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Abstract

The Lorenz ’96 model is an adjustable dimension system of ODEs exhibiting chaotic be-
havior representative of dynamics observed in the Earth’s atmosphere. In the present study,
we characterize statistical properties of the chaotic dynamics while varying the degrees of
freedom and the forcing. Tuning the dimensionality of the system, we find regions of pa-
rameter space with surprising stability in the form of standing waves traveling amongst the
slow oscillators. The boundaries of these stable regions fluctuate regularly with the num-
ber of slow oscillators. These results demonstrate hidden order in the Lorenz ’96 system,
strengthening the evidence for its role as a hallmark representative of nonlinear dynamical
behavior.
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Chapter 1

Introduction

1.1 Motivation

Modern society often depends on accurate weather forecasting for daily planning, efficient

air-travel, and disaster preparation [8]. Predicting the future state of physical systems, such

as the atmosphere, proves to be difficult; chaotic systems exhibit sensitive dependence

on initial conditions, meaning that small errors in any state approximation will lead

to exponential error growth [1]. Furthermore, weather prediction requires the use of

computationally expensive numerical models for representing the atmosphere. Most

scientists trying to advance current predictive techniques can not afford to run these

real-world weather models. To this end, computationally manageable “simple” models are

used instead to represent interesting atmospheric characteristics while reducing the overall

computation costs.
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CHAPTER 1. INTRODUCTION

1.2 Chaos and Predictability

An iterated one-dimensional map, F , is a discrete-time function where the state of F at

time t, called xt, is given by F evaluated at the previous state, xt−1. Thus, given an initial

condition at time t = 0, called x0 ∈ R, the state of F at a time t can be found through a

process called iteration. We will denote the value of the map at time t with initial condi-

tion x0 by F (t)(x0). Numerically, it is often practical to think about real-world systems in

discrete time, thus allowing for temporal changes in the system to be modelled on a com-

puter [1, 5, 18, 19].

Let us consider the commonly known Logistic Map, L, as an example. The Logistic

Map is a model for population growth defined by iterating the equation αx(1− x) starting

from an initial condition x0. α is a tunable parameter determining the rate of growth for

the population, while the (1− x) term represents the effects of the carrying capacity of the

resources available to the population after normalizing. For instance, if we set α = 2, then

small populations will double in size with every iteration of the map. However, this is an

unrealistic situation since the resources associated with the environment inhabited by the

population (i.e. food, space, water, etc.) can likely only sustain a population up to a certain

size. We call this number the carrying capacity [1, 5, 18].

Inspecting the equation defining the system, we observe the existence of two roots at

x = 0, 1 and that the shape of the equation evaluated on the real-line yields a parabola

opening downwards with its maximum at x = 1/2. Now consider iterating the map L. We

first notice that L(0) = 0 regardless of the value of α indicating that iterating the Logistc

Map at the point x = 0 will never yield another value. We call such values of

2



CHAPTER 1. INTRODUCTION
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Figure 1.1: Examining the Effects of α on the Logistic Map

We examine the trajectories yielded by iterating the Logistic Map for an initial value

x0 ∈ (0, 1/2) as we vary α = 2, 3.25, 3.65, 3.83. The black parabola represents the

curve αx(1−x) evaluated on the real-line. The red line represents the curve f(x) = x,

and the blue cobweb plot represents the trajectory resulting from iterating the initial

condition. For α = 2, we see that the trajectory appears to be pulled into the fixed

point x = 1/2. For α = 3.25, we see that the trajectory approaches the fixed point

x = 2/3, but never reaches the fixed while instead iterating around the fixed point in

what is called a period-2 orbit. For α = 3.65, we find that the trajectory appears to

lack discernable regularity. However, we see a stable period-3 orbit as α is increased

to 3.83.
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CHAPTER 1. INTRODUCTION

x fixed points. For example, if α = 2, then we find that L(1/2) = 1/2, thus revealing

another fixed point for that choice of α. This example brings to our attention that tuning

the parameter α can have effects on the system dynamics. In fact, for 1 < α < 3 there will

be a fixed point sink at x = (α − 1)/α (note that x = (α − 1)/α is indeed a fixed point

for all α, but may be a source). Figure 1.1 demonstrates some of the interesting system

dynamics for differet choices of α by examining the cobweb plots resulting from iterating

the initial point with the Logistic Map.

Figure 1.1 demonstrates examples of the system dynamics possible in the Logistic

Map, including a stable fixed point, a stable period-2 orbit, a stable period-3 orbit, and

unstable behavior. In fact, stable periodic orbits of any period 2n, n = 1, 2, 3, . . . , can

be found by tuning α. Figure 1.2 is the iconic bifurcation diagram for the Logistic Map,

which contains open windows representing stable periodic orbits for those choices of

α [1].

Finally we examine the Logistic Map’s sensitivity to initial conditions in Figure

1.3. We see that the trajectories for two nearby initial conditions, namely x0 = .27 and

y0 = .271, diverge after only a few iterations. Recalling that we are modelling population

growth, the observed phenomenon is analogous to miscounting the population only slightly

and finding that the model yields a prediction that is drastically different from the true

trajectory of the population. In other words, the Logistic Map with α = 3.75 exhibits

sensitive dependence on initial conditions.
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CHAPTER 1. INTRODUCTION
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Figure 1.2: The Logistic Map Bifurcation Diagram

We observe the points along a trajectory resulting from iterating the Logistic Map

(y-axis) for different choices of α (x-axis). We observe openings in the bifurcation

diagram indicating choices of α where periodic orbits may be observed.

Sensitive dependence on initial conditions (SDIC) is the hallmark quality of chaotic

systems. We now consider attempting to model a more sophisticated real-world chaotic

system, like the atmosphere. We model such systems numerically by discretizing the

governing equations for the system into an iterated map. Thus, our current notion of SDIC

is applicable. Systems exhibitting SDIC propogate error in the resulting trajectory. More

specifically, if at any time the predicted trajectory is slightly off of the true trajectory,

then the error in the prediction for that time forward will grow exponentially. This is of

5



CHAPTER 1. INTRODUCTION

prominent concern to scientists attempting to make predictions since there will always be

observation error (ex. inprecise measurements of the real-world), model error (ex. the

model is inperfect), and truncation error (ex. the computer only stores numbers to finite

precision) [18].
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Figure 1.3: Sensitive Dependence on Initial Conditions in the Logistic Map

For the close initial values x0 = .27 (blue) and y0 = .271 (green), we compare the

resulting trajectories from iterating the Logistic Map with α = 3.75 with each of

these initial values, respectively. We observe that the trajectories remain close for a

few iterations, but eventually diverge from each other.
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CHAPTER 1. INTRODUCTION

1.3 Describing The Lorenz ’96 System

Scientists have long wrestled with chaotic behavior limiting the predictability of weather in

the Earth’s atmosphere [2, 4, 11, 12, 14]. In the case of atmospheric predictions, toy mod-

els exhibiting exponential error growth provide an ideal environment for basic research in

predictability. Edward Lorenz, one of the great pioneers in predictability research, intro-

duced the following I-dimensional model which exhibits chaotic behavior when subject to

sufficient forcing
dxi
dt

= xi−1(xi+1 − xi−2)− xi + F (1.1)

where i = 1, 2, . . . , I and F is the forcing parameter. Each xi can be thought of as some

atmospheric quantity, e.g. temperature, evenly distributed about a given latitude of the

globe, hence there is a modularity in the indexing that is described by xi+I = xi−I = xi.

In an effort to produce a more realistic growth rate of the large-scale errors, Lorenz

went on to introduce a multi scale model by coupling two systems similar to the model in

equation (1), but differing in time scales. The equations for the Lorenz ’96 model [13] are

given as
dxi
dt

= xi−1(xi+1 − xi−2)− xi + F − hc

b

J∑
j=1

y(j,i) (1.2)

dy(j,i)
dt

= cby(j+1,i)(y(j−1,i) − y(j+2,i))− cy(j,i) +
hc

b
xi (1.3)

where i = 1, 2, . . . , I and j = 1, 2, . . . , J . The parameters b and c indicate the time scale of

solutions to equation (3) relative to solutions of equation (2), and h is the coupling param-

eter. The coupling term can be thought of as a parameterization of dynamics occurring at

a spatial and temporal scale unresolved by the x variables. Again, each xi can be thought

7



CHAPTER 1. INTRODUCTION

of as an atmospheric quantity about a latitude that oscillates in slow time, and the set of

y(j,i) are a set of J fast time oscillators that act as a damping force on xi. The y’s exhibit a

similar modularity described by y(j+IJ,i) = y(j−IJ,i) = y(j,i). A snapshot of a solution state

is shown as an example in Figure 1.4.
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Figure 1.4: Visualizing the Lorenz ’96 System.

(A) A visual representation for the coupling of the fast and slow time systems in the

Lorenz ’96 model. There are I = 10 slow large amplitude oscillators, each of which

are coupled to J = 3 fast small amplitude oscillators. The slow oscillators are ar-

ranged in a circle representing a given latitude. (B) An example snapshot from an

actual trajectory with I = 30, J = 5, and F = 14. The blue dots represent the slow os-

cillators, and the green represents the flow of information among the fast oscillators.

See Figure 5 for further examples and a more detailed explanation.
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CHAPTER 1. INTRODUCTION

1.4 Using the Lorenz ’96 System as a Model

This system has been used to represent weather related dynamics in several previous stud-

ies as a low-dimensional model of atmospheric dynamics [10, 15, 20]. There are many

advantages to using the Lorenz ’96 model. A primary advantage is that the model allows

for flexibility in parameter tuning to achieve varying relative levels of nonlinearity, cou-

pling of timescales, and spatial degrees of freedom. Unless otherwise noted, we fix the

time scaling parameters b = c = 10 and the coupling parameter h = 1 for the remainder of

this study. These parameter choices are consistent with the literature in terms of producing

chaotic dynamics quantitatively similar to those observed in the atmosphere [7]. We vary I ,

J , and F to explore different spatial degrees of freedom and different levels of nonlinearity

in the system dynamics. The following figure breifly explores the effects of F .
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Figure 1.5: Increasingly Rich System Dynamics with Increasing Forcing Parameter.

We observe the changes in the trajectory of a representative slow oscillator as the

forcing parameter, F , is increased while holding constant I = 30 and J = 5. We

find that the oscillator exhibits periodic behavior for F = 5. The oscillations become

increasingly irregular as F is increased to 10 and to 15.
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Chapter 2

Methods

2.1 Parameters of Interest

We examine the Lorenz ’96 model for forcings F ∈ [1, 18], and integer spatial dimensions

I ∈ [4, 50] and J ∈ [0, 50]. For each choice of F , I , and J , we integrate the Lorenz ’96

model with a randomly selected initial condition in the basin of attraction for the system

attractor. We use the Runge-Kutta method of order-4 [3] with a time step of .001 to

integrate the initial point along its trajectory. Initially, we iterate the point 500 time units

without performing any analysis so that the trajectory is allowed to approach the attractor;

thus transient activity is ignored. From here, we integrate an additional 500 time units

for analysis. Results were insensitive to increases in integration time, specific choices of

initial condition, and decreases in time step. Examples of stable and chaotic trajectories

are shown in Figure 2.1.
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Figure 2.1: Trajectories about the Lorenz ’96 Attractor.

Two example trajectories of the Lorenz ’96 model, along with periodograms for the

corresponding trajectories of the slow oscillators. (A, C, & E) I = 4, J = 8, and

F = 14. We observe a fairly regular trajectory. The periodogram for this system

supports this by showing that only a few isolated frequencies have significant power.

(B, D, & F) I = 10, J = 5, and F = 14. We observe an irregular trajectory. The

periodogram exhibits some power at many frequencies.
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CHAPTER 2. METHODS

2.2 Measuring Chaos

We use the largest Lyapunov exponent, the percentage of positive Lyapunov exponents,

and the normalized Lyapunov dimension to characterize the nonlinearity of the system. We

approximate the Lyapunov exponent for the

ith dimension of the slow modes X along the trajectory ~v as

Li(v) ≈ 1

∆timetotal

N∑
n=1

ln(|f(~v
(n)
i )|) (2.1)

where N is the number of iterations, ~v(n)i is the ith coordinate of the trajectory at the nth

iterate, ∆timetotal is the total model time, and f is the stretch factor measured from the tra-

jectories of an I-dimensional ensemble near a point on the trajectory over a unit time step.

This calculation can be thought of as an average of the natural-log of the stretching/shrink-

ing dynamics of the system acting on an ensemble of points very near to the trajectory over

time. The Lyapunov dimension is given by

L = D +
1

|LD+1(~v)|

D∑
d=1

Ld(~v) (2.2)

where D is the largest whole number such that
∑D

d=1 Ld(~v) ≥ 0. This calculation yields

an approximation of the slow mode attractor fractal dimension. In general, the fractal

dimension compared to the number of slow mode dimensions in the model (namely I)

provides a reasonable measure of the nonlinearity in the system which we can subsequently

compare to the dynamics resulting from different parameter choices [6].

From the one-dimensional time series in Figure 2.1 and Figure 1.5, we see examples

12



CHAPTER 2. METHODS

of the dynamics exhibited by the slow variables X (x1 is a representative example of X).

We also measure nonlinearity by looking at the frequency spectrum for the trajectories

of individual slow oscillators. Given a time series, the frequency spectrum can be

approximated using the fourier transform [16, 17]. Chaotic systems typically exhibit

power at a large number of frequencies, while stable systems will exhibit power at only

a small number of frequencies. Furthermore, the frequency spectrum illuminates which

frequencies the X variables will tend to exhibit.

2.3 Visualizing the Lorenz ’96 System

Lorenz suggested that the slow oscillators represent measurements of some atmospheric

quantity about a given latitude [13]. With this in mind, it is meaningful to visualize the

system accordingly. Different from the images provided in Figure 2.1, we will visualize

states for all of the slow oscillators during a given trajectory as points evenly spaced around

a circle centered at the origin, where the origin represents the lowest value (xmin) obtained

by any of the slow oscillators along their respective trajectories. Each point’s distance from

the origin is given by xi’s current value minus xmin. Treating the points in polar-coordinates

(r, θ), where r is the oscillator’s distance from xmin and θ indicates the subscript of the

oscillator, we fit a cubic spline to the shifted slow oscillator values to obtain approximations

for the flow of the atmospheric quantity between the slow oscillators. For clarity, the slow

oscillators’ radial positions (θ) remain fixed, while their distance from the origin varies over

the course of the trajectory (see Fig. 1.1B). Note that this method of visualization allows us

to observe all of the slow oscillators at once for any state on a trajectory. A similar method

is performed to represent the activity of the fast oscillators in the same plot (the outer ring).

13



Chapter 3

Results

3.1 Evidence for Stability in the Lorenz ’96 System

It is common in the literature referencing the Lorenz ’96 model to see the parameters I ,

J , and F chosen to ensure that the system exhibits sufficient amounts of chaos to make

the prediction problem interesting. For example, it is well-known that F > 6 will usually

result in a weakly chaotic system for reasonable choices of I and J [7, 20]. Beyond this,

I = 8 and J = 4 for a total of 40 oscillators is a popular choice, so much so that it is

commonly known as the “Lorenz 40-variable” model [9]. Generalizing from these stan-

dards, we explore the parameter space for I , J , and F systematically and characterize the

resulting dynamical systems.
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Figure 3.1: Evidence for System Stability

For these plots, the axes represent integer values of the model dimensions I (slow)

and J (fast). Each cell in the resulting plot represents a single integration with 500

unit time steps (or 106 iterations) of the Lorenz ’96 model. Note that these images are

insensitive to changes in initial condition. (Far Left Column) F = 8. (Center Left

Column) F = 10. (Center Right Column) F = 12. (Far Right Column) F = 14.

(Top Row) The largest Lyapunov exponent. (Middle Row) The percent of positive

Lyapunov exponents. (Bottom Row) The normalized Lyapunov dimension.
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CHAPTER 3. RESULTS

3.1.1 Lyapunov Exponents

We first measure the largest Lyapunov exponent for several choices of I , J , and F in

Figure 3.1 (top row). We observe that the lower portion of the plots (i.e. small J) exhibit

positive largest Lyapunov exponents (red & yellow regions). As J is increased, we observe

the emergence of greatly reduced largest Lyapunov exponent (blue regions). This region

of reduced chaotic activity returns to a region of increased largest Lyapunov exponent as

we continue to increment J . Furthermore, we observe that the top and bottom borders of

the blue regions oscillate with increasing I . The blue region of reduced chaos appears to

occur at larger values of J as F is increased, while the range of the blue regions remain

fairly constant in J .

We observe the percentage of positive Lyapunov exponents in the middle row of Figure

3.1. Green vertical windows of increased percentage of positive Lyapunov exponents

correspond to the peaks of the blue regions observed in the largest Lyapunov exponent

plots. Interestingly, we find that as we continue to increment J beyond these green vertical

strips, the percentage of positive Lyapunov exponents sharply declines.

3.1.2 Lyapunov Dimension

The normalized Lyapunov dimension is shown in the bottom row of Figure 3.1. Here,

we observe green and yellow vertical striations representing regions of reduced fractal

dimensionality relative to the high fractal dimensionality red regions around them. These

unstable dimension striations are in locations corresponding to the observed regions of

reduced largest Lyapunov exponent, and the vertical striations of increased percentage of
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positive Lyapunov exponents. A periodicity in I is again apparent here.

3.2 Frequency Analysis

We are surprised by these regions of reduced chaotic activity and endeavor to explore

them using a frequency spectrum analysis. To this end, we examine frequency spectrum

bifurcation diagrams representing slices through I-J space with a fixed F [17]. Some of

these slices are presented in Figure 3.2. We fix J = 15 and increase the forcing F moving

from left-to-right along the top row of Figure 3.2. Along the bottom row of Figure 3.2, we

fix F = 12 while increasing the number of fast variables J moving from left-to-right.

Examining the top row of Figure 3.2 for 8 ≤ F ≤ 12, we find increased power at many

frequencies for most choices of I , but, interestingly, we also observe periodic windows

in the frequency spectrum bifurcation diagram where power is organized into just two

different frequencies. Furthermore, these periodic windows of reduced spectral dispersion

correspond to choices of I that resulted in stable behavior in Figure 3.1. We observe that

when F ≥ 14 there is power at many frequencies for I ≥ 6 and periodic windows do

not exist. This observation corresponds to the rise of the blue region of reduced largest

Lyapunov exponent as F is increased (Figure 3.1).

We look at the frequency spectrum bifurcation diagram in the bottom row of Figure 3.2

by fixing F = 12 and varying J . Figure 3.1 suggests that we will observe reduced largest

Lyapunov exponent for 10 ≤ I ≤ 35 for most choices of I , and this is reflected in Figure

3.2 when we observe power at many frequencies for J = 10. We take steps through this

region of reduced chaotic activity as we increase J , and again find periodic windows in the

frequency spectrum bifurcation diagram, where large amounts of power are only found at
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a finite number of different frequencies. Again these windows of reduced spectral activity

occur at I values corresponding to peaks in the blue regions from Figure 3.1. Furthermore,

we see evidence that increasing J may have similar effects as reducing F .

Through further analysis of the frequency bifurcation spectrum diagrams, we observe

that in general frequencies between one and two have more power, suggesting that slow

oscillators tend to exhibit these frequencies even for parameter choices resulting in chaotic

dynamics. We find more interesting frequency behavior in the many windows of organized

spectral activity, where the dominant and subdominant frequencies, namely the frequency

with the most power and the frequency with the second most power, appear to oscillate

as a function of I . For J = 20 and J = 25 in the bottom row of Figure 3.2, we see that

the dominant and subdominant frequencies fluctuate every fifth or sixth increment as we

increase I . Also, the fluctuations become less severe as I approaches 50.
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Figure 3.2: Frequency Spectrum Analysis

For these plots, the x-axis represents choices of I , the y-axis represents different

frequencies, and the color represents the power spectrum of the trajectory of a

slow oscillator at the corresponding parameter choice. (Top Row) J = 15 while

F ∈ [8, 10, 12, 14]. (Bottom Row) F = 12 while J ∈ [10, 15, 20, 25].
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Figure 3.3: Stable Standing Waves in the Lorenz ’96 System.
(A) For I = 21, J = 30, and F = 12, we plot the trajectories of the slow
oscillators. This parameter choice yields a stable attractor as indicated by four
snapshots of the standing waves, which travel clockwise around the ring of slow
modes. (B) We show different parameter choices yielding different numbers of
standing waves (from 2-9). The plot in the bottom right corner represents a
snapshot of a trajectory on a chaotic attractor and shows much more irregular-
ity than the standing waves. Animations of these time series can be found at
http://www.uvm.edu/storylab/share/papers/frank2014a/L96Stability.avi



3.3 Visualizing the Stability in the Lorenz ’96 System

The frequency spectrum bifurcation diagrams show us that several parameter choices

constrain the slow oscillators to two distinct frequencies. This suggests that we should see

a strong regularity in the time series for these parameter choices. In Figure 3.3, we provide

example snapshots of stable attractors, which resemble rose-plots in polar coordinates, and

a chaotic attractor with a positive largest Lyapunov exponent, which resembles an amoeba

(bottom right). Each petal of the stable attractors is in fact a standing wave traveling

around the slow oscillators over time as shown by Figure 3.3A. We see that the oscillations

of the stable attractors show signs of being comprised of two frequencies, as individual

slow oscillators seem to achieve both a relative local maximum and a global maximum.

Furthermore, as we increase I we see additional petals added to the stable attractor. If I is

chosen so that it falls between two windows of increased spectral organization, then we

see the dynamics attempt to add an additional petal, but this petal will dissipate over time

in a repeating process that prevents the trajectory from stabilizing. We propose a simple

function describing the stable behavior in the Appendix.

3.4 Dimensionality as a Bifurcation Parameter

We have provided evidence that stability emerges amongst regions of chaos in parameter

space for the Lorenz ’96 system, and that there appears to be a relationship between

the usual bifurcation parameter, F , and the parameters controlling the dimension of the

system, I & J . Figure 3.4 shows a few bifurcation diagrams where I , the number of slow
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oscillators, is used as a bifurcation parameter. These bifurcation diagrams display clearly

where regions of stability and chaos can be found as we tune I . Furthermore, we again

observe evidence of the regularity in the trajectories of the slow oscillators for parameter

choices leading to stability since the values of the local maxima of the slow oscillators in

such regions are roughly constant across each bifurcation diagram.

Thinking of the dimensional parameters I and J as physical parameters, we provide

bifurcation diagrams for different choices of I , J , and F , along with two representative

~x variable trajectories, in Figure 3.4. Figures 3.4A, 3.4B are example trajectories corre-

sponding to the dashed lines in figures 3.4G, 3.4H, respectively. The dots in these time

series indicate local maxima of the trajectories [11]. Figure 3.4A demonstrates that values

of the local maxima can fluctuate wildly, while figure 3.4B shows a parameter choice for

which local maxima tend towards only two different values. The middle row of Figure 3.4

(panels C-F) exhibits windows of both stable and chaotic dynamics as a function of the

dimensional parameter I . We again observe windows of stability and chaos in panels G-J

where F , a physical parameter, is tuned as the bifurcation parameter for several choices of

I and J . For a fixed I , increasing J seems to condense the dynamics, constraining them to

the envelope of values observed.
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Figure 3.4: Dimensional Parameter Leads to Bifurcations.
In the top row (A & B), we show two example trajectories representative of I = 20,

J = 10, F = 12 and I = 20, J = 30, F = 12, respectively. Black circles indicate

local maxima of the trajectories. These time series are example trajectories taken

from the bifurcation diagrams; panel A corresponds to the dashed line in panel G,

and panel B corresponds to the dashed line in panel H. In the middle row (C-F), we

provide bifurcation diagrams for several choices of J and F while I is varied as the

bifurcation parameter. The y-axis indicates the values of the x1 local maxima. Note

that ranges of the y-axes are different for each figure. The x-axis represents different

choices of F in the bottom row (G-J) for a few choices of I and J . We observe both

windows of stability and windows of chaos.
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3.5 The Effects of Fast Time Dimensionality in the Lorenz

’96 System

Figure 3.5 allows us to relate the effects of varying the dimensional parameter J to varying

the physical coupling parameter h. We vary I from 4 to 50 and vary h from 0 to 1 while

holding fixed J = 50 (note that h = 1 in all previous figures, consistent with the literature).

We observe a pattern reminiscent of those observed in the top row of Figure 3.1, which

suggests that the parameters h and J may have an analogous effect on the system.
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Figure 3.5: The Effects of the Coupling Parameter.

We examine the largest Lyapunov exponent as we vary I on the x-axis and h, the

coupling parameter, on the y-axis. J is fixed to be 50. We find a pattern similar to the

ones observed in Figure 3.1.
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Conclusions

The Lorenz ’96 model is a popular choice for atmospheric scientists attempting to improve

prediction techniques. This is largely due to the reduction in degrees of freedom offered

by the Lorenz ’96 system in comparison to more sophisticated models used to make real-

world weather predictions. Despite this simplification, the Lorenz ’96 model is known for

being a computationally manageable model that exhibits tunable levels of chaos, making it

an appropriate tool for testing prediction techniques. However, our inspection of parameter

space reveals regions of unexpected structural stability. In matters of complexity, it is

common to assume that adding simple agents will only lead to more complexity, but in the

case of the Lorenz ’96 model we see that there exists a bounded range of J which organizes

the dynamics and results in a dampening of system-wide chaos.

We attempt to explain the observed regions of stability by inspecting the equations for

the Lorenz ’96 system. Considering equation (2), the sum of the fast oscillators coupled

with a given slow oscillator has a dampening effect on the velocity of the slow oscillator,

while we also find that the slow oscillator provides positive feedback to the fast oscillators

to which it is coupled in equation (3). Therefore, since each slow oscillator has many fast
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oscillators coupled with it, we expect any excitement of the slow oscillator to be quickly

damped away by the fast oscillators. We find evidence of this in Figure 3.3, where peaks in

the trajectories of the slow oscillators (points on the inner circle) correspond to increased

activity in the fast oscillators coupled with it (the radially adjacent region in the outer

circle). If one continues to increase J beyond the observed regions of stability, then the

increasingly chaotic dynamics observed in Figure 3.1 may be a result of increased apparent

forcing. The magnitude of the sum of the fast oscillators for a given slow oscillator may be

large enough to act as a driving force for the dynamics of the slow oscillator (see equation

(2)).

To test this theory, Figure 3.5 shows the largest Lyapunov exponents as we vary I and

h, the coupling parameter, while holding J fixed at 50. Recalling equation (2), we see that

reducing h dampens the sum of the fast oscillators coupled to each slow oscillator. We

observe that Figure 3.5 exhibits a similar pattern to Figure 3.1, supporting the claim that

reducing the sum of the fast oscillators leads to the stable behavior we observe.

The frequency spectrum bifurcation diagrams in Figure 3.2 reveal that the parameter

choices for reduced chaotic activity in Figure 3.1 yield surprisingly regular stable attractors

with slow oscillators whose trajectories are comprised of only two frequencies. In fact, so

long as the choices of I , J , and F are such that the Lorenz ’96 system is in one of the stable

regions of parameter space, the trajectories of any slow oscillator exhibits approximately

the same dynamics since the dominant and subdominant frequencies for stable attractors

lie between 1-2, and 2.5-3, respectively, as seen in the frequency spectrum bifurcation

diagrams in Figure 3.2. Indeed, the local maxima of the trajectories of the slow oscillators

remain roughly constant across parameter choices leading to stability as shown in Figure

3.3. For a given choice of F and J , as I is increased from one stable region in parameter
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space to the next, we observe the addition of a petal, or a wave, to the attractor. When I lies

in between regions of stability in parameter space, we observe attractors that periodically

try to grow an additional petal that will eventually dissipate over time. These interesting

attractor behaviors appear to occur periodically as a function of I .
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Appendix

5.1 Modelling the Stable Behavior

We attempt to further understand the stable behavior observed in the Lorenz ’96 model

by proposing a simple function. We model the normalized magnitude of a standing wave

among the slow modes (as observed in Figure 3.3) with N(≈ I/5) waves at time t using

r(θ, t) =
sin
(
N(θ + 2πf · t)

)
+ 1

2
.

where f is the frequency of a representative slow mode. The frequency of the slow mode

can be obtained by looking at the dominant frequency from the spectra illustrated in Figure

4 (a function of I and F ). Scaling f by the frequency of sine (2π) and by the number of

waves (N ) will yield the desired angular velocity for the standing waves resulting from the

model. Example waves resulting from the model at t = 0 are presented in the figure below.
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Figure 5.1: A Simple Model for the Stable Waves

Example trajectories from the model for stable behavior. We examine the results

from the model for t = 0 with N ∈ {2, 3, 4, 5, 6, 7, 8, 9}. The resulting trajectories are

comparable to the stable trajectories shown in Figure 3.3.
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