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a b s t r a c t

This computational study investigates the nonlinear dynamics of unstable convection in a 2D thermal
convection loop (i.e., thermosyphon) with heat flux boundary conditions. The lower half of the thermosy-
phon is subjected to a positive heat flux into the system while the upper half is cooled by an equal-but-
opposite heat flux out of the system. Water is employed as the working fluid with fully temperature
dependent thermophysical properties and the system of governing equations is solved using a finite vol-
ume method. Numerical simulations are performed for varying levels of heat flux and varying strengths
of gravity to yield Rayleigh numbers ranging from 1.5 � 102 to 2.8 � 107. Simulation results demonstrate
that multiple regimes are possible and include: (1) conduction, (2) damped, stable convection that
asymptotes to steady-state, (3) unstable, Lorenz-like chaotic convection with flow reversals, and (4) high
Rayleigh, aperiodic stable convection without flow reversals. Delineation of the various flow regimes, as
characterized by the temporal evolution of bulk mass flow rate, is obtained in terms of heat flux, gravity,
and the Rayleigh number. Temporal frequencies of the oscillatory behavior and residence time in a cir-
culatory direction are explored and described for the various thermal and gravitational forcing (Rayleigh
number) applied to the system.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

There exist many phenomena of interest to the geophysics and
engineering communities that are driven by buoyancy and natural
convection. Examples of natural convection systems occurring on
geophysical scales and in the Earth’s environment include: meso-
scale convective thunderstorms that can result in damaging and
costly wind events such as derechos [1,2], downbursts, and
straight-line wind-storms depicted as a classic ‘bow echo’ on radar
[3]; land and sea breezes as a result of differential heating between
landmass and an adjacent body of water; mantle convection of the
Earth’s asthenosphere which results in the creeping motion of the
lithosphere, plate tectonics, and volcanic activity; and Hadley cells
in Earth’s atmosphere which relate to large scale motions of the jet
stream and Rossby waves. Examples of natural convection cells
occurring in engineering devices include solar water heaters, nu-
clear reactors, and gas turbine blade cooling among many others
[4–6].
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The nonlinear dynamics of unstable convection were studied in
a simple model by Edward Lorenz in his 1963 paper ‘‘Deterministic
Nonperiodic Flow’’. Indeed, his differential equation model for nat-
ural convection in a Rayleigh–Bénard cell has been widely em-
ployed to developed improved forecasting methodologies for
mathematical models of the Earth’s atmosphere [8]. For example,
meteorologists use ensemble forecasting and teleconnection indi-
ces – such as the North Atlantic Oscillation Index (NAO) which per-
tains to North-East US weather patterns, – in order to quantify the
oscillatory and chaotic fluctuations of the jet stream in an attempt
to better understand weather patterns and provide medium range
forecasting with improved accuracy.

Physical and/or numerical models such as thermal convection
loops, or ‘‘thermosyphons’’, are a simplified geometry that repre-
sents a viable tool for studying the behavior of natural convection
[8]. Thermosyphons are a useful construct for performing scientific
studies as they limit convection to a single, large cell and thus pro-
vide the simplest physical model which allows for examination of
the various flow regimes.

Thermosyphons are fluid systems in which flow is induced via
buoyancy forces that occur when unstable temperature gradients
exist within the system (i.e., heating from the bottom and cooling
from the top). The fluid circulates within a closed, circular tube a
torus that is oriented vertically in space with respect to gravity
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Nomenclature

CCW counter-clockwise
cp constant pressure specific heat (kJ/(kg � K))
CW clockwise
e specific internal energy (kJ)
fmax dominant frequency (Hz)
g gravitational acceleration
h convection coefficient (W/(m � K))
I identity matrix
k thermal conductivity (W/(m � K))
L characteristic length scale (m)
_m mass flow rate (kg/s)

p pressure (Pa)
q00 heat flux (±W/m2)

Ra Rayleigh number
T static temperature (K)
t time (s)
V velocity vector (m/s)
a thermal diffusivity (m2/s)
b thermal expansion coefficient (1/K)
h azimuth coordinate (rads)
s viscous stress tensor (Pa)
m kinematic viscosity (m2/s)
l dynamic viscosity (kg/(m2 � s))
q density (kg/m3)

Fig. 1. The 2D computational mesh used throughout this study. The inset shows a
zoomed-in view of the top section of the mesh as indicated by the dashed circle. The
dimensions of the thermosyphon are ri = 34.5 cm inner radius and ro = 37.5 cm
outer radius. The lower half of the loop (p < h < 2p) is imposed with an iso-heat-flux
into the system while the upper half (0 6 h 6 p) is imposed with an equal and
opposite iso-heat-flux out of the system.
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while it is heated from the bottom and cooled from the top. The
resulting thermal gradient may yield quiescent conduction, or, if
the gradient is sufficiently large, to buoyancy driven convection.
Thermosyphons exhibit many typical nonlinear convective effects
wherein multiple flow regimes are possible based on the operating
parameters of a particular thermosyphon system. The various flow
regimes are typically delineated as (1) pure conduction and/or qua-
si-conduction, (2) stable convection with unidirectional flow, (3)
unstable, Lorenz-like chaotic convection with flow reversals char-
acterized by bulk fluid motion alternating from clockwise CW to
counter-clockwise CCW (and/or vice versa) flow around the ther-
mosyphon, and (4) high-Rayleigh, aperiodic, stable convection
without flow reversals.

Comprehensive review articles written by Yang et al. [9], Rai-
thby and Hollands [10], and Jaluria [11] discuss several important
enclosure problems in various branches of engineering, geophysics,
environmental sciences. The articles [4–11] report a wealth of the-
oretical and experimental studies of this simple system, which
exhibits typical nonlinear convective effects. Earlier thermosyphon
studies employed 1D models in order to study flow behavior in a
thermosyphon with the assumption that all governing parameters
are uniform over any given cross section at any moment in time
[12,13]. Periodic oscillations were found analytically by Keller
[12] in a 1D model consisting of a fluid-filled tube bent into a rect-
angular shape and standing in a vertical plane. Gorman et al. [14]
presented a quantitative comparison of the flow in a thermosy-
phon with the nonlinear dynamics of the Lorenz model. Here the
system was heated with constant flux over the bottom half and
cooled isothermally over the top half. The boundaries of different
flow regimes were delineated experimentally and the characteris-
tics of chaotic flow regimes were discussed in relation to the Lor-
enz model. Several flow stability studies have been performed by
Vijayan [15], Jiang et al. [16], and Jiang and Shoji [17] while Des-
rayaud et al. [18] completed a numerical investigation of unsteady,
laminar natural convection in a 2D thermosyphon driven by a con-
stant heat flux over the bottom half and cooled isothermally over
the top half. For a particular range of forcing (i.e., Rayleigh num-
ber), it has been observed that the bulk fluid motion in a thermosy-
phon is chaotic and undergoes flow reversals. Creveling et al. [19]
proposed a positive feedback mechanism in order to explain these
flow reversals in a thermosyphon.

Despite the large body of literature pertaining to thermosy-
phons, only minimal information exists regarding the spatiotem-
poral behavior of the flow-field within a thermosyphon. The
thermal structure of the flow and velocity-field were characterized
in time by Ridouane et al. [20,21] where they examine isothermal
boundary conditions in 2D and 3D thermosyphons. It was found
that for 2D thermosyphons, chaotic flow regimes and the associ-
ated flow reversals occur for Rayleigh numbers 9.5 � 104 <
Ra < 4.0 � 105. However, in the 3D isothermal work [21], flow
reversals where not observed for Rayleigh numbers ranging from
103 < Ra < 2.3 � 107. Ridouane et al. suggest that 3D flow structures
increase flow resistance and thus dampen the flow instability
mechanism responsible for bulk flow reversals observed in 2D
thermosyphons. The details describing the mechanism by which
this damping occurs are not described.

The motivation for exploring the heat flux boundary condition
in the present work is to investigate a more realistic scenario; sim-
ulations of the flux boundary condition allow for better compari-
sons with actual laboratory experiments. In addition, flow
reversals were not observed in 3D isothermal simulations, but
are known to occur in experiments with heat flux boundaries.
The present study considers simulations of 2D thermosyphons
with iso-heat flux boundaries: heating on the bottom-half of the
loop (+q00) and an equal but opposite iso-heat flux cooling on the



Fig. 2. The time evolution of the temperature contours in the thermosyphon (A–F). In figure (A), the temperature gradient is beginning to increase and flow instabilities can
be seen at h = 0 and h = p. In figure (B), initiation of clockwise flow can be seen. Figures (C) and (D) show established clockwise flow while figure (E) shows the temperature
field at the moment of flow reversal from clockwise to counter-clockwise. In figure (F), counter-clockwise flow has been established. This is the typical behavior of a flow
reversal. Here gravity is 9.8 m/s2 and the heat flux is ±200 W/m2 which yields a Rayleigh number of Ra � 5.7 � 106.
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top half (�q00). Special care is devoted to determining the flow re-
gimes that are encountered as the Rayleigh number is increased
from 1.45 � 102 to 2.83 � 107. We also seek to delineate the vari-
ous flow regimes in a gravity/heat flux parametric space while
examining both the temporal evolution and the RMS value of the
bulk mass flow rate in the thermosyphon. Particular focus is placed
on characterizing flow reversals as defined by the transition from
clockwise CW to counter-clockwise CCW (or vice versa) flow
around the thermosyphon.

2. Model of physical system

The physical system for this problem, depicted in Fig. 1, consists
of a circular closed-loop filled with liquid water at atmospheric



Fig. 3. An illustration of the temperature contours in the thermosyphon at the
moment of flow transition from CW to CCW as indicated by the vertical line at time
t = 1,450 s in the centerline velocity vs. time plot. Here the forcing is identical to
that shown in Fig. 2. Animated movies of flow simulations for a range of Rayleigh
numbers are available as supplemental material.

Fig. 4. The temporal evolution of mass flow rate in the thermosyphon at a Rayleigh
number of Ra � 2.83 � 104. This flow regime is characterized as damped, stable
convection as the oscillations remain CW and decay to the RMS, steady-state value.
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pressure and oriented in a vertical plane like a wheel with the force
of gravity in the �y direction. The physical dimensions of the loop
are 69 cm inner diameter and 75 cm outer diameter. Initially, the
water is at rest (V = 0) throughout the domain and in thermal equi-
librium at T0 = 300 K. In order to initiate natural convection within
the closed space, both the inner and outer upper walls (h = 0 to p)
are imposed with a heat flux (�q00) out of the system while both the
inner and outer lower walls (h = p to 2p) are imposed with an
equal in magnitude but opposite direction heat flux (+q00) into the
system. The equal and opposite heat fluxes are held constant along
with the acceleration of gravity while the fluid system is monitored
as it evolves in time.

In this study, our focus is the delineation of natural convection
flow regimes for varying magnitudes of heat flux and gravity as
characterized by the Rayleigh number. The Rayleigh number seeks
to capture the relative strength of buoyancy as compared to vis-
cous forces multiplied by the ratio of momentum and thermal dif-
fusivity for thermally driven fluid systems. The Rayleigh number is
traditionally defined as

Ra ¼ qgbDTL3

la
ð1Þ

where q is the fluid density (kg/m3), g is the acceleration of gravity
(m/s2), b is the thermal expansion coefficient (1/K), DT is the tem-
perature difference between the hot a cold boundaries (K), L is the
Table 1
A summary of temperature anomalies, the associated buoyant forcing direction, and the c

Location in thermosyphon Heat flux Anomalous fluid pocket

0 < h < p/2 Cooling Hot
Cold

p/2 < h < p Cooling Hot
Cold

p < h < (3p)/2 Heating Hot
Cold

(3p)/2 < h < 0 Heating Hot
Cold
characteristic length scale (m), l is the dynamic viscosity (kg/
(m � s)), and a is the thermal diffusivity (m2/s). In this study of heat
flux boundary conditions (as opposed to isothermal boundaries),
various combinations of flow parameters (e.g., gravity and heat
flux) may yield identical Rayleigh numbers. In other words, a un-
ique set of flow parameters does not exist for a particular Rayleigh
number. While the Rayleigh number formulation of Eq. (1) is readily
employed for isothermal boundary conditions, it must be modified
in order to account for the expected non-isothermal heat flux
boundaries in this work. For the case of heat flux boundary condi-
tions, a characteristic temperature differential is required to com-
pute the Rayleigh number. To obtain a representation of the
temperature differential, we appeal to Fourier’s law of heat
conduction

q00 ¼ k
DT
L

ð2Þ

in order to estimate temperature difference DT in terms of the heat
flux q00 (W/m2) and thermal conductivity k (W/(m � K)). This readily
provides a redefinition of the Rayleigh number in a form appropri-
ate for the heat flux boundary condition. As such, with DT = q00L/k,
the resulting Rayleigh number formulation used throughout this
work is

Ra ¼ qgbL4

lak
q00: ð3Þ
hange in forcing strength as a function of position within the thermosyphon.

Direction of buoyant forcing Change in forcing magnitude

CCW Decrease
CW Increase

CW Decrease
CCW Increase

CW Increase
CCW Decrease

CCW Increase
CW Decrease



Fig. 5. The temporal evolution of mass flow rate in the thermosyphon at a Rayleigh
number of Ra � 1.42 � 105. The flow undergoes two initial, transient flow reversals
during start-up and then damps out as steady CCW convection is established at a
mass flow rate of approximately 0.06 kg/s.

Fig. 6. The temporal evolution of mass flow rate in the thermosyphon at a Rayleigh
number of Ra � 7.08 � 105. The flow undergoes four initial, transient flow reversals
before settling into a state of growing, CCW oscillations which then experience flow
reversals after the oscillations have grown sufficiently large.

Fig. 7. The temporal evolution of mass flow rate in the thermosyphon at a Rayleigh
number of Ra � 1.42 � 106. The flow undergoes initial, transient flow reversals
during start-up, oscillations then begin small and grow large until a flow reversal
occurs and a fully chaotic flow regime is established.

Fig. 8. The temporal evolution of mass flow rate in the thermosyphon at a Rayleigh
number of Ra � 2.83 � 106. The flow undergoes initial, transient flow reversals and
quickly establishes a chaotic flow regime characterized by growing oscillations with
an unpredictable number of cycles before a flow reversal is observed.
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Variations of the Rayleigh number are achieved by adjusting the va-
lue of the heat flux (0.1 6 q00 6 1000 W/m2) and the gravitational
acceleration (0.5 6 g 6 9.8 m/s2) in order to yield Rayleigh numbers
ranging from 1.45 � 102

6 Ra 6 2.83 � 107.

3. Computational methods

Liquid water at an operating pressure of one atmosphere
(101.325 kPa) is the working fluid in all simulations. All thermo-
physical properties, including density (q), specific heat cp, thermal
conductivity (k), and dynamic viscosity (l), are modeled as tem-
perature dependent via a piecewise linear function that includes
31 data points spanning beyond the temperature range of the
water in the thermosyphon.

The computational domain is based on the geometry described
above and has been generated using Fluent Inc.’s Gambit grid gen-
eration software [22]. An example of the grid is provided in Fig. 1
with an inset showing a detailed view of the mesh in the top por-
tion of the thermosyphon. A formal grid-independence study has
been performed as described in Ridouane et al. [20] and the final
mesh contains 31,400 uniform, orthogonal, quadrilateral finite vol-



Fig. 9. The temporal evolution of mass flow rate in the thermosyphon at a Rayleigh
number of Ra � 2.83 � 107. The flow undergoes several initial, transient flow
reversals before establishing a steady, high-Rayleigh, aperiodic, stable convective
flow regime with small amplitude, high frequency oscillations centered on a mass
flow RMS of approximately 0.525 kg/s.
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umes with no symmetry assumption. The flow field is governed by
the conservation of mass, momentum, and energy according to

@

@t
ðqÞ þ r � ðqVÞ ¼ 0 ð4Þ

@

@t
ðqVÞ þ r � ðqVVÞ ¼ �rpþ qðTÞg þr � s ð5Þ

@

@t
ðqeÞ þ r � ðqVeÞ ¼ r � ðkrT þ ðs � VÞÞ ð6Þ

e ¼ cpT þ 1
2
jVj2 ð7Þ

s ¼ l ðrV þrVTÞ � 2
3
r � VI

� �
ð8Þ

where e is the specific internal energy, cp is the specific heat at con-
stant pressure, and s is the Newtonian viscous stress tensor. The no-
slip velocity boundary condition is imposed on the inner and outer
walls of the computational domain. Owing to the low flow veloci-
ties and Reynolds numbers, a laminar viscous model is employed
without viscous heating.

The governing equations are solved numerically using the finite
volume method (FLUENT 6.3 [22]). An implicit, pressure-based,
segregated solver is employed and all discretization schemes are
of second-order accuracy or higher. The QUICK scheme is used
for the momentum and energy discretization while the Green–
Gauss scheme is used for the spatial discretization. The pressure
discretization employs the body-force weighted model and pres-
sure–velocity coupling is handled by the SIMPLE pressure correc-
tion algorithm.

In this work, we seek to resolve the temporal evolution of the
flow-field from an initial condition of thermal equilibrium at
T0 = 300 K and zero velocity throughout the domain. The unsteady
numerical model is second-order implicit in time and utilizes a
time-step size of Dt = 0.25 s which is small enough to render the
solution insensitive to time-stepping. Convergence at each time-
step is assessed via computed residuals (mass, momentum, and en-
ergy) and flow monitors (e.g. _m, T) at key locations within the do-
main. The solution at a given time-step is deemed converged when
the numerical residuals have fallen below 10�5 and flow monitors
change by less than 0.01% with further iterations. In this work, we
numerically simulate the first P10,000 s of flow time (40,000
time-steps) in order to analyze flow-field from start-up at time
t = 0 (i.e., quiescent, thermal equilibrium throughout the domain
at a temperature of 300 K) to the point where the flow regime is
able to be well characterized (P10,000 s).The efficacy of this com-
putational strategy as it pertains to this model of the thermosy-
phon has been demonstrated in previous work [20].
4. Results and discussion

In this section, we present and discuss the numerical results
from natural convection simulations in the thermosyphon. First,
illustrations are presented to orient the reader with respect to typ-
ical flow regimes and temperature fields. Next, the RMS value of
mass flow pulsations is computed with respect to the Rayleigh
number in order to quantify bulk fluid flow as a function of the
forcing in the system. We then delineate the transition sequence
across flow regimes as the Rayleigh number and the associated
forcing is increased. Finally, we close this section with a summary
and delineation of flow regimes for the range of operating param-
eters considered in this work.
4.1. Overview of flow field characteristics

As a point of illustration and orientation for the reader, we first
present in Fig. 2 several instantaneous snap-shots of temperature
contours showing the establishment of an initial temperature gra-
dient followed by initiation of clockwise flow. Clockwise flow is
then followed by a flow reversal to counter-clockwise flow. The
temporal evolution of the flow in Fig. 2 is (A)–(F) for which gravity
is set to 9.8 m/s2 and the wall heat flux is =±200 W/m2 yielding a
Rayleigh number of Ra � 5.7 � 106. (Animated movies of flow sim-
ulations for a range of Rayleigh numbers are available as supple-
mental material.)

Fig. 3 shows a snap-shot of the temperature field at the moment
of a typical flow reversal with forcing of Ra � 5.7 � 106. Also shown
in Fig. 3(inset) is a plot of the temporal evolution of the centerline
flow velocity where (+) velocity is clockwise. A flow reversal can be
seen on the inset velocity plot as the curve crosses from positive
(CW) to negative (CCW) centerline velocity as indicated by the ver-
tical line at a flow-time of 1450 s. This flow regime is characterized
as chaotic convection with repeating flow reversals. In Fig. 3, the
temperature field and shearing flow patterns resemble Kelvin–
Helmholtz instabilities. These instability patterns are especially
prominent in the vicinity of the heat flux discontinuity (i.e., at
h = 0 and h = p) where the boundary condition of positive and neg-
ative heat flux juxtapose.

Several growing oscillations of the average bulk velocity, and
consequently the associated mass flow rate in the thermosyphon,
are observed in the inset of Fig. 3 between 2000 and 2700 s. The
oscillations are a unidirectional pulsation of the flow magnitude.
If the oscillations grow sufficiently large, the flow will reverse
direction from CCW to CW (or vice versa if the oscillations were
originally in the CW direction). To be clear, oscillatory behavior
does not necessitate a flow reversal. Rather, it is growing oscilla-
tions that may lead to flow reversals whereas decaying oscillations
often yield to stable, steady convection.

An explanation of fluid instability and the positive feedback
mechanism that generates the observed flow reversals has been
previously discussed by Creveling et al. [19]. The mechanism by
which buoyant forcing changes as the flow rotates and/or oscillates



Fig. 10. A summary figure showing the bulk mass flow rate as a function of flow time in the convection loop for increasing Rayleigh number (A–I) with heat flux (1.0 W/
m2 < ±q00 < 1000 W/m2) while operating with a gravitational constant of gy = 6.0 m/s2. For comparison purposes, the mass flow rate axes are shown for a constant range in each
plot.
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in the thermosyphon is as follows: Flow instabilities occurring at
h = 0 and h = p produce anomalous hot and cold pockets that are
able to move around and/or propagate within the thermosyphon.
The particular location(s) of the anomalous pocket(s) result in
either CW or CCW buoyant forcing. For example, a hot fluid pocket
located between (3p)/2 < h < p/2 and/or a cold fluid pocket located
between p/2 < h < (3p)/2 both generate CCW buoyant forcing.

As the flow in the thermosyphon rotates and/or oscillates, the
magnitude and direction of the buoyant forcing evolves as anoma-
lous thermal pockets traverse the thermosyphon and either absorb
or reject heat based on the particular location of said anomalies.
For example, a hot fluid pocket found between (3p)/2 < h < 0 is fur-
ther heated and thus increases buoyant forcing in the CCW direc-
tion whereas a cold fluid pocket found between 0 < h < p/2 is
further cooled and thus decreases forcing in the CCW direction
(or, equivalently, increases forcing in the CW direction). In general,
if an anomalous hot region of fluid is heated, the buoyant force in-
creases, and if a hot pocket of fluid is cooled, the forcing decreases.
Table 1 provides a complete summary of the possible forcing sce-
narios and the change in forcing strength as anomalous fluid pock-
ets move around the thermosyphon.
4.2. Temporal dynamics and flow evolution

The temporal evolution of the flow field can be explored from
several fronts. Here we seek to examine and characterize the var-
ious thermosyphon flow regimes as the Rayleigh number and asso-
ciated flow forcing is increased from a conduction state to a high
forcing condition. In a time series analysis, we describe the tempo-
ral evolution of the bulk mass flow rate in the thermosyphon and
then delineate the various flow regimes as a function of the Ray-
leigh number. We then present and discuss frequency characteris-
tics of the mass flow fluctuations in the thermosyphon and
conclude with an analysis of flow reversals and residence time in
a given circulatory state.



Fig. 11. The root-mean-square (RMS) value of mass flow rate (kg/s) in the
thermosyphon as a function of the Rayleigh number for varying strengths of the
gravitational acceleration. Note that the RMS value of mass flow depends on the
Rayleigh number and is well-fit by the curve _m � Ra0:45.
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4.2.1. Time series analysis
The typical progression of flow regimes with increased forcing

is as follows: (1) pure-conduction and/or quasi-conduction charac-
terized no bulk circulation around the thermosyphon and weak,
localized circulations proximate to the ± heat flux discontinuity
(i.e., at h = 0 and h = p); (2) stable convection characterized by con-
tinuous, unidirectional bulk mass-flow (no flow reversals) with
oscillations typically decaying to a steady-state value; (3) Lorenz-
like chaotic flow characterized by oscillations that grow in ampli-
tude with time and result in flow reversals where the bulk mass-
flow transitions from CCW to CW and back to CCW many times
throughout a given simulation; and (4) high-Rayleigh, stable con-
vection characterized by unidirectional flow with high frequency,
low amplitude, aperiodic oscillations centered about a particular
mass flow rate.

Figs. 4–9 present the temporal evolution of the bulk mass flow
rate in the thermosyphon as the Rayleigh number is increased from
2.83 � 104 to 2.83 � 107. The Rayleigh number variations in this
sequence are obtained by fixing gravity at 9.8 m/s2 and varying
the wall heat flux. Note that in Figs. 4–9 the scale of the ordinate
axis (mass flow rate) varies; this is done so as to provide detailed
resolution of the oscillatory flow evolution. This progression of
flow regimes as the Rayleigh number is increased (Figs. 4–9) is typ-
ical for all simulations and is independent of the combination of
gravity (g) and heat-flux (q00) that is specified in order to yield a
particular value of the Rayleigh number (Ra). As such, the analysis
and discussion below pertaining to the particular case of g = 9.8 m/
s2 is representative for all values of gravity considered.

Stable, damped, asymptotic convection can be seen in Fig. 4
(Ra � 2.83 � 104) and Fig. 5 (Ra � 1.42 � 105) where the flow
exhibits unidirectional oscillations that decay to a steady-state
convective flow regime. Both cases exhibit start-up flow reversals
which are a transient residual of the initial condition of the system
and is typical behavior observed for all convective regimes. This
transient start-up is then followed by stable, unidirectional, non-
reversing, decaying oscillations which asymptote to the steady-
state value indicated on the figures. In this regime, the Rayleigh
number/forcing is sufficiently large so as to maintain steady-state
convection, but not large enough to allow instabilities to grow and
generate flow reversals.

Chaotic flow regimes are portrayed in Figs. 6–8 where flow
oscillations grow in magnitude until a flow reversal occurs. As
the Rayleigh number is increased, the oscillatory frequency in-
creases and flow reversals occur more often.

Finally, as the Rayleigh number becomes sufficiently large, as in
Fig. 9 with Ra � 2.83 � 107, we observe unidirectional convection
with high-frequency, low amplitude, aperiodic oscillations cen-
tered about a mass flow rate of approximately 0.525 kg/s. At suffi-
ciently large Rayleigh numbers, the flow becomes momentum-
dominated, the growth of flow instabilities is limited, and thus
no reversal occurs. Note that in Fig. 9 we again see several initial,
transient flow reversals during start-up before the system settles
into the high-Rayleigh, aperiodic, stable convective flow regime.

As a compliment to the flow regime sequence described above,
a summary figure of mass flow rate evolution for increasing Ray-
leigh numbers in thermosyphons operating at g = 6.0 m/s2 is
shown in Fig. 10. Here, all plots have the same scale on the ordinate
axis in order to facilitate direct comparisons of the mass flow mag-
nitude. Simulations with weak forcing (i.e., low Ra) require a longer
start-up time, as compared to cases with higher Rayleigh numbers,
in order to establish thermal instabilities that are sufficient to gen-
erate bulk mass flow in the thermosyphon.

We now demonstrate the sole dependency of the flow on the
Rayleigh number. To do so, the results of all parametric cases
(i.e., all values of g, q00) have been used to calculate the root-
mean-square (RMS) value of the mass flow rate as a function of
Rayleigh number. This value is shown as a dash-dot line in Figs. 4–
9 and approximates the value of the unstable convecting equilib-
rium solution around which the state oscillates. In Fig. 11 we pres-
ent a summary plot showing the RMS value of mass flow rate as a
function of Rayleigh number for each parametric case examined in
this study. It is observed that all data collapse onto a single curve.
This suggests that the Rayleigh number as defined in Eq. (3) is
properly accounting for the forcing in the system due to both grav-
ity and heat flux as they combine to drive the flow around the ther-
mosyphon. An exponential curve-fit is applied to the data as shown
in Fig. 11 (regression coefficient of 0.98) and indicates that the RMS
of mass flow rate scales as Ra0.45 which is consistent with power
law scalings found in common internal natural convection prob-
lems [23].

4.2.2. Frequency analysis
Next, we focus our attention to the frequency characteristics of

the flow pulsations observed in the data of Figs. 4–10. Using the
mass flow rate as an input signal, power spectra are computed
using a Fourier transform for each of the cases. Fig. 12 presents rep-
resentative power spectra for selected thermosyphon flow re-
gimes. Based on the computational parameters employed in this
work (time-step size, data reporting intervals), the power spectra
is able to capture frequencies up to 8.0 � 10�2 Hz, which is roughly
1/10 to 1/40 of the time it takes for a pocket of fluid to traverse the
circumference of the thermosyphon depending on convective equi-
librium flow rates.

Fig. 12(A) corresponds to the mass flow signal observed in Fig. 4
(Ra � 2.83 � 104) and is representative of the frequency spectrum
of convective flow with damped, asymptotic oscillations that decay
to stable, steady-state convection. The dominant frequency in the
oscillatory mass flow signal is approximately 6.0 � 10�4 Hz; how-
ever, note that the peak is not sharp and the peak region is some-
what broad. A relatively low forcing (Ra � 1.73 � 106), chaotic
power spectrum is shown in Fig. 12(B) and corresponds to the
mass flow signal of Fig. 10(E). In this case, the peak in the power
spectrum occurs at approximately 3.0 � 10�3 Hz and is more pro-
nounced as compared to the lower Rayleigh number cases. As
the Rayleigh number is further increased to a moderately high
forcing, chaotic flow regime (Ra � 1.04 � 107), the power spectrum
computed from Fig. 10(H) is shown in Fig. 12(C) and exhibits a



Fig. 12. A summary plot of the FFT power spectrum for selected mass flow evolutions: (A) the stable, oscillatory, decaying flow shown in Fig. 4; (B) the low forcing chaotic
flow shown in Fig. 10(E); (C) the high forcing chaotic flow shown in Fig. 10(H); and (D) the high-Rayleigh, aperiodic, stable convective flow shown in Fig. 10(I). Note that the
dominant frequency increases with Rayleigh number as the peak becomes more pronounced.
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dominant frequency of 6.0 � 10�3 Hz; the spectrum shows an even
more prominent peak. Lastly, in Fig. 12(D), the power spectrum for
the high-Rayleigh (Ra � 1.73 � 107), aperiodic, stable convection
flow regime computed from Fig. 10(I) is shown. This regime dem-
onstrates the sharpest peak at 8.0 � 10�3 Hz as the low frequencies
weaken and the peak shifts even further to the right on the fre-
quency spectrum compared to lower Rayleigh number cases. In
general, as the forcing in the thermosyphon increases, the domi-
nant frequency increases and the peak in the power spectrum be-
comes more pronounced.

To summarize the oscillatory behavior, the dominant frequency
has been extracted from power spectra data for each parametric
case considered in this study. The dominant frequency is found
to exhibit a power law relationship with respect to the Rayleigh
number. Specifically, it is found that fmax � Ra0.48 and is plotted
as a function of the Rayleigh number in Fig. 13. The curves exhibit
minor disparities for Ra < 6.0 � 105 in the damped, asymptotic, sta-
ble convection regime but converge and exhibit strong coherence
for Ra > 6.0 � 105 in both the chaotic and high-Rayleigh, aperiodic,
stable regimes.
4.2.3. Flow reversals and residence time
The rate of flow reversals in the thermosyphon (from CW to

CCW, or vice versa) under the various forcing conditions is consid-
ered along with measurements of the average time in which the
flow resides in a particular direction (CW/CCW) before experienc-
ing a flow reversal. These two metrics are a representative measure
of the chaotic intensity of the thermosyphon operating under a
particular set of parameters. In Fig. 14, a plot of the count of flow
reversals for the first 10,000 s of flow time is shown as a function
of the Rayleigh number and the figure is delineated in terms of
flow regime (stable convection, chaotic, and aperiodic stable con-
vection). It is clear that the chaotic nature of thermosyphon flows,
as measured by the rate of flow reversals, increases with Rayleigh
number up to a critical value.



Fig. 13. The dominant oscillatory frequency of the mass flow pulsation magnitude
in the thermosyphon. Dominant frequencies are determined by the peak in the
power spectra from the Fourier transform of the temporal mass flow evolution. It is
found that the dominant frequency scales as Ra0.48.

Fig. 14. A count of the number of flow reversals in the thermosyphon for 10,000 s of
flow time shown as a function of Rayleigh number. Note the number of flow
reversals increases with Ra until the high-Rayleigh, aperiodic, stable regime is
realized at which point the number of reversals includes only the transient, start-up
reversals which thus accounts for the sharp decline in the number of reversals for
Ra > 107.

Fig. 15. A plot showing the average time that the flow resides in either a CW or CCW
circulatory direction before reversing as a function of the Rayleigh number during
the 10,000 s of flow time.
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However, for Rayleigh numbers above the chaotic flow regime
limit (Ra > 1.7 � 107), the count of flow reversals drops off sharply.
This represents the transition to high-Rayleigh, aperiodic, stable
convection in which the flow remains in either the CW or CCW
direction and oscillates aperiodically without reversing. In this
case, the flow reversals are ‘start-up transients’ and occur only dur-
ing flow start-up after which the forcing is too strong to allow
instabilities to grow and generate additional reversals. Similarly,
in the case of weak forcing (Ra < 6.0 � 105), only transient, start-
up reversals are found for cases of stable, damped convection. Here
the reversals terminate due to insufficient forcing and the pulsa-
tions decay to a steady-state convective regime.

For thermosyphon flows with Rayleigh numbers outside the
range of the chaotic regime (i.e., within the stable convection re-
gimes at Ra < 5.8 � 105 and Ra > 1.4 � 107), the number of flow
reversals are solely the result of transient behavior occurring dur-
ing the start-up period. These transient reversals are a residual
artifact of the initial quiescent, isothermal condition of the fluid
system as it responds to the applied thermal forcing. Typically,
there are between 2 and 5 transient reversals that occur before
the flow settles into either a damped, stable convection or a
high-Rayleigh, aperiodic, stable convection regime as determined
by the strength of the forcing. It is therefore important to distin-
guish between reversals that occur in a truly chaotic flow regime
and continue in perpetuity vs. transient flow reversals that occur
only during start-up.

The duration between flow reversals, or residence time, is a
measure of the length of time in which the thermosyphon flow
field rotates in a particular direction (CW/CCW) before reversing;
it is thus also a measure of stability in convection cells. Here we
have calculated the average residence time from the mass flow
time series data for each parametric case and the results are plot-
ted in Fig. 15 as a function of Rayleigh number. The chaotic flow re-
gime clearly demonstrates a decreasing value of residence time as
the Rayleigh number increases, which is consistent with the
increasing frequency of flow reversals in Fig. 10(D)–(H). This result
suggests that as the forcing increases, the system becomes less sta-
ble and more readily reverses direction. However, as the forcing
grows sufficiently large (Ra > 1.4 � 107) the system enters the
high-Rayleigh, aperiodic, stable regime and the residence time in-
creases accordingly.For thermosyphon flows in the stable convec-
tion regimes (i.e., asymptotic, stable convection and the high-
Rayleigh, aperiodic, stable convection), it is important to mention
that the residence time is an approximate measure of the influence
of the initial condition as well as a measure of the rate of start-up
transients. As transient reversals occur in relatively large numbers
during the start-up of stable flows (see Fig. 14), the calculation of
residence time is ‘artificially’ decreased on a 10,000 s of simulated
flow time basis. If the total flow time grows sufficiently large
(�10,000 s) and the system remains in a stable, unidirectional re-



Fig. 16. A flow regime bifurcation diagram as a function of heat flux and gravity
with Rayleigh number contour intervals indicated.
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gime, (or, if the forcing is sufficiently small as in pure conduction),
the residence time will approach 100% of the total flow time. This
is reflected in Fig. 15 for Rayleigh number cases falling outside of
the chaotic flow regime.

4.3. Flow regime delineation

We close our results and discussion by delineating the various
flow regimes as a function of gravity and heat flux input parame-
ters. Fig. 16 shows a flow regime bifurcation diagram in the 2D
parametric space of gravity and heat flux with iso-contour lines
of the corresponding Rayleigh number. The flow regimes have been
characterized for all parametric conditions considered in this
study. We have identified a low Rayleigh, pure conduction regime
and it is clear that a critical Rayleigh number exists for the onset of
convection. While determining this critical Rayleigh number is not
the purpose of this work, we mention here that our data suggests
pure conduction occurs for Ra 6 1.5 � 102 whereas cases with
Ra > 103 exhibit natural convection. Our results further indicate
that stable convection generally occurs in the range 103 < Ra <
5.8 � 105, chaotic flow with reversals are observed in the range
5.8 � 105 < Ra < 1.4 � 107 while high-Rayleigh, aperiodic, stable
convection is found for Ra > 1.4 � 107. The delineation of flow re-
gimes is necessarily an estimation based on the particular cases
and simulation parameters explored in this study. The possibility
exists that some flow regimes which appear to be stable convec-
tion for flow times up to 10,000 s may in fact have slow-growth
instabilities that result in flow reversals that occur over extremely
large time periods.
5. Conclusions

In this study, we have numerically modeled a 2D thermosyphon
natural convection loop with heat flux boundary conditions. Com-
putational results have been presented which characterize the
temporal evolution of the velocity and temperature fields along
with the RMS value of bulk mass flow rate. Simulation results show
that the Rayleigh number has been appropriately recast in terms of
the heat flux parameter and thus represents the relevant non-
dimensional quantity that accurately captures the physics of the
flow for the range of heat flux and gravitational acceleration con-
sidered. Over a range of Rayleigh numbers (1.5 � 102

6 Ra 6 2.8 � 107), numerical results show that four distinct flow
regimes exist: (1) conduction, (2) damped, stable convection that
asymptotes to steady-state, (3) Lorenz like chaotic convection with
flow reversals, and (4) high-Rayleigh, aperiodic, stable convection.

It has been shown that for sufficiently small Rayleigh numbers,
the forcing in the system is small and only conduction occurs. As
the Rayleigh number grows slightly larger, a state of stable con-
vection is established. The stable convection may appear in two
forms. In the first, the flow exhibits a unidirectional, oscillatory
behavior that decays in time and asymptotes to a constant, stea-
dy-state bulk mass flow rate. The second form exhibits a unidi-
rectional, oscillatory flow that persists without decay. Chaotic
flow regimes are generally observed in the range of Rayleigh
numbers from 5.8 � 105 < Ra < 1.4 � 107 and are characterized
by spontaneously occurring flow reversals and/or growing oscilla-
tions that yield to flow reversals after an undetermined and
inconsistent number of cycles. The frequency of both the oscilla-
tions and flow reversals increase with Rayleigh number up to a
critical value. At higher Rayleigh numbers (Ra > 1.4 � 107), a
new regime of stable convection occurs. The high-Rayleigh stable
convection regime is characterized by unidirectional, high fre-
quency, low amplitude, aperiodic oscillations. At these high Ray-
leigh numbers, the forcing is large, the flow-field is momentum-
dominated, and instabilities are unable to grow sufficiently large
so as to generate flow reversals.
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