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While most studies of deterministic network growth have been of one- or two-case models, here a more
diverse and comprehensive method of deterministic network evolution is presented. The range of observed
behavior is classified and the underlying causes of the various types of growth are investigated. The potential
for prediction of the different types of network growth is also examined. It is discovered that a wide variety of
behavior can be produced by a simple evolutionary setup and that the networks resulting from this method of
evolution warrant further study.
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I. INTRODUCTION

Increasingly, the study of networks has been attracting
attention in the last few years #1,2$, in part due to the inter-
connected nature of modern society and the increasingly
available data on social, technological, and biological net-
works. The seminal work of Watts and Strogatz #3,4$ dem-
onstrated that networks are capable of exhibiting remarkable,
nonintuitive characteristics and catalyzed what is now a very
active area of research. Due to the popularity of their work,
much attention has since been paid to designing models of
network evolution which produce scale-free degree distribu-
tions and other “small-world” characteristics #5–10$, most
notably the Barabási-Albert preferential attachment model
#11$. The overwhelming majority of such models have been
stochastic, although a handful of deterministic models have
been presented #12–16$. While many of these models !both
stochastic and deterministic" often successfully capture the
observed small-world properties of real-world networks, it
has been shown that some of the most popular models are
unable to produce all of the various types of topological
community structure seen in real-world networks #17$. It is
evident that a more flexible and comprehensive approach to
studying structural network evolution is needed.

Here the focus is on a deterministic method of evolving
network structure, a special case of the class of rules pro-
posed by Wolfram #18$. The benefits of this approach are
evident in both implementation and result. Examining deter-
ministic models of network growth enables potential identi-
fication of the cause of behavior of interest, whereas stochas-
tic models inherently lack such well-defined causality. When
complex behavior is seen in a stochastic model, it can be a
subtle matter to determine whether the complexity arises
from the architecture of the model itself or from the persis-
tent introduction of randomness into the system. Further-
more, the model presented here is much more flexible and
comprehensive than previously proposed deterministic meth-
ods that have focused mostly on one- or two-case models
directly giving rise to networks with scale-free degree distri-
butions. In contrast, the model presented in this paper was
not designed with any specific end goal in mind and pos-
sesses a vast number of cases. This width of scope and ver-

satility gives rise to a rich spectrum of observed network
behavior.

In this study, directed networks were evolved according to
simple deterministic rules. Each rule had a number of pos-
sible cases, from which a particular node would select the
case to be applied depending on the local structure of the
network !see Appendix for details". Two different classes of
rules were examined, depending on how far along the net-
work a node was to search—in terms of following successive
forward links—in order to determine a case. While nothing
but simple behavior was found in the “distance-one” class of
rules, the “distance-two” class presented a breadth of signifi-
cantly more complex behavior.

Given the size of the distance-two rule space !detailed in
the following section", this paper does not attempt to draw
conclusions about the statistics of the rule space as a whole.
Instead, the motivation for this study was to provide an in-
troduction to this method of network structure evolution and
begin investigation into the potential utility of these net-
works in both applied and theoretical research. The variety of
observed behavior in the distance-two class was sorted into
categories with common qualitative growth characteristics.
Quantitative tools were developed in an effort to better un-
derstand the underlying mechanisms driving certain types of
network growth behavior, as well as to explore the potential
for structural behavior prediction. The conclusion discusses
the effectiveness of the presented analysis methods as tools
for network prediction, as well as some thoughts on potential
applications of this method of network evolution.

II. DYNAMIC STRUCTURE RULES

The networks in this study are composed of directed links,
with each node having exactly two outgoing links, distin-
guished as the “up” and “down” links for ease of reference.
!This outgoing link restriction is simply for the purpose of
establishing an initial class of rules to examine. As stated
later in Sec. V, future studies could certainly concern them-
selves with rules that allow for a different number of outgo-
ing links." No restrictions are placed on the number of in-
coming links a node may obtain. All networks examined are
evolved from an initial condition of three nodes, with every
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node forward connected to each of the other nodes !Fig. 1".
Analogous to ordinary cellular automata #18$, the up and

down links of a particular node can be altered according to
one of several cases within a given rule. The case of the rule
to be applied depends on the local structure, namely, on the
total number of neighbors a node has when following its
forward connections over a given distance.

Depending on the rule and case, links can be rerouted or
entirely new nodes !and their accompanying links" can be
placed in their path. Each node is updated in sequence ac-
cording to its index. Nodes are denoted by N and indexed
with a subscript s and superscript 1 through ns, where ns is
the total number of nodes in the network at step s !e.g., n0
=3". One “step” of the evolution is complete when each node
has been updated once. At the end of each step, nodes are
deleted if they can no longer be reached from Ns

1, the node
indexed one at step s. Next, nodes are reindexed so that there
are no gaps in the index. !The reindexing at each step re-
quires that when a specific node in the network is referenced,
both the index and step must be specified, since the index of
a node can change between steps if lower-indexed nodes
were deleted from the network. Note that Ns

1 is a special case
and is always the same for all steps." This type of network
evolution can then in effect be thought of as tracing the
history/evolution of the initial cluster, the set of nodes that
remains reachable from N0

1. If so desired, detached clusters
can be examined by evolving a network under the same rule
with different initial conditions.

Two classes of these dynamic network structure rules
were examined: distance one and distance two. The distance-
one rules each have two cases, which are applied according
to the number of neighbors a node has when looking forward
to a distance of one. At distance one, a node can either see
one neighbor !its outgoing links are pointing to the same
neighbor" or two !its outgoing links have distinct destina-
tions". The distance two rules each have four cases. The case
is chosen depending on the sum of the number of neighbors
a node has at distance one and at distance two. This sum can
then have values from 2 to 6, with sum two and three being
combined into one case in order to make the size of the rule
space computationally tractable. There are 1296 possible
distance-one rules and approximately 9.6 trillion distance
two rules !reduced from over 1016 rules by the combination
of sums two and three into a single case".

As an example, distance-one rule 219 states that

If the sum of the
immediate neighbors is: Then:

1: Both outgoing
links point to the
same neighbor

Redirect the “up” link to the current
destination of the “down” link and
redirect the down link to the current
destination of the up link.

2: Each outgoing
link points to a
distinct neighbor

Leave the up link pointing to its
current destination and place a new
node as the new destination of the down
link—whose links will point to the same
starting destinations as the up and down
links of the original node, respectively.

See the Appendix for a description of rule enumeration and for more
detailed explanation of the structure and application of rules and
their cases.

III. SIMULATION RESULTS

An exhaustive search of the distance-one rules was per-
formed. Only two types of behavior were observed: namely,
monotonic growth or periodic behavior. Rules which result
in periodicity typically have a brief transient period of no
more than five time steps. Of the 1296 distance-one rules,
116 result in fixed points, while 52 result in period two be-
havior. Behavior of higher periods is not observed.

A random search of over 50 000 distance-two rules was
conducted. Most of the observed behaviors fit into one of a
handful of categories. However, six of the searched rules
exhibit potentially more complex behavior. The frequency of
periodic behavior was somewhat higher than expected and
rules were found with periods as high as several hundred
steps. The distance-two rules with periodic behavior took
much longer to settle into their periodic cycles than the
distance-one rules, with observed transient phases generally
on the order of 40–50 steps.

Classification of network behavior is a nontrivial problem,
since direct visualization of network evolution is infeasible
for large numbers of rules. In addition to the obvious com-
putational difficulty of plotting large, distributed networks,
there is also the risk of artificial creation of meaning for
graphs of any size. Depending on the graphing algorithm
used, nodes which appear close together in a graph may ac-
tually be separated by several steps. In the case of a directed
network, one node may not even be reachable from another
at all despite visual proximity. Structures could appear in the
graph as a by-product of the graphing algorithm and not have
physical meaning when the network is analyzed mathemati-
cally. The best solution is to take purely quantitative ap-
proaches to analyzing networks to ensure that the emergent
properties observed are a direct result of the network evolu-
tion rules and not an accidental by-product of the analysis
method.

A. Classification of observed behavior

Behavior was classified according to the style of popula-
tion growth seen. The full range of observed behavior could
then be divided into four categories:

N0
1 N0

3N0
2

FIG. 1. Initial condition for all experiments: cyclic net of three
nodes, where every node is forward connected to each of the other
two.
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1. Monotonic growth (both linear and exponential).These
rules exhibited purely monotonic growth. Both linear and
exponential growths were observed, but no sublinear growth
was found in the sample #see Fig. 2!a"$.

2. Monotonic growth trend with superimposed regular be-
havior. These rules exhibited a positive linear or exponential
growth trend, but with periodic behavior superimposed #see
Fig. 2!b" for an example$. A few instances of superimposed
behavior that appeared to be dampened out over time were
found.

3. Periodic or nested/resonant behavior.These rules ex-
hibited purely periodic or nested behavior. !For “purely pe-
riodic,” the exact link structure is compared from cycle to
cycle. Since these evolution rules are deterministic, once pe-
riod t behavior is found, the network is guaranteed to repeat
its exact structure every t steps." “Nested” behavior was
characterized by repeated network growth patterns that
seemed to grow in amplitude each repetition. Successions of
sublinear trends were seen within a few of these nested rules.
For an example of periodic behavior, see Fig. 2!c"; for nested
behavior, see Fig. 2!d".

4. Complex behavior. These rules exhibited growth

patterns without any apparent regular growth behavior !in-
cludes rules 1 374 996 482 325, 1 885 294 065 141,
5 969 384 073 490, 6 669 033 908 439, 8 068 664 081 521,
and 8 414 212 167 895, see the Appendix for numbering
scheme" #see Fig. 2!e"$.

Many rules exhibited a seemingly random transient phase
before settling down into one of the regular behavior catego-
ries. Consequently, one goal was to determine if there were
any indicators during the transient phase which could be
used to predict the category of growth a network would
eventually exhibit in the long term. Indeed, a valid concern is
that the rules categorized as “complex behavior” could sim-
ply be rules which eventually demonstrate behavior belong-
ing to one of categories 1–3, yet experience extraordinarily
long transient phases.

The distributions of both incoming degree and clustering
coefficient were examined for the entire network as a func-
tion of time step and the discrete Fourier transform #Eq. !1"$
of the population time series was also examined. Although
all three tools provided useful insight into the mechanisms
that underlie specific types of behavior, their utility as pre-
diction tools was varied. Certain observed properties of net-
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FIG. 2. Population, ns, vs time step, s, for different categories of behavior: !a" monotonic growth, !b" monotonic trend with superimposed
regular behavior, !c" periodic behavior, !d" nested behavior, and !e" complex behavior.
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works often meant the network was more prone to one type
of behavior than another. However, none of these tools were
able to routinely forecast the future evolution category of a
given rule.

A preliminary observation of the underlying community
structure of these networks was also performed, using the
thirteen three-node motifs as presented by Milo et al. #19$.
The time series of all thirteen motifs were examined for rep-
resentative samples of rules from each category. The initial
results suggest certain types of motifs or trends in their net-
work total time series may be correlated with overall popu-
lation dynamics, but a more rigorous study would be neces-
sary in order to make a proper assertion.

B. Analytical tools

1. Incoming degree distribution

Perhaps the most frequently examined property of net-
works is the degree distribution. In a directed network, a
distinction is made between the incoming and outgoing de-
grees of a node. Here, the outgoing degree distribution was
dismissed as trivial, since one of the basic properties of these
networks is that each node is restricted to exactly two out-

going links. The degree distribution over an entire evolution
was of interest rather than at a selection of individual steps.
The distributions for individual steps were plotted in succes-
sive horizontal lines using color to denote the fraction of
nodes which had a particular degree !see Fig. 3". Unfortu-
nately, no correlations were seen between the type of incom-
ing degree distribution and the eventual category of behavior.

Examination of the incoming degree distribution provided
useful insight into the level of heterogeneity of a network.
Observed degree distributions were diverse and ranged from
very compact and homogenous #Fig. 13!b"$ to apparently
scalefree !inset, Fig. 3", sometimes even within the same
evolution. This tool also proved to be useful in determining
when a network was prone to sharp population drops. A
greater number of nodes of high incoming degree implies
fewer links remain for other nodes. Therefore, the existence
of nodes of higher degree implies the existence of nodes at
increased risk of being unreachable from N1

s . Furthermore,
nodes of greater incoming degree are somewhat more likely
to increase in degree than nodes of lesser incoming degree,
since the rewiring instructions in a rule are given in terms of
reachable destinations in the network. This unbalanced dy-
namic may cause links contributing to nodes of lesser de-
grees to rewire to nodes of greater degree, which could cause

FIG. 3. !Color" Incoming de-
gree distribution plot for rule
5 969 384 073 490 #Fig. 2!e"$.
Colors represent the fraction of
nodes in the network at each step
possessing a given degree. Inset
shows a “cross section” of the
color plot, giving a log-log com-
parison of the network fraction
possessing a given incoming de-
gree at step 217.
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deletion of fractions of the network when nodes of decreas-
ing degree become unreachable from Ns

1.

2. Fourier transform of population time series

The discrete Fourier transform !DFT" of the population
time series was used in an effort to find a method of reliable
identification of impending periodic behavior. The formula
used to compute the discrete Fourier transform vector was
given by

vr =
1
%t

&
s=1

t

nse
2!i!s−1"!r−1"/t, !1"

where vr is the rth element of the resulting transform vector,
ns is the sth element of the vector being analyzed !here, the

population time-series", and t is the length of n.
Although the discrete Fourier transform performed well at

recognizing periodic behavior after it had already become
apparent in the population versus time plot, it displayed
mixed success at predicting such behavior during the tran-
sient phase !see Fig. 4". This would seem to suggest that
periodic behavior arises spontaneously rather than gradually
when a rule by chance comes across a network configuration
for which it is periodic. However, results from examining the
clustering coefficients of evolutions #Eq. !2"$ would suggest
that dynamics between community structures within the net-
work play a nontrivial role in overall network behavior and
these community structures seem to appear gradually rather
than spontaneously !see Fig. 5" . It would be worthwhile to
evolve a catalog of periodic rules from varying initial condi-
tions to see if some rules guarantee periodicity or if period-
icity is dependent on initial condition.

The discrete Fourier transform did prove to be useful for
evolutions where there was suspected complex behavior in
conjunction with a monotonic growth trend. The DFT was
able to detect periodic trends in these rules, where it is dif-
ficult to directly test for quasiperiodic behavior superim-
posed upon linear or exponential growth. There was one
seemingly complex rule discovered in this study which may
not be complex upon closer examination !Fig. 15"; the DFT
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FIG. 4. Discrete Fourier transform spectra for three intervals in
the transient phase of periodic rule 2 195 950 540 592 #Fig. 2!c"$.
Figures compare steps !a" 1 through 30, !b" 1 through 55, and !c" 1
through 200.

FIG. 5. !Color online" !a" Clustering coefficient per node and !b" diagram of the network at step 121 for periodic rule 2 195 950 540 592
#Fig. 2!c"$. Nodes in the network diagram are colored according to the value of the clustering coefficient at each location.

1 2 3 4 5 6 7

8 9 10 11 12 13

FIG. 6. The 13 three-node motifs as presented by Milo et al.
#19$. Note that motif 13 is the initial condition used throughout this
study.
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of the evolution suggests that regular behavior may not be
readily seen upon simple visual inspection !Fig. 16".

3. Clustering coefficient

The formula used to find the clustering coefficient of an
individual node i was a special case of the form proposed by
Hansen et al. #20$,

Ci!m,n" =
pi!m,n"

' j=0

n−1 !Ti
n − j"

, !2"

where Ti
n is the total number of unique nodes reachable from

node i within a distance of n and pi!m ,n" is the total number
of paths of length n which travel from node i to any node in

Monotonic growth Periodic !cont'd" Monotonic trend Nested Complex
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FIG. 7. !Color online" Examples of network motifs per capita. The 13 three-node motifs examined by Milo et al. #19$ were here tallied
at each step of a network evolution. These totals were all divided by the size of the entire network at the particular step to remove trends in
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the set which node i sees at exactly distance m !i.e., if m
=2, nodes seen at distance=1 are not included in the set".
This is identical to Eq. 4 from #20$, except r is always equal
to n and m"n. To avoid dividing by zero, Ci=0 by default
for any node where Ti

n" !n−1". Although the clustering co-
efficient is usually examined in aggregate form, as the aver-
age over all individual nodes in a network #1,20,21$, an al-
ternative method was explored in this study. By examining
the time series of solely the network average of the clustering
coefficient, detailed information regarding the structure of
the network is lost. In order to better understand the under-
lying structure and potentially uncover mechanisms signal-
ing or even driving certain types of network growth behav-
ior, the clustering coefficient #Eq. !2"$ was examined as a
distribution at each time step, similar to how the degree of a
node is conventionally examined as a distribution instead of
a network average #1$. This technique proved useful in gain-
ing understanding of underlying network dynamics and even
in predicting the frequency of successive levels of nesting in
network evolutions corresponding to nested behavior !cat-
egory 3".

Another factor contributing to the need for a more general
approach was the restriction that each node in the present
networks is limited to having at most two nearest neighbors
!when looking forward through the network, following the
directions of links". A significant advantage to using Eq. !2"
for a measure of local network structure as opposed to the
“classical” clustering coefficient #21$ is the former’s versa-
tility. Whereas the classical clustering coefficient is only con-
cerned with how many of node i’s nearest neighbors are also
nearest neighbors themselves, the clustering coefficient em-
ployed here can be used to examine network structure over
arbitrarily small or large distances #It is easily shown #20$
that the classical clustering coefficient is a special case of Eq.
!2"$. Furthermore, Eq. !2" is readily extendable to networks
with directed links, whereas nontrivial specifications must be
made before applying the definition of the classical cluster-
ing coefficient to directed networks #21$, which may or may
not take into account the actual reachability of particular
nodes from the one at which the coefficient is being calcu-
lated.

4. Network motifs

A brief examination of the community structure in the
presented networks was also conducted. The time series of

the three-node motifs presented by Milo et al. #19$ were
examined over the course of a given network evolution !see
Fig. 6". These series of values were divided by the size of the
network at each corresponding step to remove trends in motif
totals due solely to the trends of the entire network size.

Even this preliminary investigation into network commu-
nity behavior displayed an interesting breadth of behavior
!see Fig. 7 for examples". Motifs 1 and 2 generally scaled
along with the network size as expected !note that these are
represented by straight horizontal lines in the diagrams". Mo-
tif 4 frequently scaled with the size of the network, with
some interesting exceptions, but was usually more volatile
than 1 and 2 even when it did scale with the network size.
Motif 6 was somewhat frequently spotted scaling with the
size of the network as well. Motifs 12 and 13 !note that 13 is
identical to the initial condition used throughout this study"
were almost never observed.

The periodic evolutions displayed a wider spectrum of
motif activity more frequently than evolutions from other
categories. The monotonic trend rules displayed very smooth
motif time series, whereas the time-series values from the
other categories were more volatile. However, any observed
regular behavior in the network population was consistently
reflected in the behavior of the motif values. This seems to
strongly suggest that regular population behavior of these
networks is not an accident, but instead implies organized
structure.

The motifs per capita time series displayed a variety of
trends; sometimes the values would remain constant, some-
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FIG. 8. !Color online" Monotonic growth ex-
ample, rule 4 8364 37 700 860: !a" Population vs
time graph, dashed linear and quadratic lines
plotted for comparison. !b" Incoming degree
distribution.

0 100 200 300 400 500
0

50

100

150

200

250

300

Time step, s

Po
pu

la
tio

n,
n s

FIG. 9. Population vs time graph for monotonic growth trend
example, rule 1 727 495 112 417.
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times they would decrease as the network grew !possibly
implying a constant absolute number of motifs in the net-
work", and in a few observed cases, the values would even
increase. It could be argued that perhaps a motif which ap-
pears to correlate with growth in a given network evolution
only appears as such because that motif is somehow indica-
tive of one or more cases in the given rule that add nodes.
But the cases of a rule that add nodes may not leave the
acted-upon node seeing the same structure as it did before
the new node was added or reproduce the previous structure

for the new node. Put more simply, there are no guarantees
that a given case of a rule will create more of itself or even
preserve the already existing instances. So a case-occurrence
count, if performed analogously to the presented motif count,
might fluctuate rather unpredictably. Furthermore, these mo-
tif diagrams seem to suggest something more emergent in the
behavior of these networks and it is probably more fruitful to
think of them as indicators of the way information is shared
across the network, rather than strictly related to specific rule
cases.

FIG. 10. !Color online" Mono-
tonic growth trend example, rule
1 727 495 112 417. !a" Plot of
clustering coefficient per node. !b"
Incoming degree distribution
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FIG. 11. !Color online" Peri-
odic example, rule
7 427 685 516 255. At time step
346, the rule begins to exhibit
period-six behavior. !a" Popula-
tion vs time graph. !b" Incoming
degree distribution.
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IV. OBSERVATION: PROPERTIES OF THE FOUR
CATEGORIES OF BEHAVIOR

A. Monotonic growth

Like many of the evolutions in the monotonic growth cat-
egory, the example rule illustrated in Fig. 8 exhibits a mark-
edly homogenous clustering coefficient, taking on only three
values during the entire course of the above evolution: 0, 1

20 ,
and 1

3 . Also characteristic of this category of network growth,
this example rule displays an incoming degree distribution
that maintains a fixed width over time. Monotonic growth
rates ranging from linear to exponential were observed. Al-
though no examples of sublinear growth were found, there
does not appear to be any property of the evolution method
that would explicitly prevent such growth. The rule whose
behavior is described by Fig. 8!a" was selected as an ex-
ample for its interesting growth rate, which falls somewhere
between linear and quadratic.

B. Monotonic growth trend with superimposed regular
behavior

The example rule represented in Fig. 9 displays clustering
behavior typical of the monotonic trend rules encountered in
this study. For rules in this category, the pattern of the clus-
tering coefficient across individual nodes always exhibits a
rather regular structure. Often these networks appear to be
made up of several distinct communities, which either grow
in diameter or maintain a steady size over the course of an
evolution #see Fig. 10!a"$. It would certainly be worth inves-
tigating the potential causes for the stability of these subnet-
work structures and the dynamics of their interactions.

Another commonly observed characteristic of this cat-
egory, also seen in the monotonic growth rules, is the steady
width of the incoming degree distribution #Fig. 10!b"$. As
can be seen by the changing colors of the distribution—
especially on the right-hand side—the fraction of the net-
work which exhibits a certain incoming degree is changing,
but the range of the distribution is not. It appears that the
nodes being added to this particular network are not connect-
ing to the pre-existing hub, but rather contributing to a more
sparse, homogenous lattice—an observation supported by the
growing diameter of partitions with clustering coefficient
equal to zero #Fig. 10!a"$.

C. Periodic or nested/resonant behavior

1. Periodic example: Rule 7 427 685 516 255

The example rule illustrated in Fig. 11 displays the long-
est transient phase of the periodic rules covered in this study.
At time step 346, the rule begins to display period-six behav-
ior. Various attempts were made to find a metric which could
predict this eventual periodic behavior. The discrete Fourier
transform showed no significant peaks when examined over
different time intervals within the transient phase, including
steps 1–100, 1–200, 1–300, and 1–340.

The time series of the network average clustering coeffi-
cient #Ci!1,2", from Eq. !2"$ was examined for all of the
periodic rules in this study by comparing to a distribution of

the same average for a random network of the same number
of nodes and links. The averages during periodicity were
split rather evenly between exhibiting a greater or lesser
amount of clustering than a comparable random network;
however, a trend was seen between the size of a network
during periodicity and whether the average clustering was
above or below that of a random network. Networks of larger
average size !on the order of a few hundred nodes or more"
were more likely to have a clustering coefficient consistently
above that of a random network, while the clustering of net-
works of smaller average size !no more than 100 or 200
nodes" was more likely to be below that of a random network
!Fig. 12".

2. Nested example: Rule 5 060 443 886 396

As compared to other categories of behavior, the nested
rules display either very short transient phases or virtually
none at all. Therefore, prediction of nested behavior was not
a significant focus and instead, the underlying mechanisms
causing such behavior were of interest. The rule illustrated in
Fig. 13!a" was chosen as an interesting example for this sub-
category due to its unexpected jumps, seeming phase transi-
tions in growth trend rate.

As with the other rules in this category of network
growth, this example rule displays a globally regular struc-

FIG. 12. Comparison of network average clustering coefficient
for periodic rule 7 427 685 516 255 !black" and distribution of ran-
dom networks !gray" with the same number of nodes and links.
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FIG. 13. !Color online" Nested example, rule
5 060 443 886 396. !a" Population vs time graph. !b" Incoming de-
gree distribution.
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ture in its clustering coefficient plot. This is similar to what is
seen for the monotonic trend rules #Fig. 10!a"$, but whereas
the monotonic trend rules display regular structure within
sections of the network, the nested rules display an overall
coherent pattern with little apparent partitioning. However,
unlike many of the other rules in this subcategory, the evo-
lution of this example rule displays a single, small network
motif which appears to work itself through the network and
cause—or at least signal—the observed growth trend transi-
tions !Fig. 14".

D. Complex behavior

The main property of the complex rules is that they do not
exhibit the strictly regular behavior of the other categories.
Therefore, Fig. 15 shows the evolution of a rule which at first
looks complex, but upon closer inspection may in fact be-
long to the monotonic trend category !shown in Fig. 9". It
appears that this example rule exhibits complex behavior su-
perimposed on a linear growth trend, but examination of this
rule through the various tools here presented suggests that
the superimposed behavior may actually achieve a regular
nature, as found in the monotonic trend rules, sometime after
step 300.

The discrete Fourier transform of rule 2 854 763 462 287
uncovers a regular dynamic in the growth behavior, which is
apparent after 300 steps !Fig. 16". A review of the clustering
coefficient diagram for the evolution of this rule also dis-
plays signs of regular behavior, showing some homogenous
patterns similar to those found in other linear monotonic
trend rules. There also appears to be a section within the
diagram that displays an irregular pattern, much like the
other complex rules, yet judging from the DFT, it is likely
this may be a regular pattern as well that is simply not ob-
vious to the eye.

V. DISCUSSION

The flexibility in the rule specification potentially enables
modeling of real-world networks, particularly those con-
cerned with directional traffic of goods or information across
a network, such as the natural distribution systems presented
in Banavar et al. #22$. Since nodes in these networks are
allowed to have more than one link pointing to the same
destination, this method of network evolution may not be of
use in modeling some types of social networks, where it
would be nonsensical to imply that a person can have more
than one link or, say, friendship, with another person. !Of

course, it may be possible to create another method of net-
work evolution in a similar spirit—with a constant set of
rules concerned with local structure—that places the neces-
sary restriction on the destinations of links." Where the pre-
sented model can be of use is in modeling real-world net-
works free of this link restriction, including networks that
have conventionally been modeled using the single link re-
striction, but whose underlying real-world existences do not
necessarily require such a restriction. One such example is
the network of connections among airports, which has often
been presented assuming the single link restriction. However,
a single directed link in an airport-to-airport network does
not represent a single connection or flight. In fact, it repre-
sents multiple flights, likely at different departure times and
by different airlines. The single link restriction results in an
overly compressed representation of such real-world net-
works, since the dozens of daily flights from one major air-
port to another will be represented identically to the perhaps
half-dozen daily flights from a small regional airport to a
major airport. Such networks could be viewed equally !if not
more" fruitfully by allowing for multiple links with the same
origin and destination nodes.

The presented network evolutions display the capacity for
scale-free degree distributions !Figs. 3 and 17", a rich variety
of local community structure !Fig. 7", and in some instances,
the small-world property !Fig. 18". Searching the above-
presented rule space, or ones like it, could provide closer

FIG. 14. !Color online" Section of the clustering coefficient diagram for nested rule 5 060 443 886 396. An apparent motif in the network
signals the jumps in growth rates seen in the population time series. After six steps, the network displays only two values of clustering
coefficient: zero and one-sixth.
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FIG. 15. Population vs time graph for unclassified rule
2 854 763 462 287. Visually, the rule appears to exhibit a linear
growth trend with superimposed irregular behavior. However, ex-
amination of the discrete Fourier transform of the population time
series suggests the superimposed behavior may be periodic in
nature.
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models for many real-world networks—along with better un-
derstanding of the forces that drive these networks when the
specific cases of the underlying rule are more closely exam-
ined and translated into the particular real-world context. In
addition to the presented class of rules, model searches could
be conducted in rule spaces where the nodes have a different
number of outgoing links or even where the number of out-
going links is variable. !The style of rule cases would have to
be redefined, but there is nothing explicitly prohibiting the
exploration of these alternate spaces of possible rules." Even
the order in which nodes are updated could be altered, if so
desired. It is worth noting that the flexibility found in this
method of network growth results in the drawback that ex-
haustive searches of rule spaces will often be insurmountably
cumbersome. But when seeking to model or even simply

better understand a real-world, dynamic network, it is per-
haps better to have too many options rather than too few.

Apart from direct applications of this style of network
evolution, the tools employed in their analysis can support
better understanding of dynamic networks in general, par-
ticularly the use of the clustering coefficient as a distribution
instead of a network average. By examining spaces of net-
works updated according to simple rules, one can gain intu-
ition about network dynamics, especially those which oper-
ate locally. Also, there is certainly potential for theoretical
studies of this method of network evolution, perhaps in
search of an analog for Langton’s lambda parameter #23$ for
ordinary cellular automata or other interpretations of the
rules and the impact they have upon the evolution of a net-
work.
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FIG. 16. Logarithmic plots of DFT for rule 2 854 763 462 287 for steps 1 through 300, 500, and 761, respectively. Examination of the
peaks implies the influence of some period-three behavior in this rule evolution.

FIG. 17. !Color" Incoming de-
gree distribution for rule
2 854 763 462 287.
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Finally, it is clear that a more detailed study of the under-
lying community structure #24$ of these networks is needed,
both for a better understanding of the behavior found in this
model and for further insight into the effects of dynamical
structural processes in real-world networks. For example,
when people talk about the “growth” of the internet, they are
really referring to its aggregate growth. The internet is made
up of many types of communities and groups, differing not
only in their subject matter, but also in their purpose and
utility. It would also not be surprising if these different sub-
sets of the internet had different internal link structures as a
product of their differing function #19$. However, all of these
unique communities are interconnected and collectively pro-
duce the overall growth or decay of the entire network. Ex-
amining how intercommunity dynamics give rise to the ag-
gregate growth of a network will likely provide greater
insight into the underlying causes of observed real-world
network behavior. A deterministic setting, such as the net-
work evolution model here presented, would be ideal
grounds for studying such intercommunity dynamics.
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APPENDIX: RULE ENUMERATION AND APPLICATION
OF CASES

1. Distance one rules

Rules are enumerated separately for distances one and
two. For distance one, there are 36 possible sets of instruc-

tions and two cases which can have any set of instructions
regardless of what is assigned to the other. Therefore, there
exist 362=1296 possible rules and each rule is assigned to an
index ranging from 0 to 1295. The specific instructions de-
scribed by a particular rule are then found as follows:

!1" The index is expressed in its base-six representation,
with trivial zeros added to the left, if needed, to make a total
string of four digits.

!2" The digits in this representation are then replaced with
expressions according to the following pattern:

0 = (1) 2 = ((1),(1)) 4 = ((2),(1)) ,

1 = (2) 3 = ((1),(2)) 5 = ((2),(2)) ,

where a “(1)” represents following the current up link and
“(2)” represents the down link. The nested expressions des-
ignate the addition of a new node, whose two outgoing link
destinations correspond to the directions given in the two
elements of the list.

!3" The four resulting expressions, one for each digit in
the base-six representation, are then organized into the actual
instructions for the rule. The first and second expressions
define case 1 of the rule, corresponding to instructions for a
node’s up and down links, respectively. The second two ex-
pressions define case 2 of the rule.

For example, a distance-one rule may take the form #rule
219, Fig. 19!a"$

(1) → ((2),(1)), (2) → ((1),((1),(2))) ,

where the elements before the arrow denote which case of
the rule they represent. The first position in the lists after the
arrows gives the instructions for the up link and the second
position gives instructions for the down link. This example
rule specifies that if the node being updated has only one
neighbor !corresponding to case 1", its up link is to be redi-
rected to where the down link currently goes and its down
link is to be rerouted to where the up link currently goes. For
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FIG. 18. Network displaying
“small-world”-like properties over
the course of evolution of rule
2 005 240 550 289. !a" Population
vs. time. !b" Comparison of aver-
age path length between reachable
nodes in evolved rule !solid" to
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network with equal numbers of
nodes and links !dashed". !c"
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case 2, the up link remains at its current location and the
down link is instructed by the nested expression to create a
new node and link to it. The elements in the nested expres-
sion then provide the destinations for the new node’s links,
which are interpreted in the same manner as already seen—
(1) means follow the up link and (2) means follow the down
link. Also as before, the first position in the nested list pro-
vides the instructions for the new node’s up link, while the
second position provides the instructions for its down link.
Here, the up link of the new node will be wired to the same
destination as the up link of the original node and the down
link will be wired to the same destination as the original
node’s down link.

2. Distance two rules

For distance two, rules are assigned an index ranging
from 0 to 9 682 651 996 415. Here, there are 1764 possible
sets of instructions and four cases to a rule, resulting in
17644=9 682 651 996 416 possible rules. The extraction of
specific instructions from the index number is similar to that
of distance one, although different integer bases are required.
This process is outlined below and accompanied by the ex-
ample expansion of rule 5 060 443 886 396 #Fig. 19!b"$.

!1" The index is expressed in its base-1764 representation,
adding trivial zeros to the left, if necessary, to make a total
string of four numbers.

Example: (921, 1621, 901, 1592) .

!2" Each number in the string is then broken down into its
respective representation in base 42 !again adding zeros to
make a list of length two for each of the four numbers".

Example: (21,39), (38,25), (21,19), (37,38) .

!3" Since there are four cases in a distance two rule !see
Sec. II", each of these four pairs of numbers is then assigned
to a particular case. The first pair is assigned to case 2 *3, the
second to case 4, and so on.

Example: (2*3) → (21,39),

(4) → (38,25),

((5) → (21,19)),

((6) → (37,38) .

!4" Each argument in each pair is then replaced by its
base-six representation !adding zeros if necessary to make a
string of three digits". The resulting three-digit strings give
the directions for a specific link in a specific case. Depending
on whether it begins with a 1 or 0, one or two of the digits
are selected to expand into explicit directions:

(1,0 ,x)=x !will become instructions which preserve the
number of nodes"

(0,y ,z)= (y ,z) !will become instructions which add
nodes".

Example: (2*3)→((0,3,3),(1,0,3)) ⇒ (2*3)→((3,3),3)

(4)→ (1,0 ,2) , (0,4 ,1), (4)→(2,(4,1)),

(5)→(0,3,3),(0,3,1), (5)→((3,3),(3,1)),

(6)→((1,0,1),(1,0,2)) (6)→(1,2)

!5" The digits in these remaining strings are then ex-
panded as follows:

0 = (1) 2 = (1,1) 4 = (2,1) ,

1 = (2) 3 = (1,2) 5 = (2,2) .

The final form of this example rule is then

(2*3) → (((1,2),(1,2),1,2)) ,

(4) → ((1,1),((2,1),(2)) ,

(5) → ((1,2),(1,2),(1,2),(2)) ,

(6) → ((2),(1,1)) ,

where strings of length two are now seen, since in distance
two rules the new link destinations can be indicated by any
location reachable at distance one or two from the “active”
node. The instruction strings of length two are to be under-
stood in terms of successive destinations in the network, so
an instruction of (1, 2) denotes the destination reached by
following the up link from the original node, then following
the down link from that subsequent node.

In this example rule, nodes will be added in cases 2 *3 and
4 and two nodes will be added if case 5 is applied, one in the
place of each link. The only instances of rewiring without
adding a new node occur for the up links of cases 4 and 6
and for the down link of case 2 *3. Since nodes are appar-
ently added so frequently in the application of this rule, one
might expect to see nothing but monotonic growth arise from
this rule. But in fact what is seen is more complex than
simple monotonic growth #see Fig. 13!a"$.
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FIG. 19. One step in the evolution of two different example
networks, each evolved from an initial condition of three nodes !see
Fig. 1".
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