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Abstract

A relatively new area at the crossroads of fluid and nonlinear dynamics are objects known
as Lagrangian Coherent Structures (LCSs). LCSs are mathematically classified to differ-
entiate parts of fluid flows. They, themselves, are the most influential parts of fluids. These
objects have the most influence on the fluids around them and they allow for a sense of
hierarchy in an otherwise busy environment of endless variables and trajectories. While all
particles of fluids have the same dynamics on an individual basis, areas of fluid are not cre-
ated equal and to be able to detect which parts will be the most important to look at allows
for easier, bust just as accurate, prediction of fluid movement. Recent applications include
cleanup operations during the BP Deepwater Horizon oil spill, pollutant transfer in oceanic
basins, and the analysis of polar storm activity. This thesis explores LCSs from the discrete
mathematics to the future climatological impacts using virtual fluid simulations and LCS
detection tools to facilitate analysis.
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Chapter 1
Introduction

Figure 1.1 Examples of fluid structures whose dynamics might benefit from LCS
detection. (Left) Deep water Horizon spill in Gulf of Mexico (NASA), (Middle) Jupiter’s
Great Red Spot seen from the Voyager 1 mission in February 1979 (NASA/JPL), (Right)

Water spout in the Florida Keys (Joseph Golden/NOAA). [1].

1.1 What are Lagrangian Coherent Structures?
George Haller, the scientist most responsible for the growing interest in LCSs, says that
LCSs are “the hidden skeleton of fluid flows” [2] and this is the best way to start to un-
derstand the idea behind LCSs because they are truly an idea. While LCSs can manifest
in structures and we can mathematically detect them, it is important to remember that at
their core, they are a way of categorizing fluids with specific characteristics. Mathematics
is a framework for translating the behavior of our natural world into a universal language;
writing the cookbook for the cake that is already made.

1.1.1 Name Breakdown
Where we need to start with LCSs is actually their name: Lagrangian Coherent Structures.
When the word ‘Lagrangian’ is put first, all that is really being said is that whatever we are
talking about is a function that is describing the dynamics of a system. The functions are in-
teracting with space and time and contain information about how the system is functioning.
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However, in fluid dynamics, there are two ways of looking at fluids and that is to use Eule-
rian or Lagrangian dynamics. Eulerian dynamics looks at a specific frame of reference and
examines fluids that pass by this frame at each time; these dynamics are more focused on a
specific area than specific parcels of fluid. Lagrangian dynamics do the opposite: focus on
specific parcels of fluid and follow them through space [2]. Put simply, Eulerian dynamics
would be like setting a video camera up over a certain part of the ocean and never moving
that camera, whereas Lagrangian dynamics would be like having a camera follow a specific
vortex in the ocean. Both dynamics have their pros and cons, and the most important thing
to consider about LCSs is that we are concerned with specific structures and not places,
which means Lagrangian dynamics are the way to go.

Coherent structures are sometimes difficult and controversial to define [3]. The one thing
that everyone can agree on is that a coherent structure has significant correlation in space
and time [4]. A structure is considered coherent in our case if it lasts a long time in the flow
of the observed fluid. In other words, it is not transient and the structure does not change
fast enough to be disregarded. This is a very subjective thing and all depends on the amount
of time a person is observing a system. Overall we think of coherent structures as a lasting
mathematical object in the system.

The best example of coherence versus non-coherence is actually with a couple of structures
everyone is familiar with: eddies and vortices. Imagine a river with tons of flowing water.
Eddies are the swirls of water that eventually join back up with the rest of the flow of water.
We would consider eddies a non-coherent structure because they form and decay within a
few dynamic times. If we take a vortex in comparison, this is a structure that consistently
swirls water and often in one location due to the constant dynamics and interaction with
the surrounding landscape. Since the vortex lasts a considerable amount of time, we would
say it is a coherent structure.

Now that the name is broken down, LCSs already seem to be a lot simpler. In any regard,
finding structures in fluids is a way to create a sort of hierarchy. It is a way of stating that
in fact, all particles of fluid are equal, but the dynamics within a fluid flow are not. Some
areas of fluid have the ability to influence the particles around them more than others; these
are what LCSs are. To truly get a grasp on them however, we need to talk about certain
structures in fluids that are called material lines.
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1.1.2 Basics of Lagrangian Dynamics: Material Lines and Manifolds

Figure 1.2 Figure 2a from Haller’s original paper of LCSs [2]. The basics of the stable
and unstable manifold for a infinite-time flow.

Haller brings up a key point in his paper which allows us to recognize the upbringing of
LCSs but ultimately notes that ”the mathematical methods used to identify key material
lines in steady, periodic, and quasiperiodic flows rely on knowing the flow field for all
time. But the flows that most need to be understood are typically aperiodic” [2]. So, while
it is possible to find examples of unstable manifolds in nature, like those in Figure 1.3,
these are not the flows which we are usually needing to solve prediction problems for.

Nonetheless, Figure 1.2 is a great graphical start to understanding LCSs. As a parcel of fluid
approaches a saddle point - a point of stagnation where the stable and unstable manifold
meet - on the stable manifold, which acts as a repulsive barrier, the parcel will deform to
take the shape of the unstable manifold. As stated before, these unstable manifolds can be
seen in nature sometimes, like that in Figure 1.3, but they are rare and usually have trivial
solutions.
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Figure 1.3 Tristan da Cunha island in the Southern Atlantic creating von-Karman vortices
behind it with consistent airflow. The surrounding clouds take the shape of this airflow

and reveal the unstable manifolds [5].

1.1.3 Lyapunov, FTLEs, and Strainlines
In dynamical systems (sometimes refereed to as chaos theory) the Lyapunov number and
Lyapunov exponent are introduced as a way to quantify the rate of separation between two
points in a flow. The Lyapunov exponent is simply the natural logarithm of the Lyapunov
number. If we had a Lyapunov number of 3 or Lyapunov exponent of ln 3, this would
mean the distance between two points we are observing is tripling each time step. Al-
ternatively, if we had a Lyapunov number of 1

3
, the distance would be cutting by a third

each time-step [6]. Lyapunov numbers become very important to us when we look into
the mathematics in chapter 3 and start to look at which pieces in our math stand out and
allow us to find LCSs. For our purposes, these numbers allow us to quantify the amount of
deformation occurring in a fluid flow. The term we use to describe this is the Finite-Time
Lyapunov-Exponent (FTLE).

FTLEs are important because as a velocity field is analyzed in forward time, regions of
fluid which have high separation have high FTLE values. The same thing can be done in
reverse time to determine which regions have strong divergence in backward time (which
reveals the regions with strong convergence) and correspond to areas with small FTLE
values [2]. However, LCSs have proven to have some problems arise when they are being
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explicitly used such as false positives and false negatives which become problematic when
we need to reliable look for LCSs each and every time. If we remember, material lines
are at the basics of Lagrangian transport. If we look back to Figure 1.2, these are the
lines the material travels along or moves against (both the stable and unstable manifolds).
Strainlines introduce a very similar yet different type of line. As material lines deal with
deformation, strain is looked at on an infinitesimal level. This idea is explained more in-
depth in chapter 3 but we mention it here as a solution. Farazmand and Haller [7] have
”shown that repelling LCSs are, in fact, material lines whose initial positions are locally
the most repelling strainlines for the time window in question” [2].

1.1.4 Where Did They Come From?
The last piece to fully understanding LCSs is actually where this idea came from. As stated
before, the original person to come up with the modern idea of LCSs is a man by the name
of George Haller. In 1994, Haller joined the Department of Applied Mathematics at Brown
University as an associate professor and it is here that the first inklings of LCSs came about.
Haller was in search of a problem to pursue and with his studies in chaos theory and with
large amounts of atmospheric and ocean data at hand, the Honk Kong project was born.

While Haller was at Brown, he started working on a project with Wenbo Tang of Arizona
State University and Pak Wai Chan of the Hong Kong Observatory. The Hong Kong airport
is known for its rocky landings and turbulent air. One thing that does not help the airport,
as seen in Figure 1.4, is that it is not only on an island but it is on a man-made island off the
east coast of Hong Kong. When Haller and the team came together, the airport was having
a lot of trouble with wake turbulence. Just like water, air is a fluid, and when a massive
object moves through the air, this causes a wake (just like that of a boat in water) [8].
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Figure 1.4 Hong Kong International Airport (Chek Lap Kok Airport) opened July 6, 1998
on an artificial island after realizing that the current airport, Kai Tak Airport, was at

capacity for take-offs and landings [9].

Haller and the team installed lasers on the runway to track aerosols - which allow us to
see the effects of air as opposed to the air itself. By looking at the movement of aerosols,
Haller used Lagrange’s methods (which Lagrange couldn’t advance himself due to lack of
electronic computers) and found the coherent structures- the most influential areas in the
fluid. With real time data crunching, the hope was that these areas could be marked on
computers so air traffic controllers could judge the safety of planes departing and landing
[8]. It was from here that LCS theory was modernized and born and it took off (pun
intended).

1.2 Literature Review
This is an unconventional thesis and with it comes an unconventional literature review.
There have been a number of scientific papers written using Haller’s “pioneering work”
[10] from 2005 and most of them are extremely technical. This brief literature review in-
troduces the main ideas that people have been using LCS detection for. Largely, they have
been for climatological events and these will be discussed in detail, but LCSs are new and
it needs to be understood that the possibilities are still growing.

The paper that got me excited about the subject of LCS detection was published in 2017,
Serra et al. [11] Uncovering the Edge of the Polar Vortex. The results of the paper show that
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Elliptic LCS theory accurately predicted where the edge of the polar vortex was by doing
a backwards time analysis. Knowing the position of the edge of polar vortex has massive
implications. It allows you to know so much about the climate, especially the stratospheric
ozone hole, and the movement of this edge has major influence on the surface weather.

Figure 1.5 3D Reconstruction of the edge of the polar vortex on (a) Dec. 28th, 2013 and
(b) Jan. 7th, 2014 as produced by Serra et al. [11]. A video of the animation of these

structures can be seen here.

Similarly, Tang et al. [12] looked for coherent structures in the subtropical Jetstream. This
process has been done before, but a common theme among many of these papers is the idea
that Haller puts forward in his 2005 paper when he talks about how structures could be ev-
ident to one frame a not another. Since LCSs use a particle-based definition of structures,
this ensures that frame independence is present as Tang et al. say that “any newly proposed
constitutive law or flow quantity must be fully frame independent to be considered intrin-
sic to the properties of the moving continuum” [12]. It is key that in order to validate the
properties of a structure in fluid, Lagrangian dynamics must be used.

This is a common theme through most of the papers. Most of the papers use LCSs for a
specific reason, not because they are new and exciting. Looking to Gough et al. [13], Har-
rison et al. [14], and Beron-Vera et al. [15] which take LCSs to the ocean but with slightly
different approaches. Gough et al. and Harrison et al. look at coastal upwelling off the
coast of California, and use radar data to track fluid movement. Their goal was to find
LCSs because “attracting FTLE field maxima can identify confluence and shear in flows
which can be useful in mapping dynamics associated with fronts” [13]. Mapping ocean
fronts was key to learning all sorts of things about the cold current that travels off the coast
of California. Beron-Vera et al. used hydrography and altimetry to categorize mesoscale
ocean eddies from surface ocean currents. If we go back to the example of the vortex and
the eddy, this paper used that very example on a massive scale. Put simply, they were trying
to use LCSs and other dynamical systems tools to figure out which flows in the ocean were
most important (ocean currents) and which were structures that were byproducts of other
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flows (eddies).

One of the biggest issues that people are trying to investigate today is pollutant transport.
Pollutant transport is becoming an ever-encroaching problem as the planet seems to be-
come smaller and smaller. Volcanic eruptions, oil spills, nuclear power plant meltdowns,
and the like all have the ability to scare us straight. The most well known of these papers is
where Olascoaga and Haller [16] took the BP Deep Water Horizon oil spill and hindcasted
it to show that LCSs could aid in showing where wind was going to take the oil. These re-
sults were again “based on new mathematical results on the objective (frame-independent)
identification of key material surfaces that drive tracer mixing in unsteady, finite-time flow
data” [16].

Figure 1.6 Figure 5 from Olascoaga and Haller [16] where the orange area shows the
observed oil spread and the positions of the simulated oil patches in blue that shows very

similar results.

While there are many more papers on atmospheric, oceanic, or pollutant studies, many
focus on unconventional uses for LCSs. Papers like Qi and Huang [17] and Qi and Xu [18]
focused more on the astrophysics side of things looking into n-body problems and planetary
orbits. Others look at the heart of LCSs: their computation. Sun et al. [10] were able to
look at the “trajectory of each fluid particle [which was] explicitly tracked over the whole
simulation” [10]. No matter what the problem was though, fluid transport was involved and
the investigations have only just begun.
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1.3 Motivation - The “So What? Who Cares?”
Now that we know what LCSs are and what scientists are doing with them, it seems fitting
to ask ourselves a question we, as curious human beings, should always ask - so what? The
implications for using LCS detection are far reaching, especially in the world of climate.
We focus in on applications of LCSs to the climate in section 4.3 but is there anything else?
Are there other areas that are important to mention?

Often, for the layman, the word ‘theory’ makes things intangible. Outside of academia,
applicable ideas and writings are taken to mean they are not tangible - they do not have any
meaning in the real world; that could not be further from the truth. Academic studies and
papers give rise to the most useful things in the universe. From the phone in your pocket
and satellites guiding you to that restaurant to the stocks you trade at light-speed on a daily
basis, theories are at work every second.

Yes, LCSs are just another theory and worse than that, they aren’t even physical objects;
they are mathematically characterized. More important than any of that though, they are
a way of understanding something very complex: fluids. Fluids are all around us and we
interact with them everyday. From the blood that courses through your veins to the bumpy
turbulence you have on your flight, the truth is: we are in a world of fluids and there is no
avoiding them. The better we can understand how fluids move and the more steps ahead
of fluid we can be, the better off the world will be. Being able to predict the exact location
of a hurricane a week in advance, having five days notice of which areas are going to be
covered in frost, how much moisture is coming to the mountains before your ski vacation,
the amount of lipid transport in your blood, the movement of super storms on the surface
of Jupiter and Saturn, the movement of the polar vortex and how harsh the next cold snap
will be; these are all possibilities in a world with LCS detection.

More important than anything, LCSs are not going to allow us to see the weather a month
in advance, they are not going to be able to stop natural disasters, and they won’t be able to
stop global warming. Nevertheless, they are objects that allow a lot of those terrible prob-
lems and seemingly unsolvable issues to become that much more tangible and solvable.
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Chapter 2
Lagrangian Coherent Structure Detection and MATLAB

I would first like to point out that this project would have been a lot less likely to happen
if it were not for Geroge Haller and his group allowing anyone to download the code I
used for this project. The code, simply called LCS Tool, is a package that is download-
able by anyone and provides an amazing amount of detail on coding LCS detection [19].
While the mathematics are explained and drawn out in section 3.1 building this code from
scratch would have taken way too long to complete in an undergraduate setting. This code,
which comes with demos, has allowed me to learn about LCSs and LCS detection visually,
mathematically, and through the power of a computer.

2.1 The Code
The code comes from George Haller’s website (http://georgehaller.com) where their GitHub
is likned. It has a suite of very interesting tools, but for my purposes, the LCS Tool was
the one I found to be most useful. It comes zipped and ready for matlab directly. It is well
documented and contains demo files which we will look at in section 2.2. For this section,
we are going to look at which key pieces of code I used the most, break them down further
and explain which pieces of code are controlling what, and finally explore what this code
might hold for the future.
The very first piece to play with in the code is to actually see flows in action and that was
done by a couple of functions working together while using some demo data. The animate-
flow file and the flow-animation file were used to pull gridded data and plot it through time
as an animation. The section of animate-flow that was manipulated the most were the lines
below in lines 17 to 21 where I could manipulate how the fluid looked but not how it be-
haved. These two files of code were my gate into understanding how a computer was going
to try and evaluate such a complex object like fluid flow using nothing but data, interpola-
tion, and clever mathematics.

1 % S e t d e f a u l t v a l u e s f o r f low s t r u c t u r e
p = i n p u t P a r s e r ;

3 p . KeepUnmatched = t r u e ;
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addParamValue ( p , ’ c o u p l e d I n t e g r a t i o n ’ , t r u e , @ i s l o g i c a l ) ;
5 p a r s e ( p , f low ) ;

c o u p l e d I n t e g r a t i o n = p . R e s u l t s . c o u p l e d I n t e g r a t i o n ;
7

i f c o u p l e d I n t e g r a t i o n
9 p o s i t i o n = d e v a l ( f low . s o l u t i o n , f low . t i m e s p a n ( 1 ) ) ;

p o s i t i o n = [ p o s i t i o n ( 1 : 2 : end−1) , p o s i t i o n ( 2 : 2 : end ) ] ;
11 p o s i t i o n = t r a n s p o s e ( p o s i t i o n ) ;

e l s e
13 p o s i t i o n = a r r a y f u n (@( i S o l u t i o n ) d e v a l ( i S o l u t i o n , f low . t i m e s p a n ( 1 ) ) ,

f low . s o l u t i o n , ’ Uni formOutput ’ , f a l s e ) ;
p o s i t i o n = c e l l 2 m a t ( p o s i t i o n ) ;

15 end

17 p1 = p l o t ( mainAxes , p o s i t i o n ( 1 , : ) , p o s i t i o n ( 2 , : ) ) ;
s e t ( p1 , ’ L i n e S t y l e ’ , ’ none ’ )

19 s e t ( p1 , ’ Marker ’ , ’ o ’ )
s e t ( p1 , ’ MarkerFaceColo r ’ , ’m’ )

21 s e t ( p1 , ’ Marke rS ize ’ , 3 )

However, once playing with animations got old and I had figured out all of the naming
issues that prevented animations from running and doing ordinary directory housekeeping,
I wanted to figure out exactly how the LCS detection was going to work. The entire .zip
file of code comes with around 30 functions that are needed in the three or four files that
run different variations of LCS detection. The one I used for this project was a file called
elliptic-hyperbolic-lcs. This is the file the Haller Group uses as an example to run in their
read-me on the double gyre demo.

In short, this piece of code does exactly what is discussed in chapter 3 but I am going
to summarize it here. The code starts with a .mat file containing the data and variables
it needs in order to run. The most important of these is a 3D matrix that is t × m × n
where t is the time step, and m and n are the gridded data of latitude and longitudinal
velocities during each time interval. For example, if we had a 52 × 334 × 311 matrix, it
would represent a gridded set of vector data (velocities at each point) over a size 52 time
interval. The code takes in velocity from the latitudes and the longitudes and uses them
to do a gridded interpolation with a built in function to MATLAB. Essentially it takes a
bunch of gridded data over time and interpolates it between steps to fill in the gaps. Once
the data is in and interpolated, the mathematics take over. Simply put, the strainlines for
the entire region are computed and the code looks for areas with Lyapunov exponents that
are closest to 0. In chaos theory, we must remember that Lyapunov exponents are what
define the amount of stretching and shrinking that is occurring at a point in our system.
The importance of Lyapunov exponents in our math is explained in section 3.1.4 as well as
why they are significant to find in section 1.1.3.
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2.2 Demos
While the code itself it very important and taught me a lot about how the Haller Group
thought about coding LCS detection into MATLAB to help find regions of interest in cer-
tain data, the majority of my learning came from the examples themselves. The ability to
look at an image or simulation and reference back to the code to see which pieces of code
controlled which output was the most valuable piece of this project. Haller’s code came
with three demo files representing three distinct applications of LCS detection for fluid
flow. The first two analyze computational fluid dynamics simulations whereas the third
uses a data set which I have touched on briefly. I will be showing three figures with each
demo. The first will be the fluid simulation, the second will be the repelling LCSs, and the
third will be the attracting LCSs. Additionally, there will be links to video animations if
you are electronically viewing this file.

An additional step I took in this process was to break the code up into smaller time in-
tervals while it evaluated LCSs. Originally, the code evaluated the entire time series and
outputs one image for repelling LCSs and one image for attracting LCSs. I figured it would
be more useful if you could track these changes in LCSs over time as well and so I broke
the intervals into roughly five sections. When these are overlaid with the animations, we
can really get a good sense of how these things are moving in time and how they may help
us predict what a fluid is going to do in the future.

2.2.1 Double-Gyre
A gyre is a term used in the study of oceanic flow and NOAA describes it as “refer[ing]
simply to large, rotating ocean currents” [20]. Abarbanel and Young start out their entire
book on the basics of ocean circulation talking about early data used on world maps which
use abbreviations ‘SG’ which stand for ‘Subtropical Gyre’ [21]. The term double-gyre
does relate to this but the double-gyre refers to a simulated experiment that is common in
fluid dynamics papers. It looks at interactions between two counter-flowing currents and
usually watches the transport of fluid around these and this demo is no exception to that.
The double-gyre is a standard demo for many tools like this.
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1 e p s i l o n = . 1 ;
a m p l i t u d e = . 1 ;

3 omega = p i / 5 ;
f low . i m p o s e I n c o m p r e s s i b i l i t y = t r u e ;

5 f low . d e r i v a t i v e = @( t , x , useEoV ) d e r i v a t i v e ( t , x , useEoV , e p s i l o n , a m p l i t u d e ,
omega ) ;

7 f low . domain = [ 0 , 2 ; 0 , 1 ] ;
f low . t i m e s p a n = [ 0 , 1 0 ] ; %speed of e v e n t

9 f low . r e s o l u t i o n = [ 1 , 1 ] ∗ 1 0 ;

11 f low = a n i m a t e f l o w ( f low ) ;

Caption: Small section of code required to simulate the double-gyre demo

Figure 2.1 Output figures from the LCS detection of the double-gyre demo with (top)
attracting LCSs in blue, (bottom) repelling LCSs in red and in both images the elliptic

LCSs are in green.
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2.2.2 Bickley Jet
Named after W.C. Bickley who first wrote about this structure in 1937 [22], the basic idea
behind this flow is it is “a meandering zonal jet flanked above and below by counter rotating
vortices” [23]. The flow is suppose to mimic natural flows that could happen but in a more
idealized environment. As del-Castillo-Negrete and Morrison [24] point out, the action of
Rossby Waves - fast-moving upper atmospheric jetstreams responsible for the index cycle
- will be captured simplistically by using the Bickley jet model.

Figure 2.2 A view of what del-Castillo-Negrete and Morrison [24] is discussing in his
paper but with real data and not an idealized form. This image is from the online tool

EarthWindMap which you can find here in this exact orientation. This view is at a 250mb
level.
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1 u = 6 2 . 6 6 ;

3 l eng thX = p i ∗ e a r t h R a d i u s ;
l eng thY = 1 . 7 7 e6 ;

5 e p s i l o n = [ . 0 7 5 , . 4 , . 3 ] ;

7 f low . i m p o s e I n c o m p r e s s i b i l i t y = t r u e ;
f low . p e r i o d i c B c = [ t r u e , f a l s e ] ;

9 p e r t u r b a t i o n C a s e = 3 ;
ph iTimespan = [ 0 , 2 5 ] ;

11 p h i I n i t i a l = [ 0 , 0 ] ;
p h i S o l = ode45 ( @d phi , phiTimespan , p h i I n i t i a l ) ;

13 t i m e R e s o l u t i o n = 1 e5 ;
ph i1 = d e v a l ( ph iSo l , l i n s p a c e ( ph iTimespan ( 1 ) , ph iTimespan ( 2 ) ,

t i m e R e s o l u t i o n ) , 1 ) ;
15 phi1Max = max ( ph i1 ) ;

f low . d e r i v a t i v e = @( t , x , ˜ ) d e r i v a t i v e ( t , x , f a l s e , u , lengthX , lengthY , e p s i l o n
, p e r t u r b a t i o n C a s e , ph iSo l , phi1Max ) ;

17

f low . domain = [ 0 , l eng thX ; [ −1 , 1 ]∗2 . 2 5 9 9∗ l eng thY ] ;
19 f low . t i m e s p a n = [ 0 , 4∗ l eng thX / u ] ;

% Make g r i d C a r t e s i a n
21 r e s o l u t i o n X = 100 ;

g r i d S p a c e = d i f f ( f low . domain ( 1 , : ) ) / ( dou b l e ( r e s o l u t i o n X )−1) ;
23 r e s o l u t i o n Y = round ( d i f f ( f low . domain ( 2 , : ) ) / g r i d S p a c e ) ;

f low . r e s o l u t i o n = [ r e s o l u t i o n X , r e s o l u t i o n Y ] ;
25

f low = a n i m a t e f l o w ( f low ) ;

Caption: Small section of code required to simulate the bickley jet demo
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Figure 2.3 Output figures from the LCS detection of the bickley jet demo with (top)
attracting LCSs in blue, (bottom) repelling LCSs in red and in both images the elliptic
LCSs are in green. You can click here to see the video animation overlay with the LCS

and repelling strain lines that are segmented into 5 subintervals.

2.2.3 Ocean Simulation
The third and final demo is different than the other two in that it uses real, approximated
data. The data comes from a section of the South Atlantic Ocean when Beron-Vera and
Haller [25] gathered “data derived from satellite-observed sea-surface heights under the
geostrophic approximation” [23]. It is crucial to note that this data uses geostrophic ap-
proximation because it is most likely the main reason for a number of errors in the case
study of this project which is talked about in section 4.2. The data is given at a spatial
resolution of 1/4◦ and a temporal resolution of 7 days.
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Figure 2.4 Output figures from the LCS detection of the ocean dataset demo with (top)
attracting LCSs in blue, (bottom) repelling LCSs in red and in both images the elliptic
LCSs are in green. You can click here to see the video animation overlay with the LCS

and repelling strain lines that are segmented into 5 subintervals.
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Chapter 3
The Mathematics

George Haller describes LCSs in-depth in many of his papers [1]. Here, I will break down
the mathematics again, but in 4 stages that allow us to see exactly what process we go
through to gain a perspective of a fluid’s structure. Then, we will use these discrete steps
and see exactly how these LCSs and strainlines are being computed [2].

3.1 The Four Step Process
When Haller released a paper in 2013 about LCSs and their detection, he included a small
box that broke down LCS detection into four simple steps [2]. I paraphrase those four steps
as follows:

1.) Given a velocity field, define a flow map which shows how particles move from their
initial position to any time t in the fluid.
2.) Take the gradient of the flow map
3.) Transpose that gradient and multiply by itself to get the Cauchy-Green Strain Tensor
4.) Evaluate your computation and look for strainlines and LCSs using eigenvalues and
eigenvectors of the strain tensor.

I will explicitly walk through each of these steps below and set up a generalized form of
finding strainlines and LCSs in a fluid. Some vocabulary mentioned in these steps will be
addressed in the following subsections for clarity.

3.1.1 Flow Map Set Up
The first thing we do is we start with a velocity field ~v(~x, t) over the time interval [t0, t1] in
a bounded flow domain U which generates trajectories through the following differential
equation:

ẋ = ~v(~x, t), ~x ∈ U, t ∈ [t0, t1], U ⊂ R2 (1)
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The next thing we have to do is define our points and how they function in different dimen-
sions. When we have an initial position in a fluid, ~x, in general, we see:

2D : ~x = (x1, x2), U ∈ R2

3D : ~x = (x1, x2, x3) U ∈ R3

...

nD : ~x = (x1, x2, · · · , xn) U ∈ Rn

where the superscript is an integer representing the spatial dimension of our particle posi-
tion.

Solutions to (1) are ~x(t; t0, ~x0) where ~x0 is our initial position of ~x at t0. From here on, we
will explicitly work in two dimensions but the same process works for any dimension. All
of this brings us to our definition of the flow map, ~F . ~F is a function which defines the
movement of a particle ~x in our fluid. This particle which we have defined ~x0 at t0 and ~x1
at t1 gets mapped to t1 via ~F . We define ~F as follows:

~F t1
t0 (~x0) = ~x(t; t0, ~x0), ~x ∈ U, t ∈ [t0, t1] (2)

3.1.2 Flow Map Gradient
Next, we also must remember from our differential equation (1), follows the equation of
variations:

ẏ = ∇~v(~x(t; t0, ~x0))y (3)

We can obtain this generic equation from any differential equation. When we take the
gradient of F , we get an invertible matrix that also serves as the the fundamental matrix
solution to (3). As a reminder, we define∇F as:

∇~F t1
t0 (~x0) =


∂x1

∂x0

∂x1

∂y0
∂y1

∂x0

∂y1

∂y0

 (4)

3.1.3 Hypersurfaces and Strain Tensors

Next, we need to consider a hypersurface, ~M(t), of initial fluid positions. Recall that this
hypersurface is smooth and has dimension equal to dimU − 1. We then define a material
surface as

~M(t) = ~F t1
t0 (M(t0)) (5)
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Figure 3.1 A visual representation of a hypersurface under the flow map ~F . (a) represents
~M(t0) and (b) is where ~M(t) ends at time t which would make it our material surface of

interest.

Why do we care about these hypersurfaces? When we are dealing with two-dimensional
fluid flow, our hypersurfaces and material surfaces are actually just lines because they are
one-dimensional. However, it helps to talk about hypersurfaces for the generalization of
our mathematics since in any dimension higher, they would need to be explained anyway.

We are interested in finding material surfaces that have a lot of influence on the points
around them. The perturbations that show us if a material surface does in fact have a
large influence on the points around them come from equation (3). Since we know that the
gradient of ~F is the fundamental matrix solution to equation (3), we can write the following:

ẏ = ∇~v(~x(t; t0, ~x0))y ⇒ y(t) = ∇~F t
t0
(~x0)y(t0)

and since we can write this, we can define the squared magnitude at final time t1 as follows

|y(t1)|2 =
〈
∇~F t1

t0 (~x0)y(t0),∇~F
t1
t0 (~x0)y(t0)

〉
Our final mathematical step in this whole process is right here but it takes a little bit of ex-
plaining. We can rewrite the above equation in terms of a variable C which is our Cauchy-
Green Strain Tensor. Using the definition of C, below in (6), we can write our squared
magnitude in terms of it. This allows us to calculate everything using matrix multiplica-
tion, eigenvectors and eigenvalues help us determine where strainlines will be, and which
eventually leads us to where LCSs will be as well. We define C as follows

~C(~x0) = [∇~F t1
t0 (~x0)]

T [∇~F t1
t0 (~x0)] (6)

If we build from the very start, we need to define a tensor. A tensor is similar to a vector
except it is more general and has an array of components to describe an object in space and
which directions it is moving in. This piece allows us to use the idea of deformation and
strain.
When we set up something like the deformation gradient of our flow map∇~F , it allows us
to have a matrix representation of what type of transition a set of points will undergo under
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the flow map ~F , but in an objective description. Strain is different from deformation. We
need to think of a strain on an infinitesimal level. Strain tensors aim to look at infinitesi-
mal perturbations around an area and often infinitely small spheres or circles are used to
show how strain is visualized. Figure 3.2 is a good example of what sort of changes we
expect to see. Now, in this visual we are only looking at the horizontal change in motion
but effectively, the strain tensor is allowing us to see where this instantaneous change of
directionality is.

Figure 3.2 A visual representation of strain in a fluid setting. As two parcels of fluid are
mapped via the flow map ~F from time t0 to t, their deformation is one thing but where the
change of directionality occurs at an infinitesimal level points to a strain line (whether it

be attracting or repelling). Note that in this example there is also vertical stretching going
on that is not addressed, as our focus is on the horizontal direction.

Now that we understand how strain presents, it will become clearer how the Cauchy-Green
Strain tensor is used. The Cauchy-Green strain tensor ~C is the main matrix we use for the
rest of our calculations. The worked example in section 3.2 might solidify these concepts
as well. In the next section, I talk about how to look at the matrix ~C and use its values to
guide us in finding these strainlines and LCSs.

A final thing to note here is that from the nature of how ~C is constructed, it is a symmetric
matrix, so all of its eigenvalues λi ≥ 0 and eigenvectors ~εi are orthogonal to each other.
These characteristics become increasingly important as we talk about them in section 3.1.4.

3.1.4 Cauchy-Green Strain Tensor Results and Finding LCSs

Once we have the Cauchy-Green strain tensor ~C, we use it to try and find strainlines that
exist in our frame. We calculate ~C at every point in our frame. For each point, we get a
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n × n matrix when we are in n-dimensional space. The eigenvalues and eigenvectors be-
come very important to us after this. We will not define the procedure to find these, as they
should be known from linear algebra. If we assume that the eigenvalues of ~C in ascending
order are λ1, λ2, and λ3, our interest lies with λ1 (aka the smallest eigenvalues of ~C). From
Haller, we are looking for the eigenvector of the smallest eigenvalue of ~C.

For definition purposes, we define the eigenvectors ~εn that correspond to the eigenvalue λn.
Now that we have named everything, we are always looking for ~ε1 in every scenario which
will be a length n vector. We need to keep in mind that these values are for a single point
of interest we are looking at. If we compute these values for the whole frame of interest
then we can find our strainlines. Haller says that strainlines will be tangent to ~ε1 and each
point we move in time will start to build a line that we can define as a strainline. There will
be many strainlines throughout the fluid but there is still another step we must take to get
from these strainlines to LCSs. If we look at Figure 3.3, we can see an example of these
repelling LCSs in red from Haller’s code using the Ocean dataset demo. The green lines
are elliptic LCSs and we will talk about those next.

Figure 3.3 An example dataset from Haller and his team shows a simulated ocean
segment after an LCS analysis with repelling LCSs in red and elliptic LCSs in green.

Finding LCSs require the entire field of points to be computed for our fluid before we
can point them out. Since LCSs are strainlines that act as boundaries and structures, once
all strainlines are computed, we are looking for the locally highest averaged values of Cs
largest eigenvalue, which is also known as λn if we still have them in ascending order. That
is all. The repelling and attracting LCSs will be discontinuous and orthogonal to each other
at all points of intersection, and elliptic LCSs are continuous structures. Once the entirety
of the strainlines are computed, all that is left to do is find the ones with the highest aver-
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aged λn. Why is this eigenvalue so important?

If we remember back to Figure 1.1 in section 1.1.2, we can start to see why these large val-
ues indicate that fluid nearby is deforming (stretching and shrinking) at fast rates which is
what makes these hidden structures so significant. As fluid parcels approach these objects,
they tend to take the shape of these formation because of how significant they are. This is
the backbone of LCS detection: finding areas that influence surrounding fluid parcels the
most.

3.2 Worked Example
Here, I work through the steps of finding a strain line for one point in our domain, and
then we discuss how we would go about finding the LCSs. These steps were originally
explained by Haller, and the 3 × 3 matrix we use here was pulled from from the Green
Strain page at continuummechanics.org.

1 Defining the Flow Map
Our flow map is not defined explicitly here but instead we start with the matrix of the
gradient of ~F . We do note some key aspects below however:

~x ∈ U ∈ R3

t ∈ [t0, t1]

2 Defining the Deformation Gradient
We start with an example deformation gradient matrix:

∇~F =

 1 0.495 0.5
−0.333 1 −0.247
0.959 0 1.5


3 Computing the Cauchy-Green Strain Tensor (~C(x0))

Recall that we compute ~C(~x0) as follows:

~C(~x0) = [∇~F (~x0)]T [∇~F (~x0)]

where T indicates a matrix transpose:

~C(~x0) =

2.0306 1.1210 2.0208
1.1210 2.2450 1.5005
2.0208 1.5005 2.5610


4 Eigenvalues, Eigenvectors, and Results

Now that we have our Cauchy-Green strain tensor, which is our most vital piece to this
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puzzle, we can start to look at the results. Again, we will not show how to obtain eigenval-
ues and eigenvectors here since it should be known. First, we will get the column vector of
eigenvalues(λ), from ~C(~x0):

λ =

0.23901.1676
5.4300


⇒ λ1 = 0.2390, λ2 = 1.1676, λ3 = 5.4300

In MATLAB we can do the following to obtain the matrices V and D, where V is a 3 × 3
matrix with eigenvectors columns as eigenvalues (λ), D is a matrix with eigenvalues on
the diagonal also put into a 3× 3 for matrix multiplication purposes. We will denote these
eigenvectors ~εn which correspond to λn:

[V,D] = eig(~C(~x0)

⇒ V =

 0.7066 0.4354 0.5579
0.1260 −0.8532 0.5062
−0.6968 0.2874 0.6572

 D =

2.0306 0 0
0 1.1676 0
0 0 5.4300


∴ ~ε1 =

 0.7066
0.1260
−0.6968

 , ~ε2 =

 0.4354
−0.8532
0.2874

 , ~ε3 =

0.55790.5062
0.6572


as we know from Haller’s paper, strain lines are tangent to ~ε1 for this point in space. So,
we have found a strain line for this point in space. If we were to compute every point in the
space we are looking at, we would get an image similar to Figure 3.3 but without the green
LCSs.

To obtain the LCSs, there is a final step that must be taken and it can only happen once all
of the strain lines are computed for the region of interest. In Haller’s paper, he states that
LCS positions at t0 are given by strain lines with the locally highest averaged values of Cs
largest λ which is λ3 in this example. Were we to compute the rest of the region of interest,
we would simply look for where these λ3s are high in value and have the computer flag
them. This tells us which points are on the LCSs and then we can watch how these points
get mapped under the flow map ~F for a finite time and we have predictable fluid movement.
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Chapter 4
Climatology and LCSs

In this chapter, I will bring everything I have learned together to run LCS detection on real
data from ocean surface movement after the nuclear power plant disaster in Fukushima,
Japan. First I will walk through the background of numerical weather prediction and give
a basis for what the future of LCSs holds for fluid prediction in general. Next, I will walk
through the processes of coding the Fukushima data collection and formatting it for Haller’s
code to accept. Then I will preform LCS detection and describe the results. Finally, I will
do a discussion on LCSs and how we can think about them in the context of Earth’s climate.
What significance do we see with LCSs? What type of advancement could we see in the
world of weather prediction? What makes LCSs different from other advancements in the
field of climatology and prediction, such as the ability to measure radiant heat and albedo
from clouds more accurately?

4.1 A Brief Background of Weather Prediction
Figure 4.1 is the best place to start when looking at weather and climate modeling over the
years. If there is one solid answer to the question of “why do we need faster computers?”
it is weather forecasts. People have been trying to predict the weather since the beginning
of time but it wasn’t really until the 1950s when it took off.

Some people did truly have a passion for wanting to use computers to forecast the weather
before computers really had the power to do it. In 1922, Lewis Fry Richardson suggested
that you could in fact calculate the movement of parcels of air and thus the movement of
weather by just using the primitive equations of motion and integrating it forwards [26].
Richardson also made it apparent that one day computational devices would be able to help
in this manor, and move faster than the weather itself to produce forecasts [27]. However,
it was the shear daunting demeanor of the task at hand that turned people away. It wasn’t
that people didn’t think that Richardson was right, they simply thought the approach was
not applicable or useful because of the amount of computing power it would take.
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Figure 4.1 NCEP error results through time using the S1 score as laid out by Teweles and
Wobus which measures the relative error in the horizontal gradient at a 500 hPa. This

figure is a great representation of accuracy over time from Kalnay’s book on Atmospheric
Modeling [27].

Fast forward to the 1950s and computers are now fast enough and the idea is now a real
possibility, so people get to work. The most important aspect to all of this is that as soon
as computers start to get a go at forecasting, things go from fully observational to using
observations as a tool to help computers predict what is coming next and this is a big
deal for every model after this. One of the most foundational comments about modern
weather modeling was said by J.G. Charney in his book Dynamic Forecasting by Numerical
Process [28] where he states:

By starting with models incorporating only what it is thought to be the most
important of the atmospheric influences, and by gradually bringing in others,
one is able to proceed inductively and thereby to avoid the pitfalls inevitably
encountered when a great many poorly understood factors are introduced all at
once.

The key to this idea is that it set the stage of forecasting from then on out. The trade-off that
everyone would understand from this point on is that you have to choose the most important
parts of the model to calculate to keep the runtime reasonable enough to use the output in
time. The history from here on is almost entirely dependent upon the speed of computers,
coupled with the accurate collection of data and knowledge of weather phenomenon.

As opposed to going through that entire history step-by-step, I refer back to Kalnay and her
book where she explains the trends in Figure 4.1 in four simple bullet points. She states

30



that “The improvement in skill of numerical weather prediction over the last 40 years...is
due to four factors:

• the increased power of supercomputers, allowing much finer numerical res-
olution and fewer approximations in the operational atmospheric models;

• the improved representation of small-scale physical processes (clouds, pre-
cipitation, turbulent transfers of heat, moisture, momentum, and radiation)
within the models;

• the use of more accurate methods of data assimilation, which result in im-
proved initial conditions for the models; and

• the increased availability of data, especially satellite and aircraft data over
the oceans and the Southern Hemisphere” [27]

It is exactly these areas and this history that will allow us to examine the true power behind
LCSs and climate and weather modeling in section 4.3. Before we do that, we need to take
a look at real data that this code can run and see what types of results and predictions we
can make from using these LCSs on a real, tangible event: Fukushima.

4.2 Fukushima: An LCS Case Study
We have taken a look at LCSs, how they work, why they are important and even some sim-
ulated data to see how they are detected. Can we take a look at something real; something
tangible and put this theory to work on a subject that had significance? We have seen papers
using LCSs to look at oceanic flow, atmospheric flow, and pollutant transport and we have
even seen Haller tackle the BP Deep Water Horizon oil spill to show how revealing LCSs
are.

At 14:46 on Friday March 11, 2011 a 9.0 magnitude earthquake was recorded off the coast
of Japan. The earthquake was centered 130 kilometers off shore from the city of Sendai on
the main island of Japan, and while the earthquake did considerable damage, the country
was hit with a devastating 15-meter tsunami caused by the earthquake as well. To get a feel
of the devastation of the earthquake alone, which was a rare double quake that lasted about
3 minutes, the entire country of “Japan moved a few metres east and the local coastline
subsided half a metre” [29]. After the tsunami, the death-toll was around 19,000 and over
a million buildings were destroyed or partly collapsed.

Several of those one million buildings were located at the Fukushima Daiichi nuclear power
plant. As designed, the running reactors (1-3) all shut down once the earthquake started and
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none of the reactors were really effected. All six power supplies went offline because of the
earthquake, and the backup diesel generators kicked in to keep the reactor cooling process
going. The facility performed as it was designed to do, until 41 minutes later at 15:42 when
the first tsunami smashed into the coastal facility and wreaked havoc, followed by a second
wave 8 minutes later. This caused all sorts of problems with the seawater intakes for the
cooling and more power loss and at 19:01 on Friday March 11 a Nuclear Emergency was
declared. Over the next 24 hours, evacuations for the surrounding areas went from 2km all
the way to 20km on March 12th once the Prime Minister had visited the plant [29]. Figure
4.2 shows a satellite shot of the power plant two years before the disaster and again in 2011
after the disaster.

Figure 4.2 Satellite images from the Fukushima Daiichi plant in (left) 2009 and (right)
2011 right after the tsunami. These images come from the LA Times and I highly

recommend looking the the rest of the before-after images to get an idea of the damage
that was done [30].

With such a huge disaster, people started to scramble to get estimates done of the damage
that was yet to come; the nuclear waste. Radioactive material getting into the air and the
water were the two areas people were trying to predict. Where was this going to spread?
How accurately could this be done? A lot of data started to come out surrounding the area
so that studies could be done on having a protocol and tool to do this for future events.

Prants et al. [31] explicitly look at LCSs near Japan, but they were looking at ocean current
in the Japan Basin which is on the west side of Japan. This paper has references to people
in Haller’s group and mentions LCSs in the writing. However, in an earlier paper, Prants,
Budyansky, and Uleysky [32] look at radionucleotide movement specifically derived from
Fukushima using Lagrangian methods, but not specifically LCS theory. In this paper, a
different and less complex route was taken to find the value of LCSs to this scenario.

32



4.2.1 The Process
Haller’s code contains demos, and each demo has data which was simulated, neatly pack-
aged, and behaviorally complacent. The next step with using this code was to see if real
data from real locations could be put into the LCS detector and output an image with neatly
placed repelling, attracting, and elliptical LCSs. This entire process proved very difficult
because the code was not written with this application in mind, the code authors were not
responsive to questions, and the ability to debug required tremendous knowledge of the
mathematics and project itself.

The first step the the process was to find an event to focus on. Fukushima was not only
a perfect candidate for its obvious implications on problem solving, but it proved to be
easy to find data in a format that very closely mimicked the data from the ocean demo.
The backbone to this data was actually found as a demo in itself from a tool called NC-
Toolbox [33]. NCToolbox was a solution to a problem we knew we were going to run
into. A vast majority of oceanic and atmospheric data come in the form of gridded binary
(GRIB) and GRIB2 formats. This tool allows MATLAB to deal with these easily. Inside of
this NCToolbox was a contributed demo file called fukushima.m. This file went out to the
Ecosystem Data Assembly Center (EDAC) [34] and obtained surface ocean velocities off
the eastern coast of Japan near Fukushima.

The simulated data for the Ocean Dataset demo had a very specific format, and in order
to change the code as little as possible, the fukushima code needed to be concatenated and
outputted in that exact format. This took some nested for-loops and other checks to make
sure there were no NaNs or Infs in the data where these values were found, we replaced
them with zeros. An example of the data is show in figure 4.3 which represents one of the
105 total velocity fields looked at in this process.

The data analyzed is from March 11, 2011 (the day of the disaster) to March 21, 2011 and
every time interval reflects 3-hour increments. One thing we need to make clear is that
these times are in Zulu time which is 9 hours behind local Japan time which means that the
earthquake occurred at 05:46 on March 11, 2011 Zulu time and the first wave occurred at
06:42 Zulu time.
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Figure 4.3 Output image from the code where the white is the main island of Japan and
the colors indicate the velocities and red vectors are visible on the top of this imagery. The
animated gif can be seen here. This timestep is at midnight Zulu time on March 11, 2011 -

the day of the earthquake but before it happened.

Once the data had been gathered, concatenated, and structured exactly like its simulated
counterpart, it was ready to be put into Haller’s code. With just a few changes to vari-
able names and other housekeeping items like latitude and longitude shifting and where to
start the simulation, we ran the real data through and voilà; errors galore! The data was
structured exactly like the input data, it was just larger and was actually taken from the
real world and to this day I still am not sure why the initial errors I got were showing up.
Through the process, it was evident that interpolating gridded data could cause problems if
from one timestep to another, there was a drastic change in velocity. With enough debug-
ging and sidestepping, we were able to get some results which we will look at in section
4.2.2.

For documentation purposes and usefulness to someone in the future, I am going to talk
about the warnings and errors we ran into and how we were able to work around these
problems in the long run. One difference between the approximated and real ocean data is
that the original ocean dataset was run on a timespan of 100 to 130 which in theory is days
of the year. Each time step in the data was 7 days however. That means that over the 30
days span, the code was only using 5 data inputs from the original code and was using the
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interpolant for everything else. In the data we collected, each timestep was 3 hours. The
original runs of the code were doing timespans on the order of a couple of days and every
time it would fail. In the end, the way to work around this was doing runs of timespans
in the form of [t , t + 0.5]. This short of a time was able to run through without having
issues with NaNs in the “eig” function built into MATLAB. This function was paramount
in building the Cauchy-Green Strain Tensor; without it there was no way anything was
going to be outputted. After that, a for-loop was just put in to run through each timestep
one by one and output 105 images, one for each 3 hour period during the Fukushima event
data.

4.2.2 The Results
From what we can tell, the shortened timespans cut down the amount of information that
could be analyzed by the detector, but the five most significant results of repelling LCSs
have been shown above. The specific times of the events are at the top of each image. One
of the most important things to show first in in figure 4.4 where we see the significant ocean
currents that surround Japan. Now, even though the current is slightly south of our area of
reference, we can assume the Kuroshio current is the activity we are seeing in our data in
the yellow. It is important to know this because no matter what, this current has a large
influence on the fluid around it.
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Figure 4.4 From top to bottom and left to right, these images are from (1) 3-11-11 18:00z,
(2) 3-13-11 00:00z, (3) 3-14-11 18:00z, (4) 3-18-11 15:00z, and (5) 3-21-11 18:00z. To

see these most significant LCSs in action with the animation you can click here to view it
on YouTube.
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Figure 4.5 A map of the significant ocean currents that surround Japan. The currents
correspond to the following names: 1. Kuroshio 2. Kuroshio extension 3. Kuroshio

countercurrent 4. Tsushima Current 5. Tsugaru Current 6. Sōya Current 7. Oyashio 8.
Liman Current. The most significant to us is number 1, the Kuroshio currents. This is the
current we see highlighted in yellow in all of our data and it has the most movement [35].
The red bounding box in this figure is the extent of the data that was collected and the red

dot is approximately where the Daiichi plant is.

What do we see from this data? It is clear that the Fukushima data did not produce as clear
of an outcome as the original simulated data did, but it still gave us information we did
not have before about the surrounding fluid flows. Another observation we can make is
how often these LCS change. We see complete change in just a single timestep (3 hours in
our case) and that is not surprising. The ocean has a plethora of interacting parts and just
watching the surface can only give us a hint as to what is going on. The big thing with these
results is that they worked; that what the biggest thing we wanted to happen. We were able
to take a free tool that is designed for learning and run real oceanic data through it. Data
that is messy, unorganized, limited and full of surprises, but most importantly real.

It is foolish to think we would be able to do any sort of pollutant transport analysis from this
small amount of data but the point still remains: with a small amount of effort, we can run
real data through these tools and get real results to help solve a problem. LCSs are nothing
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more than another tool in our belt to aid in question answering and this takes us into the
discussion of how LCSs can really help the future of climate and weather modeling.

4.3 Discussion: LCSs and Climatology
At this point, we have beaten LCSs to a pulp. Almost every aspect of LCSs has been
touched upon, and we have already talked about the motivation behind using these things,
but there is one specific side of LCSs that allow them to have a profound impact on climate
studies. From most of the paper and references looked at in this thesis, it is easy to see that
LCSs are already used in projects involving fluid data and a lot of those projects have to
do with climate and that is no surprise. We know that the atmosphere is the most studied
fluid (computationally). We are always trying to go that extra mile and get shove that extra
variable in the equation to further this computation. Also, as stated in section 4.1, one of
the main reasons for the advancement in weather modeling is computational power. So
this begs the question of why LCSs seem to be different? Why are they not like any other
advancement in the model?

Model advancements, besides shear computational power, come from more complex mod-
eling. The more variables we can input into the model, the more accurate our model should
be (in theory). It brings us back to J.G. Charney’s quote on starting with the most influ-
ential parts of the model and then adding on as information becomes available. However,
LCSs are not another piece of information to add to model. LCSs allow for a different way
of categorizing fluid flow. They fundamentally change the way a model is analyzed. Far
different than added knowledge of atmospheric conditions such as how clouds affect long-
wave radiation or how supercells change once they come into contact with certain types of
terrain, LCSs allow an approach to modeling based on fundamentals and not additions.

LCSs change everything about how we model climate. Even without changing current
weather and climate models, if you ran LCS detections at the same time, they could be
used by meteorologists and climatologists as another tool for prediction. Plain and simple,
LCSs describe which parts of a fluid are most influential to particles around them. For
someone studying things like the El Nino Southern Oscillation (ENSO) or the polar vortex,
using LCSs seems like a must for all analyses now. The very fact that LCS theory has been
introduced and proven to be able to predict fluid movement accurately means it is a subject
that has to be implemented and the first model that does so on a large scale will be dominant.

The world of weather research is very different than a lot of other fields because it has an
underlying culture of sharing. Yes it is true that models often “compete” with each other
for the most accurate results, but the whole idea behind having multiple models is to get
an idea of the uncertainty associated with the path and strength of an oncoming storm. The
same principle applies to hurricane tracking. The cone of uncertainty is a visual represen-
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tation of where the eye of a hurricane could go and decreasing the size of that cone saves
hundreds of lives and millions of dollars in time and resources. That cone is put together
by using all of the model predictions. The shape is a cone because all of the models say
pretty much the same thing for short lead times.

Implementation of LCS detection into fluid models would allow for a world of change in
every discipline of climatology imaginable; from predicting the Index Cycle change on a
mesoscale to being able to tell how much precipitation will end up on your front lawn on a
microscale. LCSs are the way of the future for fluid prediction and implementing them in
every realm possible will allow us to be that much further ahead of the problems that stare
us in the face everyday. Imagine being able to know exactly where the oil from BP Deep
Water Horizon was going to go the moment it happened or being able to know a deep freeze
was coming to kill your crops two weeks before it happened. LCSs are doing to climate
and weather modeling what railroads did for the shipping industry in the late 19th century,
what TVs did for the advertising world, and what the iPhone did for the phone industry;
they are revolutionizing the way we look at fluid.
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