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Abstract

Identifying temporal linguistic patterns and tracing social amplification across com-
munities has always been vital to understanding modern sociotechnical systems. Now,
well into the age of information technology, the growing digitization of text archives
powered by machine learning systems has enabled an enormous number of interdisci-
plinary studies to examine the coevolution of language and culture. However, most
research in that domain investigates formal textual records, such as books and news-
papers. In this work, I argue that the study of conversational text derived from social
media is just as important. I present four case studies to identify and investigate soci-
etal developments in longitudinal social media streams with high temporal resolution
spanning over 100 languages. These case studies show how everyday conversations on
social media encode a unique perspective that is often complementary to observations
derived from more formal texts. This unique perspective improves our understand-
ing of modern sociotechnical systems and enables future research in computational
linguistics, social science, and behavioral science.
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Chapter 1

Introduction
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1.1 Background

A sociotechnical system is a complex system that involves social and technological

elements. Historically, the term is grounded in system theories that were primarily

developed to optimize the work�ow of industrial workers during the aftermath of

World War II [90, 287]. In the age of information technology, the term provides a

macroscopic description of social and interactive digital infrastructures (e.g., online

services, e-commerce, social media) [103]. Indeed, social structures have evolved

because of a growing rate of automation and innovations [107, 286]. Studying the

interplay between society and technology is vital in light of these rapid technological

changes. Understanding the throughput of a sociotechnical system is particularly

helpful to study long-term societal changes and the coevolution of technical domains

and social sciences [18].

Language is a key component of these sociotechnical systems�the technology

that enables participants to communicate through a complex system. Consequently,

a sociotechnical system is a medium through which language and culture co-evolve [97,

137]. Recent advances in natural language processing (NLP) such as optical character

recognition (OCR), and automatic speech recognition (also known as, speech-to-text),

have enabled a vast collection of rich and interdisciplinary studies (e.g., books [197]

and news [132]). The emerging digitization of text archives has also empowered new

NLP applications such as machine translation, speech tagging, question answering,

text summarization, and sentiment analysis�most of which are primarily powered

by arti�cial neural networks and machine learning [189, 315].
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1.1.1 Culturomics

Data mining of digital archives enables users to scan through an extensive collection

of databases for words, tracing their inception and tracking their rate of usage over

time. The term `culturomics'�originally proposed by Michel et al. [197]�is often

used to refer to this vast collection of studies of human behavior and sociocultural

trends portrayed in language usage. The Googlen-grams viewer [197], which inspires

the work presented here, is a notable example that provides year-scalen-gram usage

time series derived from most books printed over the past century. While the cultural

signi�cance of the time series provided by the Google Books project has been duly

noted in the scienti�c literature, researchers have also highlighted some pitfalls [156,

195].

The Google Books framework recordsn-gram usage once for each book per year,

which fails to encode the cultural popularity of thesen-grams, ignoring the millions

of copies sold of these books [221]. Of course, measuring cultural popularity is re-

markably di�cult. Databases that track sales of books over time are sparse, and

large-scale archives that attempt to capture the popularity ofn-grams are rare be-

cause the data needed to compile such records is limited, prohibitively expensive,

and often proprietary [4]. Nevertheless, identifying linguistic patterns in digitized

archives has proven to have a tremendous societal impact beyond the readily seen

observations. Researchers show it is possible to predict political unrest by analyzing

temporal trends found in a large digital news archive [132, 173]. Other studies extend

this form of computational lexicology, assessing the foreseeable cultural impact of

conservation interventions [166], and examining gender bias in newspapers [96].
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Availability of data is arguably one of the key drivers of these technical advances.

The positive feedback loop between machine learning systems and computational lin-

guistics has been essential to further enlighten our understanding of language usage

in sociotechnical systems. Despite the recent accomplishments, most large-scale stud-

ies focus on stylized and copyedited corpora such as books, news articles, and other

formal records [132, 197, 198, 257, 308]. Google has also created a similar framework

to track n-gram usage time series in search data, aptly named Google Trends.1 Many

studies have showed the utility of using search data to predict and forecast sociotech-

nical trends [263], such as economic indicators [54], disease outbreaks [45], and health

care [211].

1.1.2 Social media

Over the past decade, however, we have observed an unprecedented growth of social

media, giving birth to large-scale sociotechnical systems with billions of activities

taking place in real time across the entire globe [152]. The rise of social media

platforms has enabled people, media outlets, organizations, and chatbots to share

content freely, transcending physical boundaries. Messages are shared instantly within

nanoseconds, featuring a high temporal resolution to capture and study sociocultural

phenomena.

The decentralized nature of various activities shared on these platforms forms a

distributed sociotechnical sensor system, providing a rich lexicon, with emerging per-

ils, to track and trace trending storylines in real time [9, 146, 212]. Unlike mainstream

media outlets, social media platforms provide unique conversational data streams to

1https://googleblog.blogspot.com/2007/09/its-all-about-today.html
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examine daily discussions and reactions by millions of people on a scale that is inade-

quately captured and analyzed [13, 260]. Social media encodes casual daily conversa-

tion in a format that is simply unavailable through other outlets such as newspapers,

and books. The ever-growing compendium of daily discourse on Twitter, and other

social media platforms, have already made an unprecedented impact on modern in-

dustrial societies (e.g., #ArabSpring, #MeToo, and #BlackLivesMatter) [146].

Mining social media data, particularly Twitter, is useful for marketing, product

development, risk management, and brand interactions [43, 218]. Combined with

sentiment analysis, researchers show that analyzing social media data can be used to

predict box o�ce sales [204], and global �nancial trends [35]. Beyond these notable

applications, researchers also show how the complementary signal derived from social

media can be brought into play for gauging public opinion on pending policies [171,

283], and monitoring in�ammatory discourse [217].

Importantly, these platforms support various communication channels through

which people can discuss and share content�encoding an essential property that

allows researchers to quantify the popularity (i.e., social ampli�cation) of trending

topics [147]. When sharing mechanisms are native to these platforms, we can quan-

tify the collective attention of the public to certain topics. Social ampli�cation is also

rarely encoded in historical text archives. It not only allows us to track and poten-

tially predict trending storylines, but it can also help us disentangle how information

�ows and spreads across communities, identifying misinformation, and tracing dis-

information. Many studies have addressed theoretical models of social ampli�cation

but without adequate data [40, 118, 126, 277].
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1.2 A brief overview

With the exception of Google Trends, existing tools have only focused on easily ac-

cessible and formal digital archives, such as folklore [198], government records [308],

newspapers [257], books [197], radio transcripts [19], and TV news transcripts [132].

However, there is a growing volume of text data on social media that renders human

annotation infeasible for real-time data streams. Sophisticated instruments would be

needed to help us understand how information �ows and persists across communities

on social media platforms. While some data streams that are derived from predom-

inant outlets such as Facebook and Instagram are locked behind corporate doors,

Twitter and Reddit, among a few others, share their data with researchers across

disciplines.

Building on the state-of-the-art research of culturomics, I describe the develop-

ment of a couple of new tools to help researchers, journalists, and data scientists study

the vast universe of stories on social media, particularly Twitter. I present Storywran-

gler, an evolving research instrument powered by machine learning and a staggering

computing cluster to track and trace usage rates of words for the majority of spoken

languages in trillions of messages on Twitter. In a series of case studies, I show how

Storywrangler can document world events in real time, capturing narratively trend-

ing storylines to examine heated political debates, rising social movements, emerging

developments and outbreaks, neologisms, memes, emojis, and the quotidian.

Vitally, and problematically absent from existing text corpora such as books and

news archives, Storywrangler also encodes popularity (i.e. social ampli�cation) ofn-

grams by tracking their rate of usage across retweets. To explore the interplay of social
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contagion on Twitter, we investigate the relative ampli�cation ofn-grams visualized

through `contagiograms', a bespoke Python package to examine word rankings and

social ampli�cation. Although Storywrangler leverages Twitter data, our method of

extracting and tracking dynamic changes of n-grams can be extended to any similar

social media platform.

Finally, I describe the integration of Storywrangler into existing sociotechnical

instruments, particularly, the Hedonometer�an instrument that measures the daily

rate of happiness on Twitter [80]. Using word embeddings and transfer learning, I

present a new tool for augmenting semantic dictionaries, such as labMT [81]. The

proposed framework reduces the need for crowdsourcing annotations and provides

better accuracy when compared with a random set of reviewers from Amazon Me-

chanical Turk. While the new method can be �ne-tuned to predict scores for any

semantic lexicon, we focus on predicting happiness scores for the Hedonometer to

capture the emotional valance of various events on social media.

1.2.1 Sociocultural significance

Although other topics, such as breaking news and major stories, are documented in

mainstream media, social media provides a unique outlet for ephemeral conversations

that are not well captured using other data sources. While it might seem frivolous

to track discourse on Twitter ranging from political movements to K-pop to sports

to music and favorite movie stars, the banal everyday sociocultural trends encode a

unique perspective that is often complementary to observations derived from more

formal texts to examine the coevolution of language and culture. Storywrangler

features a data-driven approach to index what regular people are talking about in
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everyday conversations, in addition (or contrast) to what reporters and authors have

shared with the public.

Storywrangler tracks the periodic signal of words related to religious festivals and

the collective attention for international sports events. It shows hown-grams con-

nected with new movies and TV series burst into social media then slowly decay,

making direct comparisons with their worldwide box-o�ce earnings. Storywrangler

revels how marketing campaigns can take advantage of the periodic nature of narra-

tively trending n-grams, exploiting popular hashtags to amplify their message (e.g.,

including #FF and #TGIF as trending hashtags for Friday promotions).

The time series derived from Storywrangler can also be cross-referenced with other

data repositories to enable data-driven, computational versions of journalism, lin-

guistics, history, economics, and political science. For example, changes in salient

word usage (e.g., `rebellion, and `crackdown') are signi�cantly associated with future

changes in geopolitical risk and lower stock returns (see Appendix 3.E). We show

how words that are linked to the COVID-19 outbreak and the percent change in how

frequently they are used can be correlated with similar volatility in the number of

reported coronavirus cases and deaths a couple of weeks later across 24 languages

on Twitter [6]. Expressions and hashtags associated with political movements can

be directly compared with recorded incidents of fatal police violence [309]. Tracking

hurricane name mentions, we �nd di�erent temporal patterns of collective attention

correlated with deaths and damage reportings [8].

Social media, as an example of a growing large-scale social structure, is essentially

a platform whereby individuals can form, share, and reshape their social behavior and

others [107]. For instance, a singlen-gram can embody a sociocultural change (e.g.,
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#MeToo, #BlackLivesMatter), leaving a remarkable footprint on social media before

it ever became part of the formal, mainstream conversation. Storywrangler creates a

digital record of the collective attention on social media to these emerging sociotech-

nical phenomena, documented in the dailyn-gram usage rates. Having a large-scale

daily record of such trends creates a transformative potential for the humanities and

social sciences.

1.2.2 Implications and limitations

Sample size For a primary social media source, we use Twitter as it provides

an open research platform while acknowledging its limitations. Twitter's userbase

is not representative of all voices [193], but It provides an outlet for all people to

voluntarily carry out conversations that matter to their lives. We use roughly 10%

of all tweets ever posted on the platform, thus our tool presents an approximate

daily leaderboard of heavy-tailedn-gram Zipf distributions [322]. Researchers have

inspected ways to study Zipf distributions and estimate the robustness and stability

of their tails [33, 120, 229, 234]. Investigators have also examined various aspects

of Twitter's Sample API [227], and how that may a�ect the observed dailyn-gram

frequency-of-usage distributions [303]. We provide a brief analysis of the lexicon in

Appendix 3.A, describing the distributions ofn-grams in our dataset. It is a modest

attempt to explore and examine the temporal lexical distributions ofn-grams.

However, half of the words that appear in a corpus will appear only once [120,

234, 322]. While the length of phrases is limited on Twitter (140 characters prior

to the last few months of 2017, 280 thereafter2), the numbers of unique bigrams and

2https://blog.twitter.com/en _us/topics/product/2017/tweetingmadeeasier.html
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trigrams strongly outweigh the number of unique unigrams because of the combinato-

rial properties of language. Future work can shed light on the changes in the lexicon

over time. Tweet sampling may render this task di�cult in practice, especially for

less-used languages on the platform. Regardless, we are unable to make assertions

about the size of Twitter's user base or message volume. We do not have knowledge

of Twitter's overall volume (and do not seek to per Twitter's terms of service). We

deliberately focus on ranks and relative usage rates forn-grams away from the tails of

their distributions. Raw frequencies of exceedingly rare words are roughly one-tenth

of the true values regarding all of Twitter, however, rankings are likely to be subject

to change.

Language coverage In the �rst case study, we describe how we detect language

labels of all tweets in our collection using FastText-LID [32, 144]. A uniform language

re-identi�cation is necessary as Twitter's real-time identi�cation algorithm was intro-

duced in late 2012 and then adjusted over time, resulting in temporal inconsistencies.

The word embeddings provided by FastText span a wide set of languages, includ-

ing some regional dialects (see Table 2.A.1 for the full list of languages detectable

by FastText-LID). However, language detection of short-text remains an outstanding

challenge in NLP. While we hope to expand our language detection in future work,

we still classify messages based on the languages identi�ed by FastText-LID. We use

FastText-LID as a light, fast, and reasonably accurate language detection tool to

overcome the challenge of missing language labels in our Twitter historical feed. Al-

though Storywrangler can detect continuous-script languages, such as Japanese and

Chinese, it is unable to parse their tweets inton-grams because of technical limita-

tions. However, we would like to emphasize that Storywrangler still features a wide
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range of non-western languages such as Hindi, Indonesian, Korean, Bengali, Nepali,

Arabic, Turkish, Persian, and Hebrew.

Social ampli�cation There are substantive limitations to Twitter data, some of

which are evident in many large-scale text corpora. Ourn-gram dataset contends with

popularity, allowing for the examination of story ampli�cation, and we emphasize the

importance of using contagiograms as visualization tools that go beyond presenting

simple time series. Popularity, however, is notoriously di�cult to measure. The

main proxy we use for popularity is the relative rate of usage of a givenn-gram

across originally authored tweets, examining how each term or phrase is socially

ampli�ed via retweets. While Twitter attempts to measure popularity by counting

impressions, it is increasingly di�cult to capture the number of people exposed to a

tweet. Twitter's centralized trending feature is yet another dimension that alters the

popularity of terms on the platform, personalizing each user timeline and inherently

amplifying algorithmic bias. We have also observed a growing passive behavior across

the platform, leading to an increasing preference for retweets over original tweets for

most languages on Twitter during the past few years [7].

Ethical considerations In building Storywrangler, we have prioritized privacy by

aggregating statistics to day-scale resolution for individual languages, truncating dis-

tributions, ignoring geography, and masking all metadata. We have also endeavored

to make our work as transparent as possible by releasing all code associated with

the API. Although we frame Storywrangler as a research focused instrument akin to

a microscope or telescope for the advancement of science, it does not have built-in

ethical guardrails.
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There is potential for misinterpretation and mischaracterization of the data, whether

purposeful or not. We strongly caution against cherry picking isolated time series

that might suggest a particular story or social trend. Words and phrases may drift

in meaning and other terms take their place. For example, `coronavirus' gave way to

`covid' as the dominant term of reference on Twitter for the COVID-19 pandemic in

the �rst six months of 2020 [6]. To in part properly demonstrate a trend, researchers

would need to at least marshal together thematically relatedn-grams, and do so in

a data-driven way, as we have attempted to do for our case studies. Thoughtful con-

sideration of overall and normalized frequency of usage would also be needed to show

whether a topic is changing in real volume.

1.2.3 Outline

The work is organized into a series of four case studies, illustrating the crucial value

of developing NLP instruments to study social media platforms at scale. In the �rst

case study, we investigate the dynamics of social ampli�cation in a sociotechnical

system, examining the daily usage of over 100 languages on Twitter throughout the

past decade. Building on our previous work, we present Storywrangler in the sec-

ond case study, an instrument that extracts sociotechnical time series of words and

phrases from social media data streams, automatically capturing narratively trending

storylines.

In the third case study, we curate a set of 2000 day-scale time series of unigrams

and bigrams across 24 languages that are most salient to the COVID-19 pandemic as

a data repository for current and retrospective investigations. Using Storywrangler

and the proposed dataset of the most narratively dominantn-grams we upgrade the
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Hedonometer [80], amplifying the tool's utility to capture the sentiment of unfolding

events in real time.

In the fourth and last case study, we propose a framework for augmenting semantic

lexicons using transfer learning, reducing the need for crowdsourcing scores from

human annotators. Although our framework can be used in a more general sense, we

focus on predictinghappiness scoresfor the Hedonometer and the labMT dataset [81].

Throughout each chapter, I discuss direct applications of the proposed instru-

ments in multilingual and longitudinal social media data streams. Comparing the

utility of these instruments with similar frameworks, I highlight their bene�ts while

acknowledging existing limitations and outlining future developments.
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ˆ Alshaabi, T., Van Oort, C. M., Fudolig, M., Arnold, M. V., Danforth, C. M.,
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transfer learning. Manuscript in preparation (2021).

ˆ Alshaabi, T., Adams, J. L., Arnold, M. V., Minot, J. R., Dewhurst, D. R.,

Reagan, A. J., Danforth, C. M., and Dodds, P. S. Storywrangler: A massive ex-

ploratorium for sociolinguistic, cultural, socioeconomic, and political timelines

using Twitter. Science Advances(2021).

ˆ Alshaabi, T., Dewhurst, D. R., Minot, J. R., Arnold, M. V., Adams, J. L.,

Danforth, C. M., and Dodds, P. S. The growing ampli�cation of social media:

Measuring temporal and social contagion dynamics for over 150 languages on

Twitter for 2009�2020. EPJ Data Science(2021).

ˆ Alshaabi, T., Arnold, M. V., Minot, J. R., Adams, J. L., Dewhurst, D. R.,

Reagan, A. J., Muhamad, R., Danforth, C. M., and Dodds, P. S. How the

world's collective attention is being paid to a pandemic: COVID-19 related

n-gram time series for 24 languages on Twitter.Plos One(2021).
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Chapter 2

Exploring sociolinguistic amplifi-

cation in textual archives
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2.1 Abstract

Working from a dataset of 118 billion messages running from the start of 2009 to

the end of 2019, we identify and explore the relative daily use of over 150 languages

on Twitter. We �nd that eight languages comprise 80% of all tweets, with English,

Japanese, Spanish, Arabic, and Portuguese being the most dominant. To quantify

social spreading in each language over time, we compute the `contagion ratio': The

balance of retweets to organic messages. We �nd that for the most common languages

on Twitter there is a growing tendency, though not universal, to retweet rather than

share new content. By the end of 2019, the contagion ratios for half of the top 30

languages, including English and Spanish, had reached above 1�the naive contagion

threshold. In 2019, the top 5 languages with the highest average daily ratios were, in

order, Thai (7.3), Hindi, Tamil, Urdu, and Catalan, while the bottom 5 were Russian,

Swedish, Esperanto, Cebuano, and Finnish (0.26). Further, we show that over time,

the contagion ratios for most common languages are growing more strongly than those

of rare languages.
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2.2 Introduction

Users of social media are presented with a choice: post nothing at all; post something

original; or re-post (�retweet� in the case of Twitter) an existing post. The simple

amplifying mechanism of reposting encodes a unique digital and behavioral aspect

of social contagion, with increasingly important rami�cations as interactions and

conversations on social media platforms such as Twitter tend to mirror the dynamics

of major global and local events [40, 125, 208, 277].

Previous studies have explored the role of retweeting in the social contagion liter-

ature, though the vast majority of this research is limited to either a given language

(e.g., English tweets) or a short period [40, 118, 126, 277]. Here, drawing on a 10%

random sample from over a decade's worth of tweets, we track the rate of originally

authored messages, retweets, and social ampli�cation for over 100 languages.

We describe distinct usage patterns of retweets for certain populations. For ex-

ample, Thai, Korean, and Hindi have the highest contagion ratios, while Japanese,

Russian, Swedish, and Finish lie at the other end of the spectrum. While there is a

wide range of motives and practices associated with retweeting, our object of study

is the simple di�erentiation of observed behavior between the act of replication of

anything and the act ofde novogeneration (i.e., between retweeted and what we will

call organic messages).

We acknowledge two important limitations from the start. First, while it may be

tempting to naively view ideas spreading as infectious diseases, the analogy falls well

short of capturing the full gamut of social contagion mechanisms [25, 47, 66, 69, 77,

78, 108, 111, 259, 295], and a full understanding of social contagion remains to be
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established. And second, while higher contagion ratios are in part due to active social

ampli�cation by users, they may also, for example, re�ect changes in Twitter's design

of the retweet feature, changes in demographics, or changes in a population's general

familiarity with social media. Future work will shed light on the psychological and

behavioral drivers for the use of retweets in each language across geographical and

societal markers, including countries and communities.

2.3 Background and motivation

Social contagion has been extensively studied across many disciplines including mar-

keting [15, 139, 289, 297], �nance [59, 93, 123, 150], sociology [39, 114], and medicine [55,

219, 233]. Because it can be easier to access data on human social behavior from social

media outlets than from other sources such as in-person or text-message conversations,

social contagion dynamics are often examined in the context of messages posted and

subsequently re-posted on social media platforms [36, 89, 94, 159]. Indeed, the �ow

of information in the context of social contagion on digital media outlets, especially

Twitter, has been widely studied over the last decade [126, 174], with attention paid

to the spreading of certain kinds of messages, such as rumours [38, 145, 165, 214, 324],

misinformation and �fake news� [70, 262, 268, 285]. Several models have also been

proposed to predict the spread of information on Twitter [318], while other models

have shown the di�erences in which various topics can propagate throughout social

networks [247, 301]. Studies have also investigated the extent to which information

spread on Twitter can have an echo chamber e�ect [14, 61].

The body of research shows overwhelming evidence that retweeting is a key instru-
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ment of social contagion on Twitter [208, 273]. One of the earliest analysis of Twitter

by Kwak et al. [164] suggests that a retweet can reach an average of a thousand users

regardless of the social network of its original author, spreading its content instantly

across di�erent hubs of the full Twitter social network. While seemingly simple,

there are di�erent styles and drivers of retweeting [40]. The practice of retweeting

has become a convention on Twitter to spread information, especially for celebrities.

Researchers argue celebrities can act as hubs of social contagion by studying the �ow

of retweets across their focal networks [118]. Recent work shows how retweets of o�-

cials can be either alarming or reassuring amid the COVID�19 pandemic [207, 239].

Statistical features of retweets reveal a strong association between links and hashtags

in most retweeted messages [277]. Retweeting is not only an act in which users can

spread information, but a mechanism for actors to become involved in a conversa-

tion without being active participants [40]. The use of retweets empirically alters the

visibility of information and how fast messages can spread on the platform [125].

Other studies have quanti�ed language usage on social media [48, 95], particu-

larly on Twitter [34, 153]. While investigators have studied the use of retweets in the

context of social contagion using network-based approaches [91, 174, 207, 247], little

research has been done regarding the statistical variability of retweets across the vast

majority of languages. In this study, by applying an updated language identi�cation

(LID) process to over a decade of Twitter messages, we explore a macroscopic de-

scription of social contagion through the use of retweets across languages on Twitter.

Our study addresses a unique property of social contagion on Twitter by statisti-

cally quantifying the rate of retweets in each language. We show how the practice of

retweeting varies across di�erent languages and how retweeting naturally lends itself
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to micro-level discussions of social contagion on Twitter, which can also be extended

to other social media outlets with similar features.

We structure this chapter as follows. First, we discuss the state-of-the-art tools

presently used for language detection of short and informal messages (e.g., tweets).

We then describe our dataset and processing pipeline to answer some key questions re-

garding social contagion through the use of retweets. Based on our considerations, we

deploy FastText-LID [32, 143] to identify and explore the evolution of 100+ languages

in over 118 billion messages collected via Twitter's 10% random sample (decahose)

from 2009 to 2020 [292].

For messages posted after 2013, we also analyze language labels provided by Twit-

ter's proprietary LID algorithm and justify using FastText-LID as an alternative LID

tool to overcome the challenge of missing language labels in the historical feed from

Twitter (see also Hong et al. [133]).

We study the empirical dynamics of replication: The rate at which users choose

to retweet instead of generating original content; and how that rate varies across

languages temporally. We quantify the ratio of retweets to new messages (contagion

ratio) in each language. In most common languages on Twitter, we show that this

ratio reveals a growing tendency to retweet.

Finally, we present a detailed comparison with the historical data feed in Ap-

pendix 2.A. We conclude with an analytical validation of our contagion ratios (Ap-

pendix 2.B), and the impact of tweet-length on language detection (Appendix 2.C).

We also provide an online appendix at:http://compstorylab.org/storywrangler/

papers/tlid/ .
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2.4 Data and methods

Twitter is a well-structured streaming source of sociotechnical data, allowing for the

study of dynamical linguistics and cultural phenomena [75, 323]. Of course, like many

other social platforms, Twitter represents only a subsample of the publicly declared

views, utterances, and interactions of millions of individuals, organizations, and auto-

mated accounts (e.g., social bots) around the world [149, 194, 205, 305]. Researchers

have nevertheless shown that Twitter's collective conversation mirrors the dynamics

of local and global events [216] including earthquakes [254], �u and in�uenza [67, 168],

crowdsourcing and disaster relief [102, 231], major political a�airs [271], and fame dy-

namics for political �gures and celebrities [82]. Moreover, analyses of social media

data and digital text corpora over the last decade have advanced natural language pro-

cessing (NLP) research [122, 245, 246] such as language detection [23, 183, 184, 302],

sentiment analysis [57, 79, 151, 161, 163], word embeddings [72, 112, 201, 223], and

machine translation [11, 186, 220].

LID is often referred to as a solved problem in NLP research [113, 135, 182, 185,

191], especially for properly formatted documents, such as books, newspapers, and

other long-form digital texts. Language detection for tweets, however, is a challenging

task due to the nature of the platform. Every day, millions of text snippets are posted

to Twitter and written in many languages along with misspellings, catchphrases,

memes, hashtags, and emojis, as well as images, gifs, and videos. Encoding many

cultural phenomena semantically, these features contribute to the unique aspects of

language usage on Twitter that are distinct from studies of language on longer, edited

corpora [196].
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A key challenge of LID on Twitter data is the absence of a large, public, annotated

corpus of tweets covering most languages for training and evaluation of LID algo-

rithms. Although researchers have compiled a handful of manually labeled datasets

of Twitter messages, the proposed datasets were notably small compared to the size

of daily messages on Twitter and limited to a few common languages [23, 184, 302].

They showed, however, that most o�-the-shelf LID methods perform relatively well

when tested on annotated tweets.

As of early 2013, Twitter introduced language predictions classi�ed by their in-

ternal algorithm in the historical data feed [248]. Since the LID algorithm used by

Twitter is proprietary, we can only refer to a simple evaluation of their own model.1

Our analysis of Twitter's language labels indicates Twitter appears to have tested

several language detection methods, or perhaps di�erent parameters, between 2013

and 2016.

Given access to additional information about the author of a tweet, the LID task

would conceivably be much more accurate. For example, if the training data for

prediction included any or all of the self-reported locations found in a user's `bio', the

GPS coordinates of their most recent tweet, the language they prefer to read messages

in, the language associated with individuals they follow or who follow them, and

their collective tweet history, we expect the predictions would improve considerably.

However, for the present investigation, we assume the only available predictors are

found in the message itself. Our goal is to use the state-of-the-art language detection

tools to get consistent language labels for messages in our data set to enable us to

investigate broader questions about linguistic dynamics and the growth of retweets

1https://blog.twitter.com/engineering/en _us/a/2015/evaluating-language-identification-performance.
html
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on the platform over time.

2.4.1 Open-source tools for language detection

Several studies have looked closely at language identi�cation and detection for short-

text [46, 88, 110, 210, 242, 272, 288, 299], particularly on Twitter where users are

limited to a few characters per tweet (140 prior to the last few months of 2017,

280 thereafter [249]). Researchers have outlined common challenges speci�c to this

platform [17, 106].

Most studies share a strong consensus that language identi�cation of tweets is

an exceptionally di�cult task for several reasons. First, language classi�cation mod-

els are usually trained over formal and large corpora, while most messages shared

on Twitter are informal and composed of 140 characters or fewer [23, 184] (see Ap-

pendix 2.C for more details). Second, the informal nature of the content is also a

function of linguistic and cultural norms; some languages are used di�erently over

social media compared to the way they are normally used in books and formal doc-

uments. Third, users are not forced to choose a single language for each message;

indeed messages are often posted with words from several languages found in a sin-

gle tweet. Therefore, the combination of short, informal, and multilingual posts on

Twitter makes language detection much more di�cult compared to LID of formal

documents [232]. Finally, the lack of large collections of veri�ed ground-truth across

most languages is challenging for data scientists seeking to �ne-tune language detec-

tion models using Twitter data [23, 29, 325].

Researchers have evaluated o�-the-shelf LID tools on substantial subsets of Twitter

data for a limited number of languages [23, 29, 184]. For example, Google's Compact
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Language Detector (versions CLD-12 and CLD-23) o�er open-source implementations

of the default LID tool in the Chrome browser to detect language used on web pages

using a naive Bayes classi�er. In 2012, Lui and Baldwin [183] proposed a model

called langid that uses ann-gram-based multinomial naive Bayes classi�er. They

evaluated langid and showed that it outperforms Google's CLD on multiple datasets.

A majority-vote ensemble of LID models is also proposed by Lui and Baldwin [184]

that combines both Google's CLD and langid to improve classi�cation accuracy for

Twitter data.

Although using a majority-vote ensemble of LID models may be the best option to

maximize accuracy, there are a few critical trade-o�s including speed and uncertainty.

The �rst challenge of using an ensemble is weighing the votes of di�erent models. One

can propose treating all models equally and taking the majority vote. This becomes

evidently complicated in case of a tie, or when models are completely unclear on a

given tweet. Treating all models equally is an arguably �awed assumption given that

not all models will have the same con�dence in each prediction�if any is reported.

Unfortunately, most LID models either decline to report a con�dence score, or lack

a clear and consistent way of measuring their con�dence. Finally, running multiple

LID classi�ers on every tweet is computationally expensive and time-consuming.

Recent advances in word embeddings powered by deep learning demonstrate some

of the greatest breakthroughs across many NLP tasks including LID. Unlike previous

methodologies, Devlin et al. [72] introduces a new language representation model

called BERT. An additional output layer can be added to the pre-trained model

to harvest the power of the distributed language representations, which enables the

2http://code.google.com/p/chromium-compact-language-detector/
3https://github.com/CLD2Owners/cld2

24



model to carry out various NLP tasks such as LID.

FastText [32, 143] is a recently proposed approach for text classi�cation that uses

n-gram features similar to the model described by Mikolov et al. [199]. FastText

employs various tricks [32, 112, 201] in order to train a simple neural network using

stochastic gradient descent and a linearly decaying learning rate for text classi�cation.

While FastText is a language model that can be used for various text mining tasks,

it requires an additional step of producing vector language representations to be

used for LID. To accomplish that, we use an o�-the-shelf language identi�cation

tool [32] that uses the word embeddings produced by the model. The proposed tool

uses a hierarchical softmax function [143, 199] to e�ciently compute the probability

distribution over the prede�ned classes (i.e., languages). For convenience, we will

refer to the o�-the-shelf LID tool [32] as FastText-LID throughout the paper. The

authors show that FastText-LID is on par with deep learning models [62, 319] in terms

of accuracy and consistency, yet orders of magnitude faster in terms of inference

and training time [32]. They also show that FastText-LID outperforms previously

introduced LID tools such as langid.4

2.4.2 Processing pipeline

While there are many tools to consider for LID, it is important for us to ensure that the

language classi�cation process stays rather consistent to investigate our key question

about the growth of retweets over time. In light of the technical challenges discussed

in the previous section, we have con�ned this work to using FastText-LID [32] due to

its consistent and reliable performance in terms of inference time and accuracy.

4https://fasttext.cc/blog/2017/10/02/blog-post.html
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To avoid biasing our language classi�cation process, we �lter out Twitter-speci�c

content prior to passing tweets through the FastText-LID model. This is a simple

strategy originally proposed by Tromp and Pechenizkiy [288] to improve language

classi�cation [24, 184]. Speci�cally, we remove the pre�x associated with retweets

(�RT�), links (e.g., �https://twitter.com�), hashtags (e.g., �#newyear�), handles

(e.g., �@username�), html codes (e.g., �&gt�), emojis, and any redundant whites-

paces.

Once we �lter out all Twitter-speci�c content, we feed the remaining text through

the FastText-LID neural network and select the predicted language with the highest

con�dence score as our ground-truth language label. If the con�dence score of a given

prediction is less than 25%, we label that tweet as Unde�ned (und ). Similarly, if no

language classi�cation is made by the Twitter-LID model, Twitter �ags the language

of the message as unde�ned [228, 293]. We provide a list of all language labels assigned

by FastText-LID compared to the ones served by Twitter-LID in Table 2.A.1.

We subsequently extract day-scale time series and Zipf distributions for uni-

grams, bigrams, and trigrams and make them available through an analytical in-

strument entitled Storywrangler. Our tool is publicly available online at: https:

//storywrangling.org . See Alshaabi et al. [5] for technical details about our

project.
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2.5 Results

2.5.1 Temporal and empirical statistics

We have collected a random 10% sample of all public tweets posted on the Twitter

platform starting January 1, 2009. Using the steps described in Sec. 2.4.2, we have

implemented a simple pipeline to preprocess messages and obtain language labels

using FastText-LID [32]. Our source code along with our documentation is publicly

available online on a Gitlab repository.5 Here, we evaluate our results by comparing

the language labels obtained by FastText-LID to those found in the metadata provided

by Twitter's internal LID algorithm(s). Our initial analysis of the Decahose metadata

indicated missing language labels until 2013, when Twitter began o�ering a language

prediction (we o�er an approach to detecting corrupted time series [84]).

We �nd that our classi�cation of tweets using FastText-LID notably improves the

consistency of language labels when compared to the labels served with the historical

streaming feed. In Fig. 2.1A, we display a weekly rolling average of the daily number

of languages detected by each classi�er over time. We see that Twitter's language

detection has evolved over time. The number of languages stabilized but continued to

�uctuate in a manner that is not consistent, with uncommon languages having zero

observations on some given days. By contrast, the FastText-LID time series of the

number of languages shows some �uctuations in the earlier years�likely the result of

the smaller and less diverse user base in the late 2000s�but stabilizes before Twitter

introduces language labels. We note that the �uctuations in the time series during the

5https://gitlab.com/compstorylab/storywrangler
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Figure 2.1: Language time series for the Twitter historical feed and FastText-LID
classi�ed tweets. A. Number of languages reported by Twitter-LID (red) and classi�ed by
FastText-LID (black) since September 2008. Fluctuations in late 2012 and early 2013 for the
Twitter language time series are indicative of inconsistent classi�cations. B. Rate of usage
by language using FastText-LID maintains consistent behavior throughout throughout that
period. The change in language distribution when Twitter was relatively immature can be
readily seen�for instance, English accounted for an exceedingly high proportion of activity
on the platform in 2009, owing to Twitter's inception in an English-speaking region.
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early years of Twitter (before 2012) and the �rst week of 2017 are primarily caused

by unexpected service outages which resulted in missing data.

FastText-LID classi�es up to 173 languages, some of which are rare, thus the

occasional dropout of a language seen in this time series is expected. On the other

hand, Twitter-LID captures up to 73 languages, some of which are experimental and

no longer available in recent years. Nonetheless, Fig. 2.1B shows that the overall rate

of usage by language is not impaired by the missing data, and maintained consistent

behavior throughout the last decade.

We compute annual confusion matrices to examine the language labels classi�ed

by FastText-LID compared to those found in the historical data feed. Upon inspec-

tion of the computed confusion matrices, we �nd disagreement during the �rst few

years of Twitter's introduction of the LID feature to the platform. As anticipated,

the predicted language for the majority of tweets harmonizes across both classi�ers

for recent years (see Fig. 2.A.1). We notice some disagreement between the two clas-

si�ers on expected edge-cases such as Italian, Spanish, and Portuguese where the

lexical similarity among these languages is very high [37, 142, 244, 255]. Overall, our

examination of average language usage over time demonstrates that FastText-LID is

on par with Twitter's estimation. We show the corresponding Zipf distribution of

language usage for each classi�er, and highlight the normalized ratio di�erence be-

tween them for the most used languages on the platform in Figs. 2.A.2�2.A.3. We

point the reader's attention to Appendix 2.A for further details of our comparison.

Furthermore, we display a heatmap of the number of messages for each language

as classi�ed by FastText-LID in our data set (see Fig. 2.2). We have over 118 billion

messages between 2009-01-01 and 2019-12-31 spanning 173 languages. English is the
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Figure 2.2: Overal l dataset statistics. Number of messages captured in our dataset as
classi�ed by the FastText-LID algorithm between 2009-01-01 and 2019-12-31, which sums
up to a approximately 118 billion messages throughout that period (languages are sorted by
popularity). This collection represents roughly 10% of all messages ever posted.
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Figure 2.3: Annual average rank of the most used languages on Twitter between
2009 and 2020. English and Japanese show the most consistent rank time series. Spanish,
and Portuguese are also relatively stable over time. Unde�ned�which covers a wide variety
of content such as emojis, links, pictures, and other media�also has a consistent rank time
series. The rise of languages on the platform correlates strongly with international events
including Arab Spring and K-pop, as evident in both the Arabic and Korean time series,
respectively. Russian, German, Indonesian, and Dutch moved down in rank. This shift is
not necessarily due to a dramatic drop in the rate of usage of these languages, but is likely an
artifact of increasing growth of other languages on Twitter such as Thai, Turkish, Arabic,
Korean, etc.

most used language on the platform with a little under 42 billion messages throughout

the last decade. Although the number of Japanese speakers is much smaller than the

number of English speakers around the globe, Japanese has approximately 21 billion

messages. Spanish�the third most prominent language on Twitter�is shy of 11

billion messages. Arabic and Portuguese rank next with about 7 billion messages

for each. We note that the top 10 languages comprise 85% of the daily volume of

messages posted on the platform.
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In Fig. 2.3, we show the �ow of annual rank dynamics of the 15 most used lan-

guages on Twitter between 2009 and 2020. For ease of description, we will refer

to Unde�ned as a language class. The top 5 most common languages on Twitter

(English, Japanese, Spanish, Unde�ned, and Portuguese) are consistent, indicating

a steady rate of usage of these languages on the platform. The language rankings

correspond with worldwide events such as the Arab Spring [65, 74, 136, 307], K-pop,

and political events [82]. �Unde�ned� is especially interesting as it covers a wide

range of content such as emojis, memes, and other media shared on Twitter but can't

necessarily be associated with a given language. Russian, however, starts to grow on

the platform after 2011 until it peaks with a rank of 7 in 2015, then drops down to

rank 15 as of the end of 2019. Other languages such as German, Indonesian, and

Dutch show a similar trend down in ranking. This shift is not necessarily caused by

a drop in the rate of usage of these languages, but it is rather an artifact prompted

by the growth of other languages on Twitter.

2.5.2 Separating organic and retweeted messages

We take a closer look at the �ow of information among di�erent languages on the

platform, speci�cally the use of the �retweet� feature as a way of spreading informa-

tion. Encoding a behavioral feature initially invented by users, Twitter formalized

the retweet feature in November 2009 [275]. Changes in platform design and the

increasing popularity of mobile apps promoted the RT as a mechanism for spreading.

In April 2015, Twitter introduced the ability to comment on a retweet message or

�Quote Tweet�(QT) [264] a message, distinct from a message reply [274].

To quantify the rate of usage of each language with respect to these di�erent
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means by which people communicate on the platform, we categorize messages on

Twitter into two types: �Organic Tweets� (OT), and �Retweets� (RT). The former

category (OT) encompasses original messages that are explicitly authored by users,

while the latter category (RT) captures messages that are shared (i.e. ampli�ed) by

users. We break each quote tweet into two separate messages: a comment and a

retweet. We exclude retweets while including all added text (comments) found in

quote tweets for the OT category.

For each dayt and for each languagè, we calculate the raw frequency (count) of

organic messagesf (OT)
`;t , and retweetsf (RT)

`;t . We further determine the frequency of

all tweets (AT) such that: f (AT)
`;t = f (OT)

`;t + f (RT)
`;t . The corresponding rate of usages

(normalized frequencies) for these two categories are then:

p(OT )
t;` =

f (OT )
t;`

f (AT )
t;`

; and p(RT )
t;` =

f (RT )
t;`

f (AT )
t;`

: (2.1)

2.5.3 Measuring sociolinguistic wildfire through

the growth of retweets

To further investigate the growth of retweets, we use the ratio of retweeted messages

to organic messages as an intuitive and interpretable analytical measure to track this

social ampli�cation phenomenon. We de�ne the `contagion ratio' as:

R`;t = f (RT)
`;t

,

f (OT)
`;t : (2.2)

In 2018, the contagion ratio exceeded 1, indicating a higher number of retweeted
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Figure 2.4: Timeseries for organic messages, retweeted messages, and aver-
age contagion ratio for al l languages. A. Monthly average rate of usage of or-
ganic messages (p(OT )

t;` , blue), and retweeted messages (p(RT )
t;` , orange). The solid red

line highlights the steady rise of the contagion ratioR`;t . B. Frequency of organic mes-

sages (f (OT)
`;t , blue), compared to retweeted messages (f (RT)

`;t , orange). The areas shaded
in light grey starting in early 2018 highlights an interesting shift on the platform where
the number of retweeted messages has exceeded the number of organic messages. An in-
teractive version of the �gure for all languages is available in an online appendix:http:
//compstorylab.org/storywrangler/papers/tlid/files/ratio _timeseries.html .
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messages than organic messages (Fig. 2.4). The overall count for organic messages

peaked in the last quarter of 2013, after which it declined slowly as the number of

retweeted messages climbed to approximately 1.2 retweeted messages for every organic

message at the end of 2019. Thereafter, the contagion ratio declined through 2020

with the exception of a surge of retweets in the summer amid the nationwide protests

sparked by the murder of George Floyd.6

In 2020, Twitter's developers redesigned their retweet mechanism, purposefully

prompting users to write their own commentary using the Quote Tweet [99], along

with several new policies to counter synthetic and manipulated media [98, 250, 251].

While the long upward trend of the contagion ratio is in part due to increasingly active

social ampli�cation by users, the recent trend demonstrates how social ampli�cation

on Twitter is highly susceptible to systematic changes in the platform design. Twitter

has also introduced several features throughout the last decade, such as tweet ranking,

and extended tweet length that may intrinsically in�uence how users receive and share

information in their social networks.7 We investigate the robustness of our �ndings

regarding contagion ratios in light of some of these changes in Appendix 2.B and

Appendix 2.C. Future work will shed light on various aspects of social ampli�cation

on Twitter with respect to the evolution of the platform design, and behavioral drivers

for the use of retweets in each language across communities.

Finally, we show weekly aggregation of the rate of usage of the top 30 ranked

languages of 2019 in Fig. 2.5. The time series demonstrate a recent sociolinguistic

shift: Several languages including English, Spanish, Thai, Korean, and French have

transitioned to having a higher rate of retweeted messages than organic messages.

6https://www.nytimes.com/2020/05/31/us/george-floyd-investigation.html
7https://help.twitter.com/en/using-twitter/twitter-conversations
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Figure 2.5: Weekly rate of usage of the top 30 languages (sorted by popular-
ity). For each language, we show a weekly average rate of usage for organic messages
(p(OT )

t;` , blue) compared to retweeted messages (p(RT )
t;` , orange). The areas highlighted in

light shades of gray represent weeks where the rate of retweeted messages is higher than
the rate of organic messages. An interactive version featuring all languages is available in
an online appendix: http://compstorylab.org/storywrangler/papers/tlid/files/
retweets _timeseries.html .
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Thai appears to be the �rst language to have made this transition in late 2013. In

Fig. 2.6, we show a heatmap of the average contagion ratio for the top 30 most used

languages on Twitter per year. With the exception of Indonesian, which showed a

small bump between 2010 and 2013, most other languages began adopting a higher

ratio of retweeted content in 2014. Thai has the highest number of retweeted mes-

sages, with an average of 7 retweeted messages for every organic message. Other

languages, for example, Hindi, Korean, Urdu, Catalan, and Tamil average between 2

to 4 retweeted messages for every organic message. On the other hand, Japanese�the

second most used language on the platform�does not exhibit this trend. Similarly,

German, Italian, and Russian maintain higher rates of organic tweets. The trend of

increasing preference for retweeted messages, though not universal, is evident among

most languages on Twitter. We highlight the top 10 languages with the highest and

lowest average contagion ratio per year in Table 2.B.1 and Table 2.B.2, respectively.

2.6 Discussion

Understanding how stories spread through and persist within populations has always

been central to understanding social phenomena. In a time when information can

�ow instantly and freely online, the study of social contagion has only become more

important.

In the sphere of Twitter, the practice of retweeting is complicated from a social

and psychological point of view. There is a diverse set of reasons for participants

to retweet. For example, scientists and academics can use this elementary feature

to share their �ndings and discoveries with their colleagues. Celebrities and political
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Figure 2.6: Timelapse of contagion ratios. The average ratio is plotted against year for
the top 30 ranked languages of 2019. Colored cells indicate a ratio higher than 0.5 whereas
ratios below 0.5 are colored in white. Table 2.B.1 shows the top 10 languages with the highest
average contagion ratio per year, while Table 2.B.2 shows the bottom 10 languages with the
lowest average contagion ratio per year.
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actors can bene�t from other people retweeting their stories for self-promotion. At-

tackers can also take advantage of this natural feature of social contagion to pursue

malicious intents, deploy social bots, and spread fake news.

In this study, we have analyzed over a hundred billion messages posted on Twitter

throughout the last decade. We presented an alternative approach for obtaining lan-

guage labels using FastText-LID in order to overcome the challenge of missing labels

in the Decahose dataset, obtaining consistent language labels for 100+ languages. We

acknowledge that shortcomings of language detection for short and informal text (e.g.,

tweets) are well known in the NLP literature. Using FastText-LID is not necessarily

the best approach for language identi�cation. Our analysis may be subject to implicit

measurement biases and errors introduced by word embeddings used to train the lan-

guage detection tool using FastText [32]. We emphasize that we have not intended to

reinvent or improve FastText-LID in this work; we have used FastText-LID only as

a (well-established and tested) tool to enable the study of social contagion dynamics

on Twitter. Nevertheless, we have presented some further analysis of FastText-LID

compared to Twitter-LID in Appendix 2.A. Future work will undoubtedly continue

to improve language detection for short text, particularly for social media platforms.

Our results comparing language usage over time suggest a systematic shift on

Twitter. We found a recent tendency among most languages to increasingly retweet

(spread information) rather than generate new content. Understanding the general

rise of retweeted messages requires further investigation. Possible partial causes might

lie in changes in the design of the platform, increases in bot activity, a fundamental

shift in human information processing as social media becomes more familiar to users,

and changes in the demographics of users (e.g., younger users joining the platform).
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The metrics we have used to compute our contagion ratios are simple but rather

limited. We primarily focused on tracking the rate of organic tweets and retweets

to quantify social ampli�cation of messages on the platform. While our approach of

measuring the statistical properties of contagion ratios is important, it falls short of

capturing how retweets propagate throughout the social networks of users. Future

work may deploy a network-based approach to investigate the �ow of retweets among

users and followers. Whether or not the information is di�erentially propagated across

languages, social groups, economic strata, or geographical regions is an important

question for future research, and beyond the scope of our present work.

Geolocation information for Twitter is also limited, and here we have only ex-

amined contagion ratios at the language level. Language, transcending borders as

it does, can nevertheless be used di�erently across communities. For instance, char-

acterizing the temporal dynamics of contagion ratios for English, which is used all

around the globe, is very di�erent from doing so for Thai�a language that is used

within a geographically well-de�ned population. Di�erent social and geographical

communities have cultures of communication which will need to be explored in future

work.

In particular, it is important to study the relationship between social contagion

dynamics, geographical region, and language. It might be the case that contagion dy-

namics are more homogeneous across geographic regions even when each geographical

region displays high language diversity, orvice versa. However, in order to conduct

this line of research, it is necessary to have accurate geotagging of tweets, which is

currently not the case except for a very small subsample [294]. Future research could

focus on implementing accurate geotagging algorithms that assign tweets a probabilis-
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tic geographical location based on their text and user metadata, while fully respecting

privacy through judicious use of masking algorithms.
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Appendix

2.A Comparison with the historical feed

We have collected all language labels served in the historical data feed, along with the

predicted language label classi�ed by FastText-LID for every individual tweet in our

dataset. We provide a list of all language labels assigned by FastText-LID compared to

the ones served by Twitter-LID in Table 2.A.1. To evaluate the agreement between the

two classi�ers, we computed annual confusion matrices starting from 2013 to the end

of 2019. In Fig. 2.A.1, we show confusion matrices for the 15 most dominate languages

on Twitter for all tweets authored in 2013 (Fig. 2.A.1A) and 2019 (Fig. 2.A.1B).

We observe some disagreement between the two classi�ers during the early years

of Twitter's introduction of the LID feature to the platform. In Fig. 2.A.2, we show

the normalized ratio di�erence �D ` (i.e., divergence) between the two classi�ers for

all messages between 2014 and 2019. Divergence is calculated as:

�D ` =

�
�
�
�
�
CF

` � C T
`

CF
` + CT

`

�
�
�
�
�
; (2.3)

where CF
` is the number of messages captured by FastText-LID for language`, and
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Figure 2.A.1: Language identi�cation confusion matrices. We show a subset of the
full confusion matrix for top-15 languages on Twitter. A. Confusion matrix for tweets
authored in 2013. The matrix indicates substantial disagreement between the two classi�ers
during 2013, the �rst year of Twitter's e�orts to provide language labels. B. For the year
2019, both classi�ers agree on the majority of tweets as indicated by the dark diagonal
line in the matrix. Minor disagreement between the two classi�ers is evident for particular
languages, including German, Italian, and Unde�ned, and there is major disagreement for
Indonesian and Dutch. Cells with values below (.01) are colored in white to indicate very
minor disagreement between the two classi�ers.

CT
` is the number of messages captured by Twitter-LID for languagè.

We show Zipf distributions of all languages captured by FastText-LID and Twitter-

LID in Fig. 2.A.2A and Fig. 2.A.2B, respectively. FastText-LID recorded a total of

173 unique languages, whereas Twitter-LID captured a total of 73 unique languages

throughout that period. Some of the languages reported by Twitter were experi-

mental and no longer available in recent years. In Fig. 2.A.2C, we display the joint

distribution of all languages captured by both classi�ers. Languages found left of

vertical dashed gray line are more prominent using the FastText-LID model (e.g.,

Chinese (zh), Central-Kurdish (ckb), Uighur (ug), Sindhi (sd)). Languages right of
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the line are identi�ed more frequently by the Twitter-LID model (e.g., Estonian (et),

Haitian (ht)). Languages found within the light-blue area are only detectable by one

classi�er but not the other. We note that `Unknown' is an arti�cial label that we

added to �ag messages with missing language labels in the metadata of our dataset.

We list divergence values�D ` for all languages identi�ed in our dataset in Fig. 2.A.3.
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Table 2.A.1: Language codes for both FastText-LID and Twitter-LID tools

Language FT TW Language FT TW Language FT TW Language FT TW

Afrikaans af - Czech cs cs Occitan oc - Tagalog tl tl

Albanian sq - Danish da da Oriya or or Tajik tg -

Amharic am am Dimli diq - Ossetic os - Tamil ta ta

Arabic ar ar Divehi dv dv Pampanga pam - Tatar tt -

Aragonese an - Dotyali dty - Panjabi pa pa Telugu te te

Armenian hy hy Dutch nl nl Persian fa fa Thai th th

Assamese as - Eastern-Mari mhr - Pfaelzisch p� - Tibetan bo bo

Asturian ast - Egyptian-
Arabic

arz - Piemontese pms - Tosk-Albanian als -

Avaric av - Emiliano eml - Polish pl pl Turkish tr tr

Azerbaijani az - English en en Portuguese pt pt Turkmen tk -

Bashkir ba - Lojban jbo - Pushto ps ps Tuvinian tyv -

Basque eu eu Lombard lmo - Quechua qu - Uighur ug ug

Bavarian bar - Lower-Sorbian dsb - Raeto-Romance rm - Ukrainian uk uk

Belarusian be - Luxembourgish lb - Romanian ro ro Unde�ned und und

Bengali bn bn Macedonian mk - Russian-Buriat bxr - Upper-Sorbian hsb -

Bihari bh - Maithili mai - Russian ru ru Urdu ur ur

Bishnupriya bpy - Malagasy mg - Rusyn rue - Uzbek uz -

Bosnian bs bs Malay ms msa Sanskrit sa - Venetian vec -

Breton br - Malayalam ml ml Sardinian sc - Veps vep -

Bulgarian bg bg Maltese mt - Saxon nds - Vietnamese vi vi

Burmese my my Manx gv - Scots sco - Vlaams vls -

Catalan ca ca Marathi mr mr Serbian sr sr Volapuk vo -

Cebuano ceb - Mazanderani mzn - Serbo-Croatian sh - Walloon wa -

Central-Bikol bcl - Minangkabau min - Shona - sn Waray war -

Central-
Kurdish

ckb ckb Mingrelian xmf - Sicilian scn - Welsh cy cy

Chavacano cbk - Mirandese mwl - Sindhi sd sd Western-Mari mrj -

Chechen ce - Mongolian mn - Sinhala si si Western-
Panjabi

pnb -

Cherokee - chr Nahuatl nah - Slovak sk - Wu-Chinese wuu -

Chinese-
Simpli�ed

- zh-cn Neapolitan nap - Slovenian sl sl Yakut sah -

Chinese-
Traditional

- zh-tw Nepali ne ne Somali so - Yiddish yi -

Chinese zh zh Newari new - South-
Azerbaijani

azb - Yoruba yo -

Chuvash cv - Northen-Frisian frr - Spanish es es Yue-Chinese yue -

Cornish kw - Northern-Luri lrc - Sundanese su -

Corsican co - Norwegian no no Swahili sw -

Croatian hr - Nynorsk nn - Swedish sv sv
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Figure 2.A.2: Language Zipf distributions. A. Zipf distribution [321] of all languages
captured by FastText-LID model. B. Zipf distribution for languages captured by Twitter-
LID algorithm(s). The vertical axis in both panels reports rate of usage of all messages
pt;` between 2014 and 2019, while the horizontal axis shows the corresponding rank of each
language. FastText-LID recorded a total of 173 unique languages throughout that period. On
the other hand, Twittert-LID captured a total of 73 unique languages throughout that same
period, some of which were experimental and no longer available in recent years.C. Joint
distribution of all recorded languages. Languages located near the vertical dashed gray line
signify agreement between FastText-LID and Twitter-LID, speci�cally that they captured a
similar number of messages between 2014 and end of 2019. Languages found left of this line
are more prominent using the FastText-LID model, whereas languages right of the line are
identi�ed more frequently by Twitter-LID model. Languages found within the light-blue area
are only detectable by one classi�er but not the other where FastText-LID is colored in blue
and Twitter is colored in red. The color of the points highlights the normalized ratio di�er-
ence �D ` (i.e., divergence) between the two classi�ers, whereCF

` is the number of messages
captured by FastText-LID for language`, and CT

` is the number of messages captured by
Twitter-LID for language `. Hence, points with darker colors indicate greater divergence be-
tween the two classi�ers. A lookup table for language labels can be found in the Table 2.A.1,
and an online appendix of all languages is also available here:http://compstorylab.
org/storywrangler/papers/tlid/files/fasttext _twitter _timeseries.html .
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Figure 2.A.3: Language identi�cation divergence. A normalized ratio di�erence value
�D ` (i.e., divergence) closer to zero implies strong agreement, whereby both classi�ers cap-
tured approximately the same number of messages over the last decade. Grey bars indicate
higher rate of messages captured by FastText-LID, whereas red bars highlight higher rate of
messages captured by Twitter-LID.
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2.B Analytical validation of contagion

ratios

To investigate our margin of error for estimating contagion ratios, we �nd the subset

of messages that both classi�ers have agreed on their language labels using the annual

confusion matrices we discussed in Appendix 2.A. We compute an annual average of

the contagion ratios for this subset of messages. We highlight the top 10 languages

with the highest and lowest average contagion ratio per year in Table 2.B.1 and

Table 2.B.2, respectively. We then compare the new set of annual contagion ratios

with the original ones discussed in Sec. 2.5.3. In particular, we compute the absolute

di�erence

� = jR � R� j;

where R indicates the contagion ratios of all messages, and R� indicates the contagion

ratios of the subset of messages that both FastText-LID and Twitter-LID models have

unanimously agreed on their language labels.

In Table 2.B.3, we show the top 10 languages with the highest average values of

� 's. Languages are sorted by the values of� 's in 2019. Higher values of� 's indicate

high uncertainty due to high disagreement on the language of the written messages

between FastText-LID and Twitter-LID. Lower values of � 's, on the other hand,

highlight better agreement between the two classi�ers, and thus better con�dence

in our estimation of the contagion ratios. We show the bottom 10 languages with the

lowest average values of� 's in Table 2.B.4.
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Table 2.B.1: Top 10 languages with the highest annual average contagion ratio (sorted by
2019).

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Greek 0.01 0.05 0.07 0.20 0.42 0.65 0.83 1.11 1.29 1.42 1.27

French 0.02 0.10 0.13 0.22 0.34 0.56 0.76 0.94 1.09 1.40 1.37

English 0.03 0.14 0.20 0.31 0.37 0.56 0.71 0.91 1.15 1.44 1.44

Spanish 0.03 0.16 0.21 0.31 0.42 0.62 0.82 0.94 1.24 1.54 1.52

Korean 0.05 0.11 0.14 0.26 0.30 0.43 0.66 1.28 1.74 2.22 2.07

Catalan 0.01 0.08 0.12 0.21 0.30 0.52 0.74 0.98 1.80 2.44 2.10

Urdu 0.03 0.25 0.25 0.19 0.26 0.64 0.82 0.95 1.51 2.67 2.90

Tamil 0.01 0.04 0.10 0.16 0.22 0.54 0.82 1.30 1.84 2.40 2.96

Hindi 0.01 0.03 0.06 0.15 0.38 1.14 2.26 2.81 3.09 3.58 3.29

Thai 0.07 0.24 0.18 0.32 0.79 2.01 2.54 3.35 5.31 6.52 7.29
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Table 2.B.2: Bottom 10 languages with the lowest annual average contagion ratio (sorted
by 2019).

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Finnish 0.02 0.11 0.10 0.11 0.14 0.18 0.23 0.26 0.29 0.31 0.26

Cebuano 0.01 0.07 0.09 0.13 0.14 0.22 0.24 0.29 0.32 0.33 0.30

Esperanto 0.01 0.08 0.09 0.11 0.13 0.18 0.24 0.34 0.41 0.47 0.38

Swedish 0.02 0.07 0.09 0.14 0.20 0.31 0.37 0.41 0.47 0.55 0.45

Russian 0.01 0.04 0.07 0.13 0.13 0.19 0.29 0.31 0.42 0.57 0.50

Dutch 0.02 0.11 0.16 0.23 0.23 0.28 0.32 0.36 0.42 0.52 0.51

German 0.02 0.07 0.09 0.13 0.17 0.26 0.34 0.38 0.42 0.58 0.52

Japanese 0.02 0.08 0.10 0.11 0.16 0.31 0.35 0.31 0.40 0.47 0.53

Polish 0.01 0.06 0.08 0.13 0.22 0.28 0.42 0.60 0.84 0.74 0.57

Persian 0.03 0.07 0.07 0.14 0.22 0.40 0.35 0.41 0.50 0.64 0.57
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Table 2.B.3: Top 10 languages with the highest average margin of error for estimating
contagion ratios as a function of the agreement between FastText-LID and Twitter-LID
(sorted by 2019).

Language 2014 2015 2016 2017 2018 2019

Unde�ned � 0.14� 0.14� 0.16� 0.19� 0.17� 0.15

Dutch � 0.11� 0.10� 0.11� 0.12� 0.15� 0.17

Swedish � 0.14� 0.16� 0.18� 0.19� 0.21� 0.20

Serbian � 0.26� 0.27� 0.32� 0.33� 0.35� 0.25

Cebuano � 0.22� 0.24� 0.29� 0.32� 0.33� 0.30

Esperanto � 0.18� 0.24� 0.34� 0.41� 0.47� 0.38

Indonesian� 0.21� 0.18� 0.18� 0.24� 0.39� 0.40

Tagalog � 0.22� 0.34� 0.49� 0.51� 0.48� 0.44

Hindi � 0.08� 0.41� 0.97� 0.76� 0.73� 0.71

Catalan � 0.52� 0.74� 0.98� 1.80� 1.08� 0.75

In Fig. 2.B.1, we display a heatmap of� 's for the top 30 ranked languages. We

note low values of� 's for the top 10 languages on the platform. In other words, our

contagion ratios for the subset of messages that both classi�ers have unanimously pre-

dicted their language labels are roughly equivalent to our estimations in Table 2.B.1.

By contrast, we note high disagreement on Catalan messages. The two classi�ers

start o� with unusual disagreement in 2014 (� = :52). The disagreement between the

two models continues to grow leading to a remarkably high value of� = 1:80 in 2017.

Thereafter, we observe a trend down in our estimations, indicating that FastText-

LID and Twitter-LID have slowly started to harmonize their language predictions for

Catalan messages through the past few years. We also note similar trends for Hindi

and Tagalog messages.
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Table 2.B.4: Bottom 10 languages with the lowest average margin of error for estimating
contagion ratios as a function of the agreement between FastText-LID and Twitter-LID
(sorted by 2019).

Language 2014 2015 2016 2017 2018 2019

Tamil � 0.03� 0.01� 0.01� 0.01� 0.01� 0.01

Greek � 0.13� 0.07� 0.01� 0.01� 0.01� 0.01

Japanese � 0.01� 0.01� 0.01� 0.01� 0.02� 0.02

Russian � 0.01� 0.01� 0.01� 0.02� 0.03� 0.03

Persian � 0.10� 0.06� 0.06� 0.05� 0.04� 0.03

Arabic � 0.04� 0.03� 0.02� 0.02� 0.03� 0.04

Chinese � 0.04� 0.04� 0.04� 0.05� 0.06� 0.08

English � 0.04� 0.05� 0.05� 0.06� 0.08� 0.09

Thai � 0.03� 0.03� 0.04� 0.06� 0.08� 0.09

Portuguese� 0.08� 0.10� 0.09� 0.11� 0.11� 0.10

Our results show empirical evidence of inconsistent language labels in the histor-

ical data feed between 2014 and 2017. Our margin of error for estimating contagion

ratios narrows down as FastText-LID and Twitter-LID unanimously yield their lan-

guage predictions for the majority of messages authored in recent years. Future

investigations can help us shed light on some of the implicit biases of language detec-

tion models. Nonetheless, our analysis supports our �ndings regarding the growth of

retweets over time across most languages.
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Figure 2.B.1: Margin of error for contagion ratios. We compute the annual average of
contagion ratios R for all messages in the top 30 ranked languages as classi�ed by FastText-
LID and described in Sec. 2.5.3. Similarly, we compute the annual average of contagion
ratios R� for the subset of messages that both classi�ers have unanimously labeled their
language labels. We display the absolute di�erence� = jR � R� j to indicate our margin
of error for estimating contagion ratios as a function of the agreement between FastText-
LID and Twitter-LID models. White cells indicate that � is below:05, whereas colored cells
highlight values that are equal to, or above:05. We show the top 10 languages with the
highest average values of� 's per year in Table 2.B.3. We also show the bottom 10 languages
with the lowest average values of� 's per year in Table 2.B.4.
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2.C Impact of tweet's length on lan-

guage detection

The informal and short texture of messages on Twitter�among many other reasons�

makes language detection of tweets remarkably challenging. Twitter has also intro-

duced several changes to the platform that notably impacted language identi�cation.

Particularly, users were limited to 140 characters per message before the last few

months of 2017 and 280 characters thereafter [249]. To investigate the level of uncer-

tainty of language detection as a function of tweet length, we take a closer look at

the number of messages that are classi�ed di�erently by FastText-LID and Twitter-

LID for the top 10 most used languages on the platform between 2020-01-01 and

2020-01-07.

In Fig. 2.C.1, we display the daily number of mismatches (grey bars) between

2020-01-01 and 2020-01-07 (approximately 32 million messages for each day for the

top-10 used languages), whereas the black line shows an average of that whole week.

We also display a histogram of the average number of characters of each message

throughout that period. We note that the distribution is remarkably skewed towards

shorter messages on the platform. The average length of messages is less than 140

characters, with a large spike around the 140 character mark. Long messages�which

include messages with links, hashtags, and emojis�can exceed the theoretical 280

character limit because we do not follow the same guidelines outlined by Twitter

for counting the number of characters in each message.8 For simplicity, we use the

8https://developer.twitter.com/en/docs/basics/counting-characters
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