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Abstract

A toy climate analogous to the famous Lorenz system [1] is derived and compared to computational
fluid dynamics (CFD) simulations in order to test new modeling techniques. In particular, methods of
data assimilation and ensemble forecasting are used to predict regime changes and residencies in this
toy climate. A climate “truth” is created using a finite-element simulation of a thermal convection
loop, a physical apparatus designed to be the simplest model of convection in the Earth’s atmosphere.
Forecasts of the climate are made using low-dimensional Lorenz-like models and synchronized to
noisy observations of the truth using various Kalman filters. Forecasting of regime changes has been
successfully demonstrated when the same model is used to create both the observations and the
forecast [2], but never for realistic chaotic convection.
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1 Introduction

Many of the problems associated with weather and climate forecasting do not result from our lack
of knowledge of these systems’ governing equations. Even though such equations are well known,
nonlinearities tend to amplify uncertainty in our estimate of the current atmospheric state, known
as the initial condition (IC). In addition, uncertainty in the parameters used to tune the model so
that it represents physical behavior lead to forecast divergence even for the best IC. Weather models
define temperature, pressure, etc. at regularly-spaced gridpoints throughout the atmosphere, but
meteorologists do not have observations at every one of these locations; our knowledge of the IC is
inherently incomplete. To estimate the initial state of the atmosphere, they must make educated
guesses for unavailable information. Over time, these guesses are validated by new measurements,
in a guess-forecast-observe cycle called data assimilation (DA). Improving upon filters from control
theory, modern DA techniques are used to estimate the best ICs for numerical weather prediction
(NWP). However, DA is applicable to any modeling endeavor where partial knowledge of the “truth”
is available.

Ensemble forecasting is one way of representing IC uncertainty. Instead of choosing a single state
for the IC, an ensemble of states is used. The ensemble can be thought of as an approximation of
the IC’s probability distribution. The ensemble states are then integrated forward in time to create
an ensemble of forecasts. The ensemble spread helps measure forecast uncertainty, and the ensemble
mean often gives a better guess for the true state than any one member. The ensemble members
much be chosen in a clever manner, because if the deviations of multiple ensemble members from
the mean trajectory are linearly dependent, then the information they carry is redundant.

In this thesis, we examine a physical system that is a toy model for atmospheric convection.
The toy climate investigated in this thesis is a thermosyphon, or natural convection loop. A ther-
mosyphon is a non-mechanical heat pump, a device in which buoyant forces move fluid through a
closed-loop system. They are used in solar water heaters, cooling systems for computers, the Trans-
Alaska pipeline, and nuclear power plants. They also represent the simplest model of convection, an
important process in the Earth’s atmosphere. The toy climate undergoes bifurcations from stable
conduction to stable, then chaotic, convection, and it is illustrative of the unpredictable behavior
governing weather and climate. Because the model is approximate and observations contain noise,
DA is needed to estimate the IC that leads to the best forecast.

Following previous experiments, we use a toroidal geometry, analogous to a vertically-oriented
hula hoop. Hot water, pumped into channels surrounding the lower half (−π

2 < φ < π
2 ), heats the

fluid in the bottom of the loop by maintaining a wall temperature Th. Similarly, cold water cools the
top section of the loop (π

2 < φ< 3π
2 ) to temperature Tc (see Fig. 1). The forcing is constant, i.e. we

consider the case of developed flow a long time after the wall temperatures have been established. As
liquid in the bottom of the loop heats past the point of simple conduction, buoyant forces overcome
those of friction and viscosity, and the hot fluid rises while the cool fluid falls. The cyclical flow of
hot and cold fluid forms circular structures called convection cells, an example of Rayleigh-Bénard
convection. Fluid in the thermosyphon is restricted by the geometry and must initially “choose” to
rotate clockwise or counter-clockwise. Each direction of rotation is said to constitute a regime of
behavior. The initial regime is determined randomly, since the symmetry of the tube’s geometry and
uniform heating do not favor any particular direction. The fluid will accelerate until the buoyant
force is balanced by friction and gravity, and the flow stabilizes. With sufficient heating, i.e. large
enough ∆TW = Th − Tc, the flow aperiodically reverses direction in a chaotic manner. This means
that small perturbations grow exponentially in time, or that there is at least one positive Lyapunov
exponent. We call each flow reversal a regime change. Among the goals of this research is to develop
an accurate method for predicting the duration of the current and next regime, given a series of
observations.

The current work has been accomplished by simulating the toy climate using a CFD model, built
with the commercial software package FLUENT. A numerical CFD solution is used as a synthetic
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truth from which to make observations. A laboratory thermosyphon device is in construction; in the
next stage of this research, we will attempt to forecast the regime changes of the physical experiment.

This thesis is structured in the following way: In Section 2, we describe the models used for
forecasting and the finite-element model meant to represent the true state of the thermosyphon,
including a brief overview of the Lorenz system and a derivation of the Ehrhard-Müller system. In
Section 3, we give a derivation of the Kalman filter and describe the nonlinear filters used in this
experiment. In Section 4, we present results, and a full discussion with implications for NWP follows
in Section 5.

2 Description of Models

φ

Th

Tc

R

r

g

Fig. 1: The thermosyphon has a simple toroidal ge-
ometry. The bottom wall is heated to a constant hot
temperature Th while the top wall is maintained at the
temperature Tc. This creates a temperature inversion
of hot fluid below cold, an unstable situation. Energy
in the bottom half must find a way to the top half.
If conduction alone cannot stabilize this temperature
inversion, then the fluid will start to move and convec-
tion becomes the dominant method of heat transfer.

Several studies have examined the periodic [3]
and unstable, chaotic [4–8] behavior of toroidal
thermosyphons, a phenomenon closely related
to the behavior of the Lorenz system [1]. Gor-
man et al. [7] developed a dynamical model for
constant heat flux through the bottom half, ap-
propriate when the source of forcing is heating
tape. Ehrhard and Müller [8] derived similar
equations of motion with fixed wall tempera-
ture for the top and bottom halves of the loop.
The experiment described here replicates these
boundary conditions.

Because chaotic flow can result, ther-
mosyphons have been found particularly inter-
esting by modelers and engineers. One recent
study [9] investigated control of chaotic con-
vection with numerics and physical experiment.
Jiang and Shoji [10] used a multiscale analysis
of the field equations to derive low-dimensional
models for arbitrary boundary conditions. To
our knowledge, Desrayaud et al. [11] imple-
mented the first two-dimensional (2D) finite element simulation of a thermosyphon, which captures
spatiotemporal details of the flow. Ridouane et al. [12] found similar results with another 2D finite
element simulation. We use this same simulation to represent the true state of the toy climate.

2.1 Lorenz System

MIT meteorologist Edward N. Lorenz, one of the fathers of chaos theory, wanted to show the
National Weather Service that state-of-the-art linear techniques of NWP were inadequate. Lorenz
settled upon the simplest realistic model of Rayleigh-Bénard convection, where fluid held between
two plates is heated from below and cooled on top. The following equations were derived using a
Fourier truncation of the Navier-Stokes field equations between two infinite plates [1]. Written in
dimensionless form, the Lorenz equations read

dx

dt
= s(y − x) (1a)

dy

dt
= rx− y − xz (1b)

dz

dt
= xy − bz (1c)
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where s = 10, b = 8/3, and r = 28 are the parameters chosen by Lorenz for chaotic behavior (these
parameters were used unless otherwise indicated). Physically, x is proportional to the mean fluid
velocity, y to the temperature difference across the convection cell or ∆T3−9 (between 3 o’clock and
9 o’clock), and z is proportional to the deviation of the vertical temperature profile from linear.
Parameter b relates to the geometry of the flow, s is the Prandtl number, and r is the Rayleigh
number.

Lorenz’s model describes the convection cells that develop in fluid placed between two plates, or
classic Rayleigh-Bénard convection. It was later discovered that the equations are also applicable to
toroidal thermosyphons. They have been widely used in nonlinear dynamics to study chaos and in
NWP as a toy model for testing DA techniques.

The stability of the Lorenz system was investigated using numerical simulations in MATLAB.
The equations can be written as a vector function ẋ = F (x), where x is the state vector (x, y, z)T and
the dot is Newtonian notation for the time derivative. The numerical integration of this autonomous
ODE was performed, as is customary, with a fourth-order Runge-Kutta method and timestep 0.01.

2.1.1 Stability Analysis

The Lorenz system exhibits three equilibrium points xf , i.e. solutions corresponding to ẋf =
F (xf ) = 0. The equilibrium solution at the origin corresponds to steady conduction, i.e. a motionless
fluid. The other two equilibrium solutions (±

√
b(r − 1),±

√
b(r − 1), r−1)T correspond to convective

states where the fluid rotates at constant velocity. For the parameter values chosen by Lorenz, all
equilibria are repelling; the Jacobian matrix evaluated at each fixed point has eigenvalues exclusively
outside the unit circle in the complex plane. For Lorenz’s chosen s and b, and for values of the
Rayleigh number r < 1, conduction is attracting. For 1 ≤ r < 470/19 ≈ 24.74, steady convection
is the attracting behavior. For r ≥ 470/19, the system undergoes time-dependent oscillations.
(Consult Lorenz’s original paper for details [1].)

(a) Siblings method, units: dimensionless time (b) Jacobian method, units: dimensionless distance

Fig. 2: Stability of the Lorenz system, attractor shown in pink. In both cases, blue points are more
stable than red. (a) shows an “S”-shaped region of instability punctured by stable lines extending from the
convecting fixed points located in the center of each lobe of the attractor. (b) shows more stable behavior
extending in the directions of the lobes. The conducting fixed point at the origin sits on a manifold of
instability that extends orthogonal to the attractor. These pictures show markedly different stabilities, but
this is because the eigenvalue method (b) is local compared to the divergence method (a).

For the parameters chosen by Lorenz, the system’s stability was examined for a 25× 25 grid of
ICs (x, y)T on a z = 25 slice through the state space by two methods:

• Fig. 2(a): Integrate each point and its sibling (a trajectory differing by a random perturbation
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of magnitude < 0.001 to each coordinate in IC). The rate of sibling divergence was estimated by
measuring the 2-norm of their vector difference as a function of time. Divergence is achieved
once the distance between siblings reached 5% of a reference distance dref = 17.721. The
integration time until divergence is plotted.

• Fig. 2(b): The eigenvalues of the Jacobian matrix are evaluated at each point and the most
positive real part is plotted. This gives an estimate of the local Lyapunov number, a measure of
stretching around a trajectory. An eigenvalue λ with Re(λ) > 0 implies that nearby trajectories
move away exponentially quickly in the direction of the corresponding eigenvector.

2.1.2 Bred Vector Growth

To address IC uncertainty growth, an ensemble of perturbed states which forms a small ball around
the best guess is used to represent the probability distribution of that guess. A nonlinear system will
dynamically stretch and shrink such a ball around its trajectory as it moves through the attractor
[13]. Small perturbations to points on a trajectory, k = 3 orthogonal vectors of length r = 0.001,
were integrated forward m = 8 time steps. The differences between perturbed and unperturbed
solutions, called bred vectors (BVs), are used to populate the columns of a matrix A. The spread is
then analyzed with the singular value decomposition (SVD), A = USVT [14]. The unitary matrix
U = [u1,u2, . . . ,uk] forms an orthonormal basis for a subspace of the state space which preserves
the direction of maximum growth. The singular values si, entries in the diagonal matrix S, measure
the exponential growth rate in the direction ui according to

gi ≡
1
m

ln (
si

r
) , (2)

while the average growth is

g =
1
k

k∑

i=1

gi . (3)

This quantity is shown in Fig. 3 for a typical trajectory. The average growth rate is useful because
it measures the local sensitivity to small perturbations. A fast BV growth rate implies a higher
forecast error, which can be used to improve forecasts in DA by adaptively inflating the forecast
error estimate. BVs and SVD can also be used in ensemble initialization to ensure that ensemble
members are linearly independent and span the subspace of highest uncertainty [13].

Fig. 3: Trajectory points for a typical Lorenz solu-
tion are colored by average BV growth rate g for each
growth cycle. The most dramatic growth occurs at
the extrema of large oscillations. At some points near
y = 0 the growth rate is large, due to the instability
of the conducting state, but the growth rate is gen-
erally slower for smaller |y|. Spikes in forecast error
also tend to occur at such points. Evans et al. [15]
used BV growth rates to predict the occurrence of
regime changes with 91.4% success. Yang et al. [2]
conclude that BV growth rates can be used to pre-
dict such “catastrophes”, thus improving forecasts in
adaptive DA schemes.

1This was found by averaging the distance between uncorrelated trajectories over 2500 time units; it is approxi-
mately half the size of the attractor.
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2.2 Ehrhard-Müller (EM) System

The dynamics of the thermosyphon are dominated by convection, resulting in Lorenz-like flow.
Lorenz derived his equations while thinking about convection cells in the atmosphere — uncon-
strained by the toroidal geometry of the thermosyphon. By deriving the dynamical equations gov-
erning the thermosyphon from basic principles based on its geometry and the imposed boundary
conditions, one is left with parameters in terms of physically meaningful constants and the scalings
needed to make the state variables dimensionless. In principle, the physical properties of the fluid
and loop define all parameters of the model. In practice, this is more complicated, because some
parameters must be measured in the laboratory.

2.2.1 Derivation

Following the derivations of Ehrhard and Müller [8] and Gorman and Widmann [7], we consider the
forces acting upon a control volume of fluid in the loop. All fluid properties are cross-sectionally
averaged, and the radial components of velocity and heat conduction within the fluid are neglected.
Incompressible flow is assumed so that the velocity u = u(t) is only a function of time, not space.
Applying Newton’s second law, the sum of all forces on the control volume must equal its change in
momentum:

Fp + Ff + Fg = ρπr2Rdφ
du

dt
(4a)

where

Fp = −πr2R dφ∇p = −πr2dφ
∂p

∂φ
(4b)

Ff = −ρπr2R dφ fw (4c)

Fg = −ρπr2R dφ g sin φ . (4d)

The total force in Eqn. (4a) is comprised of the net pressure (Fp), friction from shear within the fluid
(Ff ), and the force of gravity (Fg). The pressure term, Eqn. (4b), is the volume times the pressure
derivative. Note that the negative sign implies that if pressure increases with angle (∂p/∂φ > 0),
this force acts against the motion. The friction term, Eqn. (4c), can be considered proportional to
the volume. Here, fw is a correlation that will depend on fluid velocity, to be discussed later.

Before we write the momentum equation, it is convenient to apply the Boussinesq approximation,
which assumes that variations in fluid density are linear with temperature. In other words, ρ =
ρ(T ) ≈ ρ0(1− γ(T −T0)) where ρ0 is the reference density, γ is the coefficient of volumetric thermal
expansion, and T0 = 1

2 (Th + Tc) is the reference temperature. The Boussinesq approximation
also states that the density variation is insignificant except in terms multiplied by g. Thus, the
density ρ is replaced by ρ0 in all terms of Eqn. (4) except gravity, Eqn. (4d). Using the Boussinesq
approximation, gathering terms, and dividing out common factors gives the momentum equation

ρ0
du

dt
dφ = −dφ

(
1
R

∂p

∂φ
+ ρ0 (1− γ(T − T0)) g sinφ + fw

)
. (5)

Integrating about the loop, the momentum equation is simplified because u and fw are independent
of φ and other terms drop out due to periodicity in φ.

ρ0
du

dt
=

ρ0γg

2π

∫ 2π

0
dφ T sinφ− fw (6)

We now must account for the transfer of energy within the fluid, and between the fluid and the
wall. The energy rate of change in the control volume is

ρ0πr2R dφ cp
dT

dt
= ρ0πr2R dφ cp

(
∂T

∂t
+

u

R

∂T

∂φ

)
(7)
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which must be equal to the heat transfer through the wall

∆Q = −πr2R dφ hw(T − Tw) , (8)

where hw is a correlation for the heat transfer coefficient, which depends on velocity, and Tw is the
temperature at the wall. Combining Eqns. (7) and (8) gives the energy equation

(
∂T

∂t
+

u

R

∂T

∂φ

)
= − hw

ρ0cp
(T − Tw) . (9)

Together, Eqns. (6) and (9) represent a simple model of the flow in the loop.
The transport coefficients fw and hw characterize the interaction between the fluid and the wall.

They are defined by the constitutive relations

hw = hw0

(
1 + K|x1|1/3

)
(10)

fw =
1
2
ρ0fw0u , (11)

where u is the average velocity of fluid in the loop and x1 ∝ u is the dimensionless velocity. Thus,
if |u| > 0, frictional forces will decelerate the fluid by an amount fw. Dimensionally, fw is an
acceleration (m/s2) and hw is power per unit area per unit temperature (W/m2K). The parameters
hw0 , fw0 , and K are identified by measuring heat transfer and pressure loss as fluid passes through
the loop in the laboratory; the friction correlation is proportional to the pressure loss. Ehrhard and
Müller actually opened the laboratory loop midway to measure these parameters. We were able to
estimate the parameters empirically; the methodology is explained in Section 4.2.1.

Ehrhard and Müller solved this system of two coupled, partial differential equations by introduc-
ing an infinite Fourier series for T . The essential dynamics can be captured by the lowest modes,
i.e.

T (φ, t) = T0(t) + S(t) sinφ + C(t) cos φ . (12)

Because this ansatz separates the variables φ and t, the problem is transformed into a set of ordinary
differential equations. Substituting Eqn. (12) into Eqn. (6) and integrating gives the equation of
motion for u. Similarly, Eqn. (9) is integrated by

∫
dφ sinφ and

∫
dφ cos φ to separate the two

temperature modes S and C. The system is written in dimensionless form

dx1

dt′
= α (x2 − x1) (13a)

dx2

dt′
= βx1 − x2

(
1 + K|x1|1/3

)
− x1x3 (13b)

dx3

dt′
= x1x2 − x3

(
1 + K|x1|1/3

)
(13c)

where the following linear transformations have been made to create dimensionless variables

t′ =
hw0

ρ0cp
t

x1 =
ρ0cp

Rhw0

u

x2 =
ρ0cpγg

Rhw0fw0

S

x3 =
ρ0cpγg

Rhw0fw0

(
2
π

∆Tw − C

)
.






(14)
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The parameter α = 1
2ρ0cpfw0/hw0 is comparable to the Prandtl number, the ratio of momentum

diffusivity and thermal diffusivity. Similar to the Rayleigh number, the heating parameter

β =
2
π

ρ0cpγg

Rhw0fw0

∆Tw

determines the onset of convection as well as the transition to the chaotic regime. When K = 0, the
EM system is analogous to the Lorenz system with b = 1. The lack of a geometric factor b is due
to the toroidal geometry, which forces a single convection cell. Anticipating a discussion of state-
augmented filtering in Section 3.2.3, the parameters can be represented with a vector p = (α,β, K)T .

2.2.2 Equilibrium Solutions

As in the Lorenz system, the EM system exhibits two kinds of equilibrium solutions: the conductive
steady state, located at the origin in state space and corresponding to no motion; and convective
steady states, corresponding to constant velocity in the clockwise or counterclockwise directions.
These are found from the positive real root ξ∗ of the equation

(β − 1) + (β − 2)Kξ1/6 −K2ξ1/3 − ξ = 0 (15)

which gives the convecting equilibrium
(
±
√

ξ∗,±
√

ξ∗, ξ∗/(1 + Kξ∗1/6)
)T

.

2.3 FLUENT CFD

Fig. 4: A FLUENT data visualization of the tempera-
ture profile near the forcing discontinuity at the right
end of the heating section is shown during a regime
change. Initially, the flow is clockwise. As the fluid
slows down, cool fluid mixes with warm fluid in the re-
gion due to a Kelvin-Helmholtz instability [12]. Heat
is always passing from the wall to the fluid, the end
result being an excess of hot fluid (e) where a “tongue”
of cold (a) resided in the clockwise regime. This drives
the flow in the counterclockwise direction. If the sys-
tem pauses between regimes for an extended period,
the fluid in the bottom becomes very hot, so when it
starts to rotate it does so quickly and with large devi-
ation from the convecting equilibrium. Image credit:
Ridouane.

FLUENT is a commercial computational fluid
dynamics (CFD) package capable of numerical
simulation of the Navier-Stokes equations for ar-
bitrary geometries. The preprocessing program
GAMBIT is used to generate a discretization
of the geometry. Given a fine enough mesh, the
FLUENT solution is an excellent representation
of the experimental thermosyphon dynamics.

The behavior of the thermosyphon was ex-
amined in a 2D (infinite concentric cylinders as
opposed to the quasi-1D torus) FLUENT sys-
tem. A realistic geometry was created with
R = 36 cm and r = 1.5 cm, the same values
that will be used to design the physical exper-
iment. The mesh used for the simulation has
O(104) elements [12].

As in Rayleigh-Bénard convection, where
fluid is held between two infinite plates, the
Rayleigh number determines the onset of con-
vection in the toroidal geometry. Here it is de-
fined as

Ra =
gγd3∆Tw

νκ

where g is the acceleration of gravity, γ again
is the thermal expansion coefficient, d = 2r is
the characteristic length, ν is the kinematic viscosity, κ is the thermal diffusivity, and ∆Tw is the
temperature difference applied to the walls. As the Rayleigh number is increased, the behavior
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changes from a conducting steady state to a convecting steady state and then becomes chaotic. In
the experiment ∆Tw is adjusted, but for the FLUENT system g is changed to the same effect. The
value used in this experiment was Ra= 1.5× 105.

As the FLUENT model is integrated, monitors are set to output the mass flow rate q ≡ ṁ as well
as cross-sectional average temperatures at φ = ±π/2 every 10 seconds. This gives a time series of
observations of the synthetic toy climate to be used with the EM model in a DA-forecasting scheme.

3 Data Assimilation

DA is the process by which observations of a dynamical system are combined with forecasts from a
model to estimate error covariances and calculate a “best guess” for the current state of the system.
In practice, this problem is difficult, because the forecaster uses an inexact forecasting model and
never knows the exact state of the dynamical system. In NWP, the number of state variables is
typically O(103) times the number of observations. Nevertheless, this best guess is used to produce a
forecast, which is then used in the next assimilation cycle to fill in the blanks when new observations
become available. Observations and forecasts are weighted depending on the confidence in each,
given their error covariance matrices.

Fig. 5: A cartoon of the DA process: When new obser-
vations are available, the analysis state is generated by
combining observations with past forecasts. The anal-
ysis gives the optimal ICs for future forecasts. After
the initial spinup, allowing the filter to adjust, analy-
ses and forecasts should closely follow the truth.

A variety of filters are capable of solving the
basic DA problem for reasonably good models.
The Kalman filter (KF) is the optimal algo-
rithm for state estimation problems in a lin-
ear system. One of its first applications was
to trajectory estimation and correction of mis-
siles and rockets. We now describe some of the
DA schemes for nonlinear estimation employed
in this study. In 3D-variational DA (3D-Var),
the background error covariance is estimated a
single time, offline, prior to the data assimila-
tion procedure. In the extended Kalman filter
(EKF), it is evolved according to the linear tan-
gent model, which approximates the evolution
of small perturbations about the trajectory. En-
semble Kalman filters (EnKFs, of which the En-
SRF is an example) use ensembles of forecasts to
estimate the background error and can also be
used for parameter estimation. A full deriva-
tion of the KF is now presented, followed by
a description of the specifics of these nonlinear
methods.

3.1 Derivation of the Analysis Equations

The KF is well-known and widely used in linear DA and control problems. Although the ther-
mosyphon is highly nonlinear, the linear update equations are similar to those of the more sophis-
ticated, nonlinear algorithms used for this experiment. The KF attempts to assimilate observations
and forecasts for a process of the form

xt
k = Wxt

k−1 . (16)

In this case, xt is the true state, which advances in time according to the linear process W, which
is unknown but approximated by the model M. Subscripts index the time step. Using the model,
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the analysis from the previous time step is integrated to generate the background forecast for the
current time step

xb
k = Mxa

k−1 (17)

where M is the linear model, xa is the old analysis, and xb is the background. Because M is only
an approximation of W, a perfect initial condition will not lead to a perfect forecast, so

xt
k = Mxt

k−1 + εq
k (18)

where the model errors εq have covariance Q (usually assumed to be constant in time) and are
written on the right hand side for convenience. When deemed unnecessary, subscripts are left out
in the rest of the derivation.

Given an observation y and background forecast xb, the KF finds the optimal way to combine
them into the analysis xa, the best guess of the current state. This becomes the IC when forecasting,
Eqn. 17. In an operational context, we usually cannot observe every state variable. If x ∈ RN and
y ∈ RM , then M < N (in NWP M + N), so we define the observation operator H : RN → RM

that takes the background forecast from the model state space into the observation space. This
serves two purposes: first, it avoids extrapolation of observations to gridpoints in state space; and
second, it enables us to interpret our forecasts by comparing them directly to observations. For the
thermosyphon, H is linear, so we write it as H, but this is usually not the case for the observations
in NWP, e.g. satellite radiances and radar reflectivities. The KF analysis is given by

xa
k = xb

k + Kk(yk −Hxb
k) . (19)

The Kalman gain or weight matrix K ∈ RN×M determines the importance of the difference between
observations and background forecast y −Hxb, known as the innovation.

The derivation of the optimal weight matrix assumes that the errors in the background, obser-
vations, and analysis are drawn from Gaussian distributions:

xb = xt + εb, εb ∼ N(0,B)

y = Hxt + εo, εo ∼ N(0,R)

xa = xt + εa, εa ∼ N(0,A)

(20)

where N(µ,C) denotes a random vector drawn from a multivariate Gaussian distribution with vector
mean µ and covariance C. In each case, the errors are assumed to be unbiased, i.e. their means
are zero. They are also assumed to be uncorrelated to each other. The diagonal elements of the
analysis error covariance matrix A are the variances in the analysis state variables. The KF wants
to minimize the sum of those variances, which is the same as minimizing tr(A) with respect to K.

First, recognize that Eqn. (19) implies

εa = εb + K(εo −Hεb) (21)

and the matrices A ≡ 〈εaεaT 〉,B ≡ 〈εbεbT 〉, R ≡ 〈εoεoT 〉, where 〈·〉 indicates time average or
expectation. Therefore,

A = 〈
(
εb + K(εo −Hεb)

) (
εb + K(εo −Hεb)

)T 〉
= (1−KH)B(1−KH)T + KRKT

= B−KHB− (KHB)T + K(HBHT + R)KT , (22)

where the symmetry of the covariance matrices has been used. Now, take the trace

tr(A) = tr(B)− 2 tr(KHB) + tr(K(HBHT + R)KT )

9



and note that we used tr(KHB) = tr((KHB)T ). Differentiating with respect to K (see [16] for
relevant identities), we find

∂tr(A)
∂K

= −2(HB)T + 2K(HBHT + R) (23)

Finding the minimum requires the derivative be zero, which gives the gain

K = BHT (HBHT + R)−1 . (24)

Finally, we substitute Eqn. (24) into (22) to obtain the analysis covariance update, A = (1−KH)B.
The complete application of the KF consists of both a forecast step and an analysis step. The

forecast step is

xb
k = Mxa

k−1 (25a)

Bk = MAk−1MT + Q (25b)

and the analysis step is

xa
k = xb

k + Kk(yk −Hxb
k) (26a)

Ak = (1−KkH)Bk (26b)

with Kk given by Eqn. (24).
The forecast equations create the background forecast and update the background error covari-

ance. The new background error covariance is the old analysis error integrated forward plus the
model error. In the analysis step, this background forecast is incremented by the gain times the
innovation to produce the analysis. The new analysis error is equal to the background error reduced
by a factor of (1 −KH). By finding the analysis, the filter has revealed the best possible starting
point for the next background forecast.

3.2 Nonlinear Data Assimilation

3.2.1 3D-Var

Rather than minimize the analysis error variance, the analysis equations can also be derived by
finding the analysis state xa that minimizes the following quadratic scalar cost function:

C(x) =
1
2

[
(x− xb)T B−1(x− xb) + (y −Hx)T R−1(y −Hx)

]
. (27)

The cost C(x) has its minimum at x = xa, where xa is given by Eqn. (26). This is called the
three-dimensional variational (3D-Var) method since the minimization for NWP is with respect to
a state vector embedded in a three-dimensional field (latitude, longitude, and height).

Formally, both 3D-Var and the KF yield the same solution [17]. However, in this case the
control variable is the analysis, while in the KF the control variable is the weight matrix itself. In
operational NWP, where there are O(109) state variables, the numerical implementations of 3D-Var
and the nonlinear KF are drastically different. Because 3D-Var assumes the background error B is
fixed in time, the Kalman gain K needs to be calculated only once. This is the most computationally
prohibitive part of DA because it requires solving a linear system in O(109) variables. A constant K
thus makes the algorithm computationally simple; the most difficult part of implementing 3D-Var
is finding the optimal B.

However, a static B is not realistic. From a dynamical systems standpoint, uncertainty is closely
related to stability, which is clearly dependent on where the state of the system is in its attractor.
With the Lorenz system, for example, the true background error is typically smaller near the unstable
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convecting equilibria than near the unstable conducting equilibrium (see Fig. 2). Because 3D-Var
is computationally cheap, the National Centers for Environmental Prediction (NCEP) employ it in
their forecasts. But it cannot detect so-called “errors of the day”, state-dependent forecast errors
which grow quickly but are not represented in the 3D-Var background error covariance matrix [17].

3.2.2 EKF

The extended Kalman filter (EKF) is the logical version of the KF for a nonlinear model. Given a
nonlinear model M, the error covariances are updated by the linear tangent model

M ≡ ∂M
∂x

∣∣∣∣
x=xb

(28)

which takes the place of M in Eqn. (25b). This model propagates small perturbations around the
trajectory xb forward in time. To operate on the matrix A with the linear tangent model, first take
the Jacobian of F (the right hand side of the nonlinear differential equation ẋ = F (x)) and evaluate
it at the background point xb; call this matrix J. Each column ai of A, which can be thought of
as an error perturbation to the analysis state, is then integrated forward in time according to the
linear ODE ȧi = Jai.

Also note that if the observation operator H is nonlinear, it is replaced by a similar linear tangent
model H in the matrix equations (24) and (26). The transpose of these matrix functions are called
adjoint models, which are used in sensitivity analyses of the state to perturbations.

Some modifications to the EKF algorithm are necessary to prevent the covariance matrices from
becoming unbalanced. Because of its inherent approximations, the EKF tends to systematically
underestimate the background error. As the background error shrinks to zero, the filter stops
trusting the observations and follows the background trajectory. This is known as filter divergence.
To combat this, a multiplicative inflation of (1 + ∆) was first applied to the background covariance
matrix B. Additive inflation by random numbers uniformly distributed between 0 and µ were then
added to the diagonal elements of B, as per Yang et al. [2]

To propagate the background covariance without the explicit adjoint model, B was first decom-
posed with the Cholesky factorization [14] into the product of a lower and upper diagonal matrix
before its columns were integrated forward with the linear tangent model M.

Bk−1 = Lk−1LT
k−1 (29)

Tk = Mk−1Lk−1 (30)

Ak = TkTT
k + Q (31)

This guarantees symmetry for the new analysis error covariance A.

3.2.3 Ensemble Filtering: EnKF, EnSRF

The ensemble Kalman filter (EnKF) is a method that replaces a single forecast state with an ensemble
of states. The spread of the ensemble about its mean gives an approximation of the background error
covariance and forecast uncertainty, while the ensemble average gives the best guess of the forecast.
The EnKF was first introduced by Evensen, and he gives a comprehensive overview of ensemble filters
in [18]. It was shown that if the observation, which has random error with covariance R, is perturbed
with Nens random errors (again with covariance R; Nens is the number of ensemble members), to
make an ensemble of independent observations {yi}, then the background error covariance can be
written

B ≈ 1
Nens − 1

Nens∑

i=1

(xb
i − xb)(xb

i − xb)T (32)
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which is simply the ensemble average outer product of members’ deviation from the mean. The
background forecast of ensemble member i is denoted xb

i , and xb is the background forecast ensemble
average. In this case, each ensemble member is updated according to the KF equations for their
associated observation. The advantages of the EnKF are many: there is no linear tangent model
to compute, the number of ensemble members can be small (O(102) for a global weather model)
relative to the dimensionality of the state space, and prior knowledge about the structure of the
forecast errors is not necessary.

The above approach adds noise to the observation to create linearly independent observations
and is classified as a perturbed observations method [19]. This necessarily introduces additional
sampling error into the forecast. For this reason, Whitaker and Hamill [20] introduced the ensemble
square root filter (EnSRF) as an improved EnKF. In the EnSRF, the ensemble mean is updated
with the traditional Kalman gain (Eqn. (24))

xa = xb + K(y −Hxb) (33)

and deviations from the mean are updated with a different gain

x′a = x′b + K̃(y −Hx′b) (34)

where the primes denote the perturbations, e.g. x′b = xb − xb, and

K̃ = BHT

[(√
HBHT + R

)−1
]T

×
[√

HBHT + R +
√

R
]−1

. (35)

When the observation is a scalar, it can be shown that

K̃ =

(
1 +

√
R

HBHT + R

)−1

K . (36)

If observation errors are uncorrelated (R is diagonal), then Eqn. (36) can be used to process ob-
servations one at a time [20]. The updated analysis ensemble is then {xa

i }, where xa
i = xa + x′ai .

Square root filters have better numerical stability and speed than their standard KF counterparts.
For these reasons, the Potter square root filter was employed for navigation in the Lunar Module of
the Apollo program.

The EnKF can also be modified slightly to estimate the model parameters by state augmentation.
In state-augmented filtering, the vector of parameters p is treated as part of the state vector, hence

x→
(
x
p

)
. The model equations are augmented with ṗ = 0. State-augmented filtering is accessible

with the EnKF because it requires no prior knowledge of the model covariances. Although state-
augmented filtering has been shown to work for the Lorenz system with a perfect model and the
initial ensemble of parameters centered on the correct values [21], the filter may not be able to
converge to the correct parameters from a poor initial guess.

As with the EKF, ensemble filters tend to underestimate the background error, resulting in an
ensemble spread which is typically less than the root mean square (RMS) error (together, RMSE)
found when verifying. Multiplicative inflation of B by (1+∆) is a common method, shown successful
in [2, 18–21]. The most reliable way we found to prevent filter divergence was to use a hybrid
EnKF/3D-Var scheme. The background error is written as a combination of the background error
from the EnKF and from 3D-Var

B = θBens + (1− θ)B3D−Var (37)

where θ is a tuning parameter. In this study, the optimal combination was found for θ ∼ 0.5,
indicating that the ensemble estimate is only as reliable as 3D-Var. Currently, 4D-Var (like 3D-Var
except taking into account older observations) and ensemble filters are the most promising candidates
being considered to replace 3D-Var.
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4 Methods and Results

Due to the variety of models and data assimilation algorithms, the scenarios are listed by “forecasting
model” then “true system”: Lorenz forecasting Lorenz (LL) and EM forecasting FLUENT (EMF).

4.1 LL

Results similar to those of Yang et al. [2] were achieved with EKF and 3D-Var when assimilating a
synthetic Lorenz truth with a Lorenz model. The same parameters were used in all cases. Gaussian
noise with a standard deviation of

√
2 was added to each variable of the numerically generated truth

every 8 time steps to create the observations. The analysis was initialized from a point far away in
phase space. Performance was measured by assimilating observations and measuring the RMSE of
the analysis versus the truth (without added noise). Because all state variables are known for both
truth and forecast, the RMSE was calculated

RMSE =
√
〈δx2 + δy2 + δz2〉/3 (38)

where each δxi is the difference between forecast and truth in the ith state variable, e.g. δx = xa−xt

for analysis error or δx = xb−xt for background error. The results are shown in Table 1 and Fig. 6.

4.2 EMF

As described in 2.3, the mass flow rate q and cross-sectionally averaged temperature at φ = ±π/2
were reported by the FLUENT simulation. The mass flow rate gave the fluid velocity u = q/(2rρ0),
since 2r is the 2D cross-sectional area. The temperature measurements were used to calculate
∆T3−9. The temperature data, however, was very noisy compared to the smooth trajectories typical
of the model. This is due to the neglection of higher order temperature modes and the presence
of a Kelvin-Helmholtz instability [12] at the boundary between heat source and sink, shown in
Fig. 4. Assimilation of q alone proved sufficient. Gaussian noise with standard deviation equal 1%
of the mass flux climatological mean

√
〈q2〉, approximately 6 × 10−4 kg/s, was added to make the

observations realistic. In this case, the observations y, which are of state variable q, provide the only
validation, so the RMSE is calculated in observation space

RMSE =
√
〈δq2〉 (39)

where δq = Hxb − y.

4.2.1 Parameter Estimation

Before any forecasts could be generated, the parameters matching the EM model to the FLUENT
simulation needed to be determined. A state-augmented EnKF was applied to the problem but failed
to reveal which EM parameters best described the FLUENT system. The method that ultimately
succeeded was a straightforward search of parameter space.

The next parameter estimation attempt used a state-augmented EnKF. Starting with the pa-
rameters determined by Ehrhard and Müller, p = (15, 38, 0.35)T , and assimilating q, the EnSRF
converged to a triple of parameters that produce periodic behavior. These parameters yield an
acceptable forecast within one assimilation cycle, but the forecast soon becomes useless because the
model can no longer predict chaotic behavior. The filter was also sensitive to the initial guess of
parameters, with different initializations converging to different values. Changing the parameters of
the model each assimilation cycle was also problematic because they affect the period and height
of the EM model oscillations, which are used to empirically estimate the scalings to dimensionless
velocity and time. As a result, the observation operator and the dimensionless time scale would
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(a)

(b)

(c)

RMSE: analysis
Observed: y x, y, z

3D-Var 0.80 0.64
EKF (∆ = 0.05, µ = 0.02) 0.51 0.34
EnSRF (∆ = 0.04, Nens = 6) 0.55 0.28

(∆ = 0.04, Nens = 3) 0.77 0.65

Table 1: (Above) LL average analysis RMSE

from assimilation cycles 500 to 2500. It com-

pares the performance of 3D-Var, EKF, and

EnSRF DA algorithms assimilating observa-

tions which have error
√

2 every 8 steps.

The results for 3D-Var and EKF match very

closely with those of Yang et al. [2]. The

results for EnSRF with 6 members match

what was found using an ensemble transform

Kalman filter (ETKF, another EnKF variant)

by Kalnay et al. [19], but the EnSRF with 3

members has roughly twice the RMSE found

with the ETKF.

Fig. 6: (Left) Regime duration plotted

against the amplitude of the last oscillation in

the preceding regime for different state vari-

ables of the Lorenz system. Each “step” cor-

responds to an integer number of oscillations.

The x (6(a)) and y (6(b)) variables show that

duration and oscillation amplitude are pos-

itively correlated, while the z (6(c)) variable

shows an inverse relationship. This is because

x and y are directly proportional to the size

of the temperature anomaly in the convection

cell (see Section 5). On the other hand, larger

z indicates that more of the anomaly is lo-

cated in the bottom half of the loop, mean-

ing that the state is near the highly unsta-

ble conducting equilibrium, so the new regime

will not last. Each regime change is colored

by the 8-step BV average growth rate at last

extremum before regime change. The figure

shows a clear gradient in these growth rates.

This is because the local Lyapunov numbers

decrease as the state moves closer to the con-

vecting equilibria.
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change as the parameters are varied. We continue to investigate whether state-augmented ensemble
filtering can be used for parameter estimation in the EMF forecasting scheme.

The appropriate parameters were found by a simple search of the parameter space for α ∈
{1, 2, . . . , 20}, β ∈ {20, 21, . . . , 55}, and K ∈ {0, 0.01, . . . , 0.5}. This required integrating the EM
system 36720 times for 2500 time units. Because of the size of the search space, this was performed
in parallel using the Vermont Advanced Computing Center (VACC) cluster. Note that for more
complicated models, this brute force search of the parameter space becomes computationally pro-
hibitive. The optimal EM parameters were chosen to be those that produce solutions which most
closely match the climatology of the FLUENT system, as measured by three statistics. The first
two of these statistics characterize regime change behavior: the average number of oscillations per
regime and the maximum number of oscillations before a regime change. The third statistic mea-
sures the relative height of the velocity oscillations. The relative oscillation height was measured
by computing of RMS distance from the convecting equilibrium and dividing by the magnitude of
the convecting equilibrium itself. The three statistics were calculated first for the FLUENT q time
series, then for the x1 time series generated for each triple in the parameter search space. Only those
parameter triples that produced a maximum of 7 oscillations before regime change, the same as was
found from the q data, were considered. Minimizing the 2-norm difference, between model runs and
FLUENT data, of the remaining two statistics gave the model parameters p = (7, 33, 0.07)T .

Given this set of parameters, the dimensionless time scale and observation operator were esti-
mated empirically. The time scale constant of proportionality (t′/t) was given by τEM/τFLUENT ,
where the τ ’s are the average oscillation periods in steps of the corresponding time series. The one
nonzero entry in the observation operator connects dimensionless velocity to velocity. The velocity
scale ([H]11 = x1/u) was calculated with the ratio of average velocity magnitudes |x1|/|u|.

4.2.2 Figures
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Fig. 7: Results of 3D-Var assimilating the same

data are shown for three different assimilation win-

dows. In (a), observations are made frequently

enough to keep the forecast close to the truth,

whereas in (b) DA is incapable of keeping the fore-

cast in the correct regime. In (c), the filter has

satisfactory overall performance (RMSE ≈ 35% ofp
〈q2〉); note the error spike around 8× 103 s when

the forecast and truth end up in different regimes.

The largest errors tend to occur at regime changes.
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Fig. 8: Regime duration plotted against the amplitude of x1 at the last extremum before regime change.
This amplitude is calculated from the EM model 3D-Var analysis of FLUENT observations, using a 30 s
assimilation window. Inset, upper left: timeseries corresponding to a single point in the scatter plot, marked
with a black cross. This figure contains almost 50 days of data and 2323 regime changes. Points are colored
by the average BV growth rate over the preceding assimilation window, showing a BV growth rate gradient
similar to what was found for the Lorenz system. Outliers with the largest deviations from convecting
equilibrium result in shorter regime durations than expected. A possible explanation is that this is due to
mixing that occurs when the temperature anomaly is very large, effectively setting an upper limit on the
number of oscillations in a regime; this phenomenon would not occur in the Lorenz-like models. Inset, lower
right: histogram showing the likelihood of different regime durations, given an x1 amplitude between 12 and
13. The most probable duration is about 33 minutes, the middle “step” for that amplitude range.

5 Discussion

DA was shown to be an effective way of coupling a low-dimensional model to complex simulations
of the toy climate. The DA algorithms were first implemented for a perfect model, the LL scenario,
giving accuracies comparable to other studies. In the EMF scenario, background errors were always
larger than observational noise, but the filters, whose individual performance varied, were still able
to produce analyses within observational noise of the truth. Finally, the amplitude of the last
oscillation in the current regime has been shown to correlate with the duration of the following
regime in both LL and EMF scenarios (Figs. 6 and 8). Using oscillation amplitudes and BV growth
rates, we should be able to predict the occurrence of regime changes and residencies. Because the
EnKF performed poorly compared to the results of Kalnay et al. [19], we expect further tuning to
improve background and analysis RMSE. In the future, DA using the EM model, and possibly a full
FLUENT simulation, will be applied to data from the laboratory thermosyphon. The effectiveness
of different DA approaches for these imperfect model experiments can inform meteorologists as to
which approaches are best suited for global weather and climate models.

Implementing DA in the LL scenario was an important first step before EMF forecasting was
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considered. Numerous investigations have examined the Lorenz system, so we could be confident the
filter was properly coded once it performed as well as reported in other studies. The filters’ sensitivity
to tuning parameters is high, and running simulations for a large range of tuning parameters is time-
consuming, especially if the modeler does not know which regions of parameter space to sample.
Previous studies gave us an idea of what to expect. Tuning the LL forecasting code helped the
author develop an intuitive understanding of how DA schemes are optimized. Once the filters were
properly tuned, the 3D-Var and EKF errors closely matched what was found in the study by Yang
et al. [2]. A similar study, carried out by Kalnay et al. [19], included results for an ETKF ensemble
filter, against which our EnSRF results are compared. We found comparable analysis errors with
a 6 member ensemble, although when cut to 3 members the EnSRF had approximately twice the
RMSE of the ETKF with the same ensemble size. It appears likely that this discrepancy is due to
differences in the two ensemble DA algorithms.

Forecasting the Lorenz system with a perfect model (LL) was also useful in the analysis of
regime changes. Knowledge of the true state was always available, so we were able to plot oscillation
amplitude versus regime length for all three state variables (Fig. 6). The strong correlation between
amplitudes and residencies prompts a discussion as to why the system behaves this way. It was
counterintuitive to think that a large oscillation in one regime should result in smaller oscillations
in the next. One would not think that being far from one convecting equilibrium brings the system
close to the other convecting equilibrium, but that is exactly what happens.

Fig. 9: FLUENT simulation showing the
temperature profile (units: K) of steady
convecting flow, rotating counterclockwise.
In the chaotic case, opposite anomalous re-
gions of warmer and cooler fluid will be su-
perimposed on this temperature profile. As
these pass through the loop, the “tongues”
of warm and cool fluid extending into the
top and bottom halves of the loop will
grow and shrink simultaneously until the
hot tongue (visible near 2 o’clock) reaches
the opposite side of the loop. The flow
will then stall and reverse direction. Image
credit: Ridouane.

The first explanation of regime changes was presented
by Welander [4] and repeated by Creveling et al. [5].
Welander, who was also the first to discover that ther-
mosyphons exhibit aperiodic oscillatory behavior, ex-
plained the instability of steady convecting flow by consid-
ering a thermal anomaly or “warm pocket” of fluid. With
each cycle through the loop, the warm pocket is amplified
due to out of phase viscous and thermal dissipations. We-
lander explained that when the warm pocket emerges from
the heating section and enters the cooling section, it feels
a greater buoyant force than the surrounding fluid and ac-
celerates, exiting the cooling section quickly. Thus, it has
less time to radiate away its energy. As the pocket moves
into the heater, the buoyant force it experiences is again
higher than normal, so now the pocket decelerates and
passes slowly through the heating section, gaining more
energy.

This positive feedback effect causes the pocket to grow
hotter and larger, and it manifests as growing oscillations
of x and y about the unstable convecting equilibrium. But
these oscillations do not increase forever; eventually, the
pocket becomes large and hot enough that its descent to-
wards the heating section is stopped entirely by its own
buoyancy. Without movement, the pocket dissipates, but
its remnant heat biases new rotation in the opposite di-
rection as before: a regime change. For low heating rates,
the convecting equilibrium is stable. This is because vis-

cous and thermal dissipations are in phase, so that an increase (decrease) in flow rate leads to an
increase (decrease) in friction and a decrease (increase) in buoyancy, and such perturbations are
damped out [4, 5].

However, not all regime changes occur when the system reaches the same oscillation amplitude,
nor do all regimes last the same amount of time. In the Lorenz system, larger oscillations in the x and
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y variables immediately before regime change lead to longer residences in the new regime (Figs. 6(a)
and 6(b)). These oscillations reflect the temperature of the anomalous pocket described earlier. This
means that a longer lasting new regime requires a large fluctuation from convective equilibrium in
the velocity and horizontal temperature difference of the fluid before regime change. An inverse
relation is true for z (Fig. 6(c)). This is because large z corresponds to higher temperatures in the
bottom of the loop than in the top, a situation close to the highly unstable conducting equilibrium
state, hence the system is destabilized as it enters the new regime. A lasting regime needs to begin
nearby the corresponding convecting equilibrium (in state space), so that the initial oscillations in
the state variables are small and have time to grow.

During a regime change, the fluid motion stalls after the center of the pocket enters the heating
section. Hot fluid extending from the heating section to the cooling section in the direction of the
earlier motion (see Fig. 9) will dissipate without any rotation. If the pocket is large (corresponding
to a large deviation from convecting equilibrium in x, y), some of the anomaly will extend into the
cooling section, creating a temperature profile very near that of steady convection, but in the new
direction. The resulting regime lasts longer since the instability requires more time to grow before
causing the next reversal. If the pocket is small, it will mostly dissipate, bringing the temperature
profile close to that of conduction. This is a more unstable equilibrium, since the vertical temperature
gradient builds until the fluid in the bottom is much hotter than the fluid above. When the fluid
begins to rotate, it accelerates rapidly. The large amount of heat carried by the fluid creates a
very hot anomalous pocket, which carries the system state far from the convecting equilibrium.
Animations of the CFD-simulated temperature field during regime reversal, created in FLUENT by
El Hassan Ridouane, are consistent with this explanation.

With DA functioning for the Lorenz system and a more complete understanding of the mechanism
for regime changes, our research focus shifted to the problem of forecasting the realistic, CFD-
simulated thermosyphon. The first difficulty we encountered was the estimation of appropriate
EM model parameters, described in detail in section 4.2.1. Although the empirical method was
successful, scalable methods of parameter estimation are needed for higher-dimensional models.

Model errors further complicate the implementation of DA in realistic forecasting scenarios. For
instance, to test the effect of model errors on different DA schemes, Kalnay et al. [19] created a Lorenz
truth with r = 28 but used a forecasting model with r = 26. Their analysis RMSE for a 3 member
EnKF, observing x, y, z every 8 steps, went from 0.30 to 0.81, and the necessary multiplicative
inflation factor increased from ∆ ≈ 0.08 to 1.2. Model error is likely even more significant for
EMF forecasts, since the EM model is a weaker approximation of the FLUENT system than the
almost-perfect model used above. Within the KF update equations, model error appears as the Q
covariance matrix. We set Q = 0 and counted on additive and multiplicative background covariance
inflation capturing model error; better results might have been obtained with an optimized Q.

Another difficulty of operational DA is incomplete knowledge of the system state. For this
reason, errors were measured by transforming the state vector into observation space. Analysis error
in observation space, which can be small even for large assimilation windows, is not an appropriate
metric for assessing model performance. For example, 3D-Var in the EMF scenario with a 10
minute time window yields analysis and background errors of 0.000506 and 0.0703, respectively.
The analysis error is less than the observational noise, but the background error is on the order
of the climatological mean (RMS) mass flow rate

√
〈q2〉. In other words, background forecasts are

practically meaningless, but the filter “knows” this and weights the observations heavily over the
background forecasts. The analyses generated are close to observations, but the unobserved model
state variables are poor predictions.

The performance metric used instead was the relative background error with respect to the
climatological mean. Following the S1 score convention of NWP [17], relative error above 70% is
considered a “useless” forecast, while under 20% the forecast is “perfect”. Perfect EMF forecasts
for 3D-Var and EnSRF were found up to and including 3.5 minute assimilation windows; the EKF
performed perfectly with 4 minute windows (Fig. 10).
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The next phase of this study will use DA and breeding to qualitatively predict regime changes
and new regime duration. Evans et al. [15] set a BV growth rate threshold above which regime
changes occurred with a 91.4% success rate. Besides informing when regime changes will occur,
the evident gradient of bred vector growth rates up the “steps” in Figs. 6 and 8 should be useful
in determining the duration of the upcoming regime. In the more distant future, the imperfect
model experiment we have devised could be used to compare the relative performance of other DA
algorithms (4D-Var, ETKF) or synchronization approaches (adaptive nudging, see [2]).

Although the thermosyphon is far from representing anything as complex and vast as Earth’s
weather and climate, there are many things our model has in common with global atmospheric
models. Both are, at best, only an approximate representation of the numerous processes that govern
the Earth’s climate. Global models and the EM model both parameterize fine-scale processes that
determine large-scale behavior. For example, clouds and precipitation are sub-grid-scale process
in a global weather model, and the correlations for the heat transfer and friction coefficients are
parameterizations of fluid behavior on a finer scale than can be dealt with in the derivation.

The methods we use to forecast the toy model are also similar to the methods used for global
geophysical systems. Both require state estimation to find the IC from which to generate forecasts.
Also, when we make forecasts in either system, we care more about the climatology than the specific
behavior: In the case of the thermosyphon, this would be the occurrence and duration of regime
changes. In the case climate, globally and regionally-averaged temperatures and their effects on
rainfall, ice cover, etc. are the important unknown variables, due to the threat of global climate
change. All of these are statistics that must be post-processed from the model output. To meet
these global challenges, we need many techniques in our modeling toolbox. Toy models can provide
us with insights that are applicable to the most important prediction problems of today.
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