweeted messages for every organic message. Other

languages, for example, Hindi, Korean, Urdu, Catalan, and Tamil average between 2

to 4 retweeted messages for every organic message. On the other hand, Japanese—the

second most used language on the platform—does not exhibit this trend. Similarly,

German, Italian, and Russian maintain higher rates of organic tweets. The trend of

increasing preference for retweeted messages, though not universal, is evident among

most languages on Twitter. We highlight the top 10 languages with the highest and

lowest average contagion ratio per year in Table 2.B.1 and Table 2.B.2, respectively.

2.6 Discussion

Understanding how stories spread through and persist within populations has always

been central to understanding social phenomena. In a time when information can

flow instantly and freely online, the study of social contagion has only become more

important.

In the sphere of Twitter, the practice of retweeting is complicated from a social

and psychological point of view. There is a diverse set of reasons for participants

to retweet. For example, scientists and academics can use this elementary feature

to share their findings and discoveries with their colleagues. Celebrities and political
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Figure 2.6: Timelapse of contagion ratios. The average ratio is plotted against year for
the top 30 ranked languages of 2019. Colored cells indicate a ratio higher than 0.5 whereas
ratios below 0.5 are colored in white. Table 2.B.1 shows the top 10 languages with the highest
average contagion ratio per year, while Table 2.B.2 shows the bottom 10 languages with the
lowest average contagion ratio per year.
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actors can benefit from other people retweeting their stories for self-promotion. At-

tackers can also take advantage of this natural feature of social contagion to pursue

malicious intents, deploy social bots, and spread fake news.

In this study, we have analyzed over a hundred billion messages posted on Twitter

throughout the last decade. We presented an alternative approach for obtaining lan-

guage labels using FastText-LID in order to overcome the challenge of missing labels

in the Decahose dataset, obtaining consistent language labels for 100+ languages. We

acknowledge that shortcomings of language detection for short and informal text (e.g.,

tweets) are well known in the NLP literature. Using FastText-LID is not necessarily

the best approach for language identification. Our analysis may be subject to implicit

measurement biases and errors introduced by word embeddings used to train the lan-

guage detection tool using FastText [32]. We emphasize that we have not intended to

reinvent or improve FastText-LID in this work; we have used FastText-LID only as

a (well-established and tested) tool to enable the study of social contagion dynamics

on Twitter. Nevertheless, we have presented some further analysis of FastText-LID

compared to Twitter-LID in Appendix 2.A. Future work will undoubtedly continue

to improve language detection for short text, particularly for social media platforms.

Our results comparing language usage over time suggest a systematic shift on

Twitter. We found a recent tendency among most languages to increasingly retweet

(spread information) rather than generate new content. Understanding the general

rise of retweeted messages requires further investigation. Possible partial causes might

lie in changes in the design of the platform, increases in bot activity, a fundamental

shift in human information processing as social media becomes more familiar to users,

and changes in the demographics of users (e.g., younger users joining the platform).
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The metrics we have used to compute our contagion ratios are simple but rather

limited. We primarily focused on tracking the rate of organic tweets and retweets

to quantify social amplification of messages on the platform. While our approach of

measuring the statistical properties of contagion ratios is important, it falls short of

capturing how retweets propagate throughout the social networks of users. Future

work may deploy a network-based approach to investigate the flow of retweets among

users and followers. Whether or not the information is differentially propagated across

languages, social groups, economic strata, or geographical regions is an important

question for future research, and beyond the scope of our present work.

Geolocation information for Twitter is also limited, and here we have only ex-

amined contagion ratios at the language level. Language, transcending borders as

it does, can nevertheless be used differently across communities. For instance, char-

acterizing the temporal dynamics of contagion ratios for English, which is used all

around the globe, is very different from doing so for Thai—a language that is used

within a geographically well-defined population. Different social and geographical

communities have cultures of communication which will need to be explored in future

work.

In particular, it is important to study the relationship between social contagion

dynamics, geographical region, and language. It might be the case that contagion dy-

namics are more homogeneous across geographic regions even when each geographical

region displays high language diversity, or vice versa. However, in order to conduct

this line of research, it is necessary to have accurate geotagging of tweets, which is

currently not the case except for a very small subsample [294]. Future research could

focus on implementing accurate geotagging algorithms that assign tweets a probabilis-
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tic geographical location based on their text and user metadata, while fully respecting

privacy through judicious use of masking algorithms.
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Appendix

2.A Comparison with the historical feed

We have collected all language labels served in the historical data feed, along with the

predicted language label classified by FastText-LID for every individual tweet in our

dataset. We provide a list of all language labels assigned by FastText-LID compared to

the ones served by Twitter-LID in Table 2.A.1. To evaluate the agreement between the

two classifiers, we computed annual confusion matrices starting from 2013 to the end

of 2019. In Fig. 2.A.1, we show confusion matrices for the 15 most dominate languages

on Twitter for all tweets authored in 2013 (Fig. 2.A.1A) and 2019 (Fig. 2.A.1B).

We observe some disagreement between the two classifiers during the early years

of Twitter’s introduction of the LID feature to the platform. In Fig. 2.A.2, we show

the normalized ratio difference δD` (i.e., divergence) between the two classifiers for

all messages between 2014 and 2019. Divergence is calculated as:

δD` =
∣∣∣∣∣CF` − CT`CF` + CT`

∣∣∣∣∣, (2.3)

where CF` is the number of messages captured by FastText-LID for language `, and
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Figure 2.A.1: Language identification confusion matrices. We show a subset of the
full confusion matrix for top-15 languages on Twitter. A. Confusion matrix for tweets
authored in 2013. The matrix indicates substantial disagreement between the two classifiers
during 2013, the first year of Twitter’s efforts to provide language labels. B. For the year
2019, both classifiers agree on the majority of tweets as indicated by the dark diagonal
line in the matrix. Minor disagreement between the two classifiers is evident for particular
languages, including German, Italian, and Undefined, and there is major disagreement for
Indonesian and Dutch. Cells with values below (.01) are colored in white to indicate very
minor disagreement between the two classifiers.

CT` is the number of messages captured by Twitter-LID for language `.

We show Zipf distributions of all languages captured by FastText-LID and Twitter-

LID in Fig. 2.A.2A and Fig. 2.A.2B, respectively. FastText-LID recorded a total of

173 unique languages, whereas Twitter-LID captured a total of 73 unique languages

throughout that period. Some of the languages reported by Twitter were experi-

mental and no longer available in recent years. In Fig. 2.A.2C, we display the joint

distribution of all languages captured by both classifiers. Languages found left of

vertical dashed gray line are more prominent using the FastText-LID model (e.g.,

Chinese (zh), Central-Kurdish (ckb), Uighur (ug), Sindhi (sd)). Languages right of
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the line are identified more frequently by the Twitter-LID model (e.g., Estonian (et),

Haitian (ht)). Languages found within the light-blue area are only detectable by one

classifier but not the other. We note that ‘Unknown’ is an artificial label that we

added to flag messages with missing language labels in the metadata of our dataset.

We list divergence values δD` for all languages identified in our dataset in Fig. 2.A.3.
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Table 2.A.1: Language codes for both FastText-LID and Twitter-LID tools

Language FT TW Language FT TW Language FT TW Language FT TW

Afrikaans af - Czech cs cs Occitan oc - Tagalog tl tl

Albanian sq - Danish da da Oriya or or Tajik tg -

Amharic am am Dimli diq - Ossetic os - Tamil ta ta

Arabic ar ar Divehi dv dv Pampanga pam - Tatar tt -

Aragonese an - Dotyali dty - Panjabi pa pa Telugu te te

Armenian hy hy Dutch nl nl Persian fa fa Thai th th

Assamese as - Eastern-Mari mhr - Pfaelzisch pfl - Tibetan bo bo

Asturian ast - Egyptian-
Arabic

arz - Piemontese pms - Tosk-Albanian als -

Avaric av - Emiliano eml - Polish pl pl Turkish tr tr

Azerbaijani az - English en en Portuguese pt pt Turkmen tk -

Bashkir ba - Lojban jbo - Pushto ps ps Tuvinian tyv -

Basque eu eu Lombard lmo - Quechua qu - Uighur ug ug

Bavarian bar - Lower-Sorbian dsb - Raeto-Romance rm - Ukrainian uk uk

Belarusian be - Luxembourgish lb - Romanian ro ro Undefined und und

Bengali bn bn Macedonian mk - Russian-Buriat bxr - Upper-Sorbian hsb -

Bihari bh - Maithili mai - Russian ru ru Urdu ur ur

Bishnupriya bpy - Malagasy mg - Rusyn rue - Uzbek uz -

Bosnian bs bs Malay ms msa Sanskrit sa - Venetian vec -

Breton br - Malayalam ml ml Sardinian sc - Veps vep -

Bulgarian bg bg Maltese mt - Saxon nds - Vietnamese vi vi

Burmese my my Manx gv - Scots sco - Vlaams vls -

Catalan ca ca Marathi mr mr Serbian sr sr Volapuk vo -

Cebuano ceb - Mazanderanimzn - Serbo-Croatian sh - Walloon wa -

Central-Bikol bcl - Minangkabau min - Shona - sn Waray war -

Central-
Kurdish

ckb ckb Mingrelian xmf - Sicilian scn - Welsh cy cy

Chavacano cbk - Mirandesemwl - Sindhi sd sd Western-Mari mrj -

Chechen ce - Mongolian mn - Sinhala si si Western-
Panjabi

pnb -

Cherokee - chr Nahuatl nah - Slovak sk - Wu-Chinese wuu -

Chinese-
Simplified

- zh-cn Neapolitan nap - Slovenian sl sl Yakut sah -

Chinese-
Traditional

- zh-tw Nepali ne ne Somali so - Yiddish yi -

Chinese zh zh Newari new - South-
Azerbaijani

azb - Yoruba yo -

Chuvash cv - Northen-Frisian frr - Spanish es es Yue-Chinese yue -

Cornish kw - Northern-Luri lrc - Sundanese su -

Corsican co - Norwegian no no Swahili sw -

Croatian hr - Nynorsk nn - Swedish sv sv
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Figure 2.A.2: Language Zipf distributions. A. Zipf distribution [321] of all languages
captured by FastText-LID model. B. Zipf distribution for languages captured by Twitter-
LID algorithm(s). The vertical axis in both panels reports rate of usage of all messages
pt,` between 2014 and 2019, while the horizontal axis shows the corresponding rank of each
language. FastText-LID recorded a total of 173 unique languages throughout that period. On
the other hand, Twittert-LID captured a total of 73 unique languages throughout that same
period, some of which were experimental and no longer available in recent years. C. Joint
distribution of all recorded languages. Languages located near the vertical dashed gray line
signify agreement between FastText-LID and Twitter-LID, specifically that they captured a
similar number of messages between 2014 and end of 2019. Languages found left of this line
are more prominent using the FastText-LID model, whereas languages right of the line are
identified more frequently by Twitter-LID model. Languages found within the light-blue area
are only detectable by one classifier but not the other where FastText-LID is colored in blue
and Twitter is colored in red. The color of the points highlights the normalized ratio differ-
ence δD` (i.e., divergence) between the two classifiers, where CF` is the number of messages
captured by FastText-LID for language `, and CT` is the number of messages captured by
Twitter-LID for language `. Hence, points with darker colors indicate greater divergence be-
tween the two classifiers. A lookup table for language labels can be found in the Table 2.A.1,
and an online appendix of all languages is also available here: http://compstorylab.
org/storywrangler/papers/tlid/files/fasttext_twitter_timeseries.html.
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Figure 2.A.3: Language identification divergence. A normalized ratio difference value
δD` (i.e., divergence) closer to zero implies strong agreement, whereby both classifiers cap-
tured approximately the same number of messages over the last decade. Grey bars indicate
higher rate of messages captured by FastText-LID, whereas red bars highlight higher rate of
messages captured by Twitter-LID.
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2.B Analytical validation of contagion

ratios

To investigate our margin of error for estimating contagion ratios, we find the subset

of messages that both classifiers have agreed on their language labels using the annual

confusion matrices we discussed in Appendix 2.A. We compute an annual average of

the contagion ratios for this subset of messages. We highlight the top 10 languages

with the highest and lowest average contagion ratio per year in Table 2.B.1 and

Table 2.B.2, respectively. We then compare the new set of annual contagion ratios

with the original ones discussed in Sec. 2.5.3. In particular, we compute the absolute

difference

δ = |R− Rα|,

where R indicates the contagion ratios of all messages, and Rα indicates the contagion

ratios of the subset of messages that both FastText-LID and Twitter-LID models have

unanimously agreed on their language labels.

In Table 2.B.3, we show the top 10 languages with the highest average values of

δ’s. Languages are sorted by the values of δ’s in 2019. Higher values of δ’s indicate

high uncertainty due to high disagreement on the language of the written messages

between FastText-LID and Twitter-LID. Lower values of δ’s, on the other hand,

highlight better agreement between the two classifiers, and thus better confidence

in our estimation of the contagion ratios. We show the bottom 10 languages with the

lowest average values of δ’s in Table 2.B.4.
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Table 2.B.1: Top 10 languages with the highest annual average contagion ratio (sorted by
2019).

20092010201120122013201420152016201720182019

Greek 0.01 0.05 0.07 0.20 0.42 0.65 0.83 1.11 1.29 1.42 1.27

French 0.02 0.10 0.13 0.22 0.34 0.56 0.76 0.94 1.09 1.40 1.37

English 0.03 0.14 0.20 0.31 0.37 0.56 0.71 0.91 1.15 1.44 1.44

Spanish 0.03 0.16 0.21 0.31 0.42 0.62 0.82 0.94 1.24 1.54 1.52

Korean 0.05 0.11 0.14 0.26 0.30 0.43 0.66 1.28 1.74 2.22 2.07

Catalan 0.01 0.08 0.12 0.21 0.30 0.52 0.74 0.98 1.80 2.44 2.10

Urdu 0.03 0.25 0.25 0.19 0.26 0.64 0.82 0.95 1.51 2.67 2.90

Tamil 0.01 0.04 0.10 0.16 0.22 0.54 0.82 1.30 1.84 2.40 2.96

Hindi 0.01 0.03 0.06 0.15 0.38 1.14 2.26 2.81 3.09 3.58 3.29

Thai 0.07 0.24 0.18 0.32 0.79 2.01 2.54 3.35 5.31 6.52 7.29
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Table 2.B.2: Bottom 10 languages with the lowest annual average contagion ratio (sorted
by 2019).

20092010201120122013201420152016201720182019

Finnish 0.02 0.11 0.10 0.11 0.14 0.18 0.23 0.26 0.29 0.31 0.26

Cebuano 0.01 0.07 0.09 0.13 0.14 0.22 0.24 0.29 0.32 0.33 0.30

Esperanto 0.01 0.08 0.09 0.11 0.13 0.18 0.24 0.34 0.41 0.47 0.38

Swedish 0.02 0.07 0.09 0.14 0.20 0.31 0.37 0.41 0.47 0.55 0.45

Russian 0.01 0.04 0.07 0.13 0.13 0.19 0.29 0.31 0.42 0.57 0.50

Dutch 0.02 0.11 0.16 0.23 0.23 0.28 0.32 0.36 0.42 0.52 0.51

German 0.02 0.07 0.09 0.13 0.17 0.26 0.34 0.38 0.42 0.58 0.52

Japanese 0.02 0.08 0.10 0.11 0.16 0.31 0.35 0.31 0.40 0.47 0.53

Polish 0.01 0.06 0.08 0.13 0.22 0.28 0.42 0.60 0.84 0.74 0.57

Persian 0.03 0.07 0.07 0.14 0.22 0.40 0.35 0.41 0.50 0.64 0.57
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Table 2.B.3: Top 10 languages with the highest average margin of error for estimating
contagion ratios as a function of the agreement between FastText-LID and Twitter-LID
(sorted by 2019).

Language 2014 2015 2016 2017 2018 2019

Undefined ±0.14±0.14±0.16±0.19±0.17±0.15

Dutch ±0.11±0.10±0.11±0.12±0.15±0.17

Swedish ±0.14±0.16±0.18±0.19±0.21±0.20

Serbian ±0.26±0.27±0.32±0.33±0.35±0.25

Cebuano ±0.22±0.24±0.29±0.32±0.33±0.30

Esperanto ±0.18±0.24±0.34±0.41±0.47±0.38

Indonesian ±0.21±0.18±0.18±0.24±0.39±0.40

Tagalog ±0.22±0.34±0.49±0.51±0.48±0.44

Hindi ±0.08±0.41±0.97±0.76±0.73±0.71

Catalan ±0.52±0.74±0.98±1.80±1.08±0.75

In Fig. 2.B.1, we display a heatmap of δ’s for the top 30 ranked languages. We

note low values of δ’s for the top 10 languages on the platform. In other words, our

contagion ratios for the subset of messages that both classifiers have unanimously pre-

dicted their language labels are roughly equivalent to our estimations in Table 2.B.1.

By contrast, we note high disagreement on Catalan messages. The two classifiers

start off with unusual disagreement in 2014 (δ = .52). The disagreement between the

two models continues to grow leading to a remarkably high value of δ = 1.80 in 2017.

Thereafter, we observe a trend down in our estimations, indicating that FastText-

LID and Twitter-LID have slowly started to harmonize their language predictions for

Catalan messages through the past few years. We also note similar trends for Hindi

and Tagalog messages.
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Table 2.B.4: Bottom 10 languages with the lowest average margin of error for estimating
contagion ratios as a function of the agreement between FastText-LID and Twitter-LID
(sorted by 2019).

Language 2014 2015 2016 2017 2018 2019

Tamil ±0.03±0.01±0.01±0.01±0.01±0.01

Greek ±0.13±0.07±0.01±0.01±0.01±0.01

Japanese ±0.01±0.01±0.01±0.01±0.02±0.02

Russian ±0.01±0.01±0.01±0.02±0.03±0.03

Persian ±0.10±0.06±0.06±0.05±0.04±0.03

Arabic ±0.04±0.03±0.02±0.02±0.03±0.04

Chinese ±0.04±0.04±0.04±0.05±0.06±0.08

English ±0.04±0.05±0.05±0.06±0.08±0.09

Thai ±0.03±0.03±0.04±0.06±0.08±0.09

Portuguese±0.08±0.10±0.09±0.11±0.11±0.10

Our results show empirical evidence of inconsistent language labels in the histor-

ical data feed between 2014 and 2017. Our margin of error for estimating contagion

ratios narrows down as FastText-LID and Twitter-LID unanimously yield their lan-

guage predictions for the majority of messages authored in recent years. Future

investigations can help us shed light on some of the implicit biases of language detec-

tion models. Nonetheless, our analysis supports our findings regarding the growth of

retweets over time across most languages.

52



2014 2015 2016 2017 2018 2019

English
Japanese
Spanish

Undefined
Portuguese

Thai
Arabic

Korean
French

Indonesian
Turkish
German
Chinese

Italian
Russian
Tagalog

Hindi
Persian

Urdu
Polish

Catalan
Dutch
Tamil
Greek

Swedish
Serbian
Finnish

Cebuano
Ukrainian
Esperanto

= |R R |

0.05

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

1.30

Figure 2.B.1: Margin of error for contagion ratios. We compute the annual average of
contagion ratios R for all messages in the top 30 ranked languages as classified by FastText-
LID and described in Sec. 2.5.3. Similarly, we compute the annual average of contagion
ratios Rα for the subset of messages that both classifiers have unanimously labeled their
language labels. We display the absolute difference δ = |R − Rα| to indicate our margin
of error for estimating contagion ratios as a function of the agreement between FastText-
LID and Twitter-LID models. White cells indicate that δ is below .05, whereas colored cells
highlight values that are equal to, or above .05. We show the top 10 languages with the
highest average values of δ’s per year in Table 2.B.3. We also show the bottom 10 languages
with the lowest average values of δ’s per year in Table 2.B.4.
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2.C Impact of tweet’s length on lan-

guage detection

The informal and short texture of messages on Twitter—among many other reasons—

makes language detection of tweets remarkably challenging. Twitter has also intro-

duced several changes to the platform that notably impacted language identification.

Particularly, users were limited to 140 characters per message before the last few

months of 2017 and 280 characters thereafter [249]. To investigate the level of uncer-

tainty of language detection as a function of tweet length, we take a closer look at

the number of messages that are classified differently by FastText-LID and Twitter-

LID for the top 10 most used languages on the platform between 2020-01-01 and

2020-01-07.

In Fig. 2.C.1, we display the daily number of mismatches (grey bars) between

2020-01-01 and 2020-01-07 (approximately 32 million messages for each day for the

top-10 used languages), whereas the black line shows an average of that whole week.

We also display a histogram of the average number of characters of each message

throughout that period. We note that the distribution is remarkably skewed towards

shorter messages on the platform. The average length of messages is less than 140

characters, with a large spike around the 140 character mark. Long messages—which

include messages with links, hashtags, and emojis—can exceed the theoretical 280

character limit because we do not follow the same guidelines outlined by Twitter

for counting the number of characters in each message.8 For simplicity, we use the
8https://developer.twitter.com/en/docs/basics/counting-characters
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Figure 2.C.1: Language identification uncertainty as a function of tweet-length
for top 10 most used languages on Twitter. We display the number of messages that
were classified differently by Twitter-LID model and FastText-LID for the top-10 prominent
languages as a function of the number of characters in each message. Unlike Twitter, we
count each character individually, which is why the length of each message may exceed the
280 character limit. The grey lines indicate the daily number of mismatches between 2020-
01-01 and 2020-01-07 (approximately 32 million messages for each day for the top-10 used
languages), whereas the black line shows an average of that whole week.

built-in Python function to get the exact number of characters in a given message.9

9https://docs.python.org/3/library/functions.html#len
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Table 2.C.1: Average daily messages for the top 10 languages between 2020-01-01 and 2020-
01-07 (approximately 32 million messages for each day).

Language MessagesMismatches

English 1.1 ×107 .0853

Japanese 6.8 ×106 .0268

Spanish 2.3 ×106 .0558

Thai 2.2 ×106 .0161

Portuguese 2.1 ×106 .0565

Korean 1.7 ×106 .0085

Arabic 1.5 ×106 .0080

Indonesian 8.1 ×105 .1203

French 7.9 ×105 .1305

Turkish 5.6 ×105 .0325

As anticipated, our results indicate a higher proportion of short messages classified

differently by FastText-LID and Twitter-LID models. We highlight the average per-

centage of mismatches for the top 10 most used languages in Table 2.C.1 (languages

are sorted by popularity).

Furthermore, we examine a sample of messages authored through the month before

and after the switch to the 280 character limit. We do not observe any distributional

changes in FastText-LID’s confidence scores between the two months. We categorize

messages into four classes based on the confidence scores we get from FastText-LID’s

neural network. Predictions with confidence scores below .25 are labeled as Undefined

(und). On the other hand, messages with scores greater or equal to .25 but less than

.5 are flagged as predictions with low confidence (low). Predictions that have scores
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Figure 2.C.2: Confidence scores of the FastText-LID neural network predictions
for the month before and after the shift to 280 characters. We categorize messages
into four classes based on the confidence scores we get from FastText-LID’s neural network.
Predictions with confidence scores below .25 are labeled as Undefined (und). Messages with
scores greater or equal to .25 but less than .5 are flagged as predictions with low confidence
(low). Predictions that have scores in the range [.5, .75) are considered moderate (mid), and
messages with higher scores are labeled as predictions with high confidence (high). We note
a symmetry indicating that the shift did not have a large impact on the network’s predictions
across organic and retweeted messages.
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in the range [.5, .75) are considered moderate (mid), and messages with higher scores

are labeled as predictions with high confidence (high).

In Fig. 2.C.2, we display the relative proportion of messages for each of the con-

fidence classes outlined above. First and foremost, we observe a very symmetrical

layout indicating that the shift does not have a notable impact on the network’s con-

fidence in its predictions between the two months examined here across organic and

retweeted messages.

Moreover, we note that the overall rate of usage for each language does not change

before and after the switch to longer messages. To validate that, we take a closer

look at the rate of usage for the top 10 most used languages throughout the past

three years. In Fig. 2.C.3A, we observe a very consistent frequency of usage across all

languages, indicating that the mechanistic shift to allow users to post longer messages

does not have a notable impact on the language detection process. Fig. 2.C.3B and

Fig. 2.C.3C show the growth of long messages on the platform, while the rate of usage

for the most used languages remains consistent. In Fig. 2.C.3C, we see the adoption of

longer messages starting in 2017, however, short messages still represent the majority

of messages on the platform which comprise 75% of all messages as of 2019.

We observe a much higher ratio of retweets in longer messages than shorter mes-

sages. As of 2019, about 25% of all messages are long messages, and surprisingly,

80% of these long messages are retweets. However, we only examined the use of lan-

guages over time from a statistical point of view. The use of longer messages and the

rate at which they are likely to be retweeted are different across languages. Further

investigations will be needed to explore and explain this phenomenon.
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Figure 2.C.3: Weekly rate of usage for short and long messages. A. Rate of usage
for the top-10 used languages averaged at the week scale for the past three years. The
introduction of long messages (i.e., above 140 but below 280 characters) does not change
the overall language usage on the platform. B–C. The growth of long messages over time
across organic and retweeted messages. We observe a much higher ratio of retweets in longer
messages than shorter messages.

59



Chapter 3

Day-scale curation of social me-

dia data streams
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3.1 Abstract

In real-time, Twitter strongly imprints world events, popular culture, and the day-to-

day, recording an ever growing compendium of language change. Vitally, and absent

from many standard corpora such as books and news archives, Twitter also encodes

popularity and spreading through retweets. Here, we describe Storywrangler, an on-

going curation of over 100 billion tweets containing 1 trillion 1-grams from 2008 to

2021. For each day, we break tweets into 1-, 2-, and 3-grams across 100+ languages,

generating frequencies for words, hashtags, handles, numerals, symbols, and emo-

jis. We make the dataset available through an interactive time series viewer, and as

downloadable time series and daily distributions. Although Storywrangler leverages

Twitter data, our method of tracking dynamic changes in n-grams can be extended

to any temporally evolving corpus. Illustrating the instrument’s potential, we present

example use cases including social amplification, the sociotechnical dynamics of fa-

mous individuals, box office success, and social unrest.
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3.2 Introduction

Our collective memory lies in our recordings—in our written texts, artworks, pho-

tographs, audio, and video—and in our retellings and reinterpretations of that which

becomes history. The relatively recent digitization of historical texts, from books [56,

105, 197, 221] to news [19, 128, 132, 257] to folklore [2, 198, 280, 300] to govern-

mental records [308], has enabled compelling computational analyses across many

fields [2, 4, 237]. But books, news, and other formal records only constitute a specific

type of text—carefully edited to deliver a deliberate message to a target audience.

Large-scale constructions of historical corpora also often fail to encode a fundamental

characteristic: popularity (i.e., social amplification). How many people have read a

text? How many have retold a news story to others?

For text-based corpora, we are confronted with the challenge of sorting through

different aspects of popularity of n-grams—sequences of n ‘words’ in a text that are

formed by contiguous characters, numerals, symbols, emojis, etc. An n-gram may

or may not be part of a text’s lexicon, as the vocabulary of a text gives a base

sense of what that text may span meaning-wise [256]. For texts, it is well estab-

lished that n-gram frequency-of-usage (or Zipf) distributions are heavy-tailed [322].

Problematically, this essential character of natural language is readily misinterpreted

as indicating cultural popularity. For a prominent example, the Google Books n-

gram corpus [197], which in part provides inspiration for our work here, p resents

year-scale, n-gram frequency time series where each book, in principle, counts only

once [221]. All cultural fame is stripped away. The words of George Orwell’s 1984 or

Rick Riordan’s Percy Jackson books, indisputably read and re-read by many people
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around the world, count as equal to the words in the least read books published in the

same years. And yet, time series provided by the Google Books n-gram viewer have

regularly been erroneously conflated with the changing interests of readers (e.g., the

apparent decline of sacred words [30, 156, 195, 221, 222]). Further compounded with

an increase of scientific literature throughout the 20th Century, the corpus remains a

deeply problematic database for investigations of sociolinguistic and cultural trends.

It is also very difficult to measure cultural popularity. For a given book, we would

want to know sales of the book over time, how many times the book has been actu-

ally read, and to what degree a book becomes part of broader culture. Large-scale

corpora capturing various aspects of popularity exist [4], but are hard to compile as

the relevant data is either prohibitively expensive or closed (e.g., Facebook), and,

even when accessible, may not be consistently recorded over time (e.g., Billboard’s

Hot 100).

Now, well into the age of the internet, our recordings are vast, inherently digital,

and capable of being created and shared in the moment. People, news media, govern-

mental bodies, corporations, bots, and many other entities all contribute constantly

to giant social media platforms. When open, these services provide an opportunity

for us to attempt to track myriad statements, reactions, and stories of large popula-

tions in real-time. Social media data allows us to explore day-to-day conversations by

millions of ordinary people and celebrities at a scale that is scarcely conventionalized

and recorded. And crucially, when sharing and commenting mechanisms are native

to a social media platform, we can quantify popularity of a trending topic and social

amplification of a contemporary cultural phenomenon.

Here, we present Storywrangler, a natural language processing framework that
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extracts, ranks, and organizes n-gram time series for social media. Storywrangler

provides an analytical lens to examine discourse on social media, carrying both the

voices of famous individuals—political figures and celebrities—and the expressions of

the many. With a complex, ever-expanding fabric of time-stamped messages, Story-

wrangler allows us to capture storylines in over 150 languages in real time.

For a primary social media source, we use Twitter for several reasons, while ac-

knowledging its limitations. Our method of extracting and tracking dynamic changes

of n-grams can in principle be extended to any social media platform (e.g., Facebook,

Reddit, Instagram, Parler, 4Chan, and Weibo).

Twitter acts as a distributed sociotechnical sensor system [134, 316]. Using Sto-

rywrangler, we can trace major news events and stories, from serious matters such as

natural disasters [67, 101, 167, 230, 253] and political events [270] to entertainment

such as sports, music, and movies. Storywrangler also gives us insights into discourse

around these topics and myriad others including, violence, racism, inequality, em-

ployment, pop culture (e.g., fandom), fashion trends, health, metaphors, emerging

memes, and the quotidian.

We can track and explore discussions surrounding political and cultural move-

ments that are born and nurtured in real-time over social media with profound ram-

ifications for society (e.g., #MeToo, #BlackLivesMatter, #QAnon). Modern social

movements of all kinds, may develop a strong imprint on social media, over years in

some cases, before becoming widely known and discussed.

Twitter and social media in general differ profoundly from traditional news and

print media in various dimensions. Although amplification is deeply uneven, vast

numbers of people may now express themselves to a global audience on any subject
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that they choose (within limits of a service, and not without potential consequences).

Unlike journalists, columnists, or book authors, people can instantly record and share

messages in milliseconds. Importantly from a measurement perspective, this is a far

finer temporal resolution than would be reasonably needed to explore sociocultural

phenomena or reconstruct major events. The eye witness base for major events is

now no longer limited to those physically present because of growing, decentralized

live-streaming through various social media platforms. Social media thus enables,

and not without peril, a kind of mass distributed journalism.

A crucial feature of Storywrangler is the explicit encoding of n-gram popularity,

which is enabled by Twiter’s social amplification mechanisms: retweets and quote

tweets. For each day and across languages, we create Zipf distributions for the fol-

lowing: (1) n-grams from originally authored messages (OT), excluding all retweeted

material (RT); and (2) n-grams from all Twitter messages (AT). For each day, we

then have three key levels of popularity: n-gram lexicon, n-gram usage in organic

tweets (originally authored tweets), and the rate at which a given n-gram is socially

amplified (i.e., retweeted) on the platform. Our data curation using Storywrangler

yields a rich dataset, providing an interdisciplinarity resource for researchers to ex-

plore transitions in social amplification by reconstructing n-gram Zipf distributions

with a tunable fraction of retweets.

We structure this chapter as follows. In Sec. 3.3, we briefly describe our instru-

ment, dataset, and the Storywrangler site which provides day-scale n-gram time series

datasets for n=1, 2, and 3, both as time series and as daily Zipf distributions. In

Sec. 3.4, we showcase a group of example analyses, arranged by increasing compli-

cation: Simple n-gram rank time series (Sec. 3.4.1); qualitative comparison to other
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prominent social signals of Google Trends and cable news (Sec. 3.4.2); Contagiograms,

time series showing social amplification (Sec. 3.4.3); analysis for identifying and ex-

ploring narratively trending storylines (Sec. 3.4.4); and an example set of case studies

bridging n-gram time series with disparate data sources to study famous individu-

als, box office success, and social unrest (Sec. 3.4.5). In our concluding remarks in

Sec. 3.5, we outline some potential future developments for Storywrangler.

3.3 Data and methods

3.3.1 Overview of Storywrangler

We draw on a storehouse of messages comprising roughly 10% of all tweets collected

from 2008-09-09 onwards, and covering 150+ languages. In previous work [7], we

described how we re-identified the languages of all tweets in our collection using

FastText-LID1 [32, 143], uncovering a general increase in retweeting across Twitter

over time. A uniform language re-identification was needed as Twitter’s own real-time

identification algorithm was introduced in late 2012 and then adjusted over time,

resulting in temporal inconsistencies for long-term streaming collection of tweets [84].

While we can occasionally observe subtle cues of regional dialects and slang, especially

on a non-mainstream media platform like Twitter, we still classify them on the basis of

their native languages. Date and language are the only metadata that we incorporate

into our database. For user privacy in particular, we discard all other information

associated with a tweet.

For each day t (Eastern Time encoding) and for each language `, we categorize
1https://fasttext.cc/docs/en/language-identification.html

66

https://fasttext.cc/docs/en/language-identification.html


tweets into two classes: organic tweets (OT), and retweets (RT). To quantify the

relative effect of social amplification, we group originally authored posts—including

the comments found in quote tweets but not the retweeted content they refer to—into

what we call organic tweets. We break each tweet into 1-grams, 2-grams, and 3-grams.

Although we can identify tweets written in continuous-script-based languages (e.g.,

Japanese, Chinese, and Thai), our current implementation does not support breaking

them into n-grams.

We accommodate all Unicode characters, including emojis, contending with punc-

tuation as fully as possible (see Appendix 3.A for further details). For our application,

we designed a custom n-gram tokenizer to preserve handles, hashtags, date/time

strings, and links [similar to the tweet tokenizer in the Natural Language Toolkit

(NLTK) [180]]. Although some older text tokenization toolkits followed different

criteria, our protocol is consistent with modern computational linguistics for social

media data [26, 132].

We derive three essential measures for each n-gram: raw frequency (or count),

normalized frequency (interpretable as probability), and rank, generating the cor-

responding Zipf distributions [322]. We perform this process for all tweets (AT),

organic tweets (OT), and (implicitly) retweets (RT). We then record n-grams along

with ranks, raw frequencies, and normalized frequencies for all tweets and organic

tweets in a single file, with the default ordering according to n-gram prevalence in all

tweets.
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3.3.2 Notation and measures

We write an n-gram by τ and a day’s lexicon for language `—the set of distinct n-

grams found in all tweets (AT) for a given date t—by Dt,`;n. We write n-gram raw

frequency as fτ,t,`, and compute its usage rate in all tweets written in language ` as

pτ,t,` = fτ,t,`∑
τ ′∈Dt,`;n fτ ′,t,`

. (3.1)

We further define the set of unique language ` n-grams found in organic tweets as

D(OT)
t,`;n , and the set of unique n-grams found in retweets as D(RT)

t,`;n (hence Dt,`;n =

D(OT)
t,`;n ∪ D

(RT)
t,`;n ). The corresponding normalized frequencies for these two subsets of

n-grams are then:

p
(OT)
τ,t,` =

f
(OT)
τ,t,`∑

τ ′∈D(OT)
t,`;n

f
(OT)
τ ′,t,`

, and (3.2)

p
(RT)
τ,t,` =

f
(RT)
τ,t,`∑

τ ′∈D(RT)
t,`;n

f
(RT)
τ ′,t,`

. (3.3)

We rank n-grams by raw frequency of usage using fractional ranks for ties. The

corresponding notation is:

rτ,t,`, r
(OT)
τ,t,` , and r

(RT)
τ,t,` . (3.4)

3.3.3 User interface

We make interactive times series based on our n-gram dataset viewable at storywran-

gling.org. In Fig. 3.3.1, we show a screenshot of the site displaying rank time series
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Figure 3.3.1: Interactive online viewer. Screenshot of the Storywrangler site showing
example Twitter n-gram time series for the first half of 2020. The series reflect three global
events: The assassination of Iranian general Qasem Soleimani by the United States on
2020-01-03, the COVID-19 pandemic (the virus emoji and ‘coronavirus’), and the Black
Lives Matter protests following the murder of George Floyd by Minneapolis police (‘#Black-
LivesMatter’). The n-gram Storywrangler dataset for Twitter records the full ecology of
text elements, including punctuation, hashtags, handles, and emojis. The default view is
for n-gram (Zipfian) rank at the day scale (Eastern Time), a logarithmic y-axis, and for
retweets to be included. These settings can be respectively switched to normalized frequency,
linear scale, and organic tweets (OT) only. The displayed time range can be adjusted with
the selector at the bottom, and all data is downloadable.
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for the first half of 2020 for ‘Soleimani’, the virus emoji, ‘coronavirus’, and ‘#Black-

LivesMatter’. Ranks and normalized frequencies for n-grams are relative to n-grams

with the same n, and in the online version we show time series on separate axes below

the main comparison plot.

For each time series, hovering over any data point will pop up an information

box. Clicking on a data point will take the user to Twitter’s search results for the

n-gram for the span of three days centered on the given date. All time series are

shareable and downloadable through the site, as are daily Zipf distributions for the

top million ranked n-grams in each language. Retweets may be included (the default)

or excluded, and the language, vertical scale, and time frame may all be selected.

3.4 Results

3.4.1 Basic rank time series

In Fig. 3.4.1, we show rank time series for eight sets of n-grams from all tweets (i.e.,

including retweets). The n-gram groups move from simple to increasingly complex

in theme, span a number of languages, and display a wide range of sociotechnical

dynamics. Because of an approximate obeyance of Zipf’s law (f ∼ r−θ), we observe

that normalized frequency of usage time series match rank time series in basic form.

We use rank as the default view for its straightforwardness.

Starting with time and calendars, Fig. 3.4.1A gives a sense of how years are

mentioned on Twitter. The dynamics show an anticipatory growth, plateau, and

then rapid decay, with each year’s start and finish marked by a spike.
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Figure 3.4.1: Thematically connected n-gram time series.
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Figs. 3.4.1B and C show calendrically anchored rank time series for seasonal,

religious, political, and sporting events that recur at the scale of years in various

languages. Periodic signatures at the day, week, and year scale are prominent on

Twitter, reflecting the dynamics of the Earth, Moon, and Sun. Easter (shown in

Italian) in particular combines cycles of all three. Major sporting events produce time

series with strong anticipation, and can reach great heights of attention as exemplified

by a peak rank of r = 3 for ‘Super Bowl’ on 2014-02-02.

We move to scientific announcements in Fig. 3.4.1D with the 2012 discovery of

the Higgs boson particle (blue), detection of gravitational waves (green), and the

first imaging of a black hole (red). For innovations, we show the time series of

‘#AlphaGo’—the first artificial intelligence program to beat the human Go champion

(orange), along with the development of CRISPR technology for editing genomes

(brown). We see that time series for scientific advances generally show shock-like

responses with little anticipation or memory [75]. CRISPR is an exception for these

few examples as through 2015, it moves to a higher, enduring state of being referenced.

Fame is the state of being talked about and famous individuals are well reflected

on Twitter [82]. In Fig. 3.4.1E, we show time series for the Portuguese football player

Cristiano Ronaldo, the 45th US president Donald Trump, and Pope Francis (Papa

Francesco in Italian). All three show enduring fame, following sudden rises for both

Trump and Pope Francis. On November 9, 2016, the day after the US election,

‘Donald Trump’ rose to rank r = 6 among all English 2-grams.

In Fig. 3.4.1F, we show example major infectious disease outbreaks over the past

decade. Time series for pandemics are shocks followed by long relaxations, resurging

both when the disease returns in prevalance and also in the context of new pandemics.
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Cholera, Ebola, and Zika all experienced elevated discussion within the context of the

COVID-19 pandemic.

In Fig. 3.4.1G, we show n-gram signals of regional unrest and fighting. The

word for Gaza in Arabic tracks events of the the ongoing Israeli-Palestinian conflict.

The time series for ‘Libye’ points to Opération Harmattan, the 2011 French and

NATO military intervention in Libya. Similarly, the time series for ‘Syria’ in Turkish

indicates the dynamics of the ongoing Syrian civil war on the region, and the build

up and intervention of the Russian military in Ukraine is mirrored by the use of the

Ukrainian word for ‘Russia’.

In Fig. 3.4.1H, we highlight protests and movements. Both the time series for

‘revolution’ in Arabic and ‘Occupy’ in English show strong shocks followed by slow

relaxations over the following years. The social justice movements represented by

#MeToo and ‘Black Lives Matter’ appear abruptly, and their time series show slow

decays punctuated by shocks returning them to higher ranks. Black Lives Matter

resurged after the murder of George Floyd, with the highest one day rank of r = 4

occurring on 2020-06-02. By contrast, the time series of ‘Brexit’, the portmanteau

for the movement to withdraw the United Kingdom from the European Union, builds

from around the start of 2015 to the referendum in 2016, and then continues to climb

during the years of complicated negotiations to follow.

3.4.2 Comparison to other signals

To highlight key differences that Storywrangler offers in contrast to other data sources,

we display a few example comparisons in Fig. 3.4.2. In particular, we compare the

usage rate for a set of n-grams using Storywrangler, Google Trends [54], and the
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Figure 3.4.2: Comparison between Twitter, Google Trends, and Cable News.
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Stanford cable TV news analyzer [132].

Each data source has its own unique collection scheme that is most appropriate to

that venue. Google Trends provides search interest scaled relative to a given region

and time.2 While Storywrangler is based on daily n-gram Zipf distributions, the

Stanford cable TV news analyzer collects transcripts from most cable news outlets

and breaks them into n-grams, recording screen time (seconds per day) for each

term [132].

For the purpose of comparing n-gram usage across several disparate data sources,

we take the weekly rate of usage for each term (case insensitive), and normalize each

time series between 0 and 100 relative to the highest observed point within the given

time window. A score of 100 represents the highest observed interest in the given

term over time, while a value of 0 reflects low interest of that term and/or insufficient

data. We display weekly interest over time for a set of 10 terms using Storywrangler

for all tweets (AT, black), and originally authored tweets (OT, blue), Google Trends

(orange), and cable news (green).

In Fig. 3.4.2A, we show how usage of the trigram ‘working from home’ peaks

during March 2020 amid the COVID-19 pandemic. Although the term may be used

in different contexts in each respective media source, we observe similar attention

signals across all three data sources.

Similarly, Fig. 3.4.2B reveals increased mentions of ‘unemployment’ on all media

platforms during the US national lockdown in April 2020. Individuals searching for

unemployment claim forms could be responsible for the Google Trends spike, while

news and social media usage of the term resulted from coverage of the economic crisis
2https://trends.google.com/trends/?geo=US
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induced by the pandemic. The time series for ‘unemployment’ continues to fluctuate

on Twitter, with distinct patterns across all tweets and originally authored tweets.

In Fig. 3.4.2C, we see the bigram ‘fake news’ roiling across social media and news

outlets, reflecting the state of political discourse in 2020. Indeed, this period saw the

most sustained usage of the term since its initial spike following the 2016 US election.

The term was prominently searched for on Google in March 2020 during the early

stages of the Coronavirus pandemic, but no corresponding spike is seen in cable news.

In Fig. 3.4.2D, the time series reveal attention to the ‘QAnon’ conspiracy theory on

social media and Google Trends starting in mid 2020. Using Storywrangler, we note a

spike of ‘qanon’ following Trump’s remarks regarding violent far-right groups during

the first presidential debate on September 29, 2020.3 We see another spike of interest

in October 2020 in response to the news about a kidnapping plot of the governor

of Michigan by extremists.4 Although the time series using both Storywrangler and

Google Trends show sustained usage of the term in 2020, news outlets do not exhibit

similar patterns until the US Capitol insurrection on January 6, 2021.

Fig. 3.4.2E shows mentions of ‘antifa’—a political movement that drew attention

in response to police violence during protests of the murder of George Floyd.5 We

note that mentions surged again in response to false flag allegations in the wake of

the Capitol attack, most prominently on Twitter.

In Fig. 3.4.2F, we display interest over time of the term ‘fandom’—a unigram that

is widely used to refer to a group of people that share a common interest in creative

genres, celebrities, fashion trends, modern tech, hobbies, etc. While this cultural
3https://www.nytimes.com/2020/09/30/us/politics/debate-takeaways.html
4https://www.nytimes.com/2020/10/08/us/gretchen-whitmer-michigan-militia.html
5https://www.nytimes.com/article/what-antifa-trump.html
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phenomenon is rarely ever recorded by traditional news outlets, it dates back to the

enormous fan base of Sherlock Holmes as one of the earliest signs of modern fandom,

with public campaigners mourning the figurative death of their fictional character in

1893.6 This cultural characteristic can not be easily captured with data sources such

as Google books or search data. Nonetheless, it is intrinsic to non-mainstream media,

illustrating the collective social attention of fans in various arenas as part of the ever

changing digital pop culture.

Fig 3.4.2G shows a recent example where longtime fans of the pop music star,

Britney Spears, organized and launched a social media support campaign in light

of the controversy surrounding her conservatorship. Although the movement dates

back to 2009, we see a surge of usage of the hashtag ‘#FreeBritney’ in July 2020,

after an interview with Britney’s brother, revealing some personal details about her

struggles and reigniting the movement on social media. The social movement has

recently gained stronger cultural currency after the release of a documentary film by

the New York Times in 2021.7

Moreover, Fig 3.4.2H shows interest over time of a popular South Korean pop

band, ‘Twice’. Although the official handle of the band on Twitter (‘jypetwice’) is

virtually absent in other data sources, fans and followers use handles and hashtags

regularly on Twitter to promote and share their comments for their musical bands.

In Figs. 3.4.2I and J, we see how communications and marketing campaigns of

fitness trends such as ‘keto diet’, and fashion trends such as leggings, and athleisure

receive sustained interest on Twitter while only occasionally popping up in news via

commercial advertisements on some cable channels.
6https://www.bbc.com/culture/article/20160106-how-sherlock-holmes-changed-the-world
7https://www.nytimes.com/article/framing-britney-spears.html
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3.4.3 Contagiograms

While rank time series for n-grams give us the bare temporal threads that make up

the tapestries of major stories, our dataset offers more dimensions to explore. Per

our introductory remarks on the limitations of text corpora, the most important

enablement of our database is the ability to explore story amplification.

In Fig. 3.4.3, we present a set of six ‘contagiograms’. With these expanded time

series visualizations, we convey the degree to which an n-gram is retweeted both

overall and relative to the background level of retweeting for a given language. We

show both rates because retweet rates change strongly over time and variably so

across languages [7].

Each contagiogram has three panels. The main panel at the bottom charts, as

before, the rank time series for a given n-gram. For contagiograms running over a

decade, we show rank time series in this main panel with month-scale smoothing

(black line), and add a background shading in gray indicating the highest and lowest

rank of each week.

The top two panels of each contagiogram capture the raw and relative social

amplification for each n-gram. First, the top panel displays the raw RT/OT balance,

the monthly relative volumes of each n-gram in retweets (RT, orange) and organic

tweets (OT, blue):

Rτ,t,` = f
(RT)
τ,t,` /

(
f

(RT)
τ,t,` + f

(OT)
τ,t,`

)
. (3.5)

When the balance of appearances in retweets outweighs those in organic tweets,

Rτ,t,` > 0.5, we view the n-gram as nominally being amplified, and we add a solid

background for emphasis.
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Figure 3.4.3: Contagiograms: Augmented time series charting the social ampli-
fication of n-grams.
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Second, in the middle panel of each contagiogram, we display a heatmap of the

values of the relative amplification rate for n-gram τ in language `, Rrel
τ,t,`

. Building

on from the RT/OT balance, we define Rrel
τ,t,` as:

Rrel
τ,t,` =

f
(RT)
τ,t,` /

(
f

(RT)
τ,t,` + f

(OT)
τ,t,`

)
∑
τ ′ f

(RT)
τ ′,t,`/

∑
τ ′

(
f

(RT)
τ ′,t,` + f

(OT)
τ ′,t,`

) , (3.6)

where the denominator gives the overall fraction of n-grams that are found in retweets

on day t for language `. While still averaging at month scales, we now do so based

on day of the week. Shades of red indicate that the relative volume of n-gram τ is

being socially amplified over the baseline of retweets in language `, Rrel
τ,t,` > 1, while

gray encodes the opposite, Rrel
τ,t,` < 1.

The contagiogram in Fig. 3.4.3A for the word for ‘kevät’, ‘spring’ in Finnish,

shows an expected annual periodicity. The word has a general tendency to appear

in organic tweets more than retweets. But this is true of Finnish words in general,

and we see that from the middle panel that kevät is in fact relatively, if patchily,

amplified when compared to all Finnish words. For the anticipatory periodic times

series in Fig. 3.4.3B, we track references to the ‘Carnival of Madeira’ festival—held

forty days before Easter in Brazil. We see that ‘Carnival’ has become increasingly

amplified over time, and has been relatively more amplified than Portuguese words

except for 2015 and 2016.

By etymological definition, renowned individuals should feature strongly in retweets

(‘renown’ derives from ‘to name again’). Lionel Messi has been one of the most talked

about sportspeople on Twitter over the past decade, and Fig. 3.4.3C shows his 2-gram

is strongly retweeted, by both raw and relative measures. (See also Fig. 3.A.4F for
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the K-pop band BTS’s extreme levels of social amplification.)

Some n-grams exhibit a consistent weekly amplification signal. For example,

‘#TGIF’ is organically tweeted on Thursdays and Fridays, but retweeted more often

throughout the rest of the week (Fig. 3.4.3D). At least for those two days, individ-

uals expressing relief for the coming weekend overwhelm any advertising from the

eponymous restaurant chain.

Routinely, n-grams will take off in usage and amplification due to global events.

In Fig. 3.4.3E, we see ‘virus’ in French tweets holding a stable rank throughout the

2010s before jumping in response to the COVID-19 pandemic, and showing mildly

increased amplification levels. The word ‘Brexit’ in German has been prevalent from

2016 on, balanced in terms of organic tweet and retweet appearances, and generally

more spread than German 1-grams.

The contagiograms in Fig. 3.4.3 give just a sample of the rich variety of social

amplification patterns that appear on Twitter. We include some further examples in

the supplementary material in Figs. 3.A.4 and 3.A.5. We provide Python package

for generating arbitrary contagiograms along with further examples at https://

gitlab.com/compstorylab/contagiograms. The figure-making scripts interact

directly with the Storywrangler database, and offer a range of configurations.

3.4.4 Narratively trending storylines

Besides curating daily Zipf distributions, Storywrangler serves as an analytical tool

to examine and explore the lexicon of emerging storylines in real-time. Using rank-

turbulence divergence (RTD) [83], we examine the daily rate of usage of each n-gram

assessing the subset of n-grams that have become most inflated in relative usage. For
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Figure 3.4.4: Narratively trending n-grams. We use rank-turbulence divergence
(RTD) [83] to find the most narratively trending n-grams of each day relative to the year
before in English tweets. For each day, we display the top 20 n-grams sorted by their RTD
value on that day. We also display the relative social amplification ratio Rrel

τ,t,` for each
n-gram on a logarithmic scale, whereby positive values indicate strong social amplification
of that n-gram via retweets, and negative values imply that the given n-gram is often shared
in originally authored tweets. A. The assassination of Iranian general Qasem Soleimani by
a US drone strike on 2020-01-03 (blue). B. WHO declares COVID–19 a global Pandemic
on 2020-03-11 (orange). C. Mass protests against racism and police brutality on 2020-
06-02 (purple). D. Death of US Supreme Court justice Ruth Ginsburg from complications
of pancreatic cancer on 2020-09-18 (green). E. The 2020 US presidential election held on
2020-11-04 (pink). F. The deadly insurrection of the US Capitol on 2021-01-06 (yellow).
G. Daily n-gram volume (i.e., number of words) for all tweets (AT, grey), and organic
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each day t, we compute RTD for each n-gram τ relative to the year before t′, setting

the parameter α to 1/4 to examine the lexical turbulence of social media data such

that:

δDR
τ =

∣∣∣∣∣ 1
rατ,t,`

− 1
rατ,t′,`

∣∣∣∣∣
1/(α+1)

; (α = 1/4). (3.7)

Although our tool uses RTD to determine dramatic shifts in relative usage of n-grams,

other divergence metrics will yield similar lists.

In Fig. 3.4.4, we show an example analysis of all English tweets for a few days

of interest in 2020. First, we determine the top 20 narratively dominate n-grams

of each day using RTD, leaving aside links, emojis, handles, and stop words but

keeping hashtags. Second, we compute the relative social amplification ratio Rrel
τ,t,`

to examine whether a given n-gram τ is prevalent in originally authored tweets, or

socially amplified via retweets on day t. For ease of plotting, we have further chosen to

display Rrel
τ,t,` at a logarithmic scale. Positive values of log10 R

rel
τ,t,` imply strong social

amplification of τ , whereas negative values show that τ is relatively more predominant

in organic tweets.

Fig. 3.4.4A gives us a sense of the growing discussions and fears of a global warfare

following the assassination of Iranian general Qasem Soleimani by a US drone airstrike

on 2020-01-03.8 While most of the terms are socially amplified, we note that the

bigram ‘Newton #wpmoychallenge’ was trending in organic tweets, reflecting the

ongoing campaign and nomination of Cam Newton for Walter Payton NFL Man

of the Year Award—an annual reward that is granted for an NFL player for their
8https://www.nytimes.com/2020/01/02/world/middleeast/qassem-soleimani-iraq-iran-attack.

html
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excellence and contributions.9

In Fig. 3.4.4B, we see how conversations of the Coronavirus disease becomes the

most prevailing headline on Twitter with the World Health Organization (WHO)

declaring COVID–19 a global Pandemic on 2020-03-11.

In light of the social unrest sparked by the murder of George Floyd in Minneapolis,

we observe the growing rhetoric of the Black Lives Matter movement on Twitter driven

by an enormous increase of retweets in Fig. 3.4.4C. The top narratively trending

unigram is ‘#BlackOutTuesday’—a newborn movement that matured overnight on

social media, leading to major music platforms such as Apple and Spotify to shut

down their operations on 2020-06-02 in support of the nationwide protests against

racism and police brutality.10

In Fig. 3.4.4D, we see the name of the US Supreme Court justice Ruth Bader

Ginsburg amplified on Twitter, mourning her death from complications of pancreatic

cancer on 2020-09-18. We also see names of politicians embodying the heated dis-

course on Twitter preceding the first US presidential debate. Emerging pop culture

trends can also be observed in the anticipation of the first album by a K-pop South

Korean band ‘SuperM’, entitled ‘Super One’.11

In Fig. 3.4.4E, we see names of swing states and political candidates come to the

fore during the US presidential election held on 2020-11-04. We observe another surge

of retweets during the storming of the US Capitol by Trump supporters on 2021-01-

06. Fig. 3.4.4F shows the top 20 prevalent bigrams emerging on Twitter in response

to the deadly insurrection.
9https://www.panthers.com/news/cam-newton-named-walter-payton-nfl-man-of-the-year-nominee

10https://www.nytimes.com/2020/06/02/arts/music/what-blackout-tuesday.html
11https://en.wikipedia.org/wiki/Super_One_(album)
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In Fig. 3.4.4G, we display the daily daily n-gram volume (i.e., number of words)

throughout the year for all tweets (AT, grey), and organic tweets (OT, light-grey).

We provide more examples in Appendix 3.B and Figs. 3.B.2–3.B.3, demonstrating

the wide variety of sociocultural and sociotechnical phenomena that can be identified

and examined using Storywrangler.

3.4.5 Case studies

As a demonstration of our dataset’s potential value to a diverse set of disciplines, we

briefly present three case studies. We analyze (1) The dynamic behavior of famous

individuals’ full names and their association with the individuals’ ages; (2) The re-

lationship between movie revenue and anticipatory dynamics in title popularity; and

(3) The potential of social unrest related words to predict future geopolitical risk.

We examine the dialog around celebrities by cross-referencing our English 2-grams

corpus with names of famous personalities from the Pantheon dataset [317]. We

searched through our English n-grams dataset and selected names that were found

in the top million ranked 2-grams for at least one day between 2010-01-01 and 2020-

06-01. In Fig. 3.4.5A, we display a monthly rolling average (centered) of the average

rank for the top 5 individuals for each category 〈rmin(5)〉 (see also Fig. 3.C.1). In

Fig. 3.4.5B, we display a kernel density estimation of the top rank achieved by any

of these individuals in each industry as a function of the number of years since the

recorded year of birth. We note high density of individuals marking their best rankings

between 40 and 60 years of age in the film and theatre industry. Different dynamics
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Figure 3.4.5: Three case studies joining Storywrangler with other data sources.
A. Monthly rolling average of rank 〈r〉 for the top-5 ranked Americans born in the past
century in each category for a total of 960 individuals found in the Pantheon dataset [317].
B. Kernel density estimation for the top rank rmin achieved by 751 personalities in the
film and theater industry as a function of their age. C. Rank time series for example
movie titles showing anticipation and decay. D. Contrasting with C, rank time series for
TV series titles. E–F. Time series and half-life revenue comparison for 636 movie titles
with gross revenue at or above the 95th percentile released between 2010-01-01 and 2017-07-
31 [117]. G–H. The Storywrangler dataset can also be used to potentially predict political
and financial turmoil. Percent change in the words ‘rebellion’ and ‘crackdown’ in month
m are significantly associated with percent change in a geopolitical risk index in month
m+1 [44]. G. Percent change time series. H. Distributions of coefficients of a fit linear
model. See Appendix 3.C, 3.D, and 3.E for details of each study.
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can be observed in Fig. 3.C.1 for other industries.

We next investigate the conversation surrounding major film releases by track-

ing n-grams that appear in titles for 636 movies with gross revenue above the 95th

percentile during the period ranging from 2010-01-01 to 2017-07-01 [117]. We find a

median value of 3 days post-release for peak normalized frequency of usage for movie

n-grams (Fig. 3.4.5F inset). Growth of n-gram usage from 50% (f.5) to maximum

normalized frequency (fmax) has a median value of 5 days across our titles. The me-

dian value of time to return to f.5 from fmax is 6 days. Looking at Fig. 3.4.5E we see

the median shape of the spike around movie release dates tends to entail a gradual

increase to peak usage, and a relatively more sudden decrease when returning to f.5.

There is also slightly more spread in the time to return to f.5 than compared with

the time to increase from f.5 to fmax (Fig. 3.4.5E insets).

In Figs. 3.4.5G and H, we show that changes in word usage can be associated to

future changes in geopolitical risk, which we define here as “a decline in real activity,

lower stock returns, and movements in capital flows away from emerging economies”,

following the US Federal Reserve [44]. We chose a set of words that we a priori

believed might be relevant to geopolitical risk as design variables and a geopolitical

index created by the US Federal Reserve as the response. We fit a linear model using

the values of the predictors at month m to predict the value of the geopolitical risk

index at month m+1. Two of the words, ‘rebellion’ and ‘crackdown’, are statistically

significantly associated with changes in the geopolitical risk index.

Although global events and breaking news are often recorded across conventional

and modern social media platforms, Storywrangler uniquely tracks ephemeral day-

to-day conversations and sociocultural trends. In creating Storywrangler, we sought
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to develop and maintain a large-scale daily record of everyday dialogues that is com-

plementary to existing data sources, but equally vital to identify and study emerging

sociotechnical phenomena. For details about our methodology and further results,

see Appendices 3.C to 3.E.

3.5 Discussion

With this initial effort, we aim to introduce Storywrangler as a platform enabling re-

search in computational social science, data journalism, natural language processing,

and the digital humanities. Along with phrases associated with important events,

Storywrangler encodes casual daily conversation in a format unavailable through

newspaper articles and books. While its utility is clear, there are many potential

improvements to introduce to Storywrangler. For high volume languages, we would

aim for higher temporal resolution—at the scale of minutes—and in such an imple-

mentation we would be limited by requiring n-gram counts to exceed some practical

minimum. We would also want to expand the language parsing to cover continuous-

script languages such as Japanese and Chinese.

Another large space of natural improvements would be to broadly categorize tweets

in ways other than by language identification—while preserving privacy—such as

geography, user type (e.g., people, institutions, or automated), and topic (e.g., tweets

containing ‘fake news’). We note that for Twitter, features such as location and

user type are more difficult to establish with as much confidence as for language

identification. Increasingly by design, geographic information is limited on Twitter as

are user demographics, although some aspects may be gleaned indirectly [60, 179, 188,
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235, 320]. Regardless, in this initial curation of Twitter n-grams, we purposefully do

not attempt to incorporate any metadata beyond identified language into the n-gram

database.

Topic-based subsets are particularly promising as they would allow for explorations

of language use, ambient framings, narratives, and conspiracy theories. Parsing into

2-grams and 3-grams makes possible certain analyses of the temporal evolution of

1-grams adjacent to an anchor 1-gram or 2-gram. Future development will enable

the use of wild cards so that linguists will in principle be able to track patterns of

popular language use in a way that the Google Books n-gram corpus is unable to

do [197, 221]. Similarly, journalists and political scientists could chart n-grams being

used around, for example, ‘#BlackLivesMatter’ or ‘Trump’ over time [85].

Looking outside of text, a major possible expansion of the instrument would be to

incorporate image and video captions, a growing component of social media communi-

cations over the past decade. Moving away from Twitter, we could use Storywrangler

for other platforms where social amplification is a recorded feature (e.g., Reddit,

4Chan, Weibo, and Parler).

There are substantive limitations to Twitter data, some of which are evident in

many large-scale text corpora. Our n-gram dataset contends with popularity, allow-

ing for the examination of story amplification, and we emphasize the importance of

using contagiograms as visualization tools that go beyond presenting simple time se-

ries. Popularity, however, is notoriously difficult to measure. The main proxy we use

for popularity is the relative rate of usage of a given n-gram across originally authored

tweets, examining how each term or phrase is socially amplified via retweets. While

Twitter attempts to measure popularity by counting impressions, is increasingly dif-
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ficult to capture the number of people exposed to a tweet. Twitter’s centralized

trending feature is yet another dimension that alters the popularity of terms on the

platform, personalizing each user timeline and inherently amplifying algorithmic bias.

We have also observed a growing passive behavior across the platform leading to an

increasing preference for retweets over original tweets for most languages on Twitter

during the past few years [7].

Twitter’s user base, while broad, is clearly not representative of the populace [193];

is moreover compounded by the mixing of voices from people, organizations, and bots,

and has evolved over time as new users have joined. Still, modern social media pro-

vides an open platform for all people to carry out conversations that matter to their

lives. Storywrangler serves as instrument to depict discourse on social media at a

larger scale and finer time resolution than current existing resources. Sociocultural

biases that are inherently intrinsic to these platforms will be exposed using Storywran-

gler, which can inspire developers to enhance their platforms accordingly [28, 155].

Social structures (e.g., news and social media platforms) form and reshape indi-

vidual behavior, which evidently alters social structures in an algorithmic feedback

loop fashion [107]. For instance, a trending hashtag can embody a social movement

(e.g., #MeToo), such that an n-gram may become mutually constituted to a behav-

ioral and sociocultural revolution. Social and political campaigns can leverage an

n-gram in their organized marketing strategies, seeking sustained collective attention

on social media platforms encoded through spikes in n-gram usage rates. There are

many examples of this emerging sociotechnical phenomenon on Twitter ranging from

civil rights (e.g., #WomensMarch) to gender identity (e.g., #LGBTQ) to political

conspiracy theories (e.g., #QAnon) to academy awards promotions (e.g., #Oscar) to
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movie advertisement (e.g., #Avengers), etc.

The Canadian awareness campaign ‘Bell Let’s Talk’ is another example of an an-

nual awareness campaign that subsidizes mental health institutions across Canada,

donating 5 cents for every (re)tweet containing the hashtag ‘#BellLetsTalk’ to re-

duce stigma surrounding mental illness. Marketing campaigns have also grasped the

periodic feature of key trending n-grams and adjusted their language accordingly.

Marketers and bots often exploit this periodicity by hijacking popular hashtags to

broadcast their propaganda (e.g., including #FF and #TGIF as trending hashtags

for Friday promotions).

In building Storywrangler, we have prioritized privacy by aggregating statistics

to day-scale resolution for individual languages, truncating distributions, ignoring

geography, and masking all metadata. We have also endeavored to make our work as

transparent as possible by releasing all code associated with the API.

Although we frame Storywrangler as a research focused instrument akin to a

microscope or telescope for the advancement of science, it does not have built-in

ethical guardrails. There is potential for misinterpretation and mischaracterization

of the data, whether purposeful or not. For example, we strongly caution against

cherry picking isolated time series that might suggest a particular story or social

trend. Words and phrases may drift in meaning and other terms take their place.

For example, ‘coronavirus’ gave way to ‘covid’ as the dominant term of reference on

Twitter for the COVID-19 pandemic in the first six months of 2020 [6]. To in part

properly demonstrate a trend, researchers would need to at least marshal together

thematically related n-grams, and do so in a data-driven way, as we have attempted to

do for our case studies. Thoughtful consideration of overall and normalized frequency
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of usage would also be needed to show whether a topic is changing in real volume.

In building Storywrangler, our primary goal has been to build an instrument

to curate and share a rich, language-based ecology of interconnected n-gram time

series derived from social media. We see some of the strongest potential for future

work in the coupling of Storywrangler with other data streams to enable, for example,

data-driven, computational versions of journalism, linguistics, history, economics, and

political science.
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Appendix

3.A Twitter Dataset

3.A.1 Language identification and detection

In previous work [7], we described how we re-identified the languages of all tweets

in our collection using FastText [32, 143]. A uniform language re-identification was

needed as Twitter’s own real-time identification algorithm was introduced in late

2012 and then adjusted over time, resulting in temporal inconsistencies for long-term

streaming collection of tweets [84].

While FastText is a language model that can be used for various text mining

tasks, it requires an additional step of producing vector language representations to

be used for LID. To accomplish that, we use an off-the-shelf language identification

toolthat uses the word embeddings produced by the model.12

The word embeddings provided by FastText spans a wide set of languages, in-

cluding some regional dialects. However, language detection of short text remains an

outstanding challenge in NLP. While we hope to expand our language detection in
12https://fasttext.cc/docs/en/language-identification.html
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Figure 3.A.1: Temporal summary statistics. A. The grey bars show the daily unique
number of n-grams, while the lines show a monthly rolling average for 1-grams (purple),
2-grams (yellow), and for 3-grams (pink). B–D. The growth of n-grams in our dataset
by each category where n-grams captured from organic tweets (OT) are displayed in blue,
retweets RT in green, and all tweets combined in grey. E–G. Normalized frequencies to
illustrate the growth of retweets over time.
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Figure 3.A.2: Kernel density estimations. A–C. Distributions of unique unigrams,
bigrams, and trigrams captured daily throughout the last decade. E–G. Distributions of n-
grams occurrences in all tweets. I–K. Distributions of n-grams parsed from retweets (RT)
only. M–O. Distributions of n-grams parsed from organic tweets (OT) only.
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future work, we still classify messages based on the languages identified by FastText-

LID.

Importantly, in this work, we do not intend to reinvent FastText-LID, or improve

upon existing LID tools. FastText-LID is on par with deep learning models in terms

of accuracy and consistency, yet orders of magnitude faster in terms of inference and

training time [32, 143]. They also show that FastText-LID outperforms previously

introduced LID tools such as langid.13 We use FastText-LID as a light, fast, and

reasonably accurate language detection tool to overcome the challenge of missing

language labels in our Twitter historical feed.

We group tweets by day according to Eastern Time (ET). Date and language are

the only metadata we incorporate into our database. For user privacy in particular,

we discard all other information associated with a tweet.

3.A.2 Social amplification and contagion

Twitter enables social amplification on the platform through the use of retweets and,

from 2015 on, quote tweets. Users—including the general public, celebrities, scien-

tists, decision-makers, and social bots [148]—can intervene in the information spread

process and amplify the volume of any content being shared. We categorize tweets

into two major classes: organic tweets (OT) and retweets (RT). Organic tweets repre-

sent the set of new information being shared on the platform, whereas retweets reflect

information being socially amplified on Twitter. During our process, consistent with

Twitter’s original encoding of retweets, we enrich the text body of a retweet with (RT

@userHandle: ...) to indicate the original user of the retweeted text. Our categoriza-
13https://fasttext.cc/blog/2017/10/02/blog-post.html
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tion enables users of the Storywrangler data set to tune the amplification processes

of the rich-get-richer mechanism [236, 265] by dialing the ratio of retweets added to

the n-grams corpus.

3.A.3 Detailed dataset statistics

From 2008-09-09 on, we have been collecting a random subset of approximately 10% of

all public messages using Twitter’s Decahose API.14 Every day, half a billion messages

are shared on Twitter in hundreds of languages. By the end 2020, our data collection

comprised around 150 billion messages, requiring over 100TB of storage.

It is worth noting again that this is an approximate daily leaderboard of language

usage and word popularity. It is well established that n-gram frequency-of-usage

(or Zipf) distributions are heavy-tailed [322]. Researchers have thoroughly investi-

gated ways to study Zipf distributions and estimate the robustness and stability of

their tails [33, 120, 229, 234]. Investigators have also examined various aspects of

the Twitter’s Sample API [227], and how that may affect the observed daily word

distributions [303].

Our Twitter corpus contains an average of 23 million unique 1-grams every day

with a maximum of a little over 36 million unique 1-grams captured on 2013-08-07.

The numbers of unique bigrams and trigrams strongly outweigh the number of unique

unigrams because of the combinatorial properties of language. On average, we extract

around 76 million unique 2-grams and 128 million unique 3-grams for each day. On

2013-08-07, we recorded a high of 121 million unique 2-grams, and a high of 212
14https://developer.twitter.com/en/docs/twitter-ads-api/campaign-management/

api-reference

97

https://developer.twitter.com/en/docs/twitter-ads-api/campaign-management/api-reference
https://developer.twitter.com/en/docs/twitter-ads-api/campaign-management/api-reference


Table 3.A.1: Average daily summary statistics for 1-grams.

AT OT

Volume Unique Volume Unique

µ 4.25 ×108 2.27 ×107 1.93 ×108 1.68 ×107

25th 3.87 ×108 2.20 ×107 1.52 ×108 1.43 ×107

50th 4.56 ×108 2.42 ×107 1.78 ×108 1.74 ×107

75th 5.16 ×108 2.67 ×107 2.53 ×108 2.05 ×107

max 1.13 ×109 3.61 ×107 3.83 ×108 2.90 ×107

million unique 3-grams.

We emphasize that these maxima for n-grams reflect only our data set, and not

the entirety of Twitter. We are unable to make assertions about the size of Twitter’s

user base or message volume. Indeed, because we do not have knowledge of Twitter’s

overall volume (and do not seek to per Twitter’s Terms of Service), we deliberately

focus on ranks and relative usage rates for n-grams away from the tails of their

distributions. Raw frequencies of exceedingly rare words are roughly one-tenth of the

true values with regards to all of Twitter, however, rankings are likely to be subject

to change.

In Tab. 3.A.1, we show daily summary statistics for 1-grams broken by each cat-

egory in our data set. We demonstrate the same statistical information for 2-grams

and 3-grams in Tab. 3.A.2 and Tab. 3.A.3 respectively. We show a time series of the

unique number of n-grams captured daily in Fig. 3.A.1 and the statistical distribu-

tions of each category in Fig. 3.A.2.
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Table 3.A.2: Average daily summary statistics for 2-grams.

AT OT

Volume Unique Volume Unique

µ 3.98 ×108 7.60 ×107 1.77 ×108 5.41 ×107

25th 3.59 ×108 7.29 ×107 1.41 ×108 4.71 ×107

50th 4.23 ×108 7.90 ×107 1.63 ×108 5.24 ×107

75th 4.83 ×108 8.79 ×107 2.33 ×108 6.56 ×107

max 1.09 ×109 1.21 ×108 3.51 ×108 9.34 ×107

Table 3.A.3: Average daily summary statistics for 3-grams.

AT OT

Volume Unique Volume Unique

µ 3.66 ×108 1.28 ×108 1.62 ×108 9.04 ×107

25th 3.30 ×108 1.17 ×108 1.30 ×108 7.66 ×107

50th 3.88 ×108 1.31 ×108 1.50 ×108 8.65 ×107

75th 4.42 ×108 1.52 ×108 2.13 ×108 1.12 ×108

max 1.03 ×109 2.12 ×108 3.19 ×108 1.61 ×108
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3.A.4 Twitter n-grams

For the initial version of Storywrangler, we have extracted n-grams from tweets where

n ∈ {1, 2, 3}. We record raw n-gram frequency (or count) at the day scale for each

language (including unidentified), and for Twitter as a whole.

Although some older text tokenization toolkits followed different criteria (e.g.,

Google books [197]), we had to design a custom n-gram tokenizer to preserve all

Unicode characters. In particular, to accommodate the rich lexicon of social media

data, we have to preserve handles, hashtags, tickers, and emojis, which are irrelevant

for books, but rather integral to social media platforms such as Twitter. We try to

maintain the structures in each message as fully as possible, giving the user the option

of filtering out our daily Zipf distributions in ways that would fulfill their needs. We

display a screenshot of our regular expression pattern matching in Fig. 3.A.3. Our

source code along with our documentation is publicly available online on a Gitlab

repository.15

A 1-gram is a continuous string of characters bounded by either whitespace or

punctuation marks. For example, the word ‘the’ is one of the prominent 1-grams

in English. The 2-gram ‘here?’ consists of the 1-grams: ‘here’ and ‘?’. Numbers

and emojis also count as 1-grams. Similarly, a word bounded by two quotes (e.g.,

“sentient”) would be a 3-gram, and the expression ‘see the light’ is a 3-gram, and so

forth.

We parse currency (e.g., $9.99), floating numbers (e.g., 3.14), and date/time

strings (e.g., 2001/9/11, 2018-01-01, 11:59pm) all as 1-grams. We curate links (e.g.,

https://www.google.com/), handles (e.g., @NASA), stocks/tickers (e.g., $AAPL) and
15https://gitlab.com/compstorylab/storywrangler
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Figure 3.A.3: Screenshot of Storywrangler’s n-gram regular expression pattern
recognition. For our application, we designed a custom n-gram tokenizer to accommodate
all Unicode characters. Our n-gram parser is case sensitive. We preserve contractions,
handles, hashtags, date/time strings, currency, HTML codes, and links (similar to the Tweet
Tokenizer in the NLTK library [180]). We endeavor to combine contractions and acronyms
as single objects and parse them out as 1-grams (e.g., ‘It’s’, ‘well-organized’, and ‘B&M’).
In addition to text-based n-grams, we track all emojis as 1-grams. While we can identify
tweets written in continuous-script-based languages (e.g., Japanese, Chinese, and Thai),
our current parser does not support breaking them into n-grams. Although some older
text tokenization toolkits followed different criteria, our protocol is consistent with modern
computational linguistics for social media data and is adopted among researchers [26, 132].
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hashtags (e.g., #metoo) as 1-grams. We endeavor to combine contractions and

acronyms as single objects and parse them out as 1-grams (e.g., ‘It’s’, ‘well-organized’,

and ‘B&M’).

Emojis are uniquely and interestingly complex entities.16 People-centric emojis

can be composed of skin-tone modifiers, hair-type modifiers, and family structures.

Emoji flags are two component objects. The most elaborate emojis are encoded by

seven or more unicode elements, rendering them difficult to extract as single entities.

After contending with many emoji-parsing problems, we record all emojis as 1-grams.

We consider repeated emojis with no intervening whitespace—a common feature in

tweets—to be a series of 1-grams.

Our protocol is similar to the Tweet Tokenizer developed as part of the Natural

Language Toolkit (NLTK) [180] and is adopted in recent applications of modern com-

putational linguistics for social media [26, 132]. In Fig. 3.A.4, we show contagiograms

for 12 example n-grams that involve punctuation, numbers, handles, hashtags, and

emojis. A few more examples across various languages can be seen in Fig. 3.A.5. We

provide a Python package for generating arbitrary contagiograms along with further

examples at https://gitlab.com/compstorylab/contagiograms. The figure-

making scripts interact directly with the Storywrangler database, and offer a range

of configurations.

Our n-gram parser is case sensitive. For example, search queries made on sto-

rywrangling.org for ‘New York City’ and a search for ‘new york city’ would return

different results. Normalized frequencies and rankings in our daily Zipf distributions

are consequently for case-sensitive n-grams.
16https://www.unicode.org/Public/emoji/12.0/emoji-data.txt
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Figure 3.A.4: Contagiograms. Example timeseries showing social amplification for Twit-
ter n-grams involving emojis, punctuation, numerals, and so on.
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Figure 3.A.5: The interplay of social amplification across various languages. We
observe a wide range of sociotechnical dynamics starting with n-grams that are often men-
tioned within OTs and RTs equivalently to others that spread out after a geopolitical event
and more extreme regimes whereby some n-grams are consistently amplified. English trans-
lations of n-grams: A. Heart emoji, B. ‘Resurrection’, C. Question mark, D. ‘election’, E.
‘revolution’, F. Official handle for the South Korean boy band ‘BTS’, G. ‘Merry Christmas’,
H. ‘earthquake’, I. ‘Syria’, J. ‘Refugee’, K. ‘Saint Valentine’, and L. ‘quarantine’.
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Figure 3.A.6: Zipf distributions for Korean, English, German and undefined lan-
guage categories for October 16, 2019 on Twitter. “Tweets” refer to organic content,
“retweets” retweeted content, and “emojis” are n-grams comprised of strictly emojis (organic
and retweets combined).
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Although we can identify tweets written in continuous-script-based languages (e.g.,

Japanese, Chinese, and Thai), our current parser does not support breaking them into

n-grams. We label tweets as Undefined (und) to indicate tweets that we could not

classify their language with a confidence score above 25%. The resulting n-grams are

allocated to an “Undefined” category as well as to the overall Twitter n-gram data

set.

To enable access to our dataset, we maintain a MongoDB database of the top

million ranked n-grams on each day for each language. We index these collections by

date, to allow efficient queries for all n-grams on a given day, as well as by n-gram,

which allows for rapid time series queries. Data is typically inserted within two days

(i.e., counts from Monday will be available by midnight Wednesday).

3.A.5 Constructing daily Zipf distributions

For ease of usability, we maintain two sets of daily measurements for each n-gram in

our data set: raw frequency (count), normalized frequency (probability), and tied rank

with and without retweets. We make the default ordering for the Zipf distribution

files according to usage levels of n-grams for all of a given language on Twitter (i.e.,

including all retweets and quote tweets). Again, all daily distributions are made

according to Eastern Time calendar days.

We denote an n-gram by τ and a day’s lexicon for language `—the set of distinct

n-grams found in all tweets (AT) for a given date t—by Dt,`;n. We further define the

set of unique language ` n-grams found in organic tweets as D(OT)
t,`;n , and the set of

106



Figure 3.A.7: Daily Zipf distributions for English on May 1st, 2020. We show a
weighted 1% random sample of 1-grams (blue), 2-grams (yellow), and 3-grams (pink) in all
tweets (AT) and organic tweets (OT) accordingly. On the vertical axis, we plot the relative
rate of usage of each n-gram in our random sample whereas the horizontal axis displays the
rank of that n-gram in the English corpus of that day. We first display Zipf distributions
for all n-grams observed in our sample in the first row. We also demonstrate the equivalent
distributions for hashtags (second row), handles (third row), and emojis (last row).
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unique n-grams found in retweets as D(RT)
t,`;n , such that

Dt,`;n = D(OT)
t,`;n ∪ D

(RT)
t,`;n . (3.8)

We compute relative daily rate of usage by dividing total number of occurrences

of a given n-gram by the total number of n-grams for that day. We write n-gram raw

frequency as fτ,t,`, and compute its usage rate in all tweets written in language ` as

pτ,t,` = fτ,t,`∑
τ ′∈Dt,`;n fτ ′,t,`

. (3.9)

The corresponding normalized frequencies for n-grams in organic tweets and retweets

are then defined as

p
(OT)
τ,t,` =

f
(OT)
τ,t,`∑

τ ′∈D(OT)
t,`;n

f
(OT)
τ ′,t,`

, and (3.10)

p
(RT)
τ,t,` =

f
(RT)
τ,t,`∑

τ ′∈D(RT)
t,`;n

f
(RT)
τ ′,t,`

. (3.11)

We then rank all n-grams for a given day to create daily Zipf distribution [322] for

all languages in our data set. If two or more distinct n-grams have the same number

of instances (raw frequency), then we adjust their ranks by taking the average rank

(i.e., tied-rank). The corresponding notation is:

rτ,t,`, r
(OT)
τ,t,` , and r

(RT)
τ,t,` . (3.12)

We do not mix n-grams for different values of n, and leave this as an important

future upgrade [303]. Users of the viewer storywrangling.org, will need to keep this
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in mind when considering time series of n-grams for different n. In comparing, for

example, ‘NYC’ (a 1-gram) to ‘New York City’ (a 3-gram), the shapes of the curves

can be meaningfully compared while the ranks (or raw frequencies) of the 1-gram and

3-gram may not be.

We show complementary cumulative distribution functions (CCDFs) of organic

tweets, retweets, and emojis for 1-, 2-, and 3-grams in Fig. 3.A.6 and Fig. 3.A.7.
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3.B Narratively trending n-grams

In addition to curating daily Zipf distributions, we also examine lexical turbulence

and emerging storylines in real-time. We do so using rank-turbulence divergence

(RTD) [83], an instrument designed to examine the lexical turbulence of two heavy-

tailed distributions.

For each day t and each language `, we take the Zipf distribution Ωt,` and compare

it with the corresponding distribution of that day from the same day one year prior

Ωt′,`, identifying n-grams that have become most elevated in relative usage. We set

the parameter α to 1/4, which provides a reasonable fit for the lexical turbulence of

social media data as recommended by Dodds et al. [83]. We compute rank divergence

contribution such that:

DR
α (Ωt,`||Ωt′,`) =

∑
δDR

τ,`

= α + 1
α

∑
τ

∣∣∣∣∣ 1
rατ,t,`

− 1
rατ,t′,`

∣∣∣∣∣
1/(α+1)

,
(3.13)

where rτ,t,` is the rank of n-gram τ on day t, and rτ,t′,` is the rank of the same n-gram

on day t′ (52 weeks earlier). Although we use rank-turbulence divergence to determine

shifts in relative word rankings, other divergence metrics will provide similar lists.

We show an example Allotaxonograph using rank-turbulence divergence for En-

glish word usage on 2021-01-06 compared to 2020-01-06 (see Fig. 3.B.1). The main

plot shows a 2D histogram of n-gram ranks on each day. Words located near the

center vertical line are used equivalently on both days, while words on either side

highlight higher usage of the given n-gram on either date.
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1 0.5 0 0.5 1

Figure 3.B.1: Allotaxonograph using rank-turbulence divergence for English word
usage on 2021-01-06 compared to 2020-01-06. The word ‘Capitol’ was the 22nd most
common 1-gram on January 6, 2021, up from 15,345th most common one year earlier. Sim-
ilarly, ‘COVID’ was the 1,117th most popular word January 6, 2021, and did not make the
top million on January 6, 2020. See Dodds et al. [83] for further details on the allotaxono-
metric instrument.
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The right side of the plot displays the most narratively dominant n-grams ordered

by their rank divergence contribution. For ease of plotting, we use the subset of words

containing Latin characters only. Notably, words associated with the storming of the

US Capitol by Trump supporters dominate the contributions from 2021-01-06 such

as ‘Capitol’, ‘supporters’, ‘DC’, and ‘insurrection’.

In Fig. 3.B.2 and Fig. 3.B.3, we show example analyses of English tweets high-

lighting the top 20 narratively trending 1-grams and 2-grams, respectively.

First, we compute RTD values to find the most narratively dominate n-grams for

a few days of interest throughout the last decade. We filter out links, emojis, handles,

and stop words, but keep hashtags to focus on the relevant linguistic terms on these

days.

Second, we further compute the relative social amplification ratio Rrel
τ,t,` to mea-

sure whether a given n-gram τ is socially amplified, or rather shared organically in

originally authored tweets.

For ease of plotting, we display Rrel
τ,t,` on a logarithmic scale. Positive values of

log10 R
rel
τ,t,` imply strong social amplification of τ , whereas negative values show that

τ is rather predominant in organic tweets.

Figs. 3.B.2A and 3.B.3A show the top terms used to discuss the earthquake off

the Pacific coast of Tokyo leading to a sequence of massive tsunami waves on 2011-03-

11.17 Although most terms are socially amplified, referring to the catastrophic event

in Japan, other cultural references can be found in organic tweets such as ‘#np’ (i.e.,

no problem), and ‘#FF’ (i.e., follow Friday) where users recommend accounts to

follow.
17https://www.britannica.com/event/Japan-earthquake-and-tsunami-of-2011
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Figure 3.B.2: Narratively trending 1-grams. Top 20 narratively dominate 1-grams for
a few days of interest throughout the last decade (sorted by their rank-turbulence divergence
contribution). Positive values (orange) indicate strong social amplification via retweets,
whereas negative values (blue) show terms that are prevalent in originally authored tweets.
See Supplementary text for details on each date.
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Figure 3.B.3: Narratively trending 2-grams. Top 20 narratively dominate 2-grams for
the same days shown in Fig. 3.B.2. See Supplementary text for details on each date.
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In Figs. 3.B.2B and 3.B.3B, we see trending terms discussing the Super Bowl

held on 2012-02-05. Figs. 3.B.2C and 3.B.3C show salient n-grams in response to

the terrorist attack during the annual Boston Marathon on 2013-04-15.18 We also

observe unusual bigrams in organic tweets generated by artificial Twitter bots for a

new automated service that went viral in 2013, allowing users to keep track of their

new followers and unfollowers by tweeting their stats daily.19

Figs. 3.B.2D and 3.B.3D show names of celebrities and movie titles that went viral

on Twitter during the 86th Academy Awards hosted by Ellen DeGeneres on 2014-03-

02.20 Most socially amplified terms can be traced back to a single message with more

than 3 million retweets. We do, however, see some n-grams trending in organic tweets

such as ‘5sos’, referring to an Australian pop rock band that was slowly taking off

that year.

On 2015-06-26, the US Supreme Court ruled same-sex marriage is a legal right in

the US21, prompting a wave of reactions on social media as seen in Figs. 3.B.2E and

3.B.3E. The 2016 US presidential election had a similar chain of reactions on Twitter.

In Figs. 3.B.2F and 3.B.3F, we see names of candidates and politicians across the

aisle being amplified collectively on the platform.

As we have seen throughout the paper, cultural movements and social media are

profoundly integrated. In Figs. 3.B.2G and 3.B.3G, we see the top 20 narratively

trending terms in response to the deadly white supremacist rally that took place on

2017-08-12 in Charlottesville, Virginia.22 In particular, we notice several bigrams
18https://www.history.com/topics/21st-century/boston-marathon-bombings
19https://who.unfollowed.me/
20https://en.wikipedia.org/wiki/86th_Academy_Awards
21https://www.usatoday.com/story/news/politics/2020/06/25/

lgbtq-rights-five-years-after-gay-marriage-ruling-battles-continue/3242992001/
22https://time.com/charlottesville-white-nationalist-rally-clashes/
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from Obama’s tweet that went viral on that day, quoting Nelson Mandela’s remarks

on racism.

In Figs. 3.B.2H and 3.B.3H, we see some headlines and narratively amplified n-

grams, in light of Kavanaugh’s testimony before the Senate Judiciary Committee for

his nomination to the US Supreme Court 2018-10-05.

Figs. 3.B.2I and 3.B.3I display the top n-grams on 2019-11-18 whereby we see

several terms and hashtags amplified on Twitter triggered by the Siege of the Hong

Kong Polytechnic University amid the nationwide protests in Hong Kong.23 Moreover,

we also see notable references to the first impeachment of Trump that took place

between September 2019 and February 2020.

23https://www.theguardian.com/world/2019/nov/18/hong-kong-university-siege-a-visual-guide
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3.C Pantheon case study

We examine the dialog around celebrities by cross-referencing our English 2-grams

corpus with names of famous personalities from the Pantheon data set [317]. The

data set has over 10 thousand biographies. We use the place and date of birth to

select Americans born in the last century.

We searched through our English n-grams data set and selected names that were

found in the top million ranked 2-grams for at least a day between 2010-01-01 and

2020-06-01. Our list contains 1010 individuals. We show the average best rank r̄min,

median best rank r̃min, and best rank r∗min for all individuals in each occupation in

Tab. 3.C.1. In Figs. 3.C.1A and B, we display a monthly rolling average (centered)

of the average rank for the top 5 individuals for each category 〈rmin(5)〉.

Table 3.C.1: Celebrities by occupation

Occupation n r̄min r̃min r∗min

Actors 674 40,632 9,255 2

Singers 162 59,713 3,479 4

Politicians 59 6,365 1,376 6

Film directors 57 75,783 10,580 13

Business-persons 26 35,737 4195 15

Soccer players 12 20,868 8,507 25

Social activists 10 20,302 1,781 841

Extremists 10 104,621 20,129 117

Additionally, we select a total of 1162 celebrities that were also found in the top

million ranked 2-grams for at least a day between 2010-01-01 and 2020-06-01 in a few
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Figure 3.C.1: Rankings of celebrities on Twitter. We take a closer look at rankings
of famous figures by cross-referencing our English corpus with names of celebrities from the
Pantheon dataset [317]. We use their first and last name to search through our 2-grams
data set. We select names of Americans who were born in the last century and can be found
in the top million ranked 2-grams for at least a day between 2010-01-01 and 2020-06-01. In
panels A and B, we display a centered monthly rolling average of the average rank for the
top 5 individuals for each category 〈rmin(5)〉. We also plot the kernel density estimation of
the best rank achieved by another 1162 famous characters in each of the following industries:
C. music, D. government, E. business, and F. film.
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selected industries (see Tab. 3.C.2)

Table 3.C.2: Celebrities filtered through Pantheon and Twitter rank, by industry

Industry Individuals

Film and theater 751

Music 324

Government 59

Business 28

For each of these individuals, we track their age and top daily rank of their names

(first and last). In Figs. 3.C.1A, B, C, and D, we display kernel density estimation

of the top rank achieved by any of these individuals in each industry as a function of

the number of years since the recorded year of birth (age of the cohort).
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3.D Movies case study

We investigate the conversation surrounding major film releases by tracking n-grams

that appear in movie titles. From the MovieLens dataset [117], we selected 636 movies

with gross revenue above the 95th percentile during the period ranging from 2010-01

to 2017-07.

We then retrieved the normalized frequency time series for up to the first 3-grams

of a movie’s title (e.g., “Prince of Persia: The Sands of Time” would correspond to

the 3-gram time series “Prince of Persia”).

From there, we look for the maximum daily normalized frequency. To disam-

biguate between movies within the same franchise and/or titles with common n-

grams, we restrain this search to the release year of the given movie. With the peak

usage in the year of a movie’s release, we then search backward for the date on which

the n-gram usage first breaks 50% of the peak usage normalized frequency, f.5. Sim-

ilarly we search forward, from peak usage, for the date on which the time series first

declines below f.5.

Peak conversation surrounding major movies tends to occur a few days after the

release data of the title. We find a median value of 3 days post-release for peak

normalized frequency of usage for movie n-grams (Fig. 3.4.5F inset). Growth of n-

gram usage from 50% to maximum normalized frequency has a median value of 5

days across our 636 titles.

The median value of time to return to 50% from maximum normalized frequency

is 6 days. Looking at Fig. 3.4.5E we see the median shape of the spike around movie

release dates tend to entail a gradual increase to peak usage, and a more sudden
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decrease when returning to 50% of maximum normalized frequency. There is also

slightly more spread in the time to return to 50% normalized frequency of usage than

compared with the time to increase from 50% to maximum usage (Fig. 3.4.5E insets).
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3.E Geopolitical risk case study

Twitter sentiment has already been shown to provide a useful signal in monitoring

public opinion [134, 316]. The aggregation process in which individual tweet docu-

ments are turned into popularity time series reduces the time and computation power

required to use this data in models of political sentiment and public opinion. As a case

study, we sought to predict values of a geopolitical risk (GPR) index using popular-

ity of words that we heuristically associated with (inter)national unrest and popular

discontent. We conduct both an exploratory Bayesian analysis and a more rigorous

frequentist analysis of the relationship between word time series and the GPR index.

3.E.1 Data description

The geopolitical risk index is developed by the U.S. Federal Reserve (central bank) [44].

We chose the words “revolution”, “rebellion”, “uprising”, “coup”, “overthrow”, “un-

rest”, “protests”, and “crackdown” to include as predictors. We chose these words

arbitrarily due to denotations and connotations of conflict associated with their com-

mon English meaning. Since we could not reject the null hypothesis that at least

one of the logarithm of normalized frequency time series associated with these words

contained a unit root (ADF(“overthrow”) = −1.61, p = 0.474), we computed the

difference of the logarithm of normalized frequency time series and used these obser-

vations as features. We could also not reject the null hypothesis that the geopolitical

risk time series contained a unit root (ADF = −0.65, p = 0.858) and therefore sought

to predict the log difference of the GPR. Because GPR is computed at monthly fre-

quency, we resample normalized word frequencies to monthly normalized frequency
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Figure 3.E.1: Empirical distributions of the β coefficient of each word. Percent
change in word popularity is significantly associated with percent change of future geopo-
litical risk (GPR) index level for a few words out of a panel of eight words: “revolution”,
“rebellion”, “uprising”, “coup”, “overthrow”, “unrest”, “crackdown”, and “protests”. We
assess significance of model coefficients using centered 80% credible intervals (CI). The sign
of the coefficient differs between the words, with positive associations shown in orange and
negative associations shown in blue. Using Storywrangler, we note the words “crackdown”,
and “uprising” are positively associated with GPR, whereas “rebellion” is negatively associ-
ated. We see some overlap between Storywrangler and other data streams. Percent change
of the word “rebellion” is also negatively associated with GPR, using Google trends search
data [54], but not statistically significant. By contrast, mentions of the word “coup” in cable
news is positively associated with GPR using the Stanford cable TV news analyzer [132].
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by taking the average of the lagged month’s values. For example, the normalized fre-

quency of the word “crackdown” sampled at month level timestamped at 2010-03-31

is taken to be the average daily normalized frequency of the word “crackdown” from

2010-03-01 through 2010-03-31.

We compute the monthly normalized frequencies for each word in all tweets (AT),

and originally authored tweets (OT), separately, for the last decade starting from 2010

to the end of 2019. We also collect monthly n-gram usage time series for the same set

of words from two other data sources—namely, Google trends [54], and the Stanford

cable TV news analyzer [132] to examine the utility of the predictors derived from

Storywrangler compared to existing data sources. We conduct out of sample analyses

on word frequency and GPR data from 2020-01-01 through 2020-05-01, which is the

last day on which the GPR data was publicly accessible.

3.E.2 Exploratory analysis

We fit a linear model for each data source that hypothesized a linear relationship

between the log difference in normalized word frequencies for each of the words listed

in the previous paragraph and the log difference in GPR. The likelihood function of

this model took the form

p(y|β, σ) =
T−1∏
t=0

Normal(yt+1|Xtβ, σ
2). (3.14)

We denote y ≡ (y1, ..., yT ) and X = (X0, ..., XT−1). Each yt is the difference of log

GPR measured on the first day of month t, while each Xt−1 is the p-dimensional

row vector of difference in log word frequencies averaged over the entirety of month
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t − 1. Thus, y is a T -dimensional column vector and X is a T × p-dimensional

matrix. Note that this model design respects temporal causality. We regularize the

model toward the null hypothesis of no relationship between X and y by placing

a zero-mean normal prior on β, the p-dimensional column vector of coefficients, as

β ∼ MultivariateNormal(0, I). We place a weakly informative prior on the noise

scale, σ ∼ LogNormal(0, 1), as we are a priori unsure of what noise level the data

would exhibit.

We sample from the model using the No U-Turn Sampler (NUTS) algorithm [127]

for 500 warmup iterations and 2000 iterations of sampling. There is strong evidence to

suggest that the sampler converged since the maximum Gelman-Rubin statistic [104]

for all priors was less than 1.01 (max R̂ = 1.0009).

We compute centered 80% credible intervals for each of the model coefficients βk,

k = 0, ..., p. (A centered Q% credible interval for the univariate random variable

Y ∼ p(y) is an interval (a, b) such that 1
2(1 − Q

100) =
∫ a
−∞ dy p(y) =

∫∞
b dy p(y). For

example, a centered 80% credible interval is an interval such that 0.1 =
∫ a
−∞ dy p(y) =∫∞

b dy p(y).) We termed a relationship significant if the 80% credible interval did not

contain zero.

In Fig. 3.E.1, we display the empirical distributions of the β coefficient of each word

for each model. The sign of the coefficient differs between the words, with positive

significant associations highlighted in orange and negative significant associations

highlighted in blue.

Using the predictors derived from Storywrangler, we recognize that the log differ-

ence in normalized usage frequency of “rebellion” is negatively associated with future

log difference of GPR in originally authored tweets (OT). Similarly, “uprising” is
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positively associated with the percent change of GPR in organic tweets (OT), but

not statistically significant in all tweets (AT). The word “crackdown” is positively

associated with GPR in both organic tweets (OT), and all tweets (AT).

We speculate that increases in the usage of “crackdown” may imply that a popular

revolt is already in the process of being crushed, a realization of increased geopolitical

uncertainty. Conversely, usage of “uprising” could be driven by a growing collective

attention of a newborn social of movement with increased tension and uncertainty,

while usage of ‘rebellion’ might be referring to past events [53]. Although our results

using all tweets and organic tweets are fairly similar, future work can further investi-

gate how social amplifications via retweets can influence our perception of geopolitical

risk uncertainty.

Furthermore, the log difference in normalized usage frequency of “revolution” and

“rebellion” in Google trends search data [54] are associated with future log difference

of the GPR index level but not statistically significant. We believe that is likely

associated with an increased number of searches for an ongoing revolt. We observe

a similar signal for data derived from the Stanford cable TV news analyzer [132],

whereby growing mentions of “coup” in news outlets can be linked to higher levels of

uncertainty in GPR.

Although we see some overlap across the data streams examined here, Storywran-

gler provides a unique signal derived from everyday conversations on Twitter that

is sometimes similarly portrayed across platforms, but often orthogonal and com-

plementary to existing data sources. We foresee stronger potential for future work

cross-referencing Storywrangler with other data repositories to enrich current data

sources (e.g., search data and news).
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3.E.3 Qualitative comparison

We conduct an additional analysis to differentiate between intra-GPR dynamics and

potential predictive power of difference in log word frequency on log difference in

GPR. Our notation is identical to that used in Appendix 3.E.2.

We first fit a null autoregressive model, denoted by M0, that assessed the effect of

lagged GPR values on the current GPR value. We fit an autoregressive model of order

p = 4 to the difference in log GPR data from 2010-01-01 to 2019-12-01, where p = 4

was chosen by minimizing Akaike information criterion (AIC). This model takes the

form

yt = θ0 +
4∑
p=1

θpyt−p + ut, (3.15)

with ut ∼ Normal(0, σ2). Here, yt is the difference of log GPR measured on the first

day of month t. We fit the model using conditional MLE. Each of θp for p ∈ {1, 2, 3}

were significantly different from zero at the p = 0.05 confidence level (mean ± sd) (

θ1 = −0.4028 ± 0.093, p < 0.001; θ2 = −0.3858 ± 0.098, p < 0.001; θ3 = −0.2650 ±

0.098, p = 0.007 ). The model is stable because all roots of the polynomial P (z) =∑4
p=1 θpz

−p are outside of the unit circle. The model exhibited AIC = −2.349. For

out-of-sample comparison with other models, we computed the mean square forecast

error (MSFE), defined as

MSFE(M) = 1
t2 − t1

t2∑
t=t1

(yt − ŷt)2, (3.16)

for t1, t2 ∈ N and t2 − t1 > 0, where ŷ are the out-of-sample predictions by model M

and y are the true out-of-sample data. The null model M0 had MSFE(M0) = 0.6734.
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We then assessed the additional predictive power of each dataset, using an autore-

gressive with exogenous regressors (AR-X) model. For this model we used the same

number of lags as the null AR model, p = 4. This model takes the form

yt = θ0 +
4∑
p=1

θpyt−p +Xt−1β + ut, (3.17)

where yt has the same interpretation as in Eq. 3.15, Xt−1 is the N × p-dimensional of

exogenous regressors (Storywrangler OT, Storywrangler AT, cable news, or Google

trends) aggregated over month t − 1, as described in Appendix 3.E.1, and β is the

p-dimensional vector of regression coefficients. We fit each model using conditional

MLE. Each estimated model was stable as indicated by the roots of the polynomial

P (z) = ∑4
p=1 θpz

−p being outside of the unit circle for each model. No regression

coefficient of any exogenous regressor for any of {Storywrangler AT, Google trends,

News} was significant at the Bonferroni corrected pc = p/N = 0.05/4 = 0.0125

level. However, one exogenous regressor—the difference of log frequency for the

word “crackdown”— was significant at the pc = 0.0125 level βcrackdown = 0.0712 ±

0.028, pc = 0.010, indicating that an increase in the average difference in log fre-

quency of usage of the word “crackdown” in month t − 1 is significantly associated

with an increase in the difference of log GPR in month t, even after controlling for

autoregressive effects. We display summaries of conditional MLE inference results of

the null AR model and AR-X model for each data source in Tables 3.E.2—3.E.6.

We then compare the MSFE results of each AR-X model to the null AR model

and display the results in Table S6. The AR-X model using Storywrangler OT has

the lowest MSFE (0.578), followed by Storywrangler AT (0.650). However, AIC for

each model (measured on training model) are not significantly different and do not
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differ significantly from AIC for the null AR model.

Table 3.E.1: MSFE results of null AR and AR-X model with each dataset.

Storywrangler Cable Google Null

OT AT News Trends M0

MSEF 0.578 0.650 0.659 0.679 0.673

R2 0.288 0.226 0.233 0.212 0.186

To assess significance of associations between lagged difference in log word fre-

quency from each dataset and difference in log GPR without taking autoregressive

behavior of GPR into account, we also estimate ordinary least squares models (OLS)

models of the form

yt = Xt−1β + ut, (3.18)

where all terms in the equation have their same meaning as in the previous para-

graphs. We fit these models using exact least squares. No regression coefficient in

any design matrix was significant at the pc = 0.0125 level except for “crackdown” in

the Storywrangler OT dataset (βcrackdown = 0.0776±0.030, p = 0.011). We summarize

results of model fits in Tables 3.E.7—3.E.10.

The results of this analysis are mixed and warrant in-depth further investigation.

We arbitrarily chose the set of words to analyze; this is not appropriate for an analysis

of any rigor greater than a simple case study such as this. Rather, further analysis

should choose 1-, 2-, and 3-grams to analyze using a more principled analysis, such

as a subject matter expert interview that we now describe.

A group of acknowledged experts in geopolitical risk (e.g., military strategic plan-

ners, emerging markets funds managers, diplomats, and senior humanitarian aid
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workers) should be systematically interviewed and asked to provide n-grams that

they would (1) use, or expect other experts to use, to describe both impactful and

non-impactful events in developing countries, (2) expect to hear non-experts use to

describe these events. The Storywrangler OT and AT datasets, as well as the Google

trends, News, and similar datasets, can then be queried for these words and an as-

sociation analysis performed. This methodology will help to eliminate the selection

bias that we have probably introduced via our word selection.

Model AutoReg(4) AIC -2.349

Method Conditional MLE BIC -2.205

Data GPR Only HQIC -2.290

coef std err z P> |z| v[0.025 0.975]

intercept 0.0188 0.028 0.682 0.495 -0.035 0.073

GPR.L1 -0.4028 0.093 -4.341 0.000 -0.585 -0.221

GPR.L2 -0.3858 0.098 -3.926 0.000 -0.578 -0.193

GPR.L3 -0.2650 0.098 -2.709 0.007 -0.457 -0.073

GPR.L4 -0.1702 0.094 -1.815 0.070 -0.354 0.014

Real Imaginary Modulus Frequency

AR.1 0.5127 -1.3379j 1.4328 -0.1918

AR.2 0.5127 +1.3379j 1.4328 0.1918

AR.3 -1.2913 -1.0930j 1.6918 -0.3882

AR.4 -1.2913 +1.0930j 1.6918 0.3882

Table 3.E.2: Summary of conditional MLE inference results, fitting null AR model to GPR
data only.
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Model AutoReg-X AIC -2.332

Method Conditional MLE BIC -1.996

Data GPR + Storywrangler
OT

HQIC -2.195

coef std err z P> |z| [0.025 0.975]

intercept 0.0208 0.026 0.799 0.424 -0.030 0.072

GPR.L1 -0.2999 0.092 -3.253 0.001 -0.481 -0.119

GPR.L2 -0.3872 0.093 -4.155 0.000 -0.570 -0.205

GPR.L3 -0.2371 0.095 -2.501 0.012 -0.423 -0.051

GPR.L4 -0.2056 0.091 -2.249 0.025 -0.385 -0.026

revolution -0.0461 0.042 -1.097 0.273 -0.128 0.036

rebellion -0.0315 0.032 -0.973 0.331 -0.095 0.032

uprising 0.0628 0.035 1.782 0.075 -0.006 0.132

coup -0.0296 0.030 -0.996 0.319 -0.088 0.029

overthrow 0.0426 0.031 1.369 0.171 -0.018 0.104

unrest 0.0363 0.045 0.802 0.423 -0.052 0.125

protests -0.0486 0.040 -1.212 0.226 -0.127 0.030

crackdown 0.0712 0.028 2.587 0.010 0.017 0.125

Real Imaginary Modulus Frequency

AR.1 0.5643 -1.2589j 1.3796 -0.1829

AR.2 0.5643 +1.2589j 1.3796 0.1829

AR.3 -1.1411 -1.1198j 1.5988 -0.3765

AR.4 -1.1411 +1.1198j 1.5988 0.3765

Table 3.E.3: Summary of conditional MLE inference results, fitting AR-X model to GPR
data with Storywrangler OT.
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Model AutoReg-X AIC -2.269

Method Conditional MLE BIC -1.933

Data GPR + Storywrangler
AT

HQIC -2.133

coef std err z P> |z| [0.025 0.975]

intercept 0.0199 0.027 0.743 0.458 -0.033 0.072

GPR.L1 -0.3365 0.094 -3.575 0.000 -0.521 -0.152

GPR.L2 -0.3954 0.098 -4.030 0.000 -0.588 -0.203

GPR.L3 -0.2547 0.096 -2.641 0.008 -0.444 -0.066

GPR.L4 -0.1954 0.092 -2.114 0.034 -0.377 -0.014

revolution -0.0366 0.045 -0.809 0.418 -0.125 0.052

rebellion -0.0085 0.035 -0.244 0.807 -0.077 0.060

uprising 0.0381 0.037 1.022 0.307 -0.035 0.111

coup -0.0417 0.032 -1.304 0.192 -0.104 0.021

overthrow 0.0431 0.036 1.197 0.231 -0.027 0.114

unrest 0.0347 0.049 0.701 0.483 -0.062 0.132

protests -0.0382 0.041 -0.932 0.351 -0.118 0.042

crackdown 0.0408 0.030 1.382 0.167 -0.017 0.099

Real Imaginary Modulus Frequency

AR.1 0.5379 -1.2792j 1.3877 -0.1866

AR.2 0.5379 +1.2792j 1.3877 0.1866

AR.3 -1.1896 -1.1147j 1.6302 -0.3802

AR.4 -1.1896 +1.1147j 1.6302 0.3802

Table 3.E.4: Summary of conditional MLE inference results, fitting AR-X model to GPR
data with Storywrangler AT.
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Model AutoReg-X AIC -2.236

Method Conditional MLE BIC -1.900

Data GPR + Google Trends HQIC -2.099

coef std err z P> |z| [0.025 0.975]

intercept 0.0192 0.027 0.705 0.481 -0.034 0.073

GPR.L1 -0.4184 0.094 -4.442 0.000 -0.603 -0.234

GPR.L2 -0.3944 0.101 -3.890 0.000 -0.593 -0.196

GPR.L3 -0.2607 0.097 -2.694 0.007 -0.450 -0.071

GPR.L4 -0.1809 0.094 -1.925 0.054 -0.365 0.003

revolution -0.0262 0.034 -0.774 0.439 -0.092 0.040

rebellion 0.0212 0.032 0.670 0.503 -0.041 0.083

uprising 0.0265 0.027 0.987 0.324 -0.026 0.079

coup 0.0198 0.029 0.685 0.493 -0.037 0.076

overthrow 0.0067 0.033 0.204 0.838 -0.058 0.071

unrest 7.62e-5 0.038 0.002 0.998 -0.074 0.074

protests -0.0025 0.035 -0.070 0.944 -0.072 0.067

crackdown 0.0172 0.028 0.609 0.543 -0.038 0.072

Real Imaginary Modulus Frequency

AR.1 0.5177 -1.3376j 1.4342 -0.1912

AR.2 0.5177 +1.3376j 1.4342 0.1912

AR.3 -1.2383 -1.0741j 1.6392 -0.3863

AR.4 -1.2383 +1.0741j 1.6392 0.3863

Table 3.E.5: Summary of conditional MLE inference results, fitting AR-X model to GPR
data with Google trends.
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Model AutoReg-X AIC -2.241

Method Conditional MLE BIC -1.905

Data GPR + Cable News HQIC -2.104

coef std err z P> |z| [0.025 0.975]

intercept 0.0196 0.027 0.720 0.471 -0.034 0.073

GPR.L1 -0.3702 0.095 -3.880 0.000 -0.557 -0.183

GPR.L2 -0.4010 0.100 -3.994 0.000 -0.598 -0.204

GPR.L3 -0.2528 0.100 -2.518 0.012 -0.450 -0.056

GPR.L4 -0.2095 0.100 -2.104 0.035 -0.405 -0.014

revolution 0.0099 0.030 0.328 0.743 -0.049 0.069

rebellion -0.0159 0.029 -0.539 0.590 -0.074 0.042

uprising -0.0279 0.036 -0.778 0.437 -0.098 0.042

coup 0.0367 0.032 1.155 0.248 -0.026 0.099

overthrow 0.0235 0.030 0.779 0.436 -0.036 0.083

unrest 0.0174 0.037 0.465 0.642 -0.056 0.091

protests 0.0059 0.038 0.157 0.875 -0.068 0.079

crackdown 0.0317 0.030 1.043 0.297 -0.028 0.091

Real Imaginary Modulus Frequency

AR.1 0.5425 -1.2819j 1.3920 -0.1863

AR.2 0.5425 +1.2819j 1.3920 0.1863

AR.3 -1.1461 -1.0726j 1.5697 -0.3803

AR.4 -1.1461 +1.0726j 1.5697 0.3803

Table 3.E.6: Summary of conditional MLE inference results, fitting AR-X model to GPR
data with cable news.
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Model OLS Method Least Squares

R-squared 0.126 Adj. R-squared 0.062

Log-Likelihood -25.449 Durbin-Watson 2.328

AIC 68.90 BIC 93.83

F-statistic 1.973 Prob (F-statistic) 0.0565

Omnibus 6.186 Prob(Omnibus) 0.045

Jarque-Bera (JB) 6.251 Prob(JB) 0.0439

Kurtosis 3.826 Skew 0.384

coef std err t P> |t| [0.025 0.975]

const 0.0064 0.029 0.223 0.824 -0.051 0.063

revolution -0.0443 0.045 -0.989 0.325 -0.133 0.044

rebellion -0.0295 0.035 -0.834 0.406 -0.100 0.041

uprising 0.0800 0.038 2.093 0.039 0.004 0.156

coup -0.0260 0.033 -0.781 0.437 -0.092 0.040

overthrow 0.0469 0.035 1.354 0.179 -0.022 0.116

unrest 0.0006 0.046 0.013 0.989 -0.091 0.092

protests -0.0394 0.042 -0.931 0.354 -0.123 0.045

crackdown 0.0776 0.030 2.578 0.011 0.018 0.137

Table 3.E.7: OLS summary: GPR and Storywrangler OT.
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Model OLS Method Least Squares

R-squared 0.071 Adj. R-squared 0.003

Log-Likelihood -29.094 Durbin-Watson 2.345

AIC 76.19 BIC 101.1

F-statistic 1.039 Prob (F-statistic) 0.412

Omnibus 8.949 Prob(Omnibus) 0.011

Jarque-Bera (JB) 9.355 Prob(JB) 0.00930

Kurtosis 3.885 Skew 0.529

coef std err t P> |t| [0.025 0.975]

const 0.0058 0.030 0.195 0.846 -0.053 0.065

revolution -0.0457 0.050 -0.916 0.362 -0.145 0.053

rebellion 0.0004 0.038 0.011 0.991 -0.075 0.076

uprising 0.0600 0.041 1.473 0.144 -0.021 0.141

coup -0.0377 0.035 -1.077 0.284 -0.107 0.032

overthrow 0.0598 0.040 1.486 0.140 -0.020 0.139

unrest -0.0043 0.052 -0.084 0.933 -0.107 0.098

protests -0.0294 0.043 -0.680 0.498 -0.115 0.056

crackdown 0.0423 0.032 1.316 0.191 -0.021 0.106

Table 3.E.8: OLS summary: GPR and Storywrangler AT.
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Model OLS Method Least Squares

R-squared 0.013 Adj. R-squared -0.059

Log-Likelihood -32.636 Durbin-Watson 2.479

AIC 83.27 BIC 108.2

F-statistic 0.1843 Prob (F-statistic) 0.993

Omnibus 12.770 Prob(Omnibus) 0.002

Jarque-Bera (JB) 15.141 Prob(JB) 0.000515

Kurtosis 4.195 Skew 0.643

coef std err t P> |t| [0.025 0.975]

const 0.0058 0.031 0.188 0.851 -0.055 0.066

revolution -0.0204 0.038 -0.537 0.592 -0.096 0.055

rebellion 0.0206 0.036 0.575 0.567 -0.050 0.091

uprising 0.0118 0.030 0.394 0.694 -0.048 0.071

coup 0.0161 0.033 0.493 0.623 -0.049 0.081

overthrow 0.0010 0.035 0.028 0.978 -0.069 0.071

unrest 0.0079 0.041 0.191 0.849 -0.074 0.090

protests -0.0040 0.040 -0.100 0.920 -0.082 0.074

crackdown 0.0192 0.032 0.598 0.551 -0.045 0.083

Table 3.E.9: OLS summary: GPR and Google trends.
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Model OLS Method Least Squares

R-squared 0.039 Adj. R-squared -0.032

Log-Likelihood -31.092 Durbin-Watson 2.462

AIC 80.18 BIC 105.1

F-statistic 0.5504 Prob (F-statistic) 0.816

Omnibus 14.135 Prob(Omnibus) 0.001

Jarque-Bera (JB) 17.910 Prob(JB) 0.000129

Kurtosis 4.366 Skew 0.666

coef std err t P> |t| [0.025 0.975]

const 0.0068 0.030 0.226 0.821 -0.053 0.067

revolution 0.0217 0.033 0.659 0.511 -0.044 0.087

rebellion -0.0156 0.032 -0.486 0.628 -0.079 0.048

uprising -0.0187 0.035 -0.530 0.597 -0.089 0.051

coup 0.0460 0.033 1.395 0.166 -0.019 0.111

overthrow 0.0082 0.033 0.250 0.803 -0.057 0.074

unrest 0.0104 0.041 0.252 0.801 -0.071 0.092

protests 0.0210 0.041 0.518 0.606 -0.059 0.101

crackdown 0.0326 0.033 0.978 0.330 -0.033 0.099

Table 3.E.10: OLS summary: GPR and cable news.
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Chapter 4

Examining the world’s collective

attention on social media to the

COVID-19 pandemic
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4.1 Abstract

In confronting the global spread of the coronavirus disease COVID-19 pandemic we

must have coordinated medical, operational, and political responses. In all efforts,

data is crucial. Fundamentally, and in the possible absence of a vaccine for 12 to

18 months, we need universal, well-documented testing for both the presence of the

disease as well as confirmed recovery through serological tests for antibodies, and

we need to track major socioeconomic indices. But we also need auxiliary data of

all kinds, including data related to how populations are talking about the unfolding

pandemic through news and stories. To in part help on the social media side, we

curate a set of 2000 day-scale time series of 1- and 2-grams across 24 languages

on Twitter that are most ‘important’ for April 2020 with respect to April 2019.

We determine importance through our allotaxonometric instrument, rank-turbulence

divergence. We make some basic observations about some of the time series, including

a comparison to numbers of confirmed deaths due to COVID-19 over time. We broadly

observe across all languages a peak for the language-specific word for ‘virus’ in January

2020 followed by a decline through February and then a surge through March and

April. The world’s collective attention dropped away while the virus spread out from

China. We host the time series on Gitlab, updating them on a daily basis while

relevant. Our main intent is for other researchers to use these time series to enhance

whatever analyses that may be of use during the pandemic as well as for retrospective

investigations.
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4.2 Introduction

Understanding how major disasters affect the wellbeing of populations both in real

time and historically is of paramount importance. We especially need real-time mea-

surement to enable policy makers in health systems and government to gauge the

immediate situation and evaluate scenarios, and for researchers to model possible fu-

ture trajectories of social systems. Researchers have demonstrated how characterizing

and tracking public discourse of the COVID-19 spread on social media [52, 71, 175]

can support local authorities’ efforts in response to the global pandemic [27, 296].

Recent studies have also investigated the impact of pre-existing political polarization

on discussions related to COVID-19 throughout Twitter’s ecosystem [141], as well as

the extent of misinformation on social media [42, 140, 224]. Our primary aim here

is to generate a particular data stream that may be of help to other researchers:

A principled set of n-gram time series across major languages used on Twitter and

news-relevant for April, 2020. Our work is complementary to extant efforts to enable

research on the COVID-19 pandemic [158, 177] by gathering and sharing epidemi-

ological data [31, 41, 86, 131, 138, 181, 311, 312], economic data, and internet and

social media data [22, 49, 50, 58, 169].

In this short piece, we describe how we select languages and n-grams relevant

to the time period of the present COVID-19 pandemic; show example time series

plots for the word ‘virus’ (and its translations), including a visual comparison with

COVID-19 confirmed case and death numbers; and describe the data sets, figures,

and visualizations for 24 languages that we share online.
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Rank Language Code

1 English en

2 Spanish es

3 Portuguese pt

4 Arabic ar

5 Korean ko

6 French fr

7 Indonesian id

8 Turkish tr

9 German de

10 Italian it

11 Russian ru

12 Tagalog tl

Rank Language Code

13 Hindi hi

14 Persian fa

15 Urdu ur

16 Polish pl

17 Catalan ca

18 Dutch nl

19 Tamil ta

20 Greek el

21 Swedish sv

22 Serbian sr

23 Finnish fi

24 Ukrainian uk

Table 4.2.1: The 24 languages for which we provide COVID-19 related Twitter time series.
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4.3 Data and methods

4.3.1 Selection of languages and n-grams

We base our curation on our work in two of our previous papers [7, 83], and we

draw from a database of approximately 10% of all tweets from 2008-09-09 to present.

Our process of obtaining salient n-grams for April 2020 comprises two steps. First,

we used the language identification and detection tool FastText-LID [32, 143] to

evaluate all tweets in our historical archive, finding over 100 languages [7]. Besides

analyzing all tweets (AT), we also separately process what we call organic tweets

(OT): All Twitter messages which are original. Organic tweets exclude retweets while

including all added text for quote tweets. In doing so, we are able to carry through

a measure of spreadability for all n-grams. The key threshold we use for spreading is

the naive one from biological and social contagion models: When an n-gram appears

in more retweeted than organic material, we view it as being socially amplified. We

subsequently extracted day-scale Zipf distributions for 1-, 2-, and 3-grams along with

day-scale n-gram time series [5]. We preserve case where applicable, do not apply any

stemming. We note that the top 10 languages on Twitter comprise 85% of all tweets.

Here, we take 24 of the most commonly used languages on Twitter in 2019, with the

provision that we are able to parse them into n-grams. For the time being, we are

unable to reliably parse continuous-based script languages such as Japanese, Thai,

and Chinese, the 2nd, 6th, and 13th most common languages. The selected languages

comprise two thirds of the daily tweets on the platform. We exclude all tweets not

assigned a language with sufficient confidence (an effective 4th ranked collection). In
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6 4 2 0 2 4 6

Figure 4.3.1: Allotaxonograph using rank-turbulence divergence for Italian word usage on
April 30, 2019 versus April 30, 2020. For this visualization, we consider the subset of
1-grams that are formed from latin characters. The right hand sides of the rank-rank his-
togram and the rank-turbulence contribution list are dominated by COVID-19 related terms.
See Dodds et al. [83] for a full explanation of our allotaxonometric instrument.

other words, we select the predicted language with the highest confidence score. If

the confidence score of our FastText-LID model is less than 25% for a given tweet,

then we label that tweet as Undefined (und). We also choose to include Ukranian

(29th) over Cebuano (28th) due to a marginal degree of uncertainty for detecting

messages written in Cebuano [7]. We list the 24 languages by overall usage frequency

in Tab. 4.2.1.

Second, we compare usage of n-grams in April of 2020 with April 2019 to determine

which n-grams have become most elevated in relative usage. We do so by using rank-
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turbulence divergence [83], an instrument for comparing any pair of heavy-tailed

size distributions of categorical data. Other well-considered divergences will produce

similar lists. For each language, we take Zipf distributions for each day of April 2020,

and compare them with the Zipf distributions of 52 weeks earlier. For an example,

we show in Fig. 4.3.1 an allotaxonograph for Italian comparing 2019-04-30 and 2020-

04-30. The main plot displays a rotated 2D-histogram to avoid misinterpretation

of causality. We bin n-grams logarithmically such that bins located near the center

vertical line indicate n-grams that are used equivalently on both days, whereas bins

on either side highlight n-grams that are used more often on the corresponding date.

We use rank-turbulence divergence with the parameter α set to 1/3 as this provides

a reasonable fit to the lexical turbulence we observe [83, 222]. Up to a normalization

factor [83], we compute rank-turbulence divergence for each n-gram τ as follows:

δDR
α,τ ∝

∣∣∣∣∣ 1
rατ,t1
− 1
rατ,t2

∣∣∣∣∣
1/(α+1)

=
∣∣∣∣∣ 1
r

1/3
τ,t1

− 1
r

1/3
τ,t2

∣∣∣∣∣
3/4

,

where rτ,t1 and rτ,t2 indicate the rank of usage for τ at time step t1 and t2 respec-

tively. We plot contour lines to demonstrate the scale of rank-turbulence divergence

and use divergence contributions of each n-gram to compile an ordered set of relevant

n-grams for each day (see right panel of Fig. 4.3.1). For ease of plotting, we have fur-

ther chosen to compare the subset of words containing Latin characters only. Words

associated with the pandemic dominate the contributions from 2020-04-30. On the

right side of the allotaxonograph, we see ‘Coronavirus’, ‘virus’, ‘quarantina’, ‘pan-

demia’, ‘Bergamo’, and ‘morti’. We repeat this process for every day in April, and

combine divergence contributions for all n-grams across these days, and rank n-grams

in descending order indicating the most narratively dominate n-grams for the month
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of April.

4.3.2 Data, visualizations, and sites

For each language, and for each of the top n-grams we have identified, we extract three

day-scale time series starting on 2019-09-01: Daily counts, ranks, and normalized

frequencies based on the Eastern Time Zone (ET). Understandably, as the pandemic

was unfolding in early 2020, most regional health organizations could not confirm

the roots or exact initial date of the first COVID-19 case within their population

of charge, with speculations that the virus may have started spreading in late 2019.

Therefore, we started our data collection on September of 2019 to cover the last

quarter of 2019 and the few months leading to the pandemic spreading worldwide.

The degree to which the pandemic is being discussed on Twitter is of great interest

in itself, and our data set will allow for such examination.

For the n-grams our method surfaces, we observe variations in punctuation and

grammatical structures. These variants as well as non-pandemic-related elements may

be filtered out for individual languages by hand as may suit interested researchers. We

provide a cleaned version of the data set whereby we omit links, handles, hashtags,

emojis, and punctuation. We also note that our decision to respect capitalization

leads to n-grams that some researchers may wish to collapse, and we also provide a

case-insensitive version of our data set. We repeat all of the above steps for n-grams

derived from organic tweets (OT).

We share and maintain all data on Gitlab at: https://gitlab.com/compstorylab/

covid19ngrams. We also provide a connected website associated with our paper at:

http://compstorylab.org/covid19ngrams/. We show tables of the leading n-
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Table 4.3.1: Top 20 (of 1,000) 1-grams for our top 12 languages for the first three weeks
of April 2020 relative to a year earlier. Our intent is to capture 1-grams that are topically
and culturally important during the COVID-19 pandemic. While overall, we see pandemic-
related words dominate the lists across languages, we also find considerable specific variation.
Words for virus, quarantine, protective equipment, and testing show different orderings (note
that we do not employ stemming). Unrelated 1-grams but important to the time of April
2020 are in evidence; the balance of these are important for our understanding of how much
the pandemic is being talked about. To generate these lists we use the allotaxonometric
method of rank-turbulence divergence to find the most distinguishing 1-grams (see Sec. 4.3.1,
Fig. 4.3.1, and Dodds et al. [83]).
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Table 4.3.2: Continuing on from Fig. 4.3.1: Top 20 1-grams for the second 12 of 24 lan-
guages we study for April 2020 relative to April 2019.
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grams in our data set, as well as example "bar chart races" for the dominant COVID-

19 n-grams in major languages. Our intention is to automatically update the data

set on Gitlab, as soon as we have processed all tweets for a day.

We show the resulting top 20 April-2020-specific 1-grams for the 24 languages in

Tabs. 4.3.1 and 4.3.2. For display, we use the cleaned version, omitting hashtags,

handles, emojis, numbers, and punctuation. We also removed all variations of ‘Bom-

boclaat’ from Dutch. Overall, we see that the lists are dominated by language specific

words for coronavirus virus, quarantine, pandemic, testing, and spreading.

In the full, unfiltered data set, some 1-grams such as punctuation represent func-

tional changes in the use of Twitter across languages. The white heart emoji makes

the top 20 in a few languages such as English, Arabic, Korean and German. By con-

trast, and according to the measurements we have used here, the worried face emoji,

has become important across many languages in April 2020 relative to April 2019. It

would be natural to see this emoji as being pandemic-related but in fact, we see from

time series that the worried emoji has slowly being increasing in usage over time for

several years (determining the reasons for which we will leave for a separate line of

inquiry). All 1-grams are included in the shared raw version of the data sets.

We emphasize that with our approach, we do not explicitly determine whether

or not an n-gram is relevant to COVID-19. While the pandemic was one of the top

stories of 2020 for the majority of countries, there have of course been other major

events and moments in popular culture around the world. For example, in March

2020 for the United States, the democratic primary leads to the 1-gram in English

Twitter of ‘Biden’ being prominent. Similarly, we see many n-grams related to the Big

Brother Brazil show in Portuguese, and K-pop in Korean. Further, most languages
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have a strong degree of geographic specificity (e.g., Finnish for Finland, Portuguese

for Brazil), and we have not filtered for precise geo-location. English, Spanish, Arabic,

and French are some of the more geographically distributed languages.

4.4 Results

We briefly consider two sets of sample time series based on our data set. Across

Figs. 4.4.1 and 4.4.2, we plot contagiograms [5] for the word ‘virus’ translated as

appropriate in to each of the 24 languages. For each language, we display the daily

(Zipfian) rank for ‘virus’ in the main panel of each plot. We add a grey background

indicating the best and worst rank of each week overlaid by a centered weekly rolling

average (black). The pale disk highlights the date of maximum observed rate. In

the secondary time series at the top of each panel, we show the relative fraction of

1-gram contained in retweets (RT) versus organic tweets (OT). When the RT/OT

balance exceeds 50%, we shade the background to indicate that the 1-gram is being

spread (e.g., retweeted) more than organically tweeted. For each contagiogram, we

also display a heatmap of the relative amplification of each 1-gram compared to

the fraction of 1-grams that are found in RTs on that day. For each day of the week,

shades of red indicate higher social amplification, whereas gray shows that the volume

of that 1-gram is often shared organically. See Alshaabi et al. [5] for technical details

of contagiograms.

Alone, the highest ranks for ‘virus’ show the enormity of the pandemic. While

a common enough word in normal times, ‘virus’ has reached into the top 100 ranks

across many languages, a region that we have elsewhere referred to as the realm of
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Figure 4.4.1: Contagiograms for the word ‘virus’ in the top 12 of the 24 languages we study
here. The major observation is that the world’s attention peaked early in late January around
the news of an outbreak of a new infectious disease in Wuhan, declining through well into
February before waking back up. The main plots in each panel show usage ranks at the day
scale (ET). The solid lines indicating smoothing with a one week average (centered). The
plots along the top of each panel show the relative fractions of each 1-gram’s daily counts
indicating as to whether they appear in retweets (RT, spreading) or organic tweets (OT,
new material). The background shading shows when the balance favors spreading—story
contagion.
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lexical ultrafame [82]. Normally only the most basic function words of a language

will populate the top 100 ranks. In the last few months, we have seen ‘virus’ rise as

high as r=24 in Indonesian (2020-01-26), r=27 in Polish (2020-03-11), r=29 in Urdu

(2020-03-22), r=44 in German (2020-03-14), and r=83 in English (2020-03-13). In

terms of the shapes of the time series for ‘virus’, most languages show a late January

peak consistent with the news from China of a novel coronavirus disease spreading in

Wuhan. The subsequent drop in usage rate across most of the 24 languages reflects

a global decline in attention being paid to the outbreak. The Italian time series for

‘virus’ in Fig. 4.4.1J shows an abrupt jump about three quarters of the way through

February, strikingly just after a drop in RT/OT balance. Persian has a similar shock

jump just after midway of February (Fig. 4.4.1B). We see in Fig 4.4.2E that ‘virus’ in

Catalan shows no early January peak like most of the other 23 languages, suggesting

that even the initial news from China did not have great impact.

One of the major problems we face with the COVID-19 pandemic is the unevenness

of testing across the world. South Korea and Iceland have tested early and extensively

while the United States’s testing has been uncoordinated and slow to expand. Urdu’s

heightened time series for ‘virus’ (Fig 4.4.2C) would seem especially concerning given

low numbers coming out of Pakistan which, as of 2020-03-24, had reported 1,063 cases

and 8 deaths [86]. For Indonesia, where testing has also been limited [86] and with

peak attention on Twitter coming in January and early focus on economic issues and

evacuation of nationals from Wuhan, a dip in the rank of ‘virus’ in the second half of

February is also worrying (Fig 4.4.1G).

Countries around the world have adopted different strategies and policies in re-

sponse to the coronavirus pandemic. While most languages have COVID-19 related
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Figure 4.4.2: Following on from Fig. 4.4.1, contagiograms for the word ‘virus’ in the second
12 of the 24 languages. We note that some of these 1-grams are socially amplified over time,
while others often shared organically.
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terms across the top n-grams, some languages also have terms related to other big

events happening simultaneously. For example, we see many n-grams discussing the

democratic primary election in the US. We also find n-grams connected to the Big

Brother Brazil show in Portuguese, while Korean has many K-pop references. This

in part shows that the collective attention of different populations will, indeed, vary

depending on the spread of the virus across countries all over the globe for the time

period considered in this study. We note, however, that n-grams related to the pan-

demic can still be found in Portuguese showing the initial response to the news about

the COVID-19 outbreak as the virus started slowly spreading in Brazil.

As one very simple example of comparing our Twitter times series with pandemic-

related data, in Fig. 4.4.3, we present plots of daily reported cases and deaths over

time for 12 countries, along with time series for 10 salient 1-grams in the top spoken

language for each country. We note that the reported number of cases and deaths

are subject to under-reportings. For each country, we use the left vertical axis to plot

a weekly rolling average of usage ranks at the day scale for 10 1-grams (gray lines)

translated in the top spoken language for each country, while the black solid line shows

an average of all these 1-grams. We selected 10 1-grams from the top of each list that

are directly related to the coronavirus pandemic to highlight the collective attention

around the COVID-19 outbreak. The set of 1-grams we use for each language can be

found online at: https://gitlab.com/compstorylab/covid19ngrams/-/blob/

master/src/consts.py. Using the right vertical axis, we display a weekly rolling

average of daily new cases (red solid-line), and reported new deaths (orange dashed-

line).

We see a global surge of attention on Twitter starting mid March through April
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Figure 4.4.3: Time series for daily reported case loads and death compared with a list of 10
salient 1-grams for the top language spoken in each country. For each n-gram, we display
a weekly rolling average of usage ranks at the day scale in gray overlaid by an average of
all these 1-grams in black marking their corresponding ranks using the left vertical axis.
Similarly, we use the right vertical axis to display a weekly rolling average of daily new
cases (red solid-line), and reported new deaths (orange dashed-line). We note that the
reported counts are underestimates, more so for cases than deaths, and errors are unknown.
We sourced data for confirmed cases and fatalities from JHU’s COVID-19 project [86].
Starting on 2020-01-22, the project’s data has been collected from national and regional
health authorities across the world. The data is augmented by case reports from medical
associations and social media posts—these later sources are validated against official records
before publication.
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following the state-wide lockdowns in most countries. Some languages such as Italian

and German display a fairly steady level of attention paid to the pandemic. However,

the average rank of usage of the selected 1-grams slows down and starts to decay

across many languages in April through the summer. In fact, the average rank of

usage have dropped an order of magnitude in Indian, Russian, Korean, and Swedish.

While the number of new daily cases and deaths are climbing up again, we do not

observe the same level of attention reciprocated on Twitter.

4.5 Discussion

We echo our main general observation of how COVID-19 has been discussed through

late April 2020: After reacting strongly in late January to the news that a coronavirus-

based disease was spreading in China, attention across all but 2 of the 24 languages

we survey dropped through February before resurging in late February and through

March. We see abrupt shocks in time series as populations shifted rapidly to height-

ened levels of awareness, particularly in the Italian time series.

In the time series for ‘virus’, we see two and sometimes three peaks of attention in

the space of just a few months. Our hope is that our collection of Twitter n-gram time

series that are especially relevant to April 2020 will be of benefit to other researchers.

The time series we share will, in part, reflect many other aspects beyond mentions

of ‘virus’, which we have only briefly explored here. Possible topics to investigate

include washing (including the soap and microbe emojis), testing, serology, vaccine,

masks and protection equipment, social and physical distancing, terms of community

support versus loneliness and isolation, closures of schools and universities, economic
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problems, job loss, and food concerns.

We repeat that the lists we provide are meant to represent the important n-grams

of April 2020, and we urge a degree of caution in the use of the data set. As we

have indicated above, our lists of n-grams contain some peculiarities that will not be

directly relevant to COVID-19. Entertainment (e.g., movies, celebrities, and K-pop)

and sports (football along with sports in the United States) are standard fare on

Twitter when no major events are taking place in the world. The extent to which

these aspects of Twitter are submerged as pandemic related n-grams rise is of interest.

Finally, while we have been able to identify languages well, geolocation is coarse

and at best will be at the level of countries. The strength of geolocation for our time

series will depend on the degree of localization of a given language as well as Twitter

user demographics. We leave producing n-grams with serviceable physical location

as a separate project.
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Chapter 5

Augmenting semantic lexicons us-

ing word embeddings and transfer

learning
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5.1 Abstract

Sentiment-aware intelligent systems are essential to an enormous set of applications

from marketing and political campaigns to recommender systems to behavioral and

social psychology to intelligence and national security. These sentiment-aware intelli-

gent systems are driven by language models, which fall into two paradigms: lexicon-

based or contextual. Although recent contextual models are relevant to a wide range

of applications, we still see a tremendous and constant demand for lexicon-based

models because of their interpretability, and ease of use. In particular, researchers

are often interested in both the linguistic and sociotechnical details of a given senti-

ment shift—which words contribute most to either a positive or negative sentiment

trend. Lexicon dictionaries, however, need to be updated periodically to support new

words and expressions that were not examined when the dictionaries were outsourced.

Crowdsourcing annotations for semantic dictionaries is an arduous task. Here, we pro-

pose two models for predicting sentiment scores to augment semantic lexicons at a

relatively low cost using word embeddings and transfer learning. Our first model

establishes a baseline employing a simple and shallow neural network initialized with

pre-trained word embeddings using a non-contextual approach. Our second model

improves upon our baseline, featuring a deep Transformer-based network that brings

to bear word definitions to estimate their lexical polarity. Our evaluation shows that

both models are able to score new words with a similar accuracy to reviewers from

Amazon Mechanical Turk, but at a fraction of the cost.
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5.2 Introduction

Sentiment analysis is the process of extracting lexical and emotional semantics from

text archives. In computational linguistics, it is often used to study the lexical polarity

of words and phrases via natural language processing (NLP). There is an increasing

demand for sentiment-aware intelligent systems. Indeed, the synergy of sentiment-

aware frameworks and online services can be seen across a vast, multidisciplinary set

of applications [12, 192, 209].

With the advent of big data that is time-consuming to analyze, automated senti-

ment analysis has been used by businesses in evaluating customer feedback to make

informed decisions regarding product development and risk management [43, 291].

Combined with recommender systems, it has also been useful in improving consumer

experience by providing the consumer with aggregated and curated feedback from

other consumers, as in the case of the retail [279? ? ], e-commerce [? ? ], and

entertainment [218, 281] sectors.

Aside from having applications in industry, sentiment analysis has been widely

applied in academic research, particularly in the social and political sciences. Pub-

lic support for or opposition to pending policies can be gauged from online politi-

cal discourse, giving policymakers an important window into the public’s awareness

and attitude [171, 283]. Beyond that, these tools can also forecast elections [290],

and monitor inflammatory discourse on social media, with vital relevance to na-

tional security [217]. Sentiment analysis has also been used in the public health

domain [64, 109, 313], with recent studies analyzing discussions on social media re-

garding mental health [16, 276], especially in light of the latest advances in NLP and
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emerging ethical concerns [63]. The growing number of applications of sentiment-

aware systems has prompted tremendous efforts among the NLP community in the

past decade to develop end-to-end models to examine short- and medium-length text

documents [92, 304], particularly for social media [3, 157, 215].

Sentiment analysis tools differ in two main ways: the definition of the sentiment

measure and the model for computing sentiment. The probability of belonging to

a discrete class (e.g., positive, negative) is a common way of defining sentiment for

a given piece of text. When edge cases are common, adding a neutral class has

been reported to improve overall performance [241]. However, sometimes a cardinal

measure of sentiment is desired, resulting in a sentiment score rather than a sentiment

class [282]. The sentiment scoring paradigm is widely adopted in e-commerce, movies,

and restaurant reviews [266].

Sentiment analysis models can be classified into two major paradigms: lexicon-

based models and contextual models. Lexicon-based models compute sentiment scores

based on sentiment dictionaries that are usually constructed by human annotators [10,

81, 278]. Contextual models, on the other hand, extrapolate semantics by converting

words to vectors in an embedding space and learning from large-scale annotated

datasets to predict sentiment based on this learned relationship between words [3,

92, 215, 267, 304]. Contextual models have the advantage in differentiating multiple

meanings, as in the case of “The dog is lying on the beach” vs. “I never said that, you

are lying”, while lexicon-based models usually only have one score for the same word

regardless of usage. Despite the flexibility of contextual models, it suffers from less

interpretability, explaining the consistent demand for lexicon-based models because

of their ease of use [81, 217, 278]. As an example, while a change in sentiment may
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be hard to explain with word embeddings, one can use lexicon scores to study how

words contribute to sentiment shifts [80, 100, 240].

A big challenge in lexicon-based models is the time and financial investment asso-

ciated with maintaining them. Lexicon dictionaries need to get updated regularly to

mitigate the out-of-vocabulary (OOV) problem—words/phrases that were not con-

sidered when the dictionaries were originally constructed [243]. While researchers

show general sentiment trends are observable unless the lexicon dictionary does not

have enough words, having a versatile dictionary with specialized and rarely used

words improves the signal [76]. Notably, language is an evolving sociotechnical phe-

nomenon. New words are often created in real-time, especially on social media [5].

Words occasionally substitute others or drift in meaning over time. For example, the

word ‘covid’ slowly became the most narratively trending n-gram in reference to the

global Coronavirus outbreak during 2020 [6].

In this work, we propose an automated framework extending semantic lexicons to

OOV words, reducing the need for crowdsourcing scores from human annotators, a

process that can be time-consuming and expensive. Although our framework can be

used in a more general sense, we focus on predicting happiness scores based on the

labMT dataset [81]. This dataset rates the “happiness” of words on a continuous scale,

averaging scores from multiple human annotators for more than 10,000 words. We

discuss this dataset in detail in Sec. 5.4.1. In Sec. 5.3, we discuss recent developments

in using deep learning in natural language processing and how they relate to our work.

We introduce two models, demonstrating accuracy on par with human performance

(see Sec. 5.4 for technical details). We first introduce a baseline model—a small

neural network initialized with pre-trained word embeddings—to gauge happiness
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scores. Second, we present a deep Transformer-based model that uses word definitions

to estimate their lexical polarity. We will refer to our models as the ‘Token’ and

‘Dictionary’ models, respectively. We present our results and model evaluation in

Sec. 5.5, highlighting how the models perform compared with reviewers from Amazon

Mechanical Turk. Finally, we highlight key limitations of our approach, and we outline

some potential future developments in our concluding remarks.

5.3 Related work

Word embeddings are numerical representations of words, whereby words with similar

semantics have similar representations [21]. Researchers have shown that efficient

representations of words can both express meanings and preserve context [129, 130,

176, 187]. While there are many ways to construct such embedding (e.g., matrix

factorization), we often use the term to refer to a specific class of word embeddings

that are learnable via neural networks.

Word2Vec is one of the key breakthroughs in NLP introducing an efficient way for

learning word embeddings from a given text corpus [199, 200]. At its core, it builds

off a simple idea borrowed from linguistics and formally known as the ‘distributional

hypothesis’—words that are semantically similar are also used in similar ways and

likely to appear with similar context words [119].

Starting from a fixed vocabulary, we can learn a vector representation for each

word via a shallow network with a single hidden layer trained in one of two fash-

ions [199, 200]. Both approaches formalize the task as a unsupervised prediction

problem, whereby an embedding is learned jointly with a network that is trained
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to either predict an anchor word given the words around it (i.e., continuous bag-of-

words (CBOW)), or by predicting context words for an anchor word (i.e., skip-gram

(SG)) [199].

Both approaches, however, are limited to local context bounded by the size of the

context window. Global Vectors (GloVe) addresses that problem by capturing corpus

global statistics with a word co-occurrence probability matrix [223].

While Word2Vec and GloVe offer substantial improvements over previous meth-

ods, they both fail to encode unfamiliar words—tokens that were not processed

in the training corpora. FastText refines word embeddings by supplementing the

learned embedding matrix with subwords to overcome the challenge of OOV to-

kens [32, 144]. This is achieved by training the network with character-level n-grams

(n ∈ {3, 4, 5, 6}), then taking the sum of all subwords to construct a vector repre-

sentation for any given word. Although the idea behind FastText is rather simple, it

presents an elegant solution to account for rare words, allowing the model to learn

more general word representations.

A major shortcoming of the earlier models is their inability to capture contextual

descriptions of words as they all produce a fixed vector representation for each word.

In building context-aware models, researchers often use fundamental building blocks

such as recurrent neural networks (RNN) [252]—particularly long short-term memory

(LSTM) [124]—that are designed to process sequential data. Many methods have

provided incremental improvements over time [51, 172, 225]. ELMo is one of the key

milestones towards efficient contextualized models, using deep bi-directional LSTM

language representations [226].

In late 2017, the advent of Transformers [298] rapidly changed the landscape in
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the NLP community. The encoder-decoder framework, powered by attention blocks,

enables faster processing of the input sequence while also preserving context [298].

Recent adaptations of the building blocks of Transformers continue to break records,

improving the state-of-the-art across all NLP benchmarks with recent applications to

computer vision and pattern recognition [87].

Exploiting the versatile nature of Transformers, we observe the emergence of a

new family of language models widely known as self-supervised models such as bidi-

rectional encoders (e.g., BERT) [73], and left-to-right decoders (e.g., GPT) [238].

Self-supervised language models are pre-trained by masking random tokens in the

unlabeled input data and training the model to predict these tokens. Researchers

leverage recent subword tokenization techniques, such as WordPiece [310], Sentence-

Piece [162], and Byte Pair Encoding (BPE) [261], to overcome the challenge of rare

and OOV words. Subtle contextualized representations of words can be learned by

predicting whether sentence B follows sentence A [73]. Pre-trained language models

can then be fine-tuned using labeled data for downstream NLP tasks, such as NER,

question answering, text summarization, and sentiment analysis [73, 238].

Recent advances in NLP continue to improve the language facility of Transformer-

based models. The introduction of XLNet [314] is another remarkable breakthrough,

that combines the bidirectionality of BERT [73] and the autoregressive pre-training

scheme from Transformer-XL [68].

While the current trend of making ever-larger and deeper language models shows

an impressive track record, it is arguably unfruitful to maintain unreasonably large

models that only giant corporations can afford to use due to hardware limitations [284].

Vitally, some language models need to be both computationally efficient and on par
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with larger models in terms of performance. Addressing that challenge, researchers

proposed clever techniques of leveraging knowledge distillation [121] to train smaller

and faster models (e.g, DistilBERT [258]). Similarly, efficient parameterization strate-

gies via sharing weights across layers can also reduce the size of the model while

maintaining state-of-the-art results (e.g., ALBERT [170]).

5.4 Data and methods

In this paper, we propose two models for predicting happiness scores for the labMT

lexicon [81]—a general-purpose lexicon used to measure happiness in text corpora

(see Sec. 5.4.1 for more details).

Our first model is a small neural network initialized with pre-trained FastText

word embeddings. The model uses fixed word representations to gauge the happiness

score for a given expression, enabling us to augment the labMT dataset at a low cost.

For simplicity, we will refer to this model as the Token model.

Bridging the link between lexicon-based and contextualized models, we also pro-

pose a deep Transformer-based model that uses word definitions to estimate their

happiness scores—namely, the Dictionary model. The contextualized nature of the

input data allows our model to accurately estimate the expressed happiness score for

a given word based on its lexical meaning.

We implement our models using Tensorflow [1] and Transformers [306]. See

Sec. 5.4.2 and Sec. 5.4.3 for further technical details of our Token and Dictionary

models, respectively. Our source code, along with pre-trained models, are publicly

available via our GitLab repository.
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5.4.1 Data

In this study, we use the labMT dataset as an example semantic dictionary to test

and evaluate our models [81]. The labMT lexicon has a little over ten thousand

unique words—combining the five thousand most frequently used words from New

York Times articles, Google Books, Twitter messages, and music lyrics [81]. It is a

lexicon designed to gauge the happiness (i.e., valence or hedonic tone) of text archives.

Happiness is defined on a continuous scale h ∈ {1 → 9}, where 1 bounds the most

negative (sad) side of the spectrum, and 9 is the most positive (happy). Ratings for

each word are crowdsourced via Amazon Mechanical Turk (AMT), taking the average

score havg from 50 reviewers to set a happiness score for any given word.

The labMT dataset also powers the Hedonometer, an instrument to measure the

daily rate of happiness on Twitter [80]. Over the past few years, the dictionary was

updated a few times to include new words that were not found in the original survey

(e.g, terms related to the COVID19 pandemic [6]).

We are particularly interested in this dataset because it also provides the standard

deviation of human ratings for each word, which we use to evaluate our models. In

this work, we propose two models to estimate havg using word embeddings, and thus

provide an automated tool to augment the labMT dataset both reliably and efficiently.

In Fig. 5.4.1, we display a 2D histogram of the happiness scores in the labMT

dataset compared with the standard deviation of human ratings for each given word.

The figure highlights the degree of uncertainty in human ratings of the emotional

valence of words. While the majority of words are neutral, with a score between 4

and 6, we still observe a human positivity bias in the English language [81].
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Figure 5.4.1: Emotional valence of words and uncertainty in human ratings of
lexical polarity. A 2D histogram of happiness havg and standard deviation of human
ratings for each word in the labMT dataset. Happiness is defined on a continuous scale
from 1 to 9, where 1 is the least happy and 9 is the most. Words with a score between 4
and 6 are considered neutral. While the vast majority of words are neutral, we still note a
positive bias in human language [81]. The average standard deviation of human ratings for
estimating the emotional valence of words in the labMT dataset is 1.38.
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On average, the standard deviation of human ratings is 1.38. In our evaluation

(Sec. 5.5), we show how our models perform relative to the uncertainty we observe in

human ratings.

5.4.2 Token Model

Our first model is a small neural network that learns to map words from the labMT

lexicon to their sentiment scores. While still being able to learn a non-linear mapping

between the words and their happiness scores, the model only considers the individual

words as input—enriching its internal utility function with subword representations

to gauge the happiness score.

The input word is first processed into a token embedding—sequentially break-

ing each word into its equivalent character-level n-grams whereby n ∈ {3, 4, 5} (see

Fig. 5.4.2 for a simple illustration of that).

English words have an average length of 5 characters [190, 202], which would yield

5 unique character-level n-grams given our tokenization scheme. While we did try

shorter and longer sequences, we fix the length of the input sequence to a size of

50 and pad shorter sequences to ensure a universal input size. We choose a longer

sequence length to allow us to encode longer n-grams and rare words.

We then pass the token embeddings to a 300-dimensional embedding layer. We

initialize the embedding layer with weights trained with subword information on

Common Crawl and Wikipedia using FastText [32]. In particular, we use weights

from a pre-trained model using CBOW with character-level n-grams of length 5 and

a window size of 5 and 10 (https://fasttext.cc/docs/en/english-vectors.

html).
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The output of the embedding layer is pooled down and passed to a sequence of

three dense layers of decreasing sizes: 128, 64, and 32, respectively. We use a rectified

linear activation function (ReLU) for all dense layers. We also add a dropout layer

after each dense layer, with a 50% dropout rate to encode stochasticity into the model

as a simple way for estimating uncertainty and standard deviation of the network’s

predictions [269].

We experimented with a few different layout configurations, finding that making

the network either wider or deeper has minimal effect on the network performance.

Therefore, we choose to keep our model rather simple with roughly 10 million trainable

parameters.

The output of the last dense layer is finally passed over to a single output layer

with a linear activation function to regress a sentiment score between 1 and 9. See

Fig. 5.4.3 for a simple diagram of the model architecture.

5.4.3 Dictionary Model

Historically, lexicon-based models have only considered simple statistical methods

to estimate the emotional valance of words. Here, we try to bridge the connection

between the conventional techniques among the community and recent advances in

NLP.

For our second model, we employ a contextualized Transformer-based language

model to gauge a sentiment score for a given word based on its dictionary definition.

While still predicting scores for individual words, we now do so by augmenting each

word with its expressed meaning(s) from a general dictionary.

Given an input word, we look up its lexical definition via a free online dictionary

170



Any of a group of RNA viruses that cause a variety of respiratory, 
gastrointestinal, and neurological diseases in humans and other animals.

`Coronavirus`Input

Definition

Token
Embeddings

Dictionary
Embeddings

any of a group of rna viruses

neurological

that cause a

variety of respiratory gas ##tro ##int ##estinal and

diseases in humans and other animals

corona ##virus

PAD PADPAD

cor oro ron ona nav avi vir iru ruscoronavirus coro oron rona onav navi

avir viru irus coron orona ronav onavi navir aviru virus PAD PAD

Figure 5.4.2: Input sequence embeddings. We use two encoding schemes to prepare input
sequences for our models: token embeddings (blue) and dictionary embeddings (orange) for
our Token and Dictionary models, respectively. Given an input word (e.g., ‘coronavirus’),
we first break the input token into character-level n-grams (n ∈ {3, 4, 5}). The resulting
sequence of n-grams along with the original word at the beginning of the embeddings are
used in our Token model. For our Dictionary model, we first look up a dictionary definition
for the given input. We then process the input word along with its definition into subwords
using WordPiece [310]. Uncommon and novel words are broken into subwords, with double
hashtags indicating that the given token is not a full word.

API available at https://dictionaryapi.dev. The average length of definitions

for the words found in labMT is roughly 38. We choose 50—which covers the 75th

percentile of that distribution—to ensure that words with multiple definitions are

adequately represented. While increasing the sequence length beyond 50 did not

improve our accuracy, it increases the model complexity slowing our training and

inference time substantially. Therefore, we fix the length of word definitions to a

maximum of 50 words and pad shorter sequences to ensure a fixed input size.

The word, along with its definition, is processed into dictionary embeddings by

breaking each word into subwords based on their frequency of usage using Word-

Piece [310]. This is a widely adopted tokenization technique that breaks uncommon

and novel words into subwords, which reduces the vocabulary size of language mod-

els and enables them to handle OOV tokens. Other tokenization models will give
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Figure 5.4.3: Model architectures. Our first model is a small neural network initialized
with pre-trained word embeddings to gauge happiness scores. Our second model, is a deep
Transformer-based model that uses word definitions to estimate their sentiment scores. See
Sec. 5.4.2 and Sec. 5.4.3 for further technical details of each model, respectively. Note the
Token model is considerably smaller with roughly 10 million trainable parameters compared
with the Dictionary model that has a little over 66 million parameters.

172



similar results [162]. We only use the word as input to our model for terms without

definitions.

In principle, the dictionary embeddings can be passed to a vanilla Transformer

model (e.g., BERT [73], XLNet [314]). However, we prefer more manageable models

(i.e., smaller and faster) due to their efficiency while maintaining state-of-the-art

results. We tried both ALBERT [170] and DistilBERT [258]. Both models have

equivalent performance on our task.

The output of the model’s pooling layer is passed to a sequence of three dense lay-

ers of decreasing sizes with dropout applied after each layer—similar to our approach

in the Token model. Finally, the output of the last dense layer is projected down to

a single output value that servers as the sentiment score prediction.

The Token model is substantially smaller than the Dictionary model. Hence, the

Token model is considerably lighter in terms of memory usage, and faster in terms

of training and inference time. Our current configuration of the Token model results

in roughly 10 million trainable parameters compared with the Dictionary model that

has over 66 million parameters.

5.5 Results

5.5.1 Ensemble learning and k-fold cross-validation

Given that our dataset is relatively small, we use k-fold cross-validation rather than

a fixed testing subset to set an upper limit on our margin of error and mitigate any

risk of overfitting [20, 160]. Using 80/20 split for training/validation, we train our
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Figure 5.5.1: Learning curves for the Token model (left), and Dictionary model
(right). We train our models using 5-fold cross-validation, with a maximum of 500 epochs
per fold. The left panel shows the learning curves for the Token model (see Sec. 5.4.2), while
the right panel shows the Dictionary model (see Sec. 5.4.3). We display our average mean
absolute error (MAE) as well as standard deviation across all folds for training (grey) and
validation (blue).

models for a maximum of 500 epochs per fold for a total of 5 folds. While there are

many gradient descent optimization algorithms, we use Adam [154] as a popular and

well-established optimizer, keeping its default configuration and setting our initial

learning rate to 0.001. In Fig. 5.5.1, we display learning curves, showing that both

models have converged successfully.

Ensemble learning is a widely known and adopted family of methods in which the

average performance of an ensemble is shown to be both less biased and better than

the individual models [116, 160]. Capitalizing on our 5-fold cross-validation strategy,

we use the model trained from each fold to build an ensemble (see Fig. 5.5.2). To get

a happiness score for a given word, we aggregate over 100 predictions per model and

report the average and standard deviation of predictions from all models as our final
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Figure 5.5.2: Ensemble learning and k-fold cross-validation. Using an 80/20 split
for training/validation, we train our models for a maximum of 500 epochs per fold for a
total of 5 folds. We use the model trained from each fold to build an ensemble because the
average performance of an ensemble is less biased and better than the individual models.
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prediction for a given ensemble.

5.5.2 Comparing predictions to human ratings

While both strategies—using character-level n-grams and word definitions—perform

well, we note that the Dictionary model outperforms the Token model. Our evaluation

shows the Token model has an average cross-validation MAE of 0.64± 0.01, trailing

behind our Dictionary model which has an average cross-validation MAE of 0.50 ±

0.01.

As discussed, our cross-validation defines an upper limit on our margin of error for

predicting happiness scores in the labMT dictionary. We further examine our error

distributions to investigate if the models have a bias towards high or low happiness

scores.

We rerun our models on all words recorded in the labMT dataset. In Figs. 5.5.3

and 5.5.4, we display a breakdown of our MAE distributions for the Token and Dic-

tionary models, respectively. We categorize the happiness scores into three groups:

negative (havg ∈ [1, 4)), neutral (havg ∈ [4, 6]), and positive (havg ∈ (6, 9]). While the

distributions show our models operate well on all words, particularly neutral expres-

sions, we note a relatively higher MAE for negative words, whereby our predictions

to these terms are more positive than the annotations.

We further compare our predictions to the ground-truth ratings, examining the

degree to which the models either overshoot or undershoot the happiness scores crowd-

sourced via AMT. Words in the labMT lexicon were scored by taking the average hap-

piness score of distinct evaluations from 50 different individuals (see Table S2 [81]).

Since the variance of human ratings and our model MAEs are on the same scale, we
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Figure 5.5.3: Error distributions for the Token model. We display mean absolute er-
rors for predictions using the Token model on all words in labMT. We arrange the happiness
scores into three groups: negative (havg ∈ [1, 4), orange), neutral (havg ∈ [4, 6], grey), and
positive (havg ∈ (6, 9], green). Most words have an MAE less than 1 with the exception of
a few outliers. We see a relatively higher MAE for negative and positive terms compared to
neutral expressions.
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Figure 5.5.4: Error distributions for the Dictionary model. We display mean ab-
solute errors for predictions using the Dictionary model on all words in labMT. Again, we
categorize the happiness scores into three groups: negative (havg ∈ [1, 4), orange), neutral
(havg ∈ [4, 6], grey), and positive (havg ∈ (6, 9], green). Similar to the Token model, most
words have an MAE less than 1 with the exception of a few outliers. While the Dictionary
model outperforms the Token model, we still observe a higher MAE for negative and positive
terms compared to neutral expressions.
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Figure 5.5.5: Token model: Top-50 words with the highest mean absolute error.
Model predictions are shown in blue and the crowdsourced annotations are displayed in grey.
While still maintaining relatively low MAE, most of our predictions are conservative—
marginally underestimating words with extremely high happiness scores, and overestimating
words with low happiness scores.
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Figure 5.5.6: Dictionary model: Top-50 words with the highest mean absolute
error. Model predictions are shown in blue and the crowdsourced annotations are displayed
in grey. Note, the vast majority of words with relatively high MAE also have high standard
deviations of AMT ratings. Words that have multiple definitions will have a neutral score
(e.g., lying). A neutral happiness score is also often predicted for words because we are
unable to obtain good definitions for them to use as input. Although we have definitions for
most words in our dataset, we still have a little over 1500 words with missing definitions.
Most of these words are names (e.g., ‘Burke’), and slang (e.g., ‘xmas’, and ‘ta’).
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All words Out-of-sample All words

STDEV Variance MAE MAE MAE MAE
Human
Ratings

Human
Ratings

Token
Model

Dictionary
Model

Token
Model

Dictionary
Model

Average 1.38 1.17 0.64 0.50 0.16 0.14

25th Percentile 1.18 1.09 0.63 0.49 0.05 0.05

50th Percentile 1.36 1.17 0.64 0.50 0.12 0.10

75th Percentile 1.56 1.25 0.65 0.51 0.22 0.19

85th Percentile 1.69 1.30 0.65 0.51 0.30 0.25

95th Percentile 1.90 1.38 0.66 0.52 0.48 0.40

Table 5.5.1: We report summary statistics comparing our models to the annotated ratings
reported in labMT. Each word in the labMT lexicon is scored by 50 distinct individuals and
the final happiness score is derived by taking the average score of these evaluations [81].
We report the standard deviation and variance of the ratings as a baseline to assess the
human’s confidence in the reported scores. Comparing our predictions with the annotations
crowdsourced via AMT, our MAEs are on par with the margin of error we observe in the
reported scores in labMT.

can use the observed average variance of the ratings (1.17) as a baseline to assess

the human’s confidence in the reported scores. Comparing our models to that base-

line, we note that all models offer consistent predictions with similar expectations

to a random and reliable reviewer from AMT. See Table 5.5.1 for further statistical

details.

In Figs. 5.5.5 and 5.5.6, we display the top-50 words with the highest mean abso-

lute error for the Token and Dictionary models, respectively. While the models always

predict the right emotional attitude outlining each word based on its lexical polarity,

they undershoot scores for happy words, and overshoot scores for sad expressions.

One possible explanation of this systematic behavior is the lack of words with
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extreme happiness scores in the labMT lexicon. It is possible to train models with

a smaller but balanced subset of the dataset to overcome that challenge. Doing so,

however, would reduce the size of training/validation samples substantially. Still, our

margin of error is relatively low compared to human ratings. Future investigations

may test and improve the models by examining larger sentiment lexicons.

Another key factor that plays a big role in our prediction error is obtaining good

word definitions, or the lack thereof, to use as input for our Dictionary model. Sur-

prisingly, outsourcing definitions from online dictionaries for a large set of words is

rather challenging, especially if you opt-out of reliable but paid services. In our

work, we choose not to use an urban dictionary or any services with paid APIs.

We use a completely free online dictionary API that is available online at https:

//dictionaryapi.dev.

While we do have definitions for most words in our dataset, we have a total of

1518 words with missing definitions. Most of these words are names, abbreviations,

and slangs (e.g., ‘xams’, ‘foto’, ‘nvm’, and ‘lmao’). Words with multiple definitions

can also cancel each other’s score (e.g., lying).

Notably, the vast majority of words with relatively high MAE also have high

standard deviations of AMT ratings. To further investigate our prediction accuracy,

we examine the overlap between the predictions and human ratings. In particular,

we compute the intersection over union (IOU) between the predicted happiness score

h′avg ± σ′, and the corresponding value from the annotated ratings havg ± σ.

Using the Token model, we find that our model underestimates the happiness

score for ‘win’—the only word with a prediction that falls outside the range of hu-

man annotated happiness scores. The rest of the predicted happiness scores lie well
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within the range of scores crowdsourced via AMT for any given word. Similarly, our

Dictionary model slightly underestimates the happiness scores for ‘mamma’ while

overestimating the scores for ‘lying’, and ‘coronavirus’.

5.6 Discussion

As the growing demand for sentiment-aware intelligent systems increases, we will

continue to see developments for both lexicon-based models and contextual language

models. While contextualized models are suitable for a wide set of applications,

lexicon-based models are used by computational linguistics, journalists, and data

scientists who are interested in studying how individual words contribute to sentiment

trends.

Lexicon dictionaries, however, have to be updated periodically to support new

words and expressions that were not considered when the dictionaries were assembled.

In this paper, we proposed two models for predicting sentiment scores to augment

semantic dictionaries using word embeddings and transfer learning. Our first model

establishes a baseline using a shallow neural network initialized with pre-trained word

embeddings, while our second model features a deep Transformer-based network that

brings into play word definitions to estimate their lexical polarity. Our results and

evaluation of both models demonstrate human-level performance on LabMT.

Although both models can predict scores for novel words, we acknowledge a few

shortcomings of our strategies. Our Token model relies on subword information to

estimate a happiness score for any given word. For example, using subwords for ‘coro-

navirus’ yields a good estimate given that it has ‘virus’ as part of it. By contrast,
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parsing character-level n-grams for other words (e.g., ‘covid’) may not reveal any fur-

ther information. We can overcome that hurdle by using the word definition as input

to our Dictionary model to gauge its happiness score. Words, however, often have

different meanings based on context. Finding good definitions may be challenging,

especially for slang, informal expressions, and abbreviations. We recommend using

the Dictionary model whenever it is possible to outsource a good definition of the

word.

A natural next step would be to develop similar models for other languages. There

are two possible approaches: building a model for each language or a multilingual

model. Fortunately, FastText [32] provides pre-trained word embeddings for over

100 languages. Therefore, it is easy to upgrade the Token model to support other

languages. Updating the Dictionary model is also a straightforward task by simply

adopting a multilingual Transformer-based model pre-trained with several languages

(e.g., Multilingual BERT [73]).

Another vast space of improvements would be to adopt our proposed strategies

to develop prediction models for other semantic dictionaries. Researchers can further

fine-tune our models to predict other sentiment scores. For example, the happiness

scores in the labMT [81] dataset are closely aligned with the valence scores in the

NRC-VAD lexicon [206]. We envision future work developing similar models to predict

other semantic differentials such as arousal and dominance [206], EPA [213], and

SocialSent [115].

More importantly, researchers would need to fine-tune the models using annotated

scores for words and expressions in other languages. We caution against translating

words and using the same English scores because most words do not have a one-to-one
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mapping into other languages, and are often used to express different meanings by

the native speakers of any given language. Our primary goal is to provide an easy and

robust method to augment semantic dictionaries to empower researchers to maintain

and expand them at a relatively low cost using today’s state-of-the-art NLP methods.
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Chapter 6

Concluding remarks
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In the first case study, we presented an alternative approach for language detection

and identification of tweets to overcome the challenge of missing language labels in

the historical Decahose stream. We have also observed a recent, but growing passive

behavior on Twitter leading to an increasing preference for retweets over original

tweets for most languages. Further investigations will be needed to shed light on this

sociotechnical phenomenon, but possible partial causes might lie in changes of native

social amplification mechanisms that may be intrinsically magnifying algorithmic bias

on Twitter, and other social media platforms with similar features.

In the second case study, we proposed Storywrangler as an interactive sociotechni-

cal instrument that automatically discovers narratively trending storylines. In build-

ing Storywrangler, our goal was to create an evolving platform for the research com-

munity to enable future developments in computational linguistics, natural language

processing, and data-driven studies of social and behavioral science. The Storywran-

gler project has already empowered a wide set of interdisciplinary applications—

characterizing online collective attention for natural disasters [8]; quantifying lan-

guage changes surrounding mental health on Twitter [276]; computational timeline

reconstruction of the stories surrounding famous individuals [82, 85]; exploring public

engagement with the US Presidents [203]; blending search queries with social media

data to forecast economic indicators [178]; and examining the resurgence in collective

attention toward black victims of fatal police violence in the wake of George Floyd’s

murder [309].

In the third case study, we also presented an example analysis for using Story-

wrangler to curate a principled set of day-scale time series of unigrams and bigrams

across different languages to track discussions of the COVID-19 pandemic on Twitter.
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We showcased example time series plots, including visual comparison with COVID-

19 confirmed cases and deaths. In addition to our preliminary analysis, we shared a

data repository for current and retrospective investigations to better understand the

discourse of the COVID-19 pandemic among vastly diverse societies on social media.

Finally, in the last case study, we proposed a tool for augmenting semantic dic-

tionaries using word embeddings and transfer learning. The framework reduced the

need for crowdsourcing scores from human annotators while still providing similar,

and often better, results compared with random reviewers from Amazon Mechanical

Turk at a fraction of the cost. Although our models can be fine-tuned to predict

scores for any semantic lexicon, we focused on predicting happiness scores for the

Hedonometer to further improve the instrument’s ability to capture the emotional

valance of various events on social media.

The previous chapters exemplify the critical value of NLP instruments to study

modern sociotechnical systems, particularly social media platforms. While the tech-

nical challenges of designing and maintaining such tools are staggering in terms of

optimization and scalability, ease of use and open access have been focal to the de-

velopment of these applications. Developing more sophisticated NLP instruments

remains an open challenge to help us understand and disentangle the underlying

properties of language in evolving sociotechnical systems.
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