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Abstract

Health surveillance and assessment are considered essential components of a func-
tional public health system. The recent ubiquity of mobile devices and social media
have created a wealth of behavioral data, and bring into existence new forms of pop-
ulation health monitoring. These new digital sources can provide direct and passive
data for more detailed and nuanced health factors, and have expanded the human,
spatial, and temporal scales at which these factors can be measured. In this project,
I leverage digital trace data from tweets and mobile device location pings to explore
population scale sleep loss, and nature exposure through park visitations in the United
States. Both sleep and nature exposure are essential contributors to well-being, and
have historically relied on either survey data or direct observation of individuals to
measure. I begin by demonstrating the ability of Twitter data to passively reflect
population-scale sleep loss at the state level. This is followed by an exploration of
park visitation measured through mobile device GPS data. Changes in county-scale
park visitation behavior at the onset of the COVID-19 pandemic are analyzed and
comparisons are made using population density, employment sector, income, and vot-
ing records. In the final chapter I investigate the viability of predicting park visitation
using demographic information from the surrounding neighborhood. I conclude with
a brief discussion of the significance of measuring these behaviors, and the potential
for health policy improvement.
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Chapter 1

Introduction

Health surveillance and monitoring are essential components of a public health sys-

tem. Without adequate data reflecting the health status of a population there can be

no informed strategy or intervention development. The need for public health mon-

itoring has been recognized for thousands of years, and historically has been most

significant during epidemics and pandemics [3]. It is during these periods of high

mortality and contagion that humans have developed methods for recording deaths,

illnesses, contact tracing, and begun monitoring others for the purpose of quarantin-

ing them [3].

Though the collection of data on deaths and on contractions of communicable

disease has been in existence for thousands of years, decisions to monitor public

health in a more continuous manner, and in what might be considered more mundane

regards, have only slowly developed over the last several hundred years. Regular

reporting for the totality of deaths, for example, did not arise until the 1600s when

the London Mortality Bills began a weekly publication [3, 4]. When considering the

irregularity of reporting, and limited information collected, it is important to consider
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both the availability of health data- but also of the purpose of that data.

The maintenance of public health as a function of the government is, in itself, a

rather recent development. It was not until the French Revolution that public health

became a matter for the government, rather than individuals [3, 5]. As governments

in the West assumed responsibility for public health over the next hundred years, and

recognized a relationship between policy and health status of their populations, and

the frequency of collection and richness of information reported increased [6]. Still,

this data was concerned with communicable diseases - primarily cases, and deaths.

It wasn’t until the 1900s, when chronic disease became a greater threat to mortality

than infectious disease, that the scope of public health monitoring expanded.

The expansion past the simple concern of infectious disease is incredibly recent.

The establishment of a national public health agency in the United States took place

in 1946, and this agency was known as the “Communicable Disease Center.” The CDC

did not engage in chronic disease surveillance until the 1970s, and it wasn’t until the

80’s that interest was extended beyond the presence of disease and into risk factors

including behavior [7]. In 1984 the Center for Disease Control began to monitor and

evaluate public health with respect to behavior via an annual telephone survey called

the Behavioral Risk Factor Surveillance System (BRFSS) [8].

The organization and refinement of the BRFSS marked a maturation of the public

health system by asserting human behavior to be an influential component of a public

health worthy of surveillance. This assertion carried with it the implication that

behavior was impacted by, and could possibly be mitigated using, policy. Despite clear

interest in population behavior, monitoring and measuring behavior at the population

scale remains a challenge.
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In the last decade new opportunities for behavioral monitoring have arisen from

the near ubiquity of mobile devices, the wide-spread use of wearables, and regular

engagement with social media platforms. A large majority of Americans have a smart-

phone (85%) and use the social media platform Facebook (69%), and 30% are now

using wearable health care devices like Fitbits and Apple Watches [9,10]. Interactions

with technology, including simply wearing a fitbit, or carrying a cell phone, create

digital traces which can be used to infer information about user behavior, and when

aggregated can generate insights into entire populations.

The prevalence of this type of data makes monitoring at the population scale

possible, and the regular and frequent use of technology allows for not only greater

temporal scale, but finer granularity in data collection as well. Additionally, these

data sources allow for both passive data-collection, and the consideration of more nu-

anced behavior than previously examined. By studying the language used on Twitter,

for example, it has been possible for scholars to passively monitor the ambient hap-

piness of nations on a daily basis for several years [11]. Language on Twitter has also

been used to demonstrate caloric imbalances between exercise and eating that corre-

spond to regional rates of obesity - a measure that would have previously required

collection of medical records, and food and exercise diaries [12].

Chapter Two of this work interrogates the ability of Twitter data to reflect another

aspect of behavioral health: sleep. Short sleep, less than six hours a night, is a

well established risk factor for several severe chronic diseases such as diabetes, heart

disease, and cancer [13–16]. Sleep is also considered an aspect of behavioral health

which can be directly impacted by policy such as residential noise limits, and school

start times [17]. Despite the clear opportunity to improve public health by developing
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strategies to address short sleep, efforts to do so are hindered, in part, by the lack of

sufficient population sleep monitoring methods. A recent paper by Leypunskiy et al

[18] explored a method of measuring population sleep by using time of tweet postings

as a proxy for sleep and wake data, and successfully found that when aggregated to

a population scale Twitter data was able to reveal a “window of sleep opportunity.”

Chapter two builds on Leypubskiy et al’s work by further examining time of tweet

posting as an appropriate proxy for sleep data. Spring Forward, discontinued in 2023,

was the annual practice of an artificial time-loss in the middle of the night for the

purpose of aligning sleep-wake hours with daylight. The event corresponded to a

single hour artificially lost from the night, and thus constituted a sleep-loss event of

approximately one hour for most of the United States. Historically, Spring Forward

was used as the basis for determining the effect of sleep loss on unpredictable phe-

nomena including strokes, heart attacks, and traffic accidents – all of which increased

dramatically following Spring Forward [19–22]. Knowing that Spring Forward was a

serious population scale sleep loss event, with serious public health ramifications, we

posited that a tool used to measure population sleep scale should be able to capture

this event; Chapter Two investigates whether or not time of tweet posting does.

Similarly to sleep, nature exposure has been both recognized as instrumental

to well-being, and dependent upon either direct observation or surveys to measure.

Chapters Three and Four leverage location data (GPS coordinates along with time

stamps) collected from mobile devices to measure nature exposure through park visi-

tations. With 85% of Americans using smartphones, monitoring the location of these

devices gives incredible insight into mobility in the United States [23].

During the COVID 19 pandemic interest in mobile device location data spiked, as
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this data became useful for monitoring the impact of social distancing measures by

investigating the number and types of locations visited, and the time spent in those

locations [24]. One of the many types of venues that was scrutinized with this data

was parks [25]. Early mobility studies determined that park visitations increased at

the onset of the pandemic, however these studies were regionally focused, and they

did not account for the seasonality of park visitation [25,26].

Chapter Three builds on the exploration of park visitation behavior at the onset

of the pandemic by considering thousands of parks across the United States, and

accounting for seasonality in visitation. Using daily visitation counts for 2019 as

well as 2020 allows us to account for seasonality. Models were constructed for park

visitation in each state, and for counties containing a park for which we had data. By

applying the Bayesian Estimator for Abrupt Seasonal and Trend change (BEAST)

[27], which fits the model and detects change points in a time series, we were able

to identify abrupt changes in park visitation which occurred at the beginning of the

pandemic, and were not due to seasonality of visitations. Identifying the regions

for which these changes took place allowed us to further explore differences in the

populations of those regions, including differences in income, employment-share in

industrial sectors, and voteshare for the 2016 presidential election.

Chapter Four makes further use of the park visitation dataset by investigating

the relationship between the demographic features of the neighborhood surrounding

a park, and the visitation received by that park. The neighborhood surrounding the

park is referred to as ‘the walkshed,’ and is considered the area which is within walking

distance (usually 10 minutes) of the park; this is the area that a park’s primary users

are considered to live [28–30]. The residents of the walkshed can also be thought
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of as a component of the park environment; the walkshed is the area that will need

to be crossed to enter the park, and the clothing, houses, cars, and language within

the walkshed will all be part of a perceived experience of traveling to, and visiting, a

park.

A recent study using social media in New York City demonstrated that parks

which were surrounded by populations with greater proportions of racial and ethnic

minorities were visited less [30]. A second study which observed the proportion of

days that mobile devices visited a park found that racial and ethnic minorities had

less access to parks in terms of visitation [31]. If the members of a walkshed are the

primary users of the park, these studies together may imply that park visitation can

be predicted by the demographic features of its walkshed. The first study may also

imply that the appeal of a park’s environment, both the quality of the park, and

the environment created by the neighborhood surrounding it, may be related to the

demographic features of the walkshed.

These possible implications are investigated in Chapter Four by testing how suc-

cessfully the demographic features of a park’s walkshed can be used to predict the

visitation received by the park. For this inquiry data was restricted to visits made

in 2019, prior to disruption by the pandemic, and to parks which are in suburban or

urban areas, and unlikely to be tourist destinations. The data curation for the study

was designed to examine parks which were most likely to be visited regularly and by

a fairly constant population.

In Chapter Four, digital mobility data allows us to passively observe park visita-

tion to 2,506 parks across the United States over the course of a year. Not only is the

scale of this study feasible because of the type of data being used, but the data is al-
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lowing us a more detailed look at accessibility to parks by exploring actual visitation.

Several scholars have posited that inequity may exist in park accessibility as a result

of constraints on time, safety, or other non-tangible aspects of life [32–37]. Saxon’s

2021 work [31] using mobile device data for measuring park visitations demonstrated

that actual park usage was not adequately captured by models which assumed usage

based on proximity. By looking directly at visitation, we are able to recognize these

unmeasurable constraints, and consider how they may modify behavior in ways that

become apparent at the system scale.

Each of the chapters in this work demonstrates the applicability of a large, pas-

sively collected, behavioral dataset to understanding aspects of public health. Utiliz-

ing measurements of sleep and nature exposure gathered through digital traces has

allowed me to observe phenomena and relationships at temporal, geographic, and

human scales that were previously not possible to observe. These observations serve

not only as interesting archeological artifacts- evidence of past human behavior and

full of culture and geospatial heterogeneity, but as baselines for understanding future

health data that may be collected, as well as examples of methodology for monitoring

critical aspects of population health.

1.1 Publications

Material from this dissertation has been published as:

Kelsey Linnell, Michael Arnold, Thayer Alshaabi, Thomas McAndrew, Jeanie Lim,

Peter Sheridan Dodds, and Christopher M. Danforth. The sleep loss insult of spring

daylight savings in the US is observable in twitter activity. Journal of Big Data,
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8(1):121, 2021

Material from this dissertation has been submitted for publication in PLOS Global

Public Health on February 7, 2022
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Chapter 2

The sleep loss insult of Spring Day-

light Savings in the US is observ-

able in Twitter activity

2.1 Abstract

Sleep loss has been linked to heart disease, diabetes, cancer, and an increase in ac-

cidents, all of which are among the leading causes of death in the United States.

Population-scale sleep studies have the potential to advance public health by helping

to identify at-risk populations, changes in collective sleep patterns, and to inform pol-

icy change. Prior research suggests other kinds of health indicators such as depression

and obesity can be estimated using social media activity. However, the inability to

effectively measure collective sleep with publicly available data has limited large-scale

academic studies. Here, we investigate the passive estimation of sleep loss through a
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proxy analysis of Twitter activity profiles. We use “Spring Forward” events, which

occur at the beginning of Daylight Savings Time in the United States, as a natural

experimental condition to estimate spatial differences in sleep loss across the United

States. On average, peak Twitter activity occurs 15 to 30 minutes later on the Sunday

following Spring Forward. By Monday morning however, activity curves are realigned

with the week before, suggesting that the window of sleep opportunity is compressed

in Twitter data, revealing Spring Forward behavioral change.

2.2 Introduction

The American Academy of Sleep Medicine recommends adults sleep 7 or more hours

per night [39]. However, studies show only 2/3 of adults sleep for this length of

time consistently. In 2014, the Centers for Disease Control and Prevention’s (CDC’s)

Behavioral Risk Factor Surveillance System suggested that between 28% and 44%

of the adult population of each state received less than the recommended 7 hours

of sleep [14]. Despite the scientific consensus that adequate sleep is essential to

health, many adults are sleeping less than 7 hours a night on average—a state referred

to as short sleep. Results from the most recent National Health Interview Survey

determined that since 1985, the age-adjusted average sleep duration has decreased,

and the percentage of adults who experience short sleep, on average, rose by 31% [40].

Because adequate sleep is necessary for optimal cognition, short sleep is adverse

to productivity and learning, and reduces the human capacity to make effort- related

choices such as whether to take precautionary safety measures [41–43]. Short sleep’s
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impact on human cognition is harmful in the workplace, and poses a pronounced

and distinct threat to public safety when operating a vehicle [44–47]. Short sleep is

linked to increased risk of serious health conditions, including heart disease, obesity,

diabetes, arthritis, depression, strokes, hypertension, and cancer [13–15], and a recent

study found that disrupted sleep is also associated with DNA damage [48]. The link

between sleep loss and cancer is so strong that the World Health Organization has

classified night shift work as “probably carcinogenic to humans” [16]. Socio-economic

status is positively correlated with quality of sleep [49–52]. Due to such detrimental

effects, and high prevalence among the population, insufficient sleep accounts for

between $280 and over $400 billion lost in the United States every year [53].

Accurately measuring short sleep in a large population is difficult, and there is

often a trade-off between accuracy and the size of the study. Polysomnography—

considered the most accurate way to measure sleep—can only measure an individual’s

sleep patterns in a controlled laboratory setting [54,55]. Large studies have relied on

participants recording their own sleep, but suffer from reporting bias [14,56,57].

Wearable technology can measure short sleep at the population scale, and has

the potential to measure short sleep accurately enough to study its association with

adverse health risks [41,54,58,59]. One recent large sleep study enrolled 31,000 partic-

ipants and used sleep data from wearable devices along with participant’s interactions

with a web based search engine to compare sleep loss and performance [41]. The au-

thors [41] showed that measurements of cognitive performance (including keystroke

and click latency) vary over time, follow a circadian rhythm, and are related to the

duration of participant’s sleep, results that closely mirrored those from laboratory

settings and validated their methodology. Another study using wearables was able
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to analyze nine metrics of sleep, including social jetlag, duration, and variability

for 69,650 individuals [59]. The authors’ analysis of these metrics found gendered

differences in sleep behaviors across the cohort [59].

While promising in the long run, present studies that use wearable devices have

limitations. To infer from wearables that individuals are sleeping, data must first go

through a pipeline of preprocessing, feature extraction and classification. The pipeline

for processing sleep data is typically proprietary and dependent on the specific wear-

able used, and changes to how data is processed can impact results [60]. Moreover,

validation studies have yet to explore the effectiveness of these devices across genders,

ages, culture, and health [60].

Social media may be an alternative way to measure sleep disturbances in a large

population, for example by studying the link between screen time and sleep [18, 61].

Researchers have found that Tweeting behavior can reveal "sleep-wake" behavior for

individuals as well as cities [62,63]. In particular, the correlation between sustained

low activity on Twitter and sleep time as measured by conventional surveys has

been validated against data collected from the CDC on sleep deprivation [18]. The

relationship between time of onset of Twitter activity and wake time has been used to

explore and demonstrate social jetlag - the discrepancy between weekend and weekday

sleep behavior [18, 64]. Other work has shown evidence of an increase in a user’s

smart phone screen time as being associated with an increase in short sleep [61].

Other mental and physical characteristics have been measured from sociotechnical

systems. Several instruments developed by members of our research group including

the Hedonometer [11], which measures population sentiment through tweets, and

the Lexicocalorimeter [12], which measures caloric balance at the state level, have
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demonstrated an ability to infer population-scale health metrics from Twitter data.

Circadian rhythms in mood and cognitive processes have also been inferred from

tweets [65,66]. Twitter data has also been used to identify users who experience sleep

deprivation and study the ways their social media interactions differ from others [67].

In urban, industrialized societies where social timing is synced to clock time,

Daylight Savings- a biannual sudden upset to clock time- creates behavioral stability

across seasons [68, 69]. The onset of DST, Spring Forward, is associated with a

one hour sleep disruption due to the disconnect between the "human clock" and the

mechanical clock [70]. Past work has used Daylight Savings as a natural experiment

to show that a one hour collective sleep loss event has large and quantifiable effects

on health, safety, and the economy [19–22], with two striking findings being a one

day increase in heart attacks by 24% and a loss of $31 billion on the NYSE, AMEX,

and NASDAQ exchanges in the United States [19,71].

We hypothesize here that sleep loss is measurable in behavioral patterns on Twit-

ter, and changes in population-scale sleep patterns due to Spring Forward can be

observed through changes in these behavioral patterns. In what follows we describe

the process by which we used the local time of tweet posting to explore patterns in

posting frequency relative to time of day, and how these patterns were affected by the

clock shift known as Spring Forward. The data is described in detail, followed by the

specific methodologies employed to analyze the patterns in the frequency of posting.

Then, we visualize and describe the results before concluding with a discussion of

limitation and implications.
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2.3 Materials and methods

2.3.1 Data

We collected a 10% random sample of all public tweets—offered by Twitter’s Decahose

API—for Sundays and Mondays in the four weeks leading up to, the week of, and

the four weeks following Spring Forward events during the years 2011-2014. Spring

Forward is defined as the instantaneous clock adjustment from 2 a.m. to 3 a.m. on

the second Sunday of March each year. We included tweets in the study if the user

who created the tweet reported living in the U.S. in their bio, or if the tweet was geo-

tagged to a GPS coordinate within the U.S. [72]. With these conditions, we ended

up selecting approximately 7% of the messages in the Decahose random sample for

analysis [73]. The sample was composed of 13.1 million tweets.

Twitter provided the time-zone from which each message was posted during the

period from 2011 to 2014 (for privacy purposes, Twitter discontinued publication of

time zone information in 2015). We used the time-zone to determine the local time

of posting for each tweet. Tweets for which the time-zone was incompatible with the

assigned location were discarded. This process enabled us to analyze the method on

data for which the local time of posting is known. We binned tweets by 15 minute

increments according to the local time of day they were posted.

2.3.2 Experimental setup

The Spring Forward event of Daylight Savings was used as a natural experiment

in which the control is behavior prior to the event, and the experiment is behavior
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directly after the clock change and known sleep loss event. Change in Twitter posting

behavior was observed in this experiment. To estimate behavioral change associated

with Daylight Savings, we partitioned tweets into various groups, primarily a “Before

Spring Forward” (BSF) group and a “Spring Forward” (SF) group. To establish a

convenient ‘control’ pattern of behavior, all tweets posted on any of the four Sundays

before the Spring Forward event were classified as “Before Spring Forward” tweets.

We classified the ‘experimental’ set of tweets posted on the Sunday coincident with

the Spring Forward event as “Spring Forward”. The above classification created, for

every year, a 4:1 matching of before to week of Spring Forward activity. We analyzed

tweets posted 1-4 weeks following Spring Forward separately to quantify relaxation

to the original behavior.

2.3.3 Analysis

We binned tweets by time in 15 minute intervals starting at the top of the hour, and

normalized their frequencies by dividing by the total number of tweets posted on the

corresponding day. In this way, we establish a discrete description of the posting

volume over the course of a typical 24-hour period.

We averaged the Before Spring Forward tweets over the four Sundays, and the

four years as follows:

TBSF(k) = (4 × 4)−1
2014∑

Y =2011

4∑
S=1

CY S(k)
CY S

,

where CY S(k) is the number of tweets in the kth 15 minute interval of the Sth Sunday

of year Y , CY S is the total number of tweets posted on that Sunday and year, and
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TBSF(k) is the average fraction of tweets posted in the kth 15 minute interval of a

Sunday prior to Spring Forward,

We also normalized the Spring Forward tweets against daily activity:

TSF(k) = (4)−1
2014∑

Y =2011

CY (k)
CY

.

These averages enabled us to aggregate more data, building a more reliable pattern

of daily activity, and decrease the susceptibility to daily variation. To reduce noise

that could depend on our choice of bin size and spatial scale, we smoothed normalized

tweet activity using Gaussian Process Regression (GPR) [74,75]. We fit a GPR with

a squared exponential kernel and characteristic length scale of 150 minutes (a total

of 10 bins of size 15-minutes) to normalized tweets. We chose a characteristic length

of 150 minutes for consistency with previous work [18]. Tikhonov regularization with

an α penalty tuned manually to 0.1 was included when finding weights ωk to prevent

overfitting [75]. GPR yielded a smooth behavioral curve, B(t), of the functional

form:

B(t) =
96∑

k=1
ωk exp

[
−1

2k
(

t

150 ,
tk

150

)2]
,

where ωk is a weight determined by the regression process, k is the squared-exponential

kernel (commonly called a radial basis), t is the time in minutes since midnight (00:00),

and tk is the kth 15 minute interval of the day, i.e. t5 corresponds to 75 minutes past

midnight, or 1:15 a.m. The sum to 96 refers to the number of 15 minute intervals in

a single 24 hour period.

We generated behavioral curves B(t) for the BSF and SF groups by state, and for

the U.S. in aggregate. To estimate behavioral change induced by a Spring Forward
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event, we calculate two quantities from the behavioral curves: (i) the time of peak

activity and (ii) the time of the inflection point between the peak and trough. The

inflection point is referred to as a ‘twinflection’ point, and represents a point of

diminishing losses in Twitter activity for the night. Peak shift is defined as:

arg max
t

{BSF(t)} − arg max
t

{BBSF(t)}

and twinflection shift is defined as:

arg min
t∈N

{B′
SF(t)} − arg min

t∈N
{B′

BSF(t)},

where N = {t : arg maxt B(t) < t < arg mint B(t)}. We were able to reliably measure

peak activity and twinflection because behavioral curves exhibited a consistent diurnal

wave structure: a rise in the evening corresponding to peak Twitter posting activity,

followed by a trough during typical sleeping hours, and a plateau throughout the day.

Contraction of the trough associated with sleeping hours is considered to be reflective

of lost sleep opportunity, and may indicate sleep loss itself.

We measured the loss of sleep opportunity by calculating the peak and twinflection

times for the four weeks Before Spring Forward and the week of Spring Forward itself.

We then characterize differences between the BSF and SF measures for each state,

and for the total U.S., as a proxy for sleep loss.
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2.4 Results

Our overall finding is that peak Twitter activity occurs 15-30 minutes later on the

Sunday evening immediately following Spring Forward for most states, with this shift

varying among states. By Monday morning, activity is back to normal, suggesting

that the window of sleep opportunity is visibly compressed in Twitter behavior.

In Fig 2.1, we plot B(t) for the subset of posts containing the words ‘breakfast’,

‘lunch’, and ‘dinner’ for the period beginning 6 a.m. on Sunday and ending 9 p.m. on

Monday, both before (solid) and the weeks of (dashed) Spring Forward events. These

curves were constructed for states observing Eastern Time (top row) and Pacific Time

(bottom row). These regions were chosen as they are the zones with the greatest

spatial difference among zones with significant data density. Observing a shift in

behavior for each assures us that these shifts are not limited to a particular geographic

region of the country.

Meal-related language reveals a daily pattern of behavior in which peak volume

occurs around the time that meal typically takes place. On an average Sunday,

breakfast is most mentioned at 10:30 a.m., lunch at 1:15 p.m., and dinner at 6:45

p.m. in Eastern Time Zone states (see Fig 2.1). On the average Monday, breakfast

mentions peak at 10:45 a.m., lunch peaks at 1:30 p.m., and dinner at 7:15 p.m.

Breakfast and Lunch are mentioned more often on Sunday than on Monday.

There is essentially no discussion of meals during the period from 2 a.m.-6 a.m.

These plots also exhibit a small forward shift in time following Spring Forward, sug-

gesting that each meal was tweeted about, and probably eaten, later in the day on

Sunday. The effect is greater on the East Coast, and disappears on both coasts by
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Figure 2.1: Diurnal collective attention to meals quantified by normalized usage
of the words ‘breakfast’, ‘lunch’, and ‘dinner’ for states observing Eastern Time
(top) and Pacific Time (bottom), for the weeks before (solid) and of (dashed)
Spring Forward. The x-axis represents the interval between 6 a.m. Sunday and 9 p.m.
Monday local time. Counts for tweets containing each individual word were tallied in 15
minute increments, normalized by the total number of tweets mentioning that word, and
smoothed using Gaussian Process Regression to create a “Normalized Activity" curve. Each
day has a clear pattern for frequency of meal name appearance in tweets, with the peak for
breakfast, lunch, and dinner occurring in the respective order of the meals themselves. For
each of the meals, we observe a slight forward shift in the peak following Spring Forward,
suggesting that meals are taking place later than usual on the corresponding Sunday. By
Monday, the peak for each meal name appears to be aligned with the week before, with the
exception of ’dinner’ on the west coast, which is still a bit later.

Monday.

Broadening from messages mentioning specific meals to all messages, daily activity

plots of BBSF and BSF reveal a regular diurnal pattern of behavior that is consistently

shifted forward in time the evening following Spring Forward events. Fig 2.2 shows

this shift for the year 2013, but the results were similar for other years.

Panel (a) suggests overall activity across the U.S. peaks around 9 p.m. on Sundays

before Spring Forward (red circles), and experiences a minimum around 5am. The

peak shifts approximately 45 minutes later on the Sunday of Spring Forward (blue
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Figure 2.2: Twitter activity behavioral curves B(t). (a) Normalized count of tweets
posted from a location within the United States between 12 p.m. Sunday and 12 p.m. Monday
before (red) and the week of (blue) the 2013 Spring Forward Event. The time recorded for
the tweet is that local to the author. Though the pattern of behavior is preserved following
Daylight Savings, peak activity is translated forward in time. (b) The same plot, with
location of tweet origin restricted to the state of California. California is the state for which
we have the most data, and therefore the most representative behavior profile after smoothing
with Gaussian Process Regression (lines). We note that Fig 2.5 shows behavioral curves for
all states. (c) The smoothed behavioral pattern for California during the hours of 9 p.m. to
3 a.m. Pacific Time. Activity peaks are denoted by vertical dashed lines, and twinflection
points are marked by squares. To estimate the behavioral shift in time, we compute the
distance along the temporal axis between these pairs of lines/points. California’s BSF peak
is one hour earlier than the SF peak.

squares) before synchronizing again by early morning Monday. In panel (b) California

is used as an illustrative example of these patterns existing at the state level, and

the smooth behavioral pattern constructed using Gaussian Process Regression. The

pattern is similar to that observed for the entire country, with the exception of a

slightly reduced amplitude. Twinflection points are illustrated by black squares in

panels (b) and (c).

Fig 2.2 demonstrates evidence that there is a shift in the peak time spent in-
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teracting with Twitter on Sunday evening following Spring Forward, relative to prior

Sundays. Given the absence of a corresponding delay in interaction Monday morning,

we infer a decrease in sleep opportunity experienced on Sunday night.

To explore the spatial distribution of the behavioral changes induced by Spring

Forward, in Fig. 2.3 we map the time of peak Twitter activity on Sunday night for

each state before (top) and the week of (bottom) Spring Forward, averaged across the

years 2011-2014. On the Sundays leading up to Spring Forward (top), peak twitter

activity occurs near either 10 p.m. for states on the East Coast, or 9:15 p.m., for

most of the other states. The week of Spring Forward, nearly all states exhibit peak

activity later in the night.

Looking at Texas as an individual example, before Spring Forward we see peak

activity around 9:15 p.m. local time, and the week of Spring Forward it occurs at

10:15 p.m. local time. While Texas is one of the latest peaks observed on the evening

following Spring Forward, several other states are up late as well including Oklahoma,

Georgia, and Mississippi each peaking around 10:15 p.m.

In the Supplemental Information, we show maps estimating the time of peak activ-

ity for each of the individual 9 weeks centered on Spring Forward (see Supplemenatry

Fig S1 online). There is some week-to-week variation, most notably in the second

week prior to Spring Forward, which was the night of the Academy Awards for three

of the four years. By four weeks after Spring Forward, the peak activity map has

relaxed to roughly the same pattern as BSF.

The magnitude of the forward shift in behavior illustrated in Fig 2.3 is considered a

proxy for the loss of sleep opportunity on the Sunday night following Spring Forward.

We used two distinct methods to estimate this magnitude, namely the peak shift
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Figure 2.3: Time of peak Twitter activity on Sunday night for each state before
(top) and the week of (bottom) Spring Forward for the four events observed
between 2011 and 2014. Before Spring Forward (BSF), the time of peak activity occurs
around 10 p.m. most states in the Eastern Time Zone, and around 9:15- 9:30 p.m. for
most of the other states. The week of Spring Forward (SF), peak Twitter activity occurs
between 0 and 60 minutes later for each state, with the exception of Alaska, Nebraska, and
Hawaii for which the peak occurred earlier. Texas has the latest peak at 10:15 p.m. local
time, a shift of 60 minutes forward compared with prior Sundays. We note again that the
BSF estimates are based on the aggregation of four Sundays prior to Spring Forward, while
the SF estimates are based on the Sunday coincident with Spring Forward, and are therefore
estimated using roughly 1/4 of the data. [1]
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and the twinflection shift. A comparison of the spatial estimates made using each

method are shown in Fig 2.4.

Panel (a) illustrates the average shift in peak activity observed for 2011-2014 by

computing the difference between the pair of maps in Fig 2.3 (bottom minus top).

There is clear spatial variation in the shift in time on the night of Spring Forward,

while most states exhibit a positive forward shift some exhibit none, and Alaska,

Hawaii, and Nebraska show a negative shift. The peak in Twitter behavior for the

east and west coasts occurred 0-30 minutes later Sunday night, while it occurred 30-60

minutes later for the central U.S. (Fig 2.4 panel a).

Fig 2.4 panel (b) estimates the change using twinflection, namely the change

in concavity of the behavior activity curve from down to up. Every state except

Hawaii, Alaska, and Wyoming exhibits a shift forward in time, and with similar

spatial regularity. When measured with twinflection shift, Texas and Mississippi

are seen to have the greatest temporal shift following Spring Forward. Texans were

tweeting 105 minutes later than usual following a Spring Forward event. Most of the

east and west coast states were measured as tweeting 15 to 30 minutes later (Fig

2.4 panel b). Both measures agreed on a positive shift for the country as a whole.

However, the two measures yielded different results for the magnitude of these shifts,

with twinflection shift generally estimating a more positive shift.

Fig 2.4 panels (c) and (d) illustrate the amount of data contributing to calcu-

lations for the behavioral curves, and the density of this data with respect to each

state’s population. Idaho, Alaska, Hawaii, Montana, Wyoming, North Dakota, South

Dakota, and Vermont were the states offering the smallest amount of data, and sub-

sequently have the highest potential for a poor behavioral curve model fit. Wyoming
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was unique in that in 2013 for the 24 hour observation window on the week of Spring

Forward there were no tweets meeting inclusion requirements, making conclusions

about this state particularly tenuous.

Though the amount of data available for California and Texas is much greater

than the other states, when considering their large population size we find their

twitter activity per capita to be similar to most other states. Based on our estimate

of tweets per capita, we expect behavioral curves for most states to be more or less

equally representative of their tweeting populations.

Looking at the diurnal cycle of Twitter activity for each individual state, we see

remarkable consistency. Fig. 2.5 shows the 24 hour period spanning noon Sunday

to noon Monday local time for the year 2012. Plots for the other 3 years exhibit

similar behavior. Before Spring Forward (red), most states show a peak between 9:15

and 10:00 p.m., local time. The week of Spring Forward (blue), nearly all states

have a peak after 9:30 p.m. While states differ slightly in the time of peak, and

magnitude of shift in the peak, most exhibit a clear positive shift (see Supplementary

Fig. S3 online). By Monday morning, nearly all curves have re-aligned. We also

consistently observe higher peaks for the BSF curves which we believe to be driven

by televised events such as the Oscars. The Sunday of Spring Forward does not have

a regularly scheduled popular television event, and as a result the SF curves have

lower amplitude.
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Peak shift (mins) Twinflection shift

Figure 2.4: The magnitude of Twitter behavioral shift following a Spring Forward
event, averaged for the four years from 2011 to 2014. (a) Shift measured using
behavioral curve peaks, the difference between the pair of maps in Figure 2.3 (bottom minus
top). Texas is estimated to have experienced the greatest time shift. The effect of Spring
Forward is more pronounced in the South, and center of the country. Alaska, Nebraska, and
Hawaii have negative shifts. (b) The same map, but with measurements calculated using
twinflection shift instead. The states most affected are Texas and Mississippi, where the shift
was 105 and 75 minutes respectively. Hawaii and Alaska are estimated to have negative shifts
(15, and 30 minutes respectively). Twinflection shift produces similar spatial results to peak
shift, with greater shift estimates. (c) The number of tweets posted from each state in the
period after Spring Forward. California and Texas both contributed over 200,000 tweets,
while Alaska, Hawaii, Idaho, Wyoming, Montana, North Dakota, South Dakota, Wyoming,
Delaware, New Hampshire, Maine and Vermont each produced less than 10,000 tweets. (d)
The density of data used to establish the experimental pattern of behavior, as measured by
tweets per capita. This measurement reflects the ability of the data to capture the behavior
of the tweeting population of each state. While Idaho, Wyoming, Montana, Utah and South
Dakota have relatively little data compared to their populations, the remaining states have
similar data density, with somewhere between five and eleven tweets per thousand residents,
with the exception of the District of Columbia which has 35. Note: both panels (c) and (d)
use logarithmically spaced colorbars 25
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Both the peak and twinflection demonstrate that it is possible to observe a measur-

able decrease in the amount of sleep opportunity people in the United States receive

on average due to Spring Forward. They also both demonstrate uneven geographic

distribution of the effect of Spring Forward, and therefore the ability to determine

geographic disparity in sleep loss.

We also discovered that the Super Bowl occurred exactly 5 weeks prior to Spring

Forward in each of the years studied. This annual event watched by over 100 million

individuals in the U.S. caused peak Twitter activity to synchronize at roughly the

same time nationally, around 9 p.m. Eastern, during the second half of the football

game. The map in Fig 2.6 shows the time of peak activity for each state on Super

Bowl Sunday, averaged over the years 2011 to 2014. The colormap is the same as

the scale used for 2.3, with the additional cooler range brought in capture the time

of peak relative to the usual times.

The map bears a remarkable resemblance to the timezone map, demonstrating

a synchronization of collective attention across the country. Data from Super Bowl

Sunday was not included in the Before Spring Forward data, as it does not accurately

reflect the spatial distribution of typical posting behavior on a Sunday evening.

2.5 Discussion

Technically speaking, Spring Forward occurs very early Sunday morning, and the

instantaneous clock adjustment from 2 a.m. to 3 a.m. is witnessed by very few

waking individuals. In addition, we speculate that the majority of individuals do not

set an alarm clock for Sunday morning. As a result, we expect that the hour lost
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Figure 2.6: Peak activity time (local) for Super Bowl Sunday, 5 weeks prior
to Spring Forward, averaged over the years 2011 to 2014. Activity exhibits a
clear resemblance to the U.S. timezone map, with a peak near 9 p.m. Eastern Time just
following the halftime performance. The data suggests a national collective synchronization
in attention. Green Bay Packers d. Pittsburgh Steelers (2011), New York Giants d. New
England Patriots (2012), Baltimore Ravens d. San Francisco 49ers (2013), and Seattle
Seahawks d. Denver Broncos (2014). Performers included The Black Eyed Peas, Usher,
and Slash (2011), Madonna, LMFAO, Cirque du Soleil, Nicki Minaj, M.I.A., and Cee Lo
Green (2012), Beyoncé, Destiny’s Child (2013), and Bruno Mars, Red Hot Chili Peppers
(2014). We note that the colormap here the same as the scale used for 2.3, with blue colors
included to reflect the relatively early times of the peaks relative to the other weeks.
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to Spring Forward will be felt by our bodies most meaningfully on Monday morning.

Indeed, we are likely to experience the Monday morning alarm as occurring an hour

early, as Spring Forward shortens the time typically reserved for sleep opportunity

Sunday night by one hour.

Considering the correlation between screen time and lack of sleep, the Sunday

evening shift, and the corresponding Monday morning re-synchronization, we observe

evidence that sleep opportunity is lost in some states on the evening of Spring For-

ward. By estimating the magnitude and spatial distribution of the shift in Twitter

behavioral curves, we have approximated a lower bound on sleep loss at the state

level.

Our pair of measurement methodologies have a Pearson correlation coefficient

of 0.575, and a Spearman correlation coefficient of 0.467 (See Supplementary Fig

S3 online ). While they produced slightly different estimates of the magnitude of

temporal shift in behavior, the resulting geographic profiles of sleep loss were similar.

Both suggest that states along the coast are least affected by Spring Forward, while

Texas and the states surrounding it to the North and East are the most affected.

Peak shift suggests the temporal shift in behavior due to Spring Forward generally

less than the actual clock shift (1 hour). California, the state for which we have the

most data and therefore the most representative behavior profile after smoothing, was

found to have a peak shift of 30 minutes.

Considering the clock adjustment of exactly one hour, both measurements are

plausibly directly representative of sleep lost, however the differing magnitudes of the

measurements indicate that future work should clarify the relationship between these

measurements and actual shifts. Twinflection measured similar shifts for most states,
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but for a few estimated larger effects. While California was measured as having the

same 30 minute shift, Texas, the state for which we have the second most data, was

estimated by twinflection to be delayed by an additional 45 minutes.

Twinflection measured a small forward shift for the state of Arizona, which does

not observe DST. This could indicate that the twinflection method overestimates the

behavioral shift. It is also possible that a shift in behavior could occur for residents

of Arizona, as a result of their connections to those in neighboring states, and in

their former timezone. In example, some residents likely work in bordering states,

and are forced to observe DST, and some will likely engage in more online activity

and discussion when their peers are present- those peers being initially established

by a shared time of activity. This we believe to be an important distinction between

Arizona and Hawaii, which also does not observe DST.

Hawaii is measured to have gained sleep opportunity by both accounts. Lacking

the observation of DST, neighboring states, and other states in the same timezone,

it is plausible that behavior in Hawaii would be unlike any other state, and be more

independent of behaviors in other states. However, Hawaii’s results should be consid-

ered tentative at best, given the sparsity of data available. This sparsity of data and

relative independence from other states is shared with Alaska, the other state with a

measured sleep opportunity gain by both measures. Caution should likewise be ex-

tended to measurements ascribed to South Dakota, North Dakota, Wyoming, Idaho,

Montana, Vermont, New Hampshire, Rhode Island, Delaware, and Maine. These

states have smaller populations, less population density, and lower volume of tweets.

As a result, the behavioral curves associated with these states are less reliable.

Discrepancies in available data were determined to be largely accounted for by
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differences in population. Thus, we expect results for each state (exclusive of those

mentioned earlier) to be comparably reliable in their representation of sleep loss for

the state as a whole.

Incremental future work in this area could investigate state specific sleep loss

related to Spring Forward events, which would allow further clarification of the rela-

tionship between the magnitude of behavioral shifts on Twitter and population sleep

loss. Other directions might include looking at other sleep opportunity interruption

events such as the end of Daylight Savings in November, where we are ostensibly

given an additional hour of sleep opportunity. Our findings suggest that the sleep

behavior associated with other annual events including New Year’s Eve and Thanks-

giving ought to be visible through tweets. This and other works would also benefit

from exploration of the relationship between measurements of sleep opportunity as

given by social media activity and actual sleep duration. More ambitiously, proxy

data such as this could be verified by matching wearable measurements of sleep (e.g.

Fitbit) with social media accounts.

Our study suffers from several limitations associated with our data source, we

describe a few such examples here. The geographic location users provide in their

Twitter bio is static and unlikely to be updated when traveling. As a result, user

locations (time zone, state) inferred from this field will not always reflect their precise

location. The GPS tagged messages included in our analysis will not suffer from this

same uncertainty. Furthermore, the tweeting population of each state is likely to have

complicated biases with respect to their representation of the general population [76].

Our dataset likely contains automated activity. Indeed, an entire ecology of algo-

rithmic tweets evolved during the period in which we collected data for this study.
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However, we expect the majority of this activity to be scheduled using software that

updates local time automatically in response to Daylight Savings. As such, this ‘bot’

type activity should largely serve to reduce our estimate of the time shift exhibited

by humans.

As we showed for the Super Bowl, live televised events (e.g. sports, awards shows)

have the potential to be a forcing mechanism to synchronize our collective attention

throughout the week, and especially on Sunday evenings. Indeed, many individuals

take to Twitter as a second screen during such events to interact with other viewers.

In addition, streaming services such as Netflix and HBO often release new episodes of

popular shows on Sunday night to align with peak consumption opportunity. These

cultural attractions exert a temporal organizing influence on our leisure behavior, and

the Spring Forward disturbance translates this synchronization forward in time.

It is worth noting that early March is a rather dull time of year for popular

professional sports in the United States. While the National Basketball Association

and National Hockey League are finishing up their regular seasons, the National

Football League is in its off-season and Major League Baseball beginning pre-season

exercises. Arguably the most engaging live-televised sporting contests taking place

in early March are the NCAA College Basketball Conference Championship games,

with March Madness happening weeks after Spring Forward.

In 2014, the Academy Awards were hosted by Ellen DeGeneres on Sunday March

2. Her famous selfie tweet containing many famous actors was posted that evening, a

message which held the record for most retweeted status update for several years [77].

The event happened the week before Spring Forward, and led to anomalous behavior

compared with all other Sundays we looked at.
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Since Spring Forward only occurs once per year, the specific language of the tweets

is highly dependent on events occurring on that specific day. The variability in daily

events and susceptibility of affect to these daily events makes study of the actual

language in the tweets unreliable.

Finally, Twitter (and other social media companies) have access to much higher

fidelity information regarding user activity than we have analyzed here. We are not

able to analyze consumption activity on the site, e.g. when individual messages are

interacted with via views, likes, or clicks. These forms of interaction with the Twitter

ecosystem are likely to occur chronologically following the final posting of a message

in the evening, and prior to the initial posting of a message in the morning. As a

result, we expect our estimate of the sleep opportunity lost due to Spring Forward to

be a lower bound.

2.6 Conclusion

Privacy preserving passive measurement of daily behavior has tremendous potential

to transform population-scale human activity into public health insight. The present

study leverages a natural experiment in sleep loss to identify behavioral adaptation

from Twitter data. It demonstrates a proof-of-concept along the path to a far more

ambitious goal: construction of an ‘Insomniometer’ capable of real-time estimation of

large-scale sleep duration and quality. Which cities in the U.S. slept well last night?

Which states are increasingly suffering from insomnia? Answers to questions like these

are not available today, but could lead to better public health surveillance in the near

future. For example, communities exhibiting disrupted sleep in a collective pattern
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may be in the early stages of the outbreak of the flu or some other virus. Current

methodologies for answering these questions are not scalable, but social media, mobile

devices, and wearable fitness trackers offer a new opportunity for improved monitoring

of public health.
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Chapter 3

Spatial changes in park visitation

at the onset of the pandemic

3.1 abstract

The COVID-19 pandemic disrupted the mobility patterns of a majority of Americans

beginning in March 2020. Despite the beneficial, socially distanced activity offered by

outdoor recreation, confusing and contradictory public health messaging complicated

access to natural spaces.

Working with a dataset comprising the locations of roughly 50 million distinct

mobile devices in 2019 and 2020, we analyze weekly visitation patterns for 8,135

parks across the United States.

Using Bayesian inference, we identify regions that experienced a substantial change

in visitation in the first few weeks of the pandemic.

We find that regions that did not exhibit a change were likely to have smaller

populations, and to have voted more republican than democrat in the 2020 elections.
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Our study contributes to a growing body of literature using passive observations to

explore who benefits from access to nature.

3.2 Introduction

Parks are important public infrastructure that provide a venue for interaction with

nature, socialization, and exercise. Park access and use has been found to offer both

mental and physical health benefits [78–83]. Among the many benefits of exposure

to nature are faster healing, decreased stress and increased ability to manage life’s

challenges [84, 85]. During the COVID–19 pandemic, access to parks may have been

important for mitigating and managing the secondary impacts of the virus. Recent

publications indicate that access to parks during the pandemic is important for a

variety of reasons including providing a venue for exercise, increasing happiness, and

improving social cohesion [86–89].

While park visitation may have provided significant support to personal and public

health at the time, it is unclear whether park visitation changed, to what extent, and

for whom in the United States. In March of 2020, stay at home orders were issued

in most states, and many non-essential workplaces and public spaces were closed.

Following these events, overall mobility decreased dramatically for most Americans,

reaching a maximum reduction by 34 to 69% depending on the state [90, 91]. While

Americans were visiting fewer locations in general, some research suggests that park

visitation may not have been subject to this decline. An early study of parks on

the West Coast determined changes in visitation at the onset of the pandemic to be

primarily motivated by seasonal change, while a study of parks in New Jersey found
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that early pandemic visitation was higher than the baseline [25, 26]. Together these

results indicate that visits to parks may have differed from other points of interest at

the onset of the pandemic.

Preliminary examination of trends suggest that changes in park visitation were not

universal. In the United States, partisanship, even at the regional level, is associated

with behavioral differences. Researchers have found that Thanksgiving dinners were

30 to 50 minutes shorter when the guests and hosts resided in voting precincts that had

been in opposition in 2016 [92]. Mobility studies of Americans during the pandemic

have found differences along partisan lines as well. The American political system

is largely dominated by two political parties: Democrats, and Republicans. This

divide in political ideology has been found to be indicative of differing identities and

behaviors. This is particularly true of COVID-19 policy response and preferences [93].

Republicans have been found to have lower vaccination rates, have a smaller decrease

in mobility during the pandemic, and to be less compliant with non-pharmaceutical

interventions [24, 90, 94–97]. Counties with more Republicans also had less severe

mobility restrictions, and were less responsive to their governor’s recommendation

to stay home [90, 98]. Given these partisan differences in general mobility, we seek

to determine whether changes in local park visitation at the onset of the pandemic

also differed by partisanship, or whether park visitation uniquely transcended these

differences.

Studies of park usage in March and April of 2020 have thus far relied on survey

data, or have been geographically limited, and neglected to establish a baseline of

seasonality of park usage [25, 26, 99, 100]. Here we utilize mobile device data from

across the United States to explore abrupt non-seasonal changes in park visitation
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at the regional level. We use data from 2019 to discern seasonal visitation patterns,

and employ a change-point detection algorithm to diagnose sudden changes in be-

havior at the onset of the pandemic. By classifying regions by whether or not an

abrupt change in park visitation took place, we are able to discern whether or not

these abrupt changes occurred along partisan lines. We conduct further comparisons

across population, income, and share of employment by industry to provide insight

into other factors that may have influenced whether or not an abrupt change oc-

curred. In Section 3.3 we introduce the data used to classify regions, and make these

comparisons. Section 3.4 then gives a detailed explanation of the data aggregation

for each region, and the classification procedure and methods of comparison applied

to the aggregated data. The results of the comparisons are described in Section 3.5,

and are discussed in Section 3.6.

3.3 Data

To determine whether a partisan effect is observed in park visitation we used park

visitation data from across the United States, and voting share data from the 2020

Presidential Election. Differences in regions with and without abrupt changes in visi-

tation were further analyzed using population estimates, and income and employment

share data from the US Census and the Bureau of Economic Affairs. Details for these

data sources are provided below.
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3.3.1 Park Visitation Data

Our park visitation dataset was acquired from UberMedia (now part of Near), and

consists of daily visitation counts for non-commercial parks for each day of 2019 and

2020. There are 8,135 parks in the data set, including municipal, neighborhood, and

city parks. National and State Parks were specifically excluded as predominantly

travel destinations. Parks are located in each of the 50 states, and Washington DC.

A total of 1,033 counties, roughly a third of all counties, contain at least one park

from our dataset.

Daily visitation counts were determined using location data from mobile devices.

Each unique device appearing within a park’s bounds on a single day was counted as a

visit. A device’s location was reported when an individual used one of over 400 apps

utilizing a GPS Software Development Kit (SDK) in partnership with UberMedia

(90% of data by volume), or when a user interacted with an advertisement through

real time bidding on one of over 250,000 apps (10% of data by volume). GPS location

and an accompanying timestamp were determined from the device’s operating system.

The number of devices reporting activity in at least one location in the US on a

given day is referred to as the Daily Active Users (DAUs). This number refers to all

locations, not simply parks. In 2019 and 2020 the monthly DAUs varied between 38

and 60 million, and represented roughly 10% of the adult population in the United

States.

In mid December 2019 the set of SDK’s in partnership with UberMedia was up-

dated. This change in data collection corresponded to a large increase in observations

throughout the US, and was not spatially uniform. Thus, while the raw 2019 and
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2020 park visitation data are not directly comparable, we analyze their relationship

where possible.

3.3.2 Voting and Economic Data

Voting data at the state and county levels from the 2020 election was retrieved from

MIT Election Data and Science Lab, and is available at https://electionlab.mit.edu/data.

The BEA publishes data on employment by industry (using the North American

Industry Classification System (NAICS)) for each county in table "CAEMP25N",

which can be found at https://apps.bea.gov/regional/downloadzip.cfm . In this table

“Farming" and “Forestry" are considered as separate, though they appear as one

sector in the NAICS classification. For this study they were considered separately, as

they appear in the table. County level population, income, and economic data from

the 2019 American Community Survey were obtained from US census API.

3.4 Methods

3.4.1 Aggregation

Daily visits to a park were defined as the unique number of mobile devices reporting

GPS coordinates found inside the park polygon bound on a day. This daily visit

count was then normalized by the average Daily Active Users for the month in which

it was found, approximating the percentage of devices observed in parks relative to

all observed devices. The normalized visitation was then summed over each week

in order to minimize noise. Weekly visitation was summed for parks contained in a
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Figure 3.1: A heat map of the population of the contiguous United States in
log scale overlaid with the locations of the parks used in the study, with each
park demarcated with a black point. Observation of this map indicates that the parks
in this data set have an urban bias, and that the parks are roughly distributed according to
population distribution in the United States. Population heat maps in the log scale are shown
for Massachusetts (top) and Oklahoma (bottom), overlaid with park locations in black. The
color scale chosen for each state represents the political party receiving the most votes in the
2020 Presidential election (Democrats for Massachusetts, and Republicans in Oklahoma).
Normalized weekly park visitation for each state is plotted to the right. Visitation for 2019
is plotted in blue, while visitation for 2020 is plotted in orange. For Massachusetts there is
a significant dip in visitation bottoming out the week of March 25, 2020, and the visitation
plots for 2019 and 2020 diverge. For Oklahoma visitation does not drop off in March, and
does not diverge from 2019 visitation patterns.
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county, or a state, and thus a time series of weekly park visitation between 2019 and

2020 was created for each county and state containing at least one park from our data

set.

3.4.2 Change Point Detection

To determine whether a substantive change in visitation is observed in each time

series, we use the Bayesian Estimator of Abrupt Change, Seasonality, and Trend

(BEAST) [27]. This method decomposes a time series into a seasonal (harmonic)

component, and trend (linear) component, and uses Bayesian Inference to fit a model

which estimates the location of change points in either of the components. BEAST

was chosen because the underlying model acknowledges the seasonal nature of most

park visitation time series (more visits in summer). By specifying a 52 week season

length, we were able to train the model to the annual cycle shape of the data.

Parametric methods applied without the seasonal decomposition are susceptible

to under estimating

change points in these particular time series because of the combination of sea-

sonality and the proximity in the series of the data collection change in December

2019 to the onset of the pandemic in March 2020. The initial event represents a sharp

increase in visitation volume (roughly 150 pct), while the second appears, for most

regions, as a sharp decline. When fit with a single model, these two features appear

together as a change in variance, and a parametric model can be nicely fit using a

single change point in December 2019.

By decomposing the time series and forcing a decoupling of the two events by

specification of seasonal, length we make each event visible as a unique discontinuity
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in the linear component.

The December 2019 discontinuity could then be accommodated with a trend

change point, which incorporates a discontinuity into the linear component. In this

way the model was fit while accounting for seasonality, and the abrupt change in data

volume.

Allowing a trend change point to be used as described above, the model was

effectively limited to selecting a single trend change point, which enabled it to identify

the most likely change point in the data. It is possible for the algorithm to detect no

change point, reducing concern that one would be identified artificially.

Regions which had a change point occurring in between mid March and mid April

2020 were considered to have had an abrupt change in park visitation coinciding with

the onset of the pandemic and social distancing measures. If a region was found not

to have had a change point in this window, it can be assumed that either no change

point was found in the time series, or any change occurring in the specified window

was not as significant as a change at another time.

Changes induced by seasonality are in most cases more gradual than those that

occur in the window of interest, and these changes are accounted for by the harmonic

component of the model. The harmonic component is fit using both 2019 and 2020

data, which informs the model of the expected seasonal shape. Since these changes

are accounted for in the model fitting, it is unlikely that change points identified in

the window of interest are due only to seasonal variation. Because the length of the

time series only included two seasons (park visitation demonstrates a yearly cycle),

it was not pertinent to search for changes in the seasonal structure.

BEAST is less effective in identifying change points in time series with high vari-
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ance. The recorded park visits in some of the counties were low enough that the

behavior of only a few individuals could have large impacts on the time series itself.

To ensure that BEAST was only considering counties for which there was enough

data we used a mean normalized visitation threshold of 10−5.5 (this corresponds to

about 120 visits per week in the month with the least DAUs) in 2020. A total of

322 counties did not meet this criteria and were excluded from further analysis. The

remaining 711 counties that contain parks in our dataset met this criteria. The coun-

ties included in the analysis are roughly 21% of all the counties in the United States,

and span all of the states. Details on the selection of the visitation threshold can be

found in the Supplementary Materials (See Fig 7.1).

3.4.3 Comparison

Regions were binned according to whether a change point in mid March 2020 was iden-

tified or not, and comparisons of the populations of the regions in each category were

made. Using data from the 2020 election, states and counties were assigned a percent

of the population having voted either Republican (Trump and Pence) or Democrat

(Biden and Harris) in the 2020 election. Counties were assigned personal incomes,

and population counts using Census estimates from 2019. Voting records and census

data were combined to determine the votes cast per capita for each county. Finally, a

fraction of employment (employment share) for each industry in the North American

Industry Classification System (NAICS) was assigned to each county in the study

using data from the BEA. Counties which had no available employment data for an

industry were exclcuded from the analysis of that particular industry. Counties with

and without detected change points were compared across vote share, population,
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votes per capita, personal income, and industry employment using Kolomogorov-

Smirnov two sample tests. This test was chosen for its ubiquity in the literature

and ability to compare distributions with different sample sizes. The means of the

distributions are compared using Welch’s t-test, which also accommodates different

sample sizes.

3.5 Results

3.5.1 Partisanship in Abrupt Changes

With the parameters discussed in the Methods section, BEAST found a change point

in the window of interest for 21 states, while the remaining 29 states did not exhibit an

abrupt change in visitation. Comparison of the 2020 presidential election results for

states where visitation did and did not change abruptly is shown in the top row of Fig

3.2. The distributions across vote share for the two sets of states were not significantly

different for either the Democratic or Republican parties (KS statistic=0.2, p=0.63

and KS statistic=0.2, p=0.63 respectively). The distributions for each party are

neither similar, nor mirrored. The difference is accounted for by third party votes,

most notably Libertarian votes.

Comparison of the distributions across percent voting Libertarian (which ac-

counted for less than 3% of the vote in all states) indicates that the distributions were

significantly different (KS statistic=0.44, p=0.015), where Libertarians had greater

vote share in states without an abrupt change. Supplementary Fig 7.2 demonstrates

the relative proportion of Democrat, Republican, and third party votes for each state
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and county. The state appearing as an outlier in the distributions, where Democrats

had the highest vote share, and which did not have an abrupt change, is Washington

DC, which was treated as a state for this study. Exclusion of Washington DC does

not change the results.

Partitioning the data by county led to significantly different distributions across

vote share (bottom row of Fig 3.2). When the BEAST classification procedure

was applied to county level aggregations of visitation data, 123 of the 711 counties

had abrupt visitation changes at the onset of the pandemic. The distribution across

Democratic vote share for counties with abrupt changes is shifted to the right of the

distribution for counties without- indicating that Democrats were more likely to have

greater vote share in counties with abrupt changes. Kolomogorov Smirnov 2 sample

results confirm that these distributions are significantly different (KS statistic=0.33,

p=4.23e-10). Observation of the same distributions across Republican vote share

reveals that Republicans were more likely to have greater vote share in counties

without abrupt changes. KS 2 sample test results support that these distributions

are also significantly different (KS statistic=0.33, p=2.35e-10).

Not only are the distributions significantly different, but across the vote share

for each party they are translated across the x=0.5 line (drawn in red). This line

represents the dividing point in the majority party support in a county. This reveals

that Democrats were not only more likely to have greater vote share in counties with

abrupt changes, they were more likely to hold a majority in those counties. Likewise,

Republicans were more likely to hold a majority in counties without abrupt changes.

The distributions of the counties across vote share for the Democratic and Repub-

lican parties are not mirrored on account of votes going to third parties, meaning that
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Figure 3.2: Top: Distributions of states where a pandemic response change
point was detected (pink), and not (green), across proportion of votes cast for
the Democratic (left) and Republican (right) parties in the 2020 Presidential
Election. The distributions are not significantly different across voting proportion for ei-
ther party. The apparent outlier in each figure is Washington DC, which did not exhibit a
change point, and for which more than 80% of the votes cast were for the Democratic party.
Exclusion of DC from the analysis did not change the results. Bottom: Distributions
of counties with (pink) and without(green) detected change points across per-
cent voting for the Democratic (left) and Republican (right) parties in the 2020
Presidential Election. Distributions across the percent of votes cast for the Democratic
party were determined to be significantly different by the Kolomogorov Smirnov 2 sample
test (KS statistic=0.33, p=4.23e-10). The distribution of counties with a change point was
shifted to the right of those without a change point, indicating counties with change points
had greater proportions of votes for the Democratic party. The bulk of the mass of the two
distributions lies on either side of 0.5, meaning that the majority of counties with a change
point are majority Democrat counties. The distributions across percent voting for the Repub-
lican party are likewise significantly different (KS statistic=0.33, p=2.35e-10), and indicate
counties without change points had greater proportions of votes for the Republican party,
and were more likely to be a majority Republican county.
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Figure 3.3: Distributions of counties with and without change points across the
log base 10 of 2019 county population (left) and the votes cast per capita in
the 2020 Presidential Election (right). The distributions over population are roughly
log normal, and visibly and significantly different (KS statistic=0.28, p=1.08e-07). The
mean population of counties with change points was 331,131 people, which is more than
twice the mean population of counties without change points, namely 144,544. The counties
with the lowest populations were exclusively without change points, while the counties with
the greatest populations were exclusively those with change points. The distributions across
votes per capita are also visibly and significantly different (KS statistic=0.13, p=0.045) with
the counties with change points having fewer votes per capita than counties without.

"not Democrat" is not the same as “Republican”. Both distributions taken together

support that there is a partisan divide between counties with and without abrupt

changes in park visitation at the onset of the pandemic. This is further supported by

no significant difference found in the distributions of the counties over percent voting

Libertarian (KS statistic=0.13, p=0.087).
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3.5.2 Population, Income, and Employment

Partitioning the data by county allowed further analysis using population, employ-

ment, and income data. Differences in distribution across population size, and votes

cast per resident, for the counties with and without abrupt changes, are displayed

in Fig 3.3. Counties with an abrupt change had more than twice the mean popu-

lation of counties exhibiting no change, and fewer votes per resident than counties

that did not. The distributions across each of these variables is significantly different

(KS statistic=0.28, p=1.08e-07 for log 10 scale population, and KS statistic=0.13,

p=0.045 for votes cast per resident).

The incomes of the counties were not significantly different (KS statistic=0.10,

p=0.23), as seen in the distributions in Fig 3.4.

Counties were also compared on the basis of percent employment in each of the

20 NAICS sectors. The distributions of the counties with and without change points

across percent of employment were significantly different (p < 0.05) for 14 of the

sectors. This includes both Farming Employment, and Forestry, Fishing and Related

Activities, which comprise a single sector in the NCAIS, but are considered separately

here. Of the 14 sectors with significantly different distributions, Welch’s T-Tests

found only 10 had significantly different means. The distributions for these 10 sectors

is shown for counties with and without abrupt changes in Figure 3.5. For each sector,

the box plot to the left shows the distribution over the fraction of employment for

counties with an abrupt change (pink), and the box plot to the right represents the

same distribution for counties without an abrupt change (green).

For the 10 sectors with significantly different distributions and means, 5 had higher
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Figure 3.4: Distributions of counties with and without change points across the
log base 10 of 2019 personal income as reported by the census. The distributions
are visually similar, and not significantly different (statistic=0.10, p-value = 0.23). There
is not a statistically significant difference between the incomes of counties where abrupt park
visitation changes occurred and those where it did not.
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mean employment share in counties with abrupt changes: Information, Finance and

insurance, Professional, scientific, and technical services, Educational services, and

Health care and social assistance. These sectors are primarily comprised of white

collar workers, and with the exception of Health care and social assistance, require

less onsite work. Farm employment, Mining, quarrying, and oil and gas extraction,

Construction, Manufacturing, and Retail trade all had higher mean employment share

in counties where abrupt changes in park visitation did not occur.

3.6 Discussion

At the state level, there was no significant difference in the partisanship of regions

where an abrupt change in park visitation took place, and those where it had not.

There was a significant difference in the vote share of Libertarians, with Libertarians

having smaller vote share in states with an abrupt change. However, Libertarian

voters account for less than 3 % of voters in each state, and are unlikely to be

themselves pivotal in deciding overall park visitation behavior for a state. Thus, the

practical significance of the difference in Libertarian vote share is doubtful. However,

at the county level there is a clear divide in the partisanship of regions where park

visitation did and did not undergo abrupt change. Counties with an abrupt change

were more likely to be majority Democratic, while counties without a change point

were more likely to be Republican. Taken together with the urban bias of the data

set, it is possible that the state results are confounded by an over representation of

urban park visits.

If abrupt park visitation changes were more associated with Democrat behavior,
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since urban areas have a Democratic bias, it is possible that the behavior of the urban

park goers (who are more likely to be Democrats) may have overshadowed park going

behavior in the rural parts of states. This possibility is made further plausible by the

observation that the counties with a change point tend to be more populated. If park

visitation changes are more likely in areas of greater population, and these areas are

also over represented in the data, it stands to reason that aggregation to the state

level may obscure behavior of the rural residents in the park visitation data.

Of course there is a second implication of these observations which is that whether

or not park visitation exhibited an abrupt change is directly related to population

density. If true, this relationship would explain why there is a disparity in population

size for counties with and without abrupt changes, and why the counties with the

lowest populations did not have abrupt changes, while the counties with the greatest

populations did. In this case, differences in party affiliation of the respective areas

is possibly unrelated, and only appears due to the confounding correlation between

population density and party affiliation [101]. Since there is a connection between

small populations and extreme partisanship as well, this would offer a potential ex-

planation for why the span of the distribution across vote share for either party is

greater for counties without abrupt changes.

Counties without abrupt changes in park visitation were more likely to have higher

proportions of employment in Manufacturing, Construction, Mining, and Farming.

Many of the workers in these sectors would have been considered “essential," and

much of the work would be site specific. Meanwhile, counties with abrupt changes

were more likely to have greater proportions of jobs in Information, Finance and

insurance, Professional, scientific, and technical services, and Educational services;
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Figure 3.5: Box plots showing the distribution across employment share for
counties with and without change points in the sectors where the distributions
and their means were significantly different. Sectors in the plot to the left were those
where counties with a change point had significantly higher means (p < 0.05)), sectors in
the plot to the right had significantly greater mean employment share in counties without
change points. The distributions across employment share for counties with change points
are shown in pink, while the distributions for counties without change points is shown in
green. While the differences in mean and distribution for all shown sectors are significant,
they are small.
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sectors where remote work would have been more widely adopted. It is curious that

regions with greater proportions of remote workers, who may have had greater time

and opportunity to visit parks at the time, were more likely to experience a drop-off

in visits. The difference is interesting and suggests it is possible that reductions in

employment related mobility impacted other mobility decisions, such as whether or

not to visit parks.

However, while there are differences in employment share by sector, they are small,

and their practical significance remains undetermined. The most striking differences

found in this study were in population, and partisanship. Recent work [90,94,98] sug-

gests that regions with higher Republican vote share exhibited less social distancing

at the onset of the pandemic, were slower to adopt stay at home orders, and residents

visited more points of interest than residents of regions with higher Democratic vote

share, suggesting that overall mobility reduction was greater for Democratic coun-

ties than Republican ones. Insight from these new studies suggests that the lack

of change in park visitation behavior among Republican regions simply reflects this

partisan difference in mobility, and indicates that parks were not necessarily uniquely

visited more or less relative to other points of interest.

3.7 Limitations and Future Directions

This study did not account for differences in local COVID-19 response policies. Incor-

poration of these differences would be necessary to understand how local governance

impacted park access, and how willing residents were to defy local mobility restric-

tions for parks as opposed to other locations.
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The spatial distribution of the parks in our data set roughly corresponds to the

spatial distribution of the population, creating a substantial urban bias that we do

not control for in this study. Weighing park visitation in such a way to allow for

aggregation to the state level without over representing the urban parks would enable

more revealing analysis at the state level, and additional insight into the demographic

differences between counties with and without change points, with less influence from

population density.

Augmenting the current data set with visitation data for more rural parks could

also aid in these goals. Greater representation of rural parks would also allow a better

investigation into population and park access as it relates specifically to population

density and general nature accessibility.

Due to a change in collection methodology at the end of 2019, which led to a

spatially non-uniform increase in total visitation counts, we were unable to directly

compare 2019 and 2020 data. While there are visibly dramatic dips in behavior for

some states and counties at the end of March 2020, it is not possible to clearly quantify

how these changes deviate from expected behavior, nor how the magnitude of these

changes compare across regions. Future work could investigate other park visitation

data, and attempt to use it to normalize and perhaps compare visitation changes.

Comparison of visitation levels across years and regions, especially following the

initial pandemic reaction, would be extremely helpful in determining whether or not

there were differences in how park visitation was valued in different regions. This

could also be achieved by comparing dips in park visitation to dips in visitation to

other points of interest. In particular, it would be useful to understand how different

areas, and different populations, weigh the benefits and risks of park usage in the
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pandemic, and how park usage diverted visitation to other destinations. Studies indi-

cating which populations had access to parks, which may have been greatly beneficial

during 2020, could be used to address potential social inequality, and reduce public

health risk in the future.
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Chapter 4

Park visitation and walkshed de-

mographics in the United States

4.1 Abstract

A large and growing body of research demonstrates the value of local parks to mental

and physical well-being. Recently, researchers have begun using passive digital data

sources to investigate equity in usage; exactly who is benefiting from parks? Early

studies suggest that park visitation differs according to demographic features, and

that the demographic composition of a park’s surrounding neighborhood may be

related to the utilization a park receives. Employing a data set of park visitations

generated by observations of roughly 50 million mobile devices in the US in 2019, we

assess the ability of the demographic composition of a park’s walkshed to predict its

yearly visitation. Predictive models are constructed using Support Vector Regression,

LASSO, Elastic Net, and Random Forests. Surprisingly, our results suggest that the

demographic composition of a park’s walkshed demonstrates little to no utility for
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predicting visitation.

4.2 Introduction

The positive impact of park access, proximity, and use on well-being has been well

established. Populations with park access have been found to be more active, have

lower rates of obesity, and overall better cardiovascular health [81, 83, 102, 103]. As

a form of nature exposure, park access also benefits cognition and mental well-being

and is associated with lower stress and reduced rates of depression [80, 82, 104, 105].

Independent of time spent in the park, residential proximity is positively correlated

with improved mental health [85].

Inequity in park resources can arise as a function of accessibility, or in qualitative

differences in parks [106–112]. Studies have found that even when spatial access is

equitable, income and race are linked to park quality. Parks associated with whiter

and more affluent parks have more acreage, more tree canopy, and different amenities

—including more playgrounds [108,110,111,113–115].

Differences in park quality are significant because they may drive differences in

visitation, which is the assumed mechanism by which parks offer health benefits.

For example, while studies find correlations between residential proximity and lower

rates of obesity, the underlying mechanism assumed to create this correlation is often

that proximity to a park increases the likelihood of exercise in the park [116–119].

Similarly, studies on the impact of green space on mental health indicate that benefits

are either accessed or increased by visitation to the space [80, 120, 121]. Park-based

physical activity, for example, can mediate the relationship between park proximity
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and mental health benefits [36]. Thus, realized usage, or visitation, is an important

variable when studying equity and the heath impact of parks [31]. Measuring park

usage is particularly useful in equity studies because it can be used to quantify the

effect of non-geographic barriers.

Non-geographic barriers to access—such as time constraints and safety —create

inequity in the benefits that communities receive from parks. A much studied example

of such a barrier is the perceived safety of parks [32–37]. Scholars have found that

parks in higher income areas had fewer safety concerns than parks in low income

areas and that perceptions of park safety are strongly tied to the odds of visiting a

park [34,37]. The impact of perceived safety as a barrier is visible in a 2020 study by

Orstad, where mental health benefits were only associated with living in proximity

to a park for residents who did not have concerns about park crime [36].

Classifying non-geographic barriers, and measuring their impact on communities

remains an active area of research. Investigations with regards to these barriers

requires measuring realized usage. Historically, park visits have been quantified using

either surveys or by in-person observation of visitors [34,35,85,103,116,117,122–124].

These methods are limited both geographically and temporally, and can be expensive

to implement.

Recently, these temporal and geographic limitations have been managed by using

digital data sources such as social media and GPS data from mobile devices [30,121,

125–127]. Digital data sources offer the ability to measure park usage at all times of

the day, for prolonged periods of time, over a large geographic scale. By using Twitter

and Flickr data, Hamstead et al. [30] were able to observe differences in visitation

to all of the parks in New York City; their findings suggest visitation varies based
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on not only characteristics of the park, but on the demographic composition of the

neighborhood surrounding the park. If park visitation varies with the demographic

composition of its neighborhood for the US in general, it may be possible to predict

park visitation using demographic data from its neighborhood.

Predicting which parks are being underutilized could inform decisions about which

parks need more investment, better infrastructure, new programming, or could benefit

from investigative studies into the barriers preventing full utilization. To explore

whether park visitation can be predicted from demographic features, we use a novel

dataset of daily park visitation counts obtained through observations of approximately

50 million mobile devices for 2,506 parks throughout the contiguous United States.

In particular, we focus on the population residing within a ten minute walk of the

park. This area is referred to in the literature as a “walkshed” and represents the

residential area for which a park is considered “accessible” [28–30]

Historically, residents of the walkshed have been considered the primary users of

the park, and walksheds have been conceptualized of as a fixed radius buffer around

the park. Here we establish a park’s walkshed using the convex hull of a pedestrian

walking network within ten minutes walk of a park boundary. Using this method,

the walkshed is limited to areas that have a walkable route to the park, and parks

which cannot be reached by foot are excluded. Employing census data, we attribute

demographic characteristics to the residents of a park’s walkshed, and evaluate the

ability of these characteristics to predict the visitations received by the park itself.

Echoing the literature, we explore dimensions of race, income, educational attainment,

gender, and age on park visitation in the United States.
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4.3 Data

4.3.1 Park Visitation Data

Our data set consists of daily visitation records for 7,997 non-commercial parks in the

contiguous United States for the year of 2019. Non-commercial parks are not operated

for profit and include city, municipal, and neighborhood parks. National and state

parks are excluded because they are typically larger and attract many tourists and

infrequent visitors from a wide geographic area and therefore are not representative

of the target relationship in this study.

The number of daily visitors to each park was estimated using the number of

unique mobile devices that reported GPS data from within the park bounds on that

day to the company UberMedia (since acquired by Near) [128].

UberMedia is a data vendor specializing in GPS data acquired from cellphones.

UberMedia observes billions of devices world wide by collecting GPS coordinates with

timestamps from a device’s operating system when one of over 400 location collecting

apps is used, or when the device is exposed to advertising through real-time bidding.

In 2019, the average number of unique devices UberMedia observed each day (referred

to as Daily Active Users or DAUs) varied between 44 and 60 million, and represented

approximately 10% of the adult population in the United States [128].

4.3.2 Census and Geographic Data

Demographic data was retrieved from the 2019 American Community Survey 5 year

data using the Census API. Census Tracts were chosen as the geographic unit as
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they are designed to be relatively homogeneous units. Demographic data gathered

included race, ethnicity, age, median income, and educational attainment of residents

over 25.

Demographic data was joined to park visitation data based on geographical overlap

of census tracts with areas within walking distance of the park. In order to make these

calculations, we used the geographic boundaries of the parks as given by UberMedia,

the geographic boundaries of census tracts in 2019, and the network of walking routes

surrounding each park obtained from the OpenStreetMaps API [129]. This process

is described in section 4.4.1.

4.4 Methods

Exploring the predictive value of the demographic features of the surrounding neigh-

borhood for a park’s visitation required joining the data sets mentioned in 4.3, con-

firming the suitability of the resulting data for the study, and evaluating the predictive

ability of several models. Each of these steps are detailed in the subsections below.

Section 4.4.1 explains how demographic data from the US Census was joined to park

visitation data using a geographic unit called a walkshed. This section also discusses

how population data was aggregated for the walkshed. The inclusion criteria chosen

for the study is delineated in section 4.4.2. The resulting data set is described in

section 4.4.3. Compared to the US population, the walksheds included in our data

have a large distribution of demographic features. Finally, section 4.4.4 explains the

methodology by which models were chosen, fit, and evaluated.
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Figure 4.1: A conceptual model of the walkshed. In the left most image the park
is represented by a green square, and the walkshed is represented by the blue polygon sur-
rounding the green square. The three black bordered shapes labeled “Tract" demonstrate how
a walkshed could intersect multiple Census Tracts. The intersections of the walkshed with
the census tracts are labeled Ci, where C indicates the region is a component of the walk-
shed, and i refers to the census tract that the particular component lies within. The middle
image demonstrates the assumed uniform spatial distribution of a homogenous population
within the tract, where the people associated with the component have the same features as
the tract, and the population is proportional to the area of the census tract covered by the
component. The final image is of the walkshed, with each of its components populated with
respect to the census tract in which they lie. The total walkshed population is considered to
be the aggregation of the populations of each component.
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Figure 4.2: Heat map of the population of the contiguous United States overlaid
with the locations of the parks used in the study, with each park demarcated by
a black point, and distributions of park sizes and popularity below. Histograms
display the log normal distributions of parks in the dataset across walkshed population, park
area, and yearly visits. The median park has 2785 people in its walkshed, covers 5.68 acres,
and received 2528 visits in 2019.

4.4.1 Walkshed Construction

For each of the parks in our dataset we constructed a walkshed and calculated an

estimated walkshed population. The walkshed was defined to be the convex hull of

the graph of the walking network obtained from OpenStreetMaps that represented

a ten minute walk to the boundary of the park. This walkshed was then considered

to be composed of the disjoint components lying in unique Census Tracts (see 4.3.2).

Census Tracts are treated as homogenous populations uniformly distributed over a
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geographic area. Walksheds for each park in our study were created through a series

of steps (Figure 4.1). The estimated number of people in a walkshed associated with

park p, P p
walkshed was computed as

P p
walkshed =

n∑
i=0

Ptracti

Ai

Atract

(4.1)

where Ptracti
is the estimated number of residents in the ith census tract intersecting

with the walkshed, Ai is the area of that intersection, and n is the total number of

census tracts intersecting with the walkshed.

In addition to the number of people in the walkshed, we estimated the income,

gender, age, educational attainment, ethnicity, and racial composition of the walkshed

population. Taking the census tract as a homogeneous unit, the income of a person

within the walkshed was calculated as the population-weighted average of the median

incomes of the tracts intersecting that walkshed:

Iwalkshed = 1
Pwalkshed

n∑
i=0

PiIi (4.2)

where Iwalkshed is our estimate of the median income of a person in the walkshed

and Ii is the median income of the census tract containing component i.

The average age of the residents was calculated similarly. The proportion of the

walkshed belonging to a racial group, ethnicity, age range, sex, or having reached a

given educational attainment was calculated as:
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Pwalkshed,j = 1
Pwalkshed

n∑
i=0

Pi,j (4.3)

.

Where i refers to the component, and j refers to the classification of interest, for

example j ∈ {race1, race2, · · · raceJ}.

4.4.2 Inclusion Criteria

A park was included in analysis if (i) the walkshed had an area greater than zero (i.e.

the park could be accessed on foot) and (ii) demographic data was available from the

US census for each census tract intersecting with the walkshed. Parks were omitted

from the study if their walkshed included a component contained in a tract for which

the US Census reported no data.

Because we assumed people in a census tract were distributed uniformly, we ex-

cluded a walkshed if it contained a census tract with less than one person per quarter-

acre.

Parks with walksheds containing fewer than 500, or more than 12,500 people were

also excluded. Parks with high population walksheds were considered large enough to

attract tourists. Parks with fewer than 500 residents were considered too rural, with

potentially inconsistent visitation. These parks accounted for 154 of the parks in the

dataset. Of the initial 7,997 parks, 2,506 met our inclusion criteria. The primary

reason for exclusion was insufficient population density.
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4.4.3 Study Set Description

Our data set contained 2506 parks, which we observed to exhibit log-normal dis-

tributions in walkshed population, park area, and yearly visits (Figure 4.2). The

average park in our data set was 0.023 km2 (5.68 acres), contained 2,785 people in its

walkshed, and received 2,528 visits each year.

The income associated with walksheds was also log-normally distributed. The av-

erage income associated with a park’s walkshed was $76,155 per year, which is $7,542

more than the median income for the general population of the United States. Ap-

proximately 54% of communities associated with a walkshed had a lower proportion

of individuals living below the Federal Poverty Level than the United States as a

whole.

Figure 4.3 presents a summary of the distribution of walksheds with regards

to race, ethnicity, educational attainment, and age. 55% and 46% of the parks in

our dataset had a greater proportions of Asians and Hispanics than in the general

population, while only 22% and 37% of parks had greater proportions of Black and

White people than the general population. The distribution of parks over composi-

tion by gender was normal, with the average park having a similarly slightly female

composition as the United States as a whole (51% and 49.8% respectively).

Comparing the educational attainment of walkshed populations to that of the

general population, we see that roughly 60% of the walkshed populations had more

highschool graduates, college graduates, and persons with advanced degrees than the

general population. Overall, walkshed populations tended to have higher educational

attainment than the general population.

67



0.0 0.2 0.4 0.6 0.8 1.0

Race, Ethinicity, and Sex

white
male
hispanic

0.0 0.2 0.4 0.6 0.8 1.0

Black
Asian
Other
Biracial

20 30 40 50 60

Age

0.00 0.06 0.12 0.00 0.06 0.12

0.00 0.06 0.12 0.00 0.06 0.12

0.0 0.2 0.4 0.6 0.8 1.0

Education

GED
4yr college
college+

4.2 4.4 4.6 4.8 5.0 5.2 5.4

Income and Poverty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 4.3: Distributions of the parks in the study set across race, ethnicity, sex,
educational attainment, age and measures of wealth. The first two rows display the
distribution of parks in the study set across fraction of walkshed population in four racial
categories (Black, Asian, Multiracial, and White), fraction identifying as Hispanic, and
fraction male. The third row displays the distribution of parks in the study set across
fraction of walkshed population over 25 having earned at least a high school diploma (or
equivalent) (left), at least a Bachelor’s degree(middle), and with more than a Bachelor’s
degree (right). The final two rows indicate the distribution of parks in the study set across
average age -defined as the population weighted average of the medians for each component,
and the fraction of walkshed residents falling into each of four child age ranges (under 5,
6-10, 11-14, and 15-17).
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The age composition of parks was also normally distributed. On average the parks

in our data set had a similar median age, and similar proportions of children in each

age group, as the general population.

4.4.4 Analysis

In our data set, park size and walkshed population are both positively correlated

with yearly visitation on the log-log scale (Pearson correlation of 0.61 and 0.47 re-

spectively, Spearman correlation of 0.59 and 0.47). Both of these factors effect the

spatial accessibility of the park, but do not necessarily reflect the users of the park,

or the demographic environment of the park. In order to focus on the latter features

and the predictive value they have for park visitation, we normalize for the increased

visitation that is likely only related to the increased population to which the park is

available. To normalize we fit simple linear regressions for park area and walkshed

population in the log-log space. The resulting slopes were used as exponents in the

following normalization parameter:

np = 1
A0.58

p ∗ P 0.84
w

(4.4)

where Ap is the area of the park in km2, and Pw is the population of the walkshed.

The exponents for population and area were determined using the slope of the line

of best fit for each variable when plotted against yearly visits in log-log space (See

Figure 4.4).

Normalized visitation was then used as the target value for a set of predictive

models using the demographic features associated with the walkshed as inputs. Each
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Figure 4.4: Log-log plots displaying the relationship between yearly visits and
park area and walkshed population, and the distribution of normalized visita-
tion. In log space park area is positively correlated with yearly visits, as is population of
the walkshed. The slope of the line of best fit is 0.58 for park area, and 0.84 for walkshed
population. These slopes were used to determine the normalized visitation value, given by
Equation 4.4. Visitation remains log-normally distributed after normalization.

demographic feature was included as a separate input variable. The models tested

were: Support Vector Machine Regression with linear, polynomial, and radial basis

function kernels; Random Forest Regression; LASSO Regression; and Elastic Net

Regression. These models were selected for the variety of functional forms offered,

and for the ability of some to consider subsets of features. Random Forests were

included to account for possible interaction effects between demographic features.

Model fitting and analysis were performed in Python using Scikit-learn [2].

For each model, both input and target values were standardized by subtracting

the mean and dividing by the sample standard deviation, prior to fitting. Model

parameters were optimized using a grid search of the parameter space (see Table 4.1)

over which models were evaluated using 5-fold cross validation. The best performing

parameters and the model scores are presented in Table 4.1.

Model performances were compared against a null model: a constant function set

to the mean of the normalized visitation. The null model asserts that all parks receive
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the same visitation From observing the distribution of parks across normalized visi-

tation (Figure 4.4) we know that parks do not receive uniform normalized visitation,

and therefore, that the null model is a poor predictor.

4.5 Model Performance

Model Hyperparameters Hyperparameter Grid Tuned Hyperparameters Mean Absolute Error

Constant (null) - - - 0.368

SVR - linear kernel C [10−5, 10−4, 10−3, 10−2] 10−4 0.2806

SVR - rbf kernel C

γ

[10−5, 10−4, 10−3, 10−2] ,

[ 1
nfeatures

, 1
(nfeatures∗X.var() ]

0.99
1

nfeatures

0.2793

SVR - polynomial kernel C

γ

degree

[10−5, 10−4, 10−3, 10−2] ,

[ 1
nfeatures

, 1
(nfeatures∗X.var() ]

[1,2,3,4,5]

10−1

1
nfeatures

3

0.2736

LASSO α [10−5, 10−4, 10−3, 10−2] 10−4 0.2759

Elastic Net α

l1_ratio

[10−5, 10−4, 10−3, 10−2],

[0.00, 1, 0.01]

10−4

0.01

0.2758

Random Forest nestimators

maxfeatures

maxdepth

min samples to split

min samples at leaf

bootstrap

[200, 400]

nfeatures,
√

nfeatures

[10,30,50,70,90,110]

[2,5,10]

[1,2,4]

[True, False]

200
√

nfeatures

10

2

1

False

0.2664

Table 4.1: Results of training and testing predictive models for predicting nor-
malized yearly park visitation using the demographic features associated with
that park’s walkshed. Model types are presented along with the hyperparameters they
use. The hyperparameters were tuned using a 5 fold cross-validation and a grid search over
the parameter space. For each model the grid used for the grid search is reported followed by
the tuned hyperparameters and the Mean Absolute Error of the tuned model. The notation
nfeatures refers to the number of independent variables, and X.var() refers to the variance
of the feature array. The l1_ratio is the ratio of the weights of the L1 and L2 penalties,
such that l1_ratio = 1 is the LASSO penalty. All hyperparameters refer to those in the
scikit-learn library [2].
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Modeling the data using a constant function set to the mean of the normalized

visitation yielded a Mean Absolute Error (MAE) of 0.2810. The random forest model

was most successful of the regression models, achieving a MAE of 0.2664, or an 5.20%

improvement over the null model.

Support Vector Regression (SVR) with a polynomial kernel was the second most

effective model. This model resulted in a MAE of 0.2746, which is 2.33% less than the

null model. SVR using radial basis function kernels had slightly worse performance,

obtaining a MAE of 0.2793; only a 0.60% improvement over the null model. When

paired with a linear kernel SVR performed comparably to the null model, with a

MAE of 0.2810.

The other two linear models performed equally poorly. LASSO had a minimum

MAE of 0.2759, and Elastic Net managed a very similar minimum MAE of 0.2758,

indicating that they probably converged to very similar linear models. This is only

an 1.81%, and 1.85% improvement upon the null model.

Given that the most successful model, the random forest, only achieved an im-

provement of 5.20% over the null model, we can conclude that demographic infor-

mation did not significantly contribute to more accurate predictions of normalized

yearly visits.

4.6 Discussion

Our approach investigated a variety of functional forms, employed methods for de-

creasing noise created by unimportant features (LASSO and Elastic Net), and incor-

porated the potential for interaction effects through sequential variable consideration
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in the Random Forest model. Additionally, the hyperparameters of each model were

tuned. None of the predictive models performed substantially better than the null

model. The null model provides no information about individual park usage, and has

very weak predictive power. It also assumes that the demographic features considered

in this study are irrelevant to visitation prediction, as it does not use them at all.

Since a comprehensive set of models was tested, and none performed considerably

better than the null model, we can infer that the demographic features have little

predictive value for average yearly park visitation.

This result is perhaps unexpected in light of Hamstead et al’s 2018 findings in New

York City [30]. In contextualizing this discrepancy, it is important to note that our

inclusion criteria intentionally focuses our research on community parks in suburban

or urban residential areas. This effort decreased the influence of tourism on visitation

by decreasing the number of parks that would be considered tourist destinations. In

addition, exclusion of these parks naturally excludes potential demographic disparity

in residential proximity to destination parks (i.e. homes near destination parks may

be more expensive) as a confounding effect. Thus it is possible that our results differ

because of the type of parks considered.

This study is limited by the inability to determine the residential proximity of vis-

itors. A correlation was observed between the number of people in a park’s walkshed

and the number of visits received by a park. This suggests that the number of people

a park “serves" is related to the number of people who visit it. In order to control

for the effect of park size, and geographical accessibility, a normalization constant

was applied to control for this relationship. In doing so, we made an assumption

that a ten minute walk to the park encompassed the ‘service area’ of every park.
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It is possible that depending on demographic features, some populations may travel

farther to parks on average than others, but maintain similar visitation rates. If this

were the case, the normalization constant for parks serving those populations would

be too small, inflating the normalized visitation observed, and potentially obscuring

important trends.

It is worth reiterating that these results are park-centered; results speak to the

usage that a park receives, but do not reflect who uses the park. Our data does not

provide the origin of the mobile device visiting the park there is no way to determine

if visits are made by the people living in the walkshed, or by persons living farther

away. Therefore, whether park usage differs for different populations is not addressed

by this work.

Future work should include more detailed data on the origin of the devices ob-

served in each park. This data would allow for a more accurately constructed walk-

shed. It would also allow further exploration into who visits parks, and which parks

they visit. In addition, consideration should be given to park quality; this work did

not incorporate features of the park itself into the predictive modeling. Park ameni-

ties, condition, and environment are all important contributors to visitor attraction.

Since aspects of park quality could be confounding factors with walkshed demographic

features, a logical extension of this work is to control for this confounding.

Further future analyses would benefit from consideration of park visitation relative

to season and weather. In the current study yearly visitation is used, which obscures

the difference in “visitation-season" length between parks; parks in Southern Cali-

fornia may be used more days in a year relative a park in Boston, which creates a

different story of population and visitation.
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Chapter 5

Concluding Remarks

This work has demonstrated and explored the use of passively collected behavioral

data for evaluating population health. Both sleep and nature exposure are pertinent

to well-being, and have historically been difficult to measure at the population level.

Because of the growing ubiquity of mobile devices, and interactions with technology,

these aspects of health are now observable at the population scale complementing

traditional survey-based methods. The scaling of the new monitoring tactics allows

for a more extensive inquiry into the population, over greater periods of time, with

finer granularity, and with the promise of a near real-time estimate.

While the data used in these projects has been illustrative of behavioral patterns

directly related to health, it is severely limited in comparison to what exists. At

the time of this writing, wearable devices are capable of capturing heart rate, taking

EKGS, and measuring blood oxygen levels. Validating these features, ensuring their

success across broad and diverse populations, and comparing results to standard

measurement devices is ongoing. Still, for many applications the estimates provided

by these devices may be enough.
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In chapter two we built on work by Lepunskiy et al [18] which demonstrated

the ability of Twitter data to measure population sleep duration. We were able to

use Twitter data to observe the sleep loss event of Spring Forward, which is associ-

ated with enormous negative public health outcomes. If we are able to observe such

meaningful events with what can be considered a rather abstract data source, there

is enormous potential for using data which is more closely aligned with sleep itself.

Scholars and industry professionals have been able to use data from mobile devices,

as well as wearables, to infer sleep for individuals from accelerometers, device usage

patterns, and ambient noise levels. Some apps offer even greater insight, not only

into the duration of sleep, but the quality.

If this type of data could be aggregated and applied to the population scale it

would create opportunities for natural experiments based on current policies - for

example on the impact of elementary and high school start times on sleep health- and

the ability to create targeted policies to improve the health of sleep disadvantaged

communities. An example of such a targeted policy might be measures to reduce

anthropogenic noise in a specific neighborhood, perhaps through provision of funds for

sound barrier construction near a busy road way, to create a better sleep environment.

Policy makers, and in turn society, would experience health improvements if we are

able to harness our ability to measure and quantify the public health benefits of such

policies.

Despite the relationship between sleep and health, and sleep and policy, sleep is

often understood as a personal responsibility. By measuring sleep at the population

scale we can reframe sleep as a public health matter, and establish the impact of

societal norms, expectations, and pressures on sleep.
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Nature exposure, in contrast to sleep, has the benefit of being considered - to some

extent - as within the realm of public health. This is related in part to the clearly

observable physical geography created through urban planning, which is a function

of governments. There has been a consensus that greenery should be for everyone,

reflected in both the literature and the ’greening’ efforts of many cities, and while

there are still ways in which the physical availability of green space falls short of

equitable, there is less consideration to the role of policy in the actual usage of the

green space.

In chapter three and four we investigate green space access through a proxy mea-

sure for usage. Looking at park visitation with respect to the pandemic in chapter

three, we observed that some counties experienced a severe drop in park visitation at

the onset of the pandemic, while others did not. We found that the counties that did

and did not experience this drop differed in population density, income, employment

sector, and most notably in voting results for the 2016 presidential election. How-

ever, when these results are contextualized within the literature regarding mobility

at the onset of the pandemic, we find that park visitation was not necessarily special

– mobility decreased (or failed to do so) in similar ways across all destinations at this

time, and largely in alignment with messaging from local governments.

In chapter three we did not explore the impact of differing policies on park visita-

tion. Such an investigation may have been well served by a case study with compar-

isons made across regions with measurably dissimilar COVID-19 response policies.

Our interest, however, was in observing behavior for as much of the country as pos-

sible - and in broad differences in population. As the pandemic response was so

fragmented, regionally and temporally, within the US, as well as inconsistent and
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unique depending not only on Federal, State, and County policy - but municipal

as well - it was not practical to have a meaningful comparison of policy and park

visitation behavior at the scale we wished.

Though we were unable to look at the impact of policy on park visitation, the

pandemic provided a clear case in which park access through usage could be under-

stood as a result of policy rather than simply personal choice. In some areas parks

were closed entirely, the influence of which is as understandable as a physical barrier

to access. Other policies, for example providing well-lit paths to access parks, may

be less obvious in their influence, and so require the direct observation of park usage

rates to discern.

In chapter four we address the existence of ‘unseen’ barriers by exploring visitation

rates in relation to demographic features of the walkshed. The walkshed, or the area

within a ten minute walk of a park, is thought to house the majority of a park’s

visitors, but also to form part of the park’s environment. We sought to understand

whether certain demographic features associated with a park through its walkshed

population (namely sex, age, race, wealth, and educational attainment) could be used

to predict the visitation a park receives. Our results conclude that these features have

little predictive value for park visitation.

This result is somewhat surprising given that the features that make a park more

desirable to visit (the amount of canopy, the type of infrastructure available, etc) are

often associated with more affluent neighborhoods. It is also surprising given work

which finds racial and ethnic minorities have less access to parks through visitation,

and that visitation to parks in New York City is related to the ethnic and racial

composition of the neighborhood surrounding a park. However, there are future
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studies that may shed light on this discrepancy.

In particular, our study inherently assumes that a standard and temporally con-

stant walkshed is relevant to every park. The mobile device data used in this study

only includes whether a device visited the park, it does not include where the de-

vice originated from, though that data does exist. If data based on the origin of the

visiting devices was incorporated into this study, it would be possible to explore the

distances travelled to reach each park, and to establish more relevant walksheds (or

even drivesheds). Moreover, understanding who was using the parks might be more

informative than simply who is living around the parks. Though we are not seeing a

predictive relationship between the demographic features of the people immediately

surrounding a park and visitation to the park, we have no way at the moment of

looking at the demographic features of the actual visitors. Thus, we continue to rely

at least partially on the assumption that those living in the walkshed are the primary

users of the park.

Additionally, gathering a larger dataset, or for a different set of parks, would be

informative. Studies have found that larger parks are associated with greater wealth,

and our own work suggests that larger parks receive more visits. These observations

together suggest that there should be a predictive relationship between wealth and

visitation. However, in our data set there is no relationship between wealth and park

area, which could be obscuring the relationship between wealth and visitation.

The data to vastly improve the studies presented in this work exists currently.

There are two primary obstacles to use: privacy, and cost. Digital data has become

a commodity in recent years, in which interest is substantial. Most of the data

is collected by private firms, and is not freely available. Moreover, because of the
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commoditization and wide spread use of digital data, concerns have arisen regarding

privacy. While the new technologies available for monitoring health could allow us to

quite literally take the pulse of the entire country, whether this is ethical, or can be

done in such a way that conserves privacy is as of yet unknown.
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Chapter 6

Supplementary Material for Chap-

ter Two
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Figure 6.1: Peak activity time (local) for the Sunday of the four weeks prior to,
the week of, and the four weeks following Spring Forward, aggregated from 2011
to 2014. We have used the same colormap as for Fig. 2.3 in the main manuscript. States
shown in white had a peak time that was 9 pm or earlier. From 2011 to 2013, the Academy
Awards took place two weeks prior to Spring Forward, while in 2014 they took place one
week prior. A clear discontinuity is visible between the “One Week Before” and “Week Of”
maps.
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Figure 6.2: Histogram showing the Peak Shift and Twinflection Shift measured
for each state in 2013. The magnitude of the shift in minutes is on the x axis, and
the height of each bar is the number of states with a shift of this magnitude. Blue bars
represent Peak Shift, while red bars represent Twin Shift. Both measurements display a
positive shift for most states. For Peak Shift the exceptions were the District of Columbia,
having a -45 minute shift, and Hawaii having a -150 minute shift (not shown). For Twin
Shift the exceptions were Alaska, with a -15 minute shift, and Hawaii with a -30 minute
shift. Wyoming is not included in this figure as there were no tweets posted from Wyoming
on the day following Spring Forward in 2013.
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State count State count State log(TPC) State log(TPC)

AK 5265 CA 326963 AK -2.14 DC -1.45

AL 51955 TX 223565 AL -1.97 LA -1.93

AR 26229 NY 151345 AR -2.05 AL -1.97

AZ 40326 FL 134044 AZ -2.21 MS -1.99

CA 326963 IL 115887 CA -2.07 IA -2.00

CO 34070 OH 104102 CO -2.18 OK -2.00

CT 23189 GA 96759 CT -2.19 GA -2.01

DE 6079 PA 86693 DE -2.18 MA -2.03

DC 22628 NC 79102 DC -1.45 OH -2.04

FL 134044 MA 62707 FL -2.16 WA -2.05

GA 96759 WA 62114 GA -2.01 IL -2.05

HI 8143 MI 61833 HI -2.23 TX -2.05

IA 30965 VA 60125 IA -2.00 AR -2.05

ID 3962 TN 56028 ID -2.61 NE -2.07

IL 115887 LA 53912 IL -2.05 CA -2.07

IN 41224 AL 51955 IN -2.20 TN -2.07

KS 23894 NJ 49374 KS -2.08 KS -2.08

KY 29543 WI 45130 KY -2.17 WV -2.09

LA 53912 IN 41224 LA -1.93 NC -2.09

MA 62707 MD 40483 MA -2.03 RI -2.10

MD 40483 AZ 40326 MD -2.16 SC -2.10

ME 7448 MO 39990 ME -2.25 WI -2.10

MI 61833 OK 38231 MI -2.20 NY -2.11

MN 34862 SC 37326 MN -2.19 VA -2.13

MO 39990 MN 34862 MO -2.18 AK -2.14

MS 30418 CO 34070 MS -1.99 FL -2.16

MT 3708 IA 30965 MT -2.43 MD -2.16

NC 79102 MS 30418 NC -2.09 NV -2.16

ND 3469 KY 29543 ND -2.30 PA -2.17

NE 15951 AR 26229 NE -2.07 KY -2.17

NH 6787 OR 25003 NH -2.29 MO -2.18

NJ 49374 KS 23894 NJ -2.25 DE -2.18

NM 11319 CT 23189 NM -2.27 CO -2.18

NV 18905 DC 22628 NV -2.16 MN -2.19

NY 151345 NV 18905 NY -2.11 CT -2.19

OH 104102 NE 15951 OH -2.04 OR -2.19

OK 38231 WV 15061 OK -2.00 IN -2.20

OR 25003 UT 12271 OR -2.19 MI -2.20

PA 86693 NM 11319 PA -2.17 AZ -2.21

RI 8367 RI 8367 RI -2.10 HI -2.23

SC 37326 HI 8143 SC -2.10 ME -2.25

SD 3940 ME 7448 SD -2.33 NJ -2.25

TN 56028 NH 6787 TN -2.07 NM -2.27

UT 12271 DE 6079 UT -2.37 VT -2.27

VA 60125 AK 5265 VA -2.13 NH -2.29

VT 3358 ID 3962 VT -2.27 ND -2.30

WA 62114 SD 3940 WA -2.05 SD -2.33

WI 45130 MT 3708 WI -2.10 UT -2.37

WV 15061 ND 3469 WV -2.09 MT -2.43

WY 1545 VT 3358 WY -2.57 WY -2.57

TX 223565 WY 1545 TX -2.05 ID -2.61

Table 6.1: Tweet Counts. Tweet count and tweets per capita (log10) sorted alphabetically
and in order of volume for the four ASF Sundays observed in 2011-2014.
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State BSF State BSF State SF State SF

AK 09:45 GA 10:00 AK 09:30 CT 10:15

AL 09:30 NC 10:00 AL 10:00 DE 10:15

AR 09:30 NJ 10:00 AR 10:00 FL 10:15

AZ 09:00 NY 10:00 AZ 09:00 GA 10:15

CA 09:15 OH 10:00 CA 09:45 MS 10:15

CO 08:45 PA 10:00 CO 09:30 OH 10:15

CT 09:45 SC 10:00 CT 10:15 OK 10:15

DE 09:45 VA 10:00 DE 10:15 RI 10:15

DC 09:45 WV 10:00 DC 09:45 SC 10:15

FL 09:45 AK 09:45 FL 10:15 TX 10:15

GA 10:00 CT 09:45 GA 10:15 WV 10:15

HI 09:00 DC 09:45 HI 08:00 AL 10:00

IA 09:30 DE 09:45 IA 10:00 AR 10:00

ID 09:00 FL 09:45 ID 09:00 IA 10:00

IL 09:15 IN 09:45 IL 10:00 IL 10:00

IN 09:45 KY 09:45 IN 10:00 IN 10:00

KS 09:30 MA 09:45 KS 10:00 KS 10:00

KY 09:45 MD 09:45 KY 10:00 KY 10:00

LA 09:30 MI 09:45 LA 10:00 LA 10:00

MA 09:45 NH 09:45 MA 10:00 MA 10:00

MD 09:45 OK 09:45 MD 10:00 MD 10:00

ME 09:30 RI 09:45 ME 09:45 MI 10:00

MI 09:45 VT 09:45 MI 10:00 MN 10:00

MN 09:15 AL 09:30 MN 10:00 MO 10:00

MO 09:30 AR 09:30 MO 10:00 NC 10:00

MS 09:30 IA 09:30 MS 10:15 ND 10:00

MT 09:00 KS 09:30 MT 09:30 NH 10:00

NC 10:00 LA 09:30 NC 10:00 NJ 10:00

ND 09:15 ME 09:30 ND 10:00 NM 10:00

NE 09:30 MO 09:30 NE 09:15 NY 10:00

NH 09:45 MS 09:30 NH 10:00 PA 10:00

NJ 10:00 NE 09:30 NJ 10:00 TN 10:00

NM 09:30 NM 09:30 NM 10:00 UT 10:00

NV 09:15 TN 09:30 NV 09:45 VA 10:00

NY 10:00 UT 09:30 NY 10:00 VT 10:00

OH 10:00 CA 09:15 OH 10:15 CA 09:45

OK 09:45 IL 09:15 OK 10:15 DC 09:45

OR 08:45 MN 09:15 OR 09:30 ME 09:45

PA 10:00 ND 09:15 PA 10:00 NV 09:45

RI 09:45 NV 09:15 RI 10:15 WA 09:45

SC 10:00 SD 09:15 SC 10:15 WI 09:45

SD 09:15 TX 09:15 SD 09:30 AK 09:30

TN 09:30 WA 09:15 TN 10:00 CO 09:30

UT 09:30 WI 09:15 UT 10:00 MT 09:30

VA 10:00 AZ 09:00 VA 10:00 OR 09:30

VT 09:45 HI 09:00 VT 10:00 SD 09:30

WA 09:15 ID 09:00 WA 09:45 WY 09:30

WI 09:15 MT 09:00 WI 09:45 NE 09:15

WV 10:00 CO 08:45 WV 10:15 AZ 09:00

WY 08:45 OR 08:45 WY 09:30 ID 09:00

TX 09:15 WY 08:45 TX 10:15 HI 08:00

Table 6.2: Time of Peak Twitter Activity by State. Time of peak Twitter activity
Before Spring Forward (BSF) and the week of Spring Forward (SF) for each state, listed
alphabetically and by time of peak.
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State Peak State Peak State Twin State Twin

AK -15 TX 60 AK -30 TX 105

AL 30 CO 45 AL 45 MS 75

AR 30 IL 45 AR 45 ID 60

AZ 0 MN 45 AZ 15 IL 60

CA 30 MS 45 CA 30 LA 60

CO 45 ND 45 CO 45 NM 60

CT 30 OR 45 CT 15 AL 45

DE 30 WY 45 DE 15 AR 45

DC 0 AL 30 DC 30 CO 45

FL 30 AR 30 FL 30 GA 45

GA 15 CA 30 GA 45 IA 45

HI -60 CT 30 HI -15 MN 45

IA 30 DE 30 IA 45 MO 45

ID 0 FL 30 ID 60 ND 45

IL 45 IA 30 IL 60 OK 45

IN 15 KS 30 IN 30 TN 45

KS 30 LA 30 KS 30 VT 45

KY 15 MO 30 KY 15 CA 30

LA 30 MT 30 LA 60 DC 30

MA 15 NM 30 MA 15 FL 30

MD 15 NV 30 MD 15 IN 30

ME 15 OK 30 ME 15 KS 30

MI 15 RI 30 MI 30 MI 30

MN 45 TN 30 MN 45 MT 30

MO 30 UT 30 MO 45 NC 30

MS 45 WA 30 MS 75 NE 30

MT 30 WI 30 MT 30 NV 30

NC 0 GA 15 NC 30 NY 30

ND 45 IN 15 ND 45 OR 30

NE -15 KY 15 NE 30 RI 30

NH 15 MA 15 NH 15 SC 30

NJ 0 MD 15 NJ 15 SD 30

NM 30 ME 15 NM 60 VA 30

NV 30 MI 15 NV 30 WI 30

NY 0 NH 15 NY 30 AZ 15

OH 15 OH 15 OH 15 CT 15

OK 30 SC 15 OK 45 DE 15

OR 45 SD 15 OR 30 KY 15

PA 0 VT 15 PA 15 MA 15

RI 30 WV 15 RI 30 MD 15

SC 15 AZ 0 SC 30 ME 15

SD 15 DC 0 SD 30 NH 15

TN 30 ID 0 TN 45 NJ 15

UT 30 NC 0 UT 15 OH 15

VA 0 NJ 0 VA 30 PA 15

VT 15 NY 0 VT 45 UT 15

WA 30 PA 0 WA 15 WA 15

WI 30 VA 0 WI 30 WV 15

WV 15 AK -15 WV 15 WY 0

WY 45 NE -15 WY 0 HI -15

TX 60 HI -60 TX 105 AK -30

Table 6.3: Spring Forward Time Shift (minutes) by State. The temporal shift in (1)
peak activity and (2) twinflection sorted alphabetically and by magnitude. Times reported
are differences between columns in the preceding table, and reported in minutes.
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Figure 6.3: Correlation of Peak and Twinflection shift estimates. Blue discs rep-
resent one or more states having that combination of ordered pair estimates (peak shift,
twinflection shift). State abbreviations label each comparison. Given that there is overlap,
we label each concurrent point with the state contributing the greatest number of tweets.
Table 6.3 reports all states and shifts using each measure. The Pearson correlation of the
two measures plotted here is 0.575, while the Spearman rank correlation is 0.467.
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Figure 7.1: Plots of the effect of the mean visitation threshold on study results.
Top: The mean percent having voted Democrat(left) and Republican (right) in the 2020
Presidential election of the counties with and without change points as the threshold is
increased at the log 10 scale. When the threshold is between -8 and -6 the gap in mean vote
share between counties with and without abrupt park visitation changes is stable. As the
threshold increases past -6 the gap begins to shrink, with the counties with abrupt changes
becoming slightly more democrat, and the counties without abrupt changes becoming much
more democrat, and both becoming less Republican. Bottom Left: The p-value (blue) and
statistic(black dashed) results of the KS 2 sample test on the partisan differences in counties
with and without abrupt changes as the threshold increases. The pvalue is stable until
the threshold is greater than -5, when it begins to increase, but never crosses the p=0.05
significance threshold (red dashed). The k statistic remains stable until the threshold is
increased past -6, when it decreases, but never falls below 0.2. Bottom Right: The number
of counties (black) which meet inclusion criteria as the visitation threshold is increased.
There is is rapid decline in counties included in the study beginning at a threshold of -6.
Past a threshold of -5 fewer than half of all counties in our data set meet inclusion criteria,
and at -4 there are almost none. The number of counties with an abrupt visitation change
(pink) remains constant in the study until a threshold greater than -5, reflecting that these
are among the counties with the greatest visitation. The number of counties without a change
(green) declines almost in parallel to the total (black) counties, indicating that the threshold
criteria eliminates these counties almost exclusively.
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Figure 7.2: Scatter plots where each state and county is represented by a dot,
the color of which corresponds to whether or not an abrupt chagne took place.
The location in the x-y plane is determined by the percent of votes for the Republican(x)
and Democratic(y) candidates in the 2020 Presidential Election.
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