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ABSTRACT

Modeling Earth’s atmospheric conditions is difficult due to the size of the system,
and predictions of its future state suffer from the consequences of chaos. As a result,
current weather forecast models quickly diverge from observations as uncertainty
in the initial state is amplified by nonlinearity. One measure of the strength of
a forecast is its shadowing time, the period for which the forecast is a reasonable
description of reality. The present work uses the Lorenz ’96 coupled system, a
simplified nonlinear model of atmospheric conditions, to extend a recently developed
technique for lengthening the shadowing time of a dynamical system. An ensemble
of initial states, systematically perturbed using knowledge of the local dynamics, is
used to make a forecast. The experiment is then repeated using inflation, whereby the
ensemble is regularly expanded along dimensions whose uncertainty is contracting.
The first goal of this work is to compare the two forecasts to reality, chosen to be
an imperfect version of the same model, and determine whether variance inflation
succeeds. The second goal is to establish whether inflation can increase the maximum
shadowing time for a single member of the ensemble. In the second experiment the
trajectory of reality is known a priori, and only the closest ensemble members are
considered at each time step. When inflation is introduced to this technique, it is
called stalking. Variance inflation was shown to have the potential to be successful,
with the extent dependent upon algorithm parameters (e.g. size of state space,
inflation amount). Under idealized conditions, the technique was shown to improve
forecasts over 50% of the time. Under these same conditions, stalking also exhibited
the potential to be useful. When only the best ensemble members were considered
at each time step, the known trajectory could be shadowed for an entire 50-day
forecast 50-75% of the time. However, if inflation occurs in directions incommensurate
with the true trajectory, inflation can actually reduce stalking times. Thus, utilized
appropriately, inflation has the potential to improve predictions of the future state of
atmospheric conditions, and possibly other physical systems.
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I. INTRODUCTION

Society is often dependent upon the ability of scientists to accurately forecast the

future state of chaotic physical systems, such as the weather. Meteorologists are asked

to anticipate natural disasters with ample time for the public to adequately prepare.

However, as Lorenz noted in 1965, the limit of predictability of the atmosphere

is about two weeks, even with nearly perfect knowledge of the current state [1].

In general, models fail to predict the behavior of chaotic physical systems due to

uncertainty in the initial state, chaos, and model error [2]. The initial state is an

estimate of the condition of the atmosphere at the start of a forecast. Although

weather monitoring devices cover much of the planet, for many areas (e.g. oceans)

the data is sparse. Therefore, meteorologists must estimate quantities in these regions

using data assimilation, which introduces uncertainty to the forecast. The atmosphere

is a chaotic system, meaning that these small uncertainties in the initial state are

amplified by nonlinearity. Finally, since the model itself is not a perfect representation

of reality, model error adds to the uncertainty leading forecasts to diverge quickly from

observations.

Since perfect knowledge of the current state of the atmosphere is unachievable, a

great deal of recent research has focused on data assimilation, the process by which

observations are combined with model predictions to give the best possible initial

state, “the analysis”. It is the analysis that is typically used as a proxy for the true

state of the atmosphere at any time in the past. Although the analysis has inherent

uncertainty from lack of perfect data, the modeler’s goal is to create a forecast that

remains reasonable for the longest duration of time from this given state. In the

example of weather, forecasters strive to be accurate for two weeks, the limit imposed

by chaos. Today 5 day forecasts are as good as 3 day forecasts from 30 years ago [3].

To account for the initial state uncertainty, the accepted technique is to use ensemble

forecasting, where a large collection of ensemble members are chosen randomly from
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a distribution that reflects the system dynamics near the given initial state [4]. Each

ensemble member is forecast forward in time, yielding a collection of final states.

The probability distribution of this collection represents the model’s forecast with

associated uncertainty. For example, if 60% of the ensemble members predict rain,

the forecaster assigns a 60% chance of rain. Given the limitations, the modeler’s goal

can be stated as trying to keep some ensemble members close to the observed truth

for as long as possible.

The time period for which a particular forecast is an accurate representation

of reality is called the shadowing time. In 2006, Danforth and Yorke proposed a

method called stalking to increase the shadowing time for a given forecast [5]. For

a system with n-degrees of freedom, an n-dimensional disk is used to encompass the

initial ensemble members. Throughout the length of the forecast, the system will

be expanding in some dimensions, while it will be contracting in others, depending

on the local finite time Lyapunov exponent in each dimension. The result can be

approximated by an n-dimensional ellipsoid for a short time. The idea of stalking

is to add some uncertainty in the contracting directions (i.e. those with a negative

local finite time Lyapunov exponent) at periodic time steps throughout the forecast.

This is accomplished by inflating the ellipsoid along axes parallel to the contracting

dimensions. Thus, if the true state of the system happens to suddenly expand

along a previously contracting direction as happens in systems exhibiting unstable

dimension variability [6], some ensemble members will remain relatively close. This

aggressive form of shadowing is known as stalking, and is not currently used in weather

forecasting, but is used in data assimilation to ensure the state estimation algorithm

does not put too much faith in the model forecasts and ignore observations when

creating the analysis.

Most of shadowing theory has been developed for hyperbolic systems based on

the Shadowing Lemma of Anosov [7] and formalized by Bowen [8]. Given a pseudo-
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trajectory of a model (i.e. one very close to an actual 1-step trajectory), this lemma

establishes the existence of a true trajectory that remains close for an arbitrary period

of time. Later research has extended the lemma for a wide variety of hyperbolic

systems (e.g. [9–11]). For these systems, the number of expanding directions remains

constant (i.e. the number of Lyapunov exponents greater than zero is constant

throughout the state-space), and small perturbations in stable directions decay

exponentially in time. However, most physical systems (e.g. Earth’s atmosphere)

are non-hyperbolic, and there does not exist a trajectory that shadows the truth for

an arbitrarily long time. More recent work has been focused on finding shadowing

trajectories for non-hyperbolic systems (e.g. the driven pendulum, Hènon map) [12–

15]. In this paper, stalking is further developed using the non-hyperbolic ’96 Lorenz

system to evaluate the potential for improvement in forecasts [16].
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II. MODELING

Ensemble forecasting is used to shadow a known trajectory za, the “truth”, of some

meteorological quantity (such as temperature, pressure, etc.). Both the truth and the

forecast were created using versions of a simplified nonlinear model given by Lorenz

(1996) to represent the atmospheric behavior at I equally spaced locations on a given

latitude circle. This system has been used in previous studies to illustrate weather

related dynamics (e.g. [17–19]). The N-dimensional governing first-order differential

equations are given by [16]:

dxi

dt
= xi−1(xi+1 − xi−2)− xi + F − hc

b

iJ�

j=J(i−1)+1

yj (1)

dyj

dt
= −cbyj+1(yj+2 − yj−1)− cyj +

hc

b
xfloor[(j−1)/J ]+1 (2)

for i = 1, 2, . . . , I and j = 1, 2, . . . , JI, and N = (J + 1)I.

FIG. 2.1. Model Schematic. The I = 8 slow variables xi can be thought of as locations
along a latitude circle. Each variable has J = 4 corresponding yj

i fast variables.

The values xi represent slowly changing meteorological quantities whose dynamics

are described by Equation (1). Since the set of xi corresponds to locations along a

single latitude circle, the subscripts i and j are defined to be in a cyclic chain. That
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is, we define x−1 = xI−1, x0 = xI , and x1 = xI+1, and similarly for j. Each xi is then

coupled to J quickly changing, small amplitude variables whose behavior is governed

by Equation (2). For our first experiments, we set I = 4, 5, 6 and J = 16 for a

state space of 68, 81 or 102 variables. We then examined the effects of a larger state

space by letting I vary from 4 to 18. A schematic is shown in Fig. 2.1. where 8 slow

variables (xi) are each coupled to 4 fast variables (yj
i ). Note that the dynamics of

each xi are dictated by neighboring x variables and the corresponding set of coupled

yj
i variables.

The nonlinear terms in Equation (1) are meant to represent advection, and conserve

the total energy of the system. The linear term signifies a loss of energy either through

mechanical or thermal dissipation. External forcing F is then added to prevent the

total energy from decaying completely. For all experiments we set F = 14. Consistent

with the literature, we set h = 1, c = 10, and b = 10, which forces the fast variables

to oscillate 10 times quicker than the slow variables [17, 19, 20]. Note that one time

unit corresponds to 5 days, the dissipative decay time [21].

Dynamics

The system dynamics can be studied by considering integrations of Equations (1)

and (2), hereafter referred to as the system. In Fig. 2.2, a time series for a longitudinal

profile (I = 40, J = 16) is shown after x13 is initially perturbed by five units. Profiles

are recorded at 12-h intervals over a 5-day forecast. Advection is apparent as the

energy from the perturbation is observed halfway around the latitudinal circle by day

5. This initial energy pulse was allowed to propagate for 55 days. A time series for

days 50-55 is shown in Fig. 2.3, and some of the same characteristics as seen in Fig. 2.2

can be observed. Lorenz and Emanuel [21] calculated a growth rate doubling time of

approximately 2 days for this model, which agrees with trends in larger atmospheric

models where errors double in roughly 2 days [22]. However, growth rates over limited

5
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FIG. 2.2. System perturbation time series. The effect of a five unit perturbation is observed
over a 5 day time series. After 5 days, the perturbation effects half of the locations,
indicating advection to the east and more slowly to the west (I = 40, J = 16).
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FIG. 2.3. Extended perturbation time series. The initial state of Fig. 2.2 is observed over a
5 day time series beginning at day 50. Particular perturbations can be traced throughout
the time series (I = 40, J = 16).

time intervals as in Fig. 2.3 can differ greatly.

Adjusting the parameters of the system and examining the time series at a single

site illustrates the dependence of the slow variables upon coupling to the fast variables.

The relative significance of the fast modes can be observed by varying h as shown

in Fig. 2.4 (I = 6, J = 16). For h = 1, a regular pattern emerges as an energy

equilibrium is achieved between external forcing and dissipation. However, as the

significance of the fast modes is reduced, the time series becomes more complex.
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FIG. 2.4. The dependence of coupling on system stability. The time series for x3 as the
parameter h is varied. For all three panels, I = 6, J = 16.

Similar results can be achieved by changing the number of fast modes. As

illustrated in Fig. 2.5, increasing J creates a more regular system. For I = 6, the

system is fairly regular for both J = 16 and J = 40. However, with only a few fast

modes active (e.g. J = 8), extreme oscillations become prevalent. For I = 8, more

fast modes are required to achieve the consistent pattern. Note that for both J = 8

and J = 16, the system is quite variable. Not until 40 fast modes are present does

the system exhibit regularity. With more fast modes available, the system’s energy is

more evenly distributed and nonlinearities in the fast modes have less impact on the

stability of the slow modes.

As shown in Fig. 2.6, adjusting the number of slow modes greatly alters the

qualitative dynamics of the time series for each particular xi. Note that for I = 4, 5

and 6, a regular pattern is observed with J = 16. As mentioned above, a consistent

pattern could be attained for larger I by increasing J . However, the regular pattern

varies drastically with I. For I = 4, the slow variable relative maxima are more

pronounced than the relative minima and the system appears to be quasi-periodic

with a dominant frequency of roughly 10 days. For I = 5, the system oscillates at an

intermediate value between extrema. For I = 6, a symmetrical pattern emerges with

a frequency of roughly 5 days.
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J = 8 is the dashed line, J = 16 is the thin solid line, and J = 40 is the thick solid line.
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FIG. 2.6. The dependence of the number of slow modes on system stability. Time series
for x3 as the number of slow modes I is varied. For all panels, J = 16.

System vs. Model

As mentioned above, each xi in the system is coupled to J small-amplitude fast

variables. A 10-day time series for a single xi with its corresponding yj
i ’s is shown

in Fig. 2.7 (I = 8, J = 4). In the top frame we compare the time series of x1 with

and without coupling from the fast variables. The effect from the yj
1 variables has

an increasing effect on the difference between the two integrations for x1 during the

forecast. In fact, for the first six days of the forecast, there is no difference between the

two. By day 10 however, the values differ by half the climatological span of x1. Note
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FIG. 2.7. A 10 day time series for x1 and y1,2,3,4
1 using I = 8, J = 4. For the top frame,

the solid line represents the time series for x1 with fast mode coupling (the system). The
dashed line has fast mode coupling turned off, and thus is integrating Equation (1) with
h = 0. The bottom four frames are the fast mode time series coupled to x1.

that the fast variables all vary differently throughout the forecast, with amplitudes

on the order of 10% those of the slow variables. Disturbances tend to propagate in

about 4 days.
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III. METHODS

From a given initial condition, the trajectory of the truth (za) is created by

integration of the system (i.e. using both the slow and fast variables in Equations (1)

and (2)). A two and three dimensional view of this attractor is shown in Fig. 3.8.

The forecast for each ensemble member is then completed by setting h = 0.5 in the

governing equations (hereafter referred to as the ‘model ’). In other words, the model

is rendered imperfect by dampening the effect of the fast modes in Equation (2)

by 50%. The same two and three dimensional slices can be seen in Fig. 3.9, now

for the model. This particular experimental design was chosen as it is typical for

global atmospheric models to attempt to parameterize sub-grid scale behavior, e.g.

for phenomena occurring on a finer temporal/spatial scale. For both the truth and

model forecasts, integration of the differential equations is completed using the fourth

order Runge-Kutta method with a time step of 0.01. Rigorous shadowing attempts

would be made using far more advanced methods of integration, with much smaller

time steps. However, for the purpose of this study of short forecasts, the difference

is negligible.
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FIG. 3.8. System Attractor. The left panel shows a two-dimensional view of the system
attractor looking at x1 vs x3. The right panel shows a three-dimensional view using x1, x2,
and x4 (I = 4, J = 16).
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FIG. 3.9. Model attractor. The left frame shows a two-dimensional view of a typical forecast
looking at x1 vs x3. The right frame shows a three-dimensional view of the forecast using
x1, x2, and x4 ( I = 4, J = 16).

Ensemble Creation

Long integrations of the system on randomized initial values were performed to

establish the shape of the attractor. A set of 500 different I-dimensional points were

then chosen at 250-day intervals. This spacing was chosen to ensure that the initial

states sampled different regions of the system attractor, and neighboring states were

uncorrelated. A ‘true’ trajectory from each of these states was determined using a

50-day integration of the system. The goal is then to use the model to shadow these

trajectories with an ensemble of 20 members.

At each of the 500 initial states, an I-dimensional hypersphere was constructed

encompassing 100 neighboring states from the system attractor. A neighboring state

is defined to be one within 5% of the climatological span of xi in the ith dimension.

At each hypersphere, the covariance for the 100 neighboring states is calculated,

yielding a I × I matrix C. This distribution is then scaled to ensure that the average

standard deviation is 5% of the climatological span of the system attractor. Thus,

for each of the 500 hyperspheres, 20 initial ensemble members are chosen based on

the distribution:

C init =
0.052σ2

clim

λ
C (3)

11



where λ is the average eigenvalue of C and σclim is the climatological standard

deviation. First, a control state is picked in each hypersphere by adding appropriately

distributed random noise to the I slow modes of the truth as follows:

zf
0(1 : n, 1) = za

0(1 : n, 1) +
√

C inity(I, 1). (4)

The vector y is an I-dimensional vector consisting of random entries from a Gaussian

distribution. The Cholesky decomposition is used to calculate the square root of C init

[23]. The remaining 19 ensemble members are then chosen using the same method,

but using the control state zf
0(1 : n, 1) as the central reference point.

zf
0(1 : n, j) = zf

0(1 : n, 1) +
√

C inity(I, 1) for j = 2, 3, . . . , 20. (5)

Making Predictions

Once the ensemble of initial states has been created for each hypersphere, the

trajectory of each ensemble member is forecast using the model. However, every

0.02 time units (2 time steps), the ellipsoid encompassing the ensemble members is

analyzed to determine expanding and contracting directions (i.e. those directions with

positive/negative local finite time Lyapunov exponents). These lengths and directions

are calculated using singular value decomposition (SVD) [23]. Let s = s1, s2, · · · , sI

be the singular values, with U = [u1,u2, · · · ,un] the matrix of left-singular vectors.

At each time interval, the vector s is compared to s from the previous interval

to determine which singular values are decreasing. Corresponding directions are

matched between time steps using the dot products of the vectors composing U .

A two dimensional analog is shown in Fig. 3.10. Note that all ensemble members lie

within the ellipse, and the control state is located at the center. SVD allows us to

identify the ellipse semi-axes s1u1 and s2u2.

12
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FIG. 3.10. A two-dimensional representation of a 20-member ensemble (I = 2). Let A be
the 2× 20 matrix of ensemble members. The semi-axes are calculated using SVD, where s1

and s2 are the two singular values of the matrix A.

An example one-dimensional 50 day ensemble forecast is shown in Fig. 3.11

(I = 6, J = 16). Note that for the first 20 days, almost all ensemble members

remain close to the truth. However, by day 30, the spread of ensemble members

covers the entire state space, and the ensemble no longer accurately represents the

truth.
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FIG. 3.11. A 20-member ensemble forecast for x3 initialized using Equation (5). The
black line represents the truth, while the blue lines are individual ensemble members
(I = 6, J = 16).
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IV. FORECASTING

Forecasting often fails when the state space dynamics of the physical system

expand along a previously contracting dimension. A two-dimensional illustration

of this concept is shown in Fig. 4.12. The ellipse representing the ensemble members

diverges from the trajectory of the truth when the system quickly turns in a new

direction. Similarly, for the larger system the trajectory of the truth experiences

sudden changes when contracting directions start to expand. This can be seen by

plotting the number of expanding directions over a 50 day forecast for a particular

hypersphere as in Fig. 4.13 (I = 6, J = 16). This unstable dimension variability is

well documented in the literature [5, 6, 24, 25].

FIG. 4.12. Schematic of forecasting in two dimensions. The black line represents the
trajectory of the truth (za). zf

Ti
is the ellipsoid encompassing the ensemble members at

time Ti. Note that the time steps T0, T1, T2, T3 are an incomplete sampling of all time steps.
The goal of a forecast is to achieve an ensemble which has a nonempty intersection with
za

Tf
. Here forecasting fails at time T2.

Variance inflation is an attempt to improve the ensemble forecast by inflating the

ellipsoid along contracting dimensions of the state space. For each direction i in which

the ensemble is contracting, ensemble members are inflated along the ith semi-minor
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FIG. 4.13. The number of expanding directions over a 50 day forecast. Clearly the dynamics
are changing as the state wanders through the attractor (I = 6, J = 16).

axis of the ellipsoid. Although this adds uncertainty, Danforth and Yorke argue that

the amount is minimal [5]. If the ellipsoid continues to contract in these dimensions,

the uncertainty introduced continuously decreases. However, if the system begins to

expand along a previously contracting dimension, the ensemble has captured some of

the change. This concept is illustrated for two dimensions in Fig. 4.14.

FIG. 4.14. Schematic of variance inflation in two dimensions. The black line represents the
trajectory of the truth. zf

Ti
is the ellipsoid encompassing the ensemble members at time

Ti. At each time step, the ellipsoid is inflated by ϕ along contracting directions. Note that
forecasting now achieves its goal in contrast to Fig. 4.12.
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As described above, the directions of the semi-axes are calculated using SVD

throughout the forecast at periodic time intervals. At each point, s is compared

to s �, where s � represents the singular values for the previous time interval. For each

i in which si < s �
i , each ensemble member is inflated in direction b = siUi.

Let ϕ be the inflation amount, whose magnitude will be discussed later, and let A

be the matrix of ensemble members minus the control state prior to inflation. Define

M = Im×m +
(ϕ− 1)

(||b||2)2
bb� (6)

where Im×m is the I-dimensional identity matrix (i.e. m = I) and b� is the transpose

of b. We now define A� = MA. Adding the control state to each vector in A� then

yields ensemble members inflated by ϕ in dimension Ui.
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FIG. 4.15. Successful inflation in a forecast. The black line is the trajectory za, the red
lines are ensemble member forecasts without inflation, and the blue lines are forecasts with
inflation. At point A, forecasting fails without inflation as noted by the end of the red lines.
Point B represents a second inflation of the ensemble (I = 6, J = 16).
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The benefit of inflation in a particular forecast has been isolated in Fig. 4.15 for

dimensions x2 and x3 (I = 6). Note that as the trajectory of za begins to turn, the

forecasts (blue and red lines) begin to diverge from the black line. As represented

by the end of the red lines, shadowing fails at point A without inflation, when there

is no longer overlap between the σ-ball surrounding za and the ensemble ellipsoid.

However, the blue lines are inflated at point A in previously contracting directions.

As the figure illustrates, these shifts help capture the change in direction for za and

shadowing survives. A second inflation for the blue lines occurs at Point B. Note that

since there is no change in the direction of za, at first, there is more uncertainty in

the ellipsoid encompassing the ensemble members. However, as za continues in this

direction, the uncertainty is dampened.

Forecasting Results

For each of the 500 initial hyperspheres, a 50-day model forecast for the 20 ensemble

members was created with and without inflation. For each hypersphere, the mean of

the 20 ensemble members was compared to the truth, and the root mean square error

(RMSE) and anomaly correlation (AC) were calculated as follows:

RMSE =

����
I�

i=1

(zf − za)2 (7)

AC =
(zf − z) · (za − z)

�zf − z��za − z� (8)

where z represents the vector of climatological averages for each slow variable. RMSE

and AC calculations were then averaged over all hyperspheres for the duration of

each forecast. Representative plots for I = 4, 5, and 6 are shown in Figs. 4.16

and 4.17 with an inflation factor of 1%. Note that for all plots, forecasts created

using inflation appear to diverge more slowly from the truth than forecasts without
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inflation. This effect is stronger for greater I, where variance inflation lowers RMSE

and increases AC. For the given system, a RMSE around 9 represents saturation, at

which point there is no correlation between the forecast and the truth. For I = 4,

RMSE overshoots this saturation value before returning to 9. In fact, both RMSE

and AC exhibit unexpected behavior by day 20. This is most likely a result of having

too few locations around the latitude band, leading solutions to go out of phase and

then back in phase accidentally. The black lines in Figs. 4.16 and 4.17 indicate a large

difference between the three systems. Without inflation, the model better forecasts

the truth for larger I, as can be seen with the black line shifting to the right.
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FIG. 4.16. Representative averaged RMSE for different values of I. The dashed line
represents no inflation, while the solid line is with inflation of 1%. For all panels, J = 16.
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FIG. 4.17. Representative averaged AC for different values of I. The dashed line represents
no inflation, while the solid line is with inflation of 1%. The dotted horizontal line represents
the 0.6 AC threshold. For all panels, J = 16.
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Similarly, Figs. 4.18 and 4.19 respectively show averaged RMSE and AC plots

for I = 6, J = 16, while ϕ is varied. The trend for these plots is more complicated

to analyze. Clearly ϕ = 0.5% shows the least improvement with variance inflation

as ϕ is too small to have a meaningful effect. The RMSE plots seem to indicate

variance inflation has a greater effect for ϕ = 2%, although the AC plots are less

convincing. One potential reasoning for greater inflation yielding less improvement is

that the inflation is in the wrong direction (i.e. away from the truth). By inflating

the ellipsoid in a potential incorrect direction, variance inflation is introducing more

error, thereby reducing any benefit gained.
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FIG. 4.18. Representative averaged RMSE for different inflation amounts ϕ. The dashed
line represents no inflation, while the solid line is with inflation. For all panels, I = 6, J = 16.
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FIG. 4.19. Representative averaged AC for different inflation amounts ϕ. The dashed line
represents no inflation, while the solid line is with inflation. The dotted horizontal line
represents the 0.6 AC threshold. For all panels, I = 6, J = 16.
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A forecast is considered to have failed once AC drops below 0.6, and yields an

estimate of the shadowing time [3]. For each state space size, the averaged shadowing

time was calculated using the non-inflated forecasts. This yielded durations of 6.7,

8.7, and 17.0 days, corresponding to I = 4, 5, and 6, respectively. Variance inflation

was deemed to have been successful if the duration for an acceptable forecast improved

by more than 5% of the average shadowing time for forecasts with ϕ = 0. Similarly,

the technique was considered to have failed if the duration worsened by the same

threshold. If there was any measurable improvement with inflation, forecasts were

denoted “inflation helped.” A second metric employed is a count of the number of

hyperspheres that shadowed the truth for a particular time interval. For each forecast,

the goal was set to 10% beyond the average shadowing time. Each experimental setup

was run in triplicate, averaging the counts for all metrics. Results for I = 4, 5, and 6,

with inflation amounts (ϕ) of 0.5%, 1%, 2%, and 5% are recorded in Table 4.1 with

totals out of 500. For all experiments J = 16 to ensure the truth had somewhat of a

regular pattern as described above in Fig. 2.6.

Table 4.1 indicates that variance inflation has a greater effect for larger I, with the

best results exhibited for I = 6. In fact, the number of hyperspheres in which variance

inflation helped was an order of magnitude better for I = 5 than for I = 4. These

numbers doubled for I = 6 relative to I = 5, likely due to the increased regularity

in za for I = 6 observed in Fig. 2.6. By capturing one of the sudden changes in the

trajectory of the truth using inflation, the model can better forecast the truth for a

longer duration. Alternatively, it might be evidence that error introduced by inflation

in directions that continuously contract has a minimal effect as argued by Danforth

and Yorke [5]. This effect would likely be strongest in systems with larger I, where

the expanding dimensions have a more dominant role.

Naturally, the success of variance inflation is also strongly dependent on ϕ, with

increasing ϕ generally corresponding to greater improvement. By increasing the
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TABLE 4.1. Variance inflation forecasting results out of 500 hyperspheres
Dimension ϕ Inflation Inflation Inflation Reached Goal Reached Goal

I Worked Helped Failed Inflation Non-inflation

4 0.5% 0 6 1 224 224
4 1% 1 7 1 224 224
4 2% 3 9 2 224 225
4 5% 3 16 4 225 226

5 0.5% 7 51 7 211 211
5 1% 13 84 9 214 213
5 2% 20 115 19 210 209
5 5% 34 156 37 214 210

6 0.5% 5 116 4 102 103
6 1% 86 273 27 456 456
6 2% 22 244 19 104 105
6 5% 59 295 59 117 104

inflation amount, the ellipsoid encompassing the ensemble members is more likely

to overlap with the trajectory of the truth, and thus capture unstable dimension

variability events. On the other hand, variance inflation can make a forecast worse.

By inflating in directions differing from the truth, the method introduces additional

error, which can be quite significant. The number of hyperspheres in which variance

inflation failed also naturally increases with ϕ. The more inflation away from the

truth, the worse the forecast. However, as mentioned above, these directions are

contracting, and thus, the error introduced is minimal.

The total number of hyperspheres for which shadowing succeeded was relatively

constant between inflation and non-inflation forecasts. One possible explanation is

that the effectiveness of inflation is not dependent upon the duration of the original

(non-inflated) forecast. For example, inflation is equally likely to help improve (or

hurt) a forecast that shadows the truth for 3 days or 20 days. Only for I = 6, ϕ = 5%

is there a marked improvement in the number of hyperspheres reaching the desired

shadowing time. Note that the experiment run for I = 6, ϕ = 1% appears to be an

outlier from the observed trend, exhibiting the most improvement of any with a 17.2%
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success rate. These conditions might be the unique balance in which the positive

effects of variance inflation are maximized with additional error being limited.

As shown in Table 4.1, for many of the hyperspheres, variance inflation successfully

improved the duration for which a forecast is accurate. The potential for this

technique can be seen by averaging RMSE and AC over the hyperspheres in which

inflation was successful as shown in Figs. 4.20 for I = 6, J = 16. Both plots

show improvement relative to forecasts made with no inflation. Therefore if these

opportunities can be isolated as was done in Fig. 4.15, variance inflation can have

great utility.
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FIG. 4.20. Averaged RMSE and AC for hyperspheres in which inflation improved
forecast. The black line represents no inflation, while the blue line is with inflation of
1% (I = 6, J = 16).

Monte Carlo Forecasting Results

To examine the trends for larger dimensional systems, experiments were repeated

for I = 4, 6, 8, · · · , 18. To increase beyond I = 18, more ensemble members would

be needed in order for SVD to be applicable. However, due to computation time

limitations for estimating the local dynamics of the system attractor, initial ensemble

members were chosen using a Monte Carlo approach. Ensemble members were
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chosen to be within 0.5% of the climatological span of the attractor of the initial

state. The same forecasts and analyses were completed as in the smaller dimensional

experiments. The average shadowing times for non-inflated forecasts are shown in

Fig. 4.21. Although the times agree with the attractor-based ensemble experiments

for I = 4, the Monte Carlo experiments had a significantly higher average shadowing

time for I = 6 dimensional systems.
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FIG. 4.21. The average shadowing time for non-inflated forecasts using the Monte Carlo
approach for I = 4 to I = 18 dimensional systems.

After normalizing by the times in Fig. 4.21, the number of hyperspheres whose

forecasts reached their goal with and without inflation are enumerated in Fig. 4.22.

For most systems, there is little difference between the number of hyperspheres

reaching the goal with and without inflation. However, I = 6 and I = 16 are

notable exceptions, especially for greater inflation amounts. Too much inflation in

highly regular systems can introduce too much error and forecasting fails. Since this

was not observed previously (for I = 6), this result is also on account of having initial

ensemble members varying too much from the initial truth, particular in directions

away from the system attractor. Inflation of 2% or 5% leads to the ensemble quickly

diverging from the truth. For I = 4, the counts with the Monte Carlo approach

are lower than those in Table 4.1. This may indicate that the forecasts that do
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reach their goal with the Monte Carlo method, greatly exceed it, thereby raising the

average shadowing period, and hence higher goal. For I = 6, the results are difficult

to compare because of the outlier in Table 4.1.
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FIG. 4.22. Number of hyperspheres reaching the desired shadowing period of 10% beyond
the ϕ = 0 average using the Monte Carlo approach. Solid lines represent forecasts with no
inflation, while dashed lines are with variable inflation.

Counting the number of hyperspheres for which inflation worked and failed with

the Monte Carlo technique, the trends observed in Table 4.1 do not tell the full story

as seen in Fig. 4.23 . In fact, I = 6 and I = 16 dimensional systems are unique in

that small amounts of inflation can greatly improve forecasts. However, for these same

systems, too much inflation can lead to an increase in the number of failures. It is in

these regular systems, as discussed previously, for which the model is most sensitive

to variance inflation. Note that in agreement with Table 4.1, the best improvement

occurs with 1% inflation on a 6-dimensional system. Between these two values for

I, the trend is reversed for the number of improvements. More inflation leads to

an increase in the number of hyperspheres for which inflation works. As expected,

this also corresponds with relatively fewer failures, although the number of times

inflation works and fails is quite similar for these systems. For all systems, increasing

the inflation amount leads to an increase in the number of hyperspheres for which

inflation fails.
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(a)Inflation worked
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(b)Inflation failed

FIG. 4.23. Number of hyperspheres where inflation worked and failed using the Monte
Carlo approach on I = 4 to I = 18 dimensional systems. Panel (a) shows the number of
hyperspheres for which inflation improved the forecast by over 5% of the average shadowing
time. Panel (b) shows the number for which inflation worsened the forecast by the same
amount.
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V. SHADOWING AND STALKING

The criteria of shadowing is a different perspective for assessing the quality of

a model’s predictions. The trajectory of the truth is known a priori to within a

given uncertainty (σ), and whose location at a given time is represented by an I-

dimensional ball of radius σ. At regular intervals, the intersection between the

ellipsoid encompassing the ensemble members and the σ ball is calculated. The

ensemble ellipsoid is then redefined to approximate the intersection, while the other

ensemble members are ignored. Provided this intersection is nonempty, the trajectory

of some ensemble members yield accurate representations of reality. A schematic of

this technique is shown in Fig. 5.24. Note that although the actual truth lies outside

the ensemble ellipsoid, some ensemble members are within σ. The trajectories of

these ensemble members can be forecast forward in time, and the process is repeated.

If some ensemble members remain in the intersection for the entire forecast, then

their trajectories have successfully σ-shadowed the truth. When inflation is applied

to the ensemble ellipsoid (as described previously), this aggressive form of shadowing

is called stalking.

Stalking Results

The same initial conditions utilized in the forecasting experiments were used to

create 50-day predictions. However, every 0.04 time units (every 4th time step),

the ensemble ellipsoid was redefined as described above. This interval was chosen

to ensure contracting dimensions could still be calculated without the redefinition

altering semi-axes directions beyond recognition. A new collection of 20 ensemble

members were then chosen lying within the redefined ellipsoid (σ = 10% of the

climatological range). As before, RMSE and AC were calculated and compared for

both shadowing and stalking experiments. If the time period for which AC remained
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FIG. 5.24. Schematic of the redefining of an ensemble in two dimensions. The star represents
the known location of the truth. The solid squares are supplemented by a collection of points
meant to approximate the overlap of the ellipse and the ball around the truth. The open
circles are previous ensemble members that will now be ignored.

above 0.6 improved by more than 5% of the average shadowing time, then stalking was

considered successful. Further, the number of hyperspheres σ-shadowed/σ-stalked for

at least 10% beyond the average shadowing time were counted. Results for I = 4, 5,

and 6, with inflation amounts (ϕ) of 0.5%, 1%, 2%, and 5% are given in Table 5.2.

As with forecasting, the shadowing experiments exhibited a greater benefit from

inflation with larger dimensions, although the difference is less than before. However,

the number of hyperspheres for which inflation worked does not seem to depend upon

ϕ over the range 0.5% − 5%. Since the number of hyperspheres in which inflation

worked roughly equals the number for which inflation helped, we can conclude that

when stalking is constructive, it improves the shadowing time by more than one day.

On the other hand, the number of hyperspheres in which inflation worked is nearly

equivalent to the number for which inflation failed for all experiments. Thus, inflation

can also have a negative effect upon shadowing.
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TABLE 5.2. Shadowing and stalking results out of 500 hyperspheres
Dimension ϕ Inflation Inflation Inflation Reached Goal Reached Goal

I Worked Helped Failed Stalking Shadowing

4 0.5% 57 65 55 376 375
4 1% 52 58 54 375 378
4 2% 60 69 52 376 368
4 5% 56 65 56 374 374

5 0.5% 63 74 59 330 326
5 1% 66 73 64 337 335
5 2% 65 73 57 335 328
5 5% 72 80 56 337 320

6 0.5% 55 68 60 233 238
6 1% 73 84 62 328 317
6 2% 64 83 61 231 227
6 5% 71 83 51 260 240

The number of 50-day σ-shadowed and σ-stalked hyperspheres tells an interesting

yet complicated story. Examining the non-inflation results alone indicates that

shadowing is most successful for smaller dimensional systems. With fewer expanding

dimensions, redefining the ensemble ellipsoid every 0.04 time units can readily ensure

some ensemble members remain close to the truth for the entire 50 day experiment.

Stalking results demonstrate that inflation has mixed success, although the overall

effect is quite mild. For many experiments, the change was less than five hyperspheres

in either direction. The most improvement occurred with maximal inflation (ϕ = 5%),

with increases of 17 and 20 hyperspheres for I = 5 and I = 6, respectively. A notable

outlier occurs for I = 6, ϕ = 1% where the number of hyperspheres both σ-shadowed

and σ-stalked is noticeably higher than other experiments. This might be a due to

the regularity for I = 6 observed in za, discussed previously. Under these ideal initial

conditions, stalking improves the number of accurate predictions by 11 hyperspheres.

These results indicate the stalking can be an improvement over shadowing, however,

inflation in directions away from the truth can be harmful.
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Monte Carlo Stalking Results
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FIG. 5.25. Number of hyperspheres reaching the desired shadowing period of 10% beyond
average using the Monte Carlo approach. Solid lines represent forecasts with no inflation,
while dashed lines are with variable inflation.

As with forecasting, stalking experiments were extended to greater dimensional

systems (I = 4, 6, 8, · · · , 18) using a Monte Carlo approach, where initial ensemble

members were chosen without knowledge of the local dynamics of the system

attractor. The same redefining technique and analysis described above was applied

to these systems. Fig. 5.25 depicts the number of hyperspheres shadowed and stalked

for at least 10% beyond the average shadowing time. Many of these hyperspheres

even remained close to the truth for the entire 50-day experiment. Unlike the results

presented in Table 5.2, it appears as though the number of hyperspheres shadowing

successfully increase from I = 4 to I = 6. However, these two data points are

significantly higher than for all other dimensional systems. This may indicate that

many of the hyperspheres would have remained close to the truth for much longer

than 50 days, had the model run for longer time. Note that for all experimental

setups, there is hardly a difference between stalking and shadowing (i.e. inflated and

non-inflated) experiments. The only variation is with ϕ = 5% for I = 4 and I = 6,

in agreement with Table 5.2.
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(b)Inflation failed

FIG. 5.26. Number of hyperspheres where inflation worked and failed using the Monte
Carlo approach on I = 4 to I = 18 dimensional systems. Panel (a) shows the number of
hyperspheres for which inflation improved the forecast by over 5% of the average shadowing
time. Panel (b) shows the number for which inflation worsened the forecast by the same
amount.

The number of hyperspheres for which inflation worked and failed using the

Monte Carlo approach for I = 4 − 18 is shown in Fig. 5.26. The number for

which inflation worked is slightly greater than the number for which inflation failed,

although the counts are close for all experiments. For I = 4 and I = 6, both

counts are significantly higher than observed in Table 5.2. Interestingly, the trends

detected for forecasting results are quite different. In fact, greater inflation generally

corresponds to lower number of hyperspheres for which inflation failed. This might

be signifying dot product errors in correlating ensemble semi-axes directions between

time steps for lower inflation amounts. With greater inflation, the model can better

determine corresponding directions during redefinition of the ensemble. The number

of hyperspheres for which inflation worked is relatively constant for all inflation

amounts. Note that the extremal values for I = 6 and I = 16 for forecasting

experiments are not as distinguishable. By redefining the ensemble every 0.04 time

steps, the large scale regularity for those systems is important. Since the truth is

known throughout, ensemble members are forced to remain nearby regardless of the

shape of the attractor.
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VI. CONCLUSIONS

Using the Lorenz ’96 coupled system as an analog for atmospheric dynamics,

we were able to analyze the potential for using inflation in models of the Earth’s

atmosphere. In the first experiments, forecasts were made with and without inflation,

and the resulting trajectories were compared to the system truth. In the second part

of this work, the existence of a shadowing trajectory with and without inflation was

assessed. The trajectory of the truth was known a priori, and only the closest ensemble

members were considered at periodic time steps. In the former the inflation technique

is referred to as variance inflation, and in the later, stalking. To expand the results

for larger dimensional systems, a Monte Carlo approach was used to simplify the

definition of the initial ensemble. Under idealized conditions, inflation was shown to

be beneficial for both techniques.

Overall, the greatest determinant of a forecast’s success was the tuning of the

model’s parameters. For the Lorenz ’96 model, slightly adjusting the number of slow

and fast modes, and the degree of coupling between them, one could vary between

regular and highly chaotic systems. This system had the greatest regularity for I = 6

and I = 16. However, by increasing the number of fast modes (J), greater regularity

can be achieved for a fixed number of slow modes. In contrast to hyperbolic systems,

the present system exhibits unstable dimension variability and fluctuating Lyapunov

exponents as is common in higher dimensional systems [25].

For forecasting experiments, inflation showed the potential to work as illustrated

in Fig. 4.15. Inflation in directions away from the truth, however, can worsen a

forecast. As a result, greater inflation amounts always corresponded to an increase

in the number of hyperspheres for which inflation failed. For regular systems such as

I = 6 and I = 16, smaller inflation amounts can often successfully improve a forecast,

while the error introduced from larger inflation amounts is too great. However, for

less regular systems with dimensions between 6 and 16, larger inflation was necessary
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to improve forecasts. For these systems, the uncertainty introduced was less likely to

have a harmful effect.

Stalking experiments were used to establish the existence of a trajectory that

remains close to the truth for a given time and assess how inflation effects this

trajectory. For these experiments, results were relatively constant for systems with

greater than 6 dimensions. Inflation was shown to be successful at about the same

rate at which it hindered shadowing. Thus, the utility of stalking is dependent upon

the ability to isolate the hyperspheres for which inflation helped.

When shadowing physical systems such as the atmosphere, one is presented with

the challenges of uncertainty in the initial condition, sensitive dependence upon these

initial conditions, and model error. Model error is even estimated to dominate the

forecast error for the first three days in weather systems [20]. Nevertheless, modelers

must attempt to provide the best predictions possible given the circumstances. This

research demonstrates that inflation has the potential to aid in our attempts to model

chaotic physical systems. However, isolating when inflation will help and when it will

be harmful has yet to be established.
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APPENDIX A: UNDERSTANDING SVD

Consider the I × (m − 1) matrix A, where m represents the number of ensemble

members. The ith column of A represents the difference between the ith ensemble

member and the control state. Let A = USV � be a singular value decomposition of

A, where si form the diagonal entries of S. The eigenvalues of
�
AA��

equal S2, and

increase with the number of ensemble members m. Although, s grows proportionally

with
√

m, the magnitude of si is irrelevant for the purposes of inflation. We are solely

interested in the dynamics of the semi-axes directions. (i.e. Is si contracting relative

to the previous time interval?). Note that the magnitude of s represents the range of

possible ensemble members, which does increase with m.

Consider the matrix A acting on the m-dimensional unit sphere. For m = I, the

resulting matrix represents the boundaries of an ellipsoid. Now consider the case

where m > I. We want to show that for an arbitrary vector y existing in/on the

ellipsoid, we can solve Ax = y. We know that the size of the singular values of the

ellipsoid (and thus the size of the ellipsoid) will be growing with
√

m. For simplicity,

let I = 2, and the m-dimensional unit vectors are mapped into 2 dimensions by A.

Intuitively, as m increases, the column space of A should be larger. Let y = {y1, y2},

x = {x1, x2, . . . , xm}, and Aij be the entry (i, j) of A. Then we are trying to solve

A11x1 + A12x2 + · · · + A1mxm = y1 (9)

A21x1 + A22x2 + · · · + A2mxm = y2 (10)

Ensuring x is a unit vector can be accomplished via scaling. Clearly, given y, we can

find infinitely many vectors x such that Ax = y.
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APPENDIX B: MATLAB CODE

All experiments were computed using the University of Vermont Bluemoon cluster

(an IBM e1350 High Performance Computing system) run by the Vermont Advanced

Computing Center. The cluster is made possible by grants from the National

Aeronautics and Space Administration (NASA) with strong support from U.S.

Senator Patrick Leahy and Vermont EPSCoR. The original matlab code can be found

at: http://www.uvm.edu/ cdanfort/nolink/atmos/stalking-code.tar. It was used to

run 264 experiments comprising of 11,458 submitted jobs.
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