QUANTIFYING PROVERB DYNAMICS IN BOOKS, NEWS ARTICLES, AND TWEETS

A Thesis Presented

by

Ethan Davis

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Complex Systems and Data Science

May, 2021

Defense Date: March 29th, 2021 Thesis Examination Committee:

Peter Sheridan Dodds, Ph.D., Advisor Wolfgang Mieder, Ph.D., Chairperson Christopher M. Danforth, Ph.D. Cynthia J. Forehand, Ph.D., Dean of Graduate College

Abstract

Proverbs are an essential component of language and culture, and though much attention has been paid to their history and currency, there has been comparatively little quantitative work on the frequency with which they are used, and the dynamics of their use over time. With wider availability of large corpora reflecting many diverse genres of documents, it is now possible to take a wider view of the importance of the proverb. Can a corpus linguistic approach to phraseology support existing histories, and what further insight can be gained from a quantitative approach? This study measures temporal changes in the relevance of proverbs using millions of books, hundreds of millions of news articles, and billions of tweets. We find that proverbs are widely used throughout, and popular proverbs remain in use over long periods of time. We also observe the emergence of more recent proverbs, validating previous scholarship. Far from fading into disuse in contemporary language, proverbs are popular on social media.

ACKNOWLEDGEMENTS

Thank you to Peter Dodds, Chris Danforth, Wolfgang Mieder, David Dewhurst, Josh Minot, Michael Arnold, Nicholas Allgaier, Thayer Alshaabi, Alice Boone, Matthew Abel, and the Computational Story Lab, all of whom have provided invaluable guidance in the writing of this thesis and to whom I am forever grateful.

Table of Contents

	Acknowledgements	i
	List of Figures	7
	List of Tables	V
1	Introduction	1
	1.1 Proverbs	2
	1.2 Quantitative approaches to the proverb	6
	1.3 From Data to Language and Culture	
2	Methods	15
	2.1 Corpora	16
	2.1.1 Gutenberg	
	2.1.2 The New York Times	
	2.1.3 Google	
	2.1.4 Twitter	
	2.2 Data Processing and Visualization	
3	Results and Figures	19
	3.1 Zipf distributions	19
	3.2 Gutenberg	
	3.3 The New York Times	
	3.4 Google	26
	3.5 Twitter	
4	Discussion	35
Bi	bliography	40
\mathbf{A}	Additional Figures	49
	Frequency Tables	53
ப	ricquency rabies	Je

LIST OF FIGURES

3.1	Zipf distributions for entries from Mieder's Dictionary of American	
	Proverbs [1] in each corpus studied. Notably the distributions for	
	Gutenberg, and NYT exhibit heavy-tailed behavior	20
3.2	Timeseries plots for the 16 most popular proverbs in Gutenberg (ranked	
	by overall count) by 20 year bins. The most common proverbs occur	
	in a large portion of documents in the corpus for most of the period	
	studied. For instance, "the sooner the better" regularly appeared in at	
	least 5% of documents from the 19th century. Plots are ordered in the	20
2.2	grid by rank first left to right, then top to bottom	23
3.3	Timeseries plots for the 16 most popular proverbs in the <i>New York</i>	
	Times (from 1997-2007), ranked by overall count. The gray represent the data binned by month, and the orange represent the data binned	
	by year. The proverb "to delay may mean to forget" owes its yearly	
	rhythm to its role as the NYT's charity tagline. The frequencies are	
	normalized by article count (obits, and non-body included). Plots are	
	ordered in the grid by rank first left to right, then top to bottom	24
3.4	Timeseries plots for the 12 most popular 2-gram proverbs in the Google	
	Books N-gram Corpus. The gray represent the yearly frequency, while	
	the orange represent the five-year rolling average. The dramatic in-	
	crease in use of the proverbs "shit happens" and "safety first" corre-	
	spond with previous scholarship on their emergence. Plots are ordered	
	in the grid by rank first left to right, then top to bottom	26
3.5	Timeseries plots for the 16 most popular 3-gram proverbs in the Google	
	Books N-gram Corpus. The gray represents the yearly frequency, while	
	the orange represents the 5 year rolling average. The rise in popularity	
	of the proverb "never say never" is shown. A period of increased usage of the proverb "divide and conquer" corresponds with the World War	
	II era. Plots are ordered in the grid by rank first left to right, then top	
	to bottom	28
3.6	Timeseries plots for the nine most popular 2-gram proverbs on Twitter.	20
	The gray represents the daily frequency, while the orange represents	
	the 30 day rolling average. The proverbs "be yourself" and "time flies"	
	maintain popularity over the period studied. Notably, the "safety first"	
	shows in increase in popularity in early 2020, possibly relating to the	
	coronavirus pandemic. Plots are ordered in the grid by rank first left	
	to right, then top to bottom	29

3.7	Timeseries plots for 3-gram proverbs on Twitter. The gray represents the daily frequency, while the orange represents the 30 day rolling average. The proverb "never say never" owes its meteoric rise in popu-	
	larity in 2010 to popular musician Justin Bieber's single and biographical documentary of the same name. "never say never" remains the	
	most popular proverb on Twitter until 2016, when it is supplanted by "enough is enough" which has steadily gained popularity in the last	
	decade, owed in part to its constant use by Senator Bernie Sanders, and punctuated by reactions to tragedies related to gun and police vi-	
	olence. Plots are ordered in the grid by rank first left to right, then top to bottom	30
3.8	While "never say never" was already popular on Twitter as of 2008, its popularity was amplified in 2010 by the release of Justin Bieber's single entitled "Never say never", and his subsequent biographical documentary of the same name. Remarkably, it remained the most popular proverb on Twitter for almost six years, punctuated by anniversaries	
	and reruns of the movie, until it was surpassed by "enough is enough" in 2016	33
3.9	The popularity of "enough is enough" on Twitter grew steadily over the last decade, and it has been the most popular proverb on Twit- ter since 2016, perhaps originating from its constant use by Bernie Sanders. It has since become associated with growing protests against police brutality and gun violence. Annotations reflect violent events	
	and protests	34
A.1	Timeseries plots for the 17-32 most popular proverbs in Gutenberg by 20 year bins	49
A.2	Timeseries plots for the 17-32 most popular proverbs in <i>The New York Times</i> . The gray represent the data binned by month, and the orange	
A.3	represent the data binned by year	50
A.4	quency, while the orange represents the 5 year rolling average Timeseries plots for the 17-32 most popular proverbs on Twitter. The	51
11.1	gray represents the daily frequency, while the orange represents the 30 day rolling average	52

LIST OF TABLES

3.1	The 20 most central books by betweenness centrality, from a network	
	of books connected by shared proverbs in Gutenberg. Notably, James	
	Joyce's <i>Ulysses</i> appears alongside several proverb and quotations col-	
	lections, and the collected works of Mark Twain.	22
D 1		
В.1	The top 50 proverbs and proverbial expressions (from the Dictionary	
	of American Proverbs) in the entire Gutenberg Corpus	53
B.2	The top 50 proverbs and proverbial expressions (from the Dictionary	
	of American Proverbs) in The New York Times from 1987-2007	55
B.3	The top 50 3-gram proverbs and proverbial expressions (from the Dic-	
	tionary of American Proverbs) in the Google Books N-gram Corpus	57
B.4	The top 50 proverbs and proverbial expressions (from the Dictionary	
	of American Proverbs) on Twitter from 2008-2021	59

Chapter 1

Introduction

The present study examines the frequency of proverb use in several large corpora of different domains. Specifically, the frequency of proverb use, and the dynamics of their use over time. Additionally, do proverbs appear in text according to a similar distribution to words in other studies [2, 3, 4, 5]? In studies of phraseology and lexicography, data on frequency of use is often conspicuously absent [6]. The recent proliferation of large machine-readable corpora has enabled new frequency-informed studies of words and n-grams that have expanded our knowledge of language use in a variety of settings, from the Google Books N-gram Corpus and the introduction of "culturomics" [7], to availability and analysis of Twitter data [8]. However, routine formulae, or multi-word expressions that cannot be reduced to a literal reading of their semantic components, remain notoriously averse to reliable identification despite carrying high degrees of symbolic and indexical meaning [9]. It is, for instance, much easier to chart a probability distribution of single words or n-grams than complex lexicon-dependent utterances such as proverbs, conventional metaphors, or idioms.

1.1 Proverbs

Perhaps the most recognizable routine formulae are proverbs and their close cousin, idioms. Centuries of the study of proverbs (paremiology) have shown their importance in language and culture, and that they are immensely popular among the folk [10]. Proverbs are generally metaphorical in their use, and map a generic situation described by the proverb to an immediate context. In light of challenges in developing reliable instruments for measurement and quantification of figurative language, research would greatly benefit, as it has with words, from a better understanding of the frequency and dynamics of proverb use in texts. By applying new methodologies in measuring frequency and probability distributions, this study seeks to contribute to this endeavor.

Before embarking, it is worthwhile to detail a more precise definition of the proverb. Though there is still some debate, it is widely agreed that proverbs are popular sayings that offer general advice or wisdom. However, naturally not all such sayings are proverbs. Many attempts at more precise definitions have been made, perhaps simplest being that of Gallacher: "A proverb is a concise statement of an apparent truth which has [had, or will have] currency among the people." This definition, while convenient, leaves out some important features, like their metaphoricity, and their dependence on context [11].

Mieder's definition is perhaps the most useful for our present purposes: "Proverbs [are] concise traditional statements of apparent truths with currency among the folk.

More elaborately stated, proverbs are short, generally known sentences of the folk that contain wisdom, truths, morals, and traditional views in a metaphorical, fixed, and memorizable form and that are handed down from generation to generation [11].

Proverbs maintain a particular relationship with their context of use that provides a fruitful domain for frequency and probability analysis. An important part of the proverb is the context in which it is used. The metaphorical property of a proverb need not only have to do with the proverb itself (as in the proverb/metaphor "war is hell", in which war is compared to hell within the proverb). In general the use of a proverb is metaphorical in context, meaning that the proverb offers wisdom about a current situation via a metaphoric comparison to a proverbial one [11]. For instance, while the proverb "still waters run deep" can be interpreted as a literal statement, the phrase may be used to caution someone against taking a seeming calm for granted, as it may belie unseen dangers. As with many other proverbs, it is hard to imagine anyone using the proverb "you can't put lipstick on a pig" in any literal or pragmatic context. Rather, these phrases offer wisdom embodied in the culture as opposed to that of the speaker. In this way proverbs may be used generically without proffering personal expertise.

Indeed, proverbs are necessarily ambiguous enough to offer wisdom in any number of situations. Michael Liebler argued that this ambiguity paradoxically gives proverbs the function of disambiguating situations in which they are used. In part due to their role as cultural rather than individual wisdom, they can be invoked impersonally as a way of clarifying a complex reality [12]. As such, part of Winick's definition of the

proverb is that they "address recurrent social situations in a strategic way" [11].

It is important to note the distinction between proverbs and idioms. An example of an idiom would be the phrase "red herring" (denoting a misleading subject). The meanings of idioms, like proverbs, often cannot be ascertained from the meanings of their component words. But unlike proverbs, idioms are often not complete sentences, require context, and need not reference a paradigmatic situation. Proverbs on the other hand represent a complete situation and offer some sort of general wisdom. The boundary between the two however is rather fuzzy and contains many proverbial idioms, and idiomizations of proverbs, and proverbial expressions. For instance the proverb "every cloud has its silver lining", is perhaps more well known by its idiomatic reduction "silver lining". In fact, people may use the idiom without any knowledge of the proverb. The present study chooses to focus primarily on expressions of full proverbs, and not their idiomatic uses. As previous studies have shown, it is possible to investigate the manipulations and idiomizations of individual proverbs [6, 13], and part of this study is devoted to continuing that work. However, the present study's attempts are limited, and further research into flexible searches or other identification methods would be worthwhile in future work.

Metaphor and idiom identification and comprehension are an open area of research in machine learning and NLP (Natural Language Processing) [14, 15]. In general, metaphors and metaphorical speech are difficult to identify, and do not occur in consistent repeated phrasings. Whereas in "bag-of-words" methods, one is allowed the tacit assumption that most of these words are represented in the lexicon of the

language in the search for routine formulae, one must access the lexicon as an essential step in verifying a phrase's meaningfulness. Furthermore, the source and target domains of their mapping are seldom explicit (as described in Lakoff and Johnson's Conceptual Metaphor Theory) [16, 17]. However, proverbs generally appear in the same recognizable format, and in the form of a full, self-contained sentence. Prospectively, understanding of the conceptual mapping involved in proverb use may provide a useful step towards general understanding of metaphors in the above fields [18, 19].

The flexible uses of the proverb have helped make it an essential part of language and communication, literature, discourse, and media [10]. Interest in the collection and study of proverbs dates back to at least the ancient Greeks and Sumerians. Erasmus famously collected proverbs. In English literature, the proverb has been an important device for many famous authors, among them Geoffrey Chaucer, William Shakespeare, Oscar Wilde, and Agatha Christie [20, 21].

Even modern politics attest to the continued relevance of the proverb. In politics, proverbs have been employed as a way to communicate succinctly and persuasively with the populace. Early American politicians like Benjamin Franklin used proverbs to help shape a national identity and character, as with his still widely read/cited *Poor Richard's Almanac*. Abraham Lincoln employed proverbs in his famous speeches surrounding the American Civil War and Emancipation. During the Second World War, Churchill, Truman, and Hitler all famously used proverbs in their speeches and slogans [22]. During Emancipation and the American civil rights movement respectively, proverbs were used by Frederick Douglas, and Martin Luther King Jr., to

motivate the people and communicate moral values [22]. Even today, dominant political figures like Barack Obama, Hillary Clinton, and Bernie Sanders utilize proverbs to great effect [23], and political and religious interests try to shape which proverbs our children are taught in school [24].

1.2 Quantitative approaches to the provers

This is by no means the first quantitative study of proverb use. Permiakov called for demographic studies of proverb knowledge to gather an impression of which proverbs were being used by the folk, in the interest of establishing a paremiological minimum: a minimum lexicon of proverbs for a language [25]. Subsequent interest in proverb knowledge in psychology and folklore resulted in several studies conducted in the United States. Early studies by Albig and Bain found that, of the American college students surveyed, they could recall on average between 25 and 27 distinct proverbs, many of which were common among participants [26, 27]. A more recent study by Haas observed proverb familiarity among college students in several regions of the US. They performed experiments in both proverb generation and proverb recognition. Notably, students could recognize more proverbs than they could recall on their own [28].

Apart from the lexicographic collection of proverbs from texts, several attempts have been made to quantify and characterize their use. Whiting, in his assiduous collection of proverbs from texts in "Modern Proverbs and Proverbial Sayings" [29], kept track of the frequency with which they were encountered. Norrick attempted a man-

ual search for proverb frequency, though he was constrained to only using proverbs starting with the letter f, and used a relatively small text [30]. In the first serious computational analysis of proverb frequency, Lau searched for and counted instances of proverbs in newspapers in the Lexis/Nexis ALLNWS database [31].

David Cram theorized that proverbs, acting as self-contained lexical units, were employed much in the same way that words are, and that their use involved a "lexical loop" where the speaker accesses the lexicon in addition to the syntax when forming a text. As such, in the case of proverbs (and phrasal idioms), one ought to "analyze a syntactic string as a single lexical item" [32].

Moon's exhaustive early study of fixed expressions and idioms (denoted FEIs) in the Oxford Hector Pilot Corpus (OHPC) did just that [13]. His study represents the first serious attempt to apply the new tools of computational linguistics to routine formulae. He searched the OHPC (a precursor to the British National Corpus or BNC) for instances of 6776 FEIs from the Collins Cobuild English Language Dictionary. It is worth noting that at the time, there were few machine-readable English phraseological lexica. Though proverbs consisted of only 3.5% of the searched phrases (240), 19% of the expressions found in the corpus were proverbial expressions, the second most common subtype behind "simple expressions" (70%). Of the proverbs found, 59% were deemed metaphorical. Moon notes that exploitation of FEIs are easy to miss, and uses the proverb "a bird in the hand is worth two in the bush" as an example.

Significantly, Moon noted that journalism was over-represented in the corpus, and

that the results did not represent the distributions of these FEIs in English as a whole. This and other similar caveats inspired the present study to observe genrespecific corpora separately, and compare after analysis.

Čermák's essay collection "Proverbs: Their Lexical and Semantic Features" contains several essays that deal with the distribution of proverbs in the British National Corpus [6]. In Čermák's pioneering essays, he searches for occurrences of English proverbs in the BNC corpus (100 million words) [33]. In this study, even the most common proverbs seem to occur relatively infrequently. For example, "easier said than done" is the most common, appearing 62 times in the entire corpus. His study discusses the relevance of corpus occurrence to a paremiological minimum (He uses a limited proverb list from Wiktionary). Another study focuses on text introducers to various proverbs using collocation analysis. (Čermák notably created/spearheaded one of the first machine-readable phrasaeological lexica in the "Czech Idiom Dictionary" (1994).)

Čermák relates frequency dictionaries to discussions of a paremeological minimum. Should proverb frequency in large corpora be taken into account when judging that minimum? Of course, there are problems with this approach as well: proverbs rely heavily on oral tradition, and are prone to frequent corruptions and purposeful exploitations. As such there is no guarantee that a search of a given phrasing of a proverb will capture all, if any, of its occurrences in a text. There are ways around this on an individual basis, but it depends on the proverb: some employ parallel structures (like "good X make good X"), or have popular idiomizations (like "silver

lining").

Most recently, in an introductory paremiology textbook, [34] Steyer outlined a process general corpus linguistic method for studying proverbs, similar to Moon and Čermák. The present study expands on the above literature, including much larger corpora and proverb datasets.

Should the ambition be to find these distributions in English as a whole? Clearly use of these phrases is context-dependent, it seems unlikely inter-contextual searches will yield greater insight than single-genre searches. Instead, frequency dynamics and distributions in separate corpora from differing contexts may be more informative.

1.3 From Data to Language and Cul-

The present study of proverbs from a corpus linguistic point of view focuses on two problems: 1) How does frequency of proverb use compare across proverbs, and does that distribution echo previous findings in linguistics? and 2) what stories emerge once the dimension of time is added to our observations of the frequency of proverb use in these corpora? Can shifts in popularity be related to known events, or can our knowledge of the history of proverb use be advanced through these methods?

One of the foundational events in the study of complex systems was G.K. Zipf's

early study on laws of scaling in language and other social phenomena (Human Behaviour and the Principle of Least Effort)[2]. Indeed as early as 1996, natural language (in the context of computational linguistics) was cited explicitly as an example of the recently coined "complex adaptive systems" [3]. It was first observed by Zipf that the rank distribution of words in a text follows a power law $F(r) = cr^{-\alpha}$, where r is a word's rank, F(r) is its frequency, with $\alpha = 1$. While primary interest here is paid to its appearance and seeming ubiquity in language, the same class of distributions have been observed in such wide-ranging phenomena as social networks, power grids, biology, physics, psychology, sociology, urban planning, engineering, and academic citations [35, 36].

Several studies have addressed possible mechanisms for the emergence of these distributions from empirical data. Notably, work by Dodds et al. showed that the distribution results from a Simon competition model, in which the first mover has an advantage [37]. In this case the older proverbs may have a competitive edge in their proliferation and popularity. Cancho et al. showed in a language generating genetic algorithm that optimal results for both low speaker and receiver effort followed a Zipf distribution [38].

While Zipf observed this phenomenon for words in a text, it has since been observed that individual words in a large corpus follow a broken power law distribution and do not strictly adhere to Zipf's law [4]. Several attempts have been made to generalize the original Zipf distribution. Benoit Mandelbrot derived an analogous distribution using information theory, dubbed the Zipf-Mandelbrot distribution [39].

More recently, Cancho and Sole formalized a broken power law distribution with two distinct scaling regimes [5].

One shortcoming noted in many evaluations of Zipf's law in text is that power law scaling breaks down toward the tail of these empirical distributions. Recent work by Williams et al. [4] however, showed that power law scaling holds over more orders of magnitude when randomly partitioned phrases are used rather than individual words. That study also suggested a refocusing of corpus linguistic attention from words to phrases as essential elements of language. Further work by Williams et al. [40] suggested that changes in scaling in Zipf distributions of large corpora can be attributed to text mining. Few, if any, attempts have been made to apply Zipf's law to phraseological lexica.

With large amounts of newly digitized text, corpus linguistics and lexicology/lexicography have seen renewed wider interest, and new results. Can these methods be used to tell new stories that are of interest to those working in the humanities? And in particular, how can that work embed itself into the existing wealth of knowledge accrued by those disciplines. In this case, how can computational work on proverbs situate itself in the existing knowledge-base of paremiology?

This study uses temporal and frequency data to observe the dynamics of proverb use over time in several corpora. Interest in such changes in cultural phenomena over time has driven much digital cultural scholarship. In their seminal 2011 paper, Michel et al. discussed the newly created Google Books corpus, and coined the term "cultur-

omics" to describe the nascent discipline concerned with observable trends in the use of n-grams over time [7]. They present several convincing case studies, among them trends in the use of "influenza" with historical outbreaks, and the use of geographical and antagonistic terms alongside the history of the American Civil War. These case studies make use of time series data and relative frequency to tell complex stories of interest from simple queries.

However, Pechenick et al. note that there are issues with Google Books' representation of culture: books are not organized by popularity, and each book appears only once. As a result, the linguistic contributions of the most popular books are weighted equally with the least popular [41]. Additionally, the increase in volume of scientific publications in the last century causes the last century of English as a whole to be relatively skewed towards that genre. For instance, hugely influential books like To Kill a Mockingbird, I Know Why the Caged Bird Sings, Mockingjay, or Harry Potter and the Order of the Phoenix are only represented once, and share the same weight as any other book. In the last century, the rise in volume of scientific and academic publication drastically increased the relative influence of this type of writing. The present study examines only the English Fiction subset of the corpus.

Other work by Reagan et al. utilized the timelines within texts to evaluate the emotional arc of a text, given word valence (sentiment) data. Inspired by Kurt Vonnegut's rejected Master's thesis (in Anthropology) on the shapes of stories, they found that indeed the emotional arcs of most stories in the Gutenberg corpus could be reduced to a handful of paradigmatic shapes [42].

Work by Underwood et al. used historical use of gendered names and words to reveal trends in gender representation in literature using data from the HathiTrust digital library citeunderwood_t rans formation_n odate.

StoryWrangler, a tool recently developed by Alshaabi et al. allows users to explore the temporal dynamics of n-grams found on Twitter [8]. Using a dataset reflecting a random 10% of Twitter since 2008 (presently over 150 billion tweets), Storywrangler tracks the prevalence of n-grams on a daily scale. N-grams are portrayed via rank by popularity, and convey the rise/dynamics of President Trump (further depicted in the PoTUSometer)[43], or the meteoric rise, and continued influence of Justin Bieber (of surprising relevance to this work). Unlike the Google Books N-gram Corpus, Story-Wrangler is notable in its ability to track phrases in both original tweets and retweets, conveying aspects of popularity through amplification.

Beyond simple words and phrases, data have been used to track the progression of ideas. For instance, Leskovec et al.'s paper on "meme-tracking" tracked the progression and mutation of popular sayings as they proliferated through news reporting and blogging [44].

Recently, "Computational Folkloristics" has gained recognition as an area of study, with a 2016 issue of the *Journal of American Folklore* being devoted to the subject [45]. Using classification, networks, geographical data, temporal data, and digitized text, folklorists and other interested academics have explored new possibilities in

understanding texts and cultural history. The Danish Folklore Nexus developed by Abello et al. provides tools for large-scale analysis of Danish folk tales and stories, aiding in classification of stories, or mapping their similarity to others through networks. Tools like this can augment traditional methods of studying folklore, using data-driven methodology to guide future avenues of folklore research [46]. This represents a paradigmatic example of a computational tool participating in the continued discourse around folklore, without being an end in and of itself.

Chapter 2

METHODS

In an effort to quantify the ecology of proverbial language, a list of over 14,000 proverbs was obtained from Mieder's *Dictionary of American Proverbs* [1]. Proverbs were stored in an SQL database for ease of access, and matched for frequency with four distinct corpora:

- The Gutenberg Corpus (English)
- The $The\ New\ York\ Times\ (1988-2007)$
- The Google Books N-gram Corpus (1800-2000)
- Twitter (2008-2020)

2.1 Corpora

2.1.1 Gutenberg

The Gutenberg corpus comprises over 60,000 collected published documents spanning several centuries. This study restricted its use to the subset of documents in English. As the metadata for the Gutenberg corpus does not consistently contain date of original publication, temporal data were collected using author birth dates (gathered from the Guterbergr library for R) [47]. These were used in place of publication dates, as the publication dates in the corpus seldom represent the original publication, instead they represent the digitized edition. For temporal analysis, documents without authors and their birth dates were omitted.

The Gutenberg corpus comes with several caveats, firstly that works were curated by perceived importance. Works also disproportionately represent the 18th and 19th centuries, and for this reason much of our work with Gutenberg focuses on this period. Several authors have much of their extensive oeuvre represented in the corpus (e.g., Anthony Trollope, Mark Twain), which could compromise a more objective view of English writing tendencies of the period.

2.1.2 The New York Times

Data for the *New York Times* were gathered from the *New York Times* Annotated Corpus of 1.8 million articles from 1987-2007 [48]. The data are organized in NTIF

(News Industry Text Format) formatted XML-readable documents. The corpus includes obituaries and other short pieces in addition to more traditional news articles.

2.1.3 Google

This study used the English Fiction Google n-grams corpus from 2020 (freely available from their website). The data consist of every n-gram that appears at least 40 times in its set of millions of digitized books. For each n-gram the corpus provides on each year it appears in the dataset, the frequency with which it appeared that year, and the number of documents it appeared in that year [7].

2.1.4 Twitter

Data for Twitter (as of January 2021) were accessed through the Vermont Complex Systems Center's StoryWrangler tool, and were case insensitive [8]. StoryWrangler receives 1/10th of every day's tweets (including retweets), and organizes n-grams by rank and frequency. Data for 2 and 3-gram proverbs were obtained though the tool.

2.2 Data Processing and Visualization

The data from all four corpora were processed using Python, and relied on the pandas and matplotlib libraries for organization and visualization respectively [49, 50].

In our processing of Gutenberg and the *New York Times*, punctuation in both proverbs and texts was removed. Twitter data gathered were punctuation insensitive. Regular expressions were used to capture variations in punctuation when processing the Google Books n-gram Corpus.

Where relative frequency is used, it is calculated as:

$$f_{rel} = f_t/n_t$$

, which is the frequency f for time period t divided by the number of documents n found during time period t. Zipf distributions were plotted using ranks of proverbs in a corpus, with rank 1 being the most frequent, as well as their frequency. Zipf distribution plots are shown on a log-log scale as is standard.

Networks of books and proverbs, as well as authors and proverbs, were made using books/authors as nodes, connected by proverbs they have in common. The networks are unweighted, and do not reflect instances where books/authors share multiple proverbs. Betweenness centrality in these networks is calculated as

$$b(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}},$$

or the proportion of shortest paths between any two other nodes in the network that pass through a given node.

Most processing was performed using the Vermont Advanced Computing Core (VACC) located at the University of Vermont.

Chapter 3

RESULTS AND FIGURES

3.1 ZIPF DISTRIBUTIONS

Figure 1 shows the Zipf distributions for entries from Mieder's *Dictionary of American Proverbs* in each of the corpora studied. Notably, in Gutenberg, and the *New York Times*, the distributions seem to follow a power law, as observed for words [2] and phrases [4] in previous work.

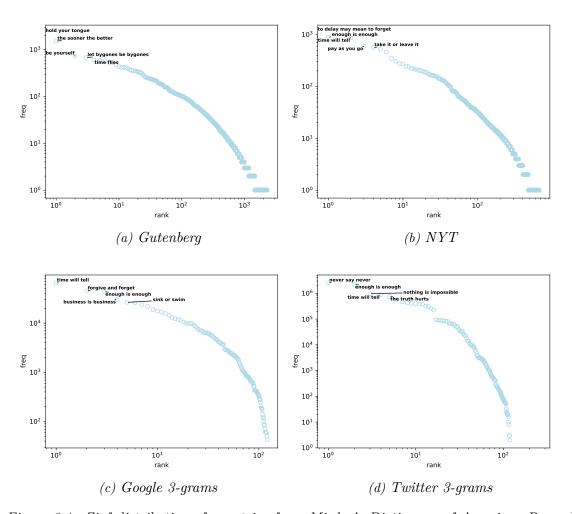


Figure 3.1: Zipf distributions for entries from Mieder's Dictionary of American Proverbs [1] in each corpus studied. Notably the distributions for Gutenberg, and NYT exhibit heavy-tailed behavior

3.2 Gutenberg

While the most popular entry in the Gutenberg corpus and the Google Books N-gram corpus was the phrase "hold your tongue", this phrase is classified as a proverbial expression rather than a proverb (its use requires outside context). For clarity of focus

the phrase has been excluded from figures in this section, though it appears in Appendix I. "Sink or swim", another proverbial expression, has been left in. In light of the limitations of the Gutenberg corpus detailed in Methods, it is difficult to make claims about the trends of proverb use over time (Figure 2). However, it is clear from the data shown in Figure 1 that proverbs appear in a remarkable portion of the documents in the corpus. "The sooner the better" for example, appears in nearly one in every ten documents in the early 1800s.

The data for proverbs in the Gutenberg corpus were used to construct a network with documents as nodes, connected if a given proverb appears in both documents. When betweenness centrality was calculated for nodes in the network, surprisingly James Joyce's *Ulysses* had the 14th highest centrality, close to several dictionaries of proverbs and quotations, and the collected works of Mark Twain (Table 1). Creasy [51] documented Joyce's use of proverbs in *Ulysses* from a critical perspective, noting that they are often altered, and blend high and low culture in the work. As Joyce uses many fewer proverbs than a comprehensive proverbial dictionary, the book's centrality in this network implies that Joyce's use of proverbs is far from arbitrary, and that his choice of proverbs is purposefully situated in the broader context of English proverbial knowledge.

Table 3.1: The 20 most central books by betweenness centrality, from a network of books connected by shared proverbs in Gutenberg. Notably, James Joyce's Ulysses appears alongside several proverb and quotations collections, and the collected works of Mark Twain.

	book	btwn centrality
1	Dictionary of Quotations	0.043048
2	Familiar Quotations	0.022821
3	Dictionary of English Proverbs and Proverbial Phrases	0.014274
4	A Polyglot of Foreign Proverbs	0.013061
5	The Entire Project Gutenberg Works of Mark Twain	0.013041
6	French Idioms and Proverbs	0.010083
7	Roget's Thesaurus	0.009785
8	Webster's Unabridged Dictionary	0.007978
9	U.S. Copyright Renewals 1950 - 1977	0.006709
10	The Project Gutenberg Complete Works of Gilbert Parker	0.006278
11	Proverb Lore	0.006028
12	Complete Project Gutenberg John Galsworthy Works	0.003897
13	Complete Project Gutenberg Works of George Meredith	0.003660
14	Ulysses	0.003184
15	The Historical Romances of Georg Ebers	0.003168
16	Familiar Quotations	0.003007
17	The Circle of Knowledge	0.002886
18	The Complete Poetic and Dramatic Works of Robert Browning	0.002749
19	Complete Project Gutenberg Oliver Wendell Holmes, Sr. Works	0.002657
20	Motion Pictures, 1960-1969: Catalog of Copyright Entries	0.002578

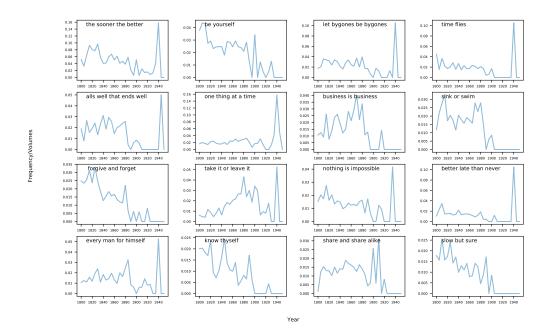


Figure 3.2: Timeseries plots for the 16 most popular proverbs in Gutenberg (ranked by overall count) by 20 year bins. The most common proverbs occur in a large portion of documents in the corpus for most of the period studied. For instance, "the sooner the better" regularly appeared in at least 5% of documents from the 19th century. Plots are ordered in the grid by rank first left to right, then top to bottom.

3.3 The New York Times

Figure 3.3: Timeseries plots for the 16 most popular proverbs in the New York Times (from 1997-2007), ranked by overall count. The gray represent the data binned by month, and the orange represent the data binned by year. The proverb "to delay may mean to forget" owes its yearly rhythm to its role as the NYT's charity tagline. The frequencies are normalized by article count (obits, and non-body included). Plots are ordered in the grid by rank first left to right, then top to bottom.

Figure 3 shows timeseries plots for the 16 most common proverbs in *New York Times* Annotated Corpus. Shown are frequency binned by month and year, and normalized by article count. All articles are included in the count including smaller articles like obituaries (the average article count is 248 per issue). It is by no means a surprise that proverbs appear frequently in journalism; in fact Lau's study found as much [31]. Not present in that work, however is a temporal dimension (not to mention a

different time period). It is clear in Figure 3 that the proverbs represented are used on a monthly or semi-monthly basis, and are rarely if ever absent in a year's publications. In these representations of proverb use, it is easier to identify use patterns and perhaps to extract narratives from their dynamics. The easiest, if somewhat trivial case is "to delay may mean to forget" owes its yearly rhythm to its role as the NYT's charity tagline. Its frequency of use increased markedly over the period studied, though stayed confined to the winter holiday months.

With the exception of "to delay may mean to forget", and consistent with accepted definitions of the proverb, the consistency with which proverbs are used in the *New York Times* suggests they are employed widely for their utility in mapping general wisdom to a specific context. Nonetheless, prominent spikes in frequency can be associated with historical events. For instance the brief several-fold increase in the use of "boys will be boys" around November of 1992 is likely attributed to a contentious and widely publicized sexual assault case at the time, which prompted additional discussion of rape culture [52, 53].

The maximum in use of "pay as you go" seems to correspond with concurrent discussion of a local gas tax levy in New Jersey, and national discussion of President Bush's second term proposed tax cuts. Its increase in use in 1996 seems to owe to discussion of the Environmental Bond Act being proposed in New York at the time [54, 55].

3.4 GOOGLE

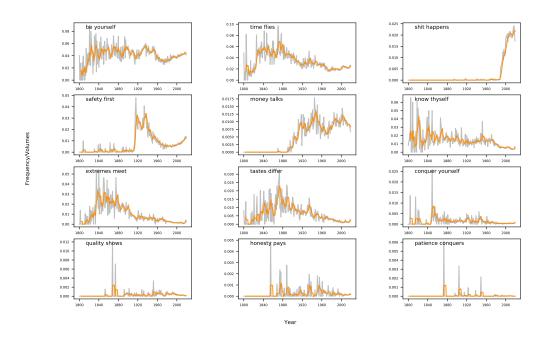


Figure 3.4: Timeseries plots for the 12 most popular 2-gram proverbs in the Google Books N-gram Corpus. The gray represent the yearly frequency, while the orange represent the five-year rolling average. The dramatic increase in use of the proverbs "shit happens" and "safety first" correspond with previous scholarship on their emergence. Plots are ordered in the grid by rank first left to right, then top to bottom.

In Figure 4 are timeseries plots for the 12 most common 2-gram proverbs in the Google N-grams corpus. Here the gray represents yearly frequency (counted once per volume), and the orange represents the five-year rolling average, normalized by the number of volumes in a given year. One can see clearly from the figure the emergence of several more recent proverbs: "safety first", "money talks", and "shit happens".

"Safety first" exhibits a precipitous rise in usage in the early 20th century. Specif-

ically, in 1912, the National Safety Council (NSC) in the US adopted the phrase as its slogan to promote standards of worker safety, though the Safety First Movement was initiated by US Steel in 1906. Its origin has been traced back to at least 1818 [23]. The data shown in Figure 4 support the history of its popularization [56, 1].

Previous scholarship on the proverb "shit happens" traced its origin to the 1944, and its rise in popularity corresponds to its humorous use as a bumper sticker, and cultural controversy (and legal battles) associated with it [57, 58]. It also famously appeared in the movie *Forrest Gump* [59].

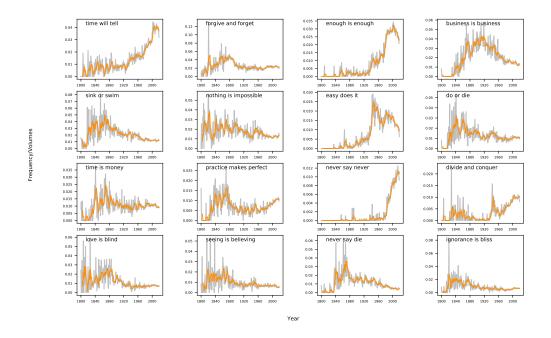


Figure 3.5: Timeseries plots for the 16 most popular 3-gram proverbs in the Google Books N-gram Corpus. The gray represents the yearly frequency, while the orange represents the 5 year rolling average. The rise in popularity of the proverb "never say never" is shown. A period of increased usage of the proverb "divide and conquer" corresponds with the World War II era. Plots are ordered in the grid by rank first left to right, then top to bottom.

Figure 5 shows timeseries plots for the 16 most popular 3-gram proverbs in the Google Books N-gram corpus. Though the proverb "never say never" originated in 1887 [1], it is evident that it gained far wider popularity in the late 1900s. Though the proverb "enough is enough" dates at least to 1546 [1], its popularity seems to vastly increase throughout the 20th century. The proverb "divide and conquer" seems to have briefly gained popularity around the World War II era.

3.5 TWITTER

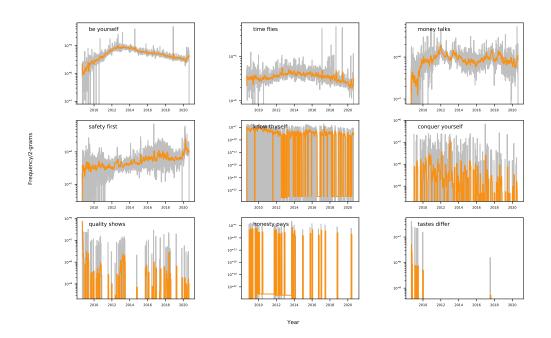


Figure 3.6: Timeseries plots for the nine most popular 2-gram proverbs on Twitter. The gray represents the daily frequency, while the orange represents the 30 day rolling average. The proverbs "be yourself" and "time flies" maintain popularity over the period studied. Notably, the "safety first" shows in increase in popularity in early 2020, possibly relating to the coronavirus pandemic. Plots are ordered in the grid by rank first left to right, then top to bottom.

On Twitter, the four most common 2-gram proverbs, on average, don't seem to exhibit much variability in their usage (Figure 6). The proverbs "be yourself" and "time flies" seem to remain above 10^{-6} , or 1 in every million 2-grams on Twitter during the period studied. An increase in usage of "safety first" in early 2020 may be related to the onset of the coronavirus pandemic during the same period.

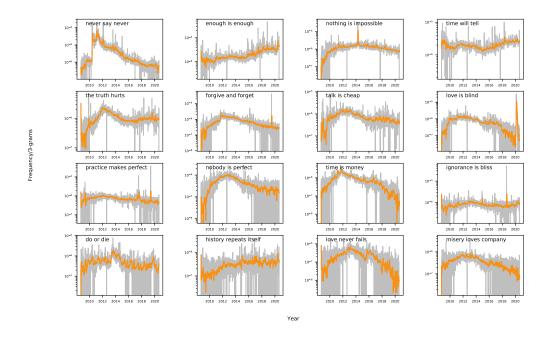


Figure 3.7: Timeseries plots for 3-gram proverbs on Twitter. The gray represents the daily frequency, while the orange represents the 30 day rolling average. The proverb "never say never" owes its meteoric rise in popularity in 2010 to popular musician Justin Bieber's single and biographical documentary of the same name. "never say never" remains the most popular proverb on Twitter until 2016, when it is supplanted by "enough is enough" which has steadily gained popularity in the last decade, owed in part to its constant use by Senator Bernie Sanders, and punctuated by reactions to tragedies related to gun and police violence. Plots are ordered in the grid by rank first left to right, then top to bottom.

Exhibited on Twitter (Figure 7), the convenience of proverbs as succinct narratives has made them useful in several titular media events in the past decade. Of note, Figure 7 shows marked shifts in frequency of "never say never", and "love is blind". "Never say never" owes its initial attention in 2010 to Justin Bieber's single of the same title (*Justin Bieber: Never Say Never*), repeated as his slogan and title of a biographical documentary. This was not the first film to utilize the proverb in its title; Sean Connery's final performance as James Bond was titled *Never Say Never*

Again.

Figure 8 shows the dynamics of "never say never" on Twitter in more detail. We observe first its meteoric rise in popularity at the time of Never Say Never's (song) release as the lead single off the soundtrack for a modern remake of the Karate Kid movie (roughly two magnitudes in a single day). At the time of the single's official release on June 8^{th} , 2010, "never say never" was the 63^{rd} most used 3-gram on Twitter. When Justin Bieber: Never Say Never was released on January 31, 2011, "never say never" was the 34^{th} most common 3-gram on Twitter; for comparison, "I love you" was 22^{nd} at the time.

Remarkably, the popularity of "never say never" on Twitter decayed so slowly that it did not reach its pre-Bieber frequency until 2016. The continued presence of the proverb in Twitter discourse suggests that in the wake of its initial rise, it was more frequently adopted to general non-Bieber usage. (A similarly popular 3-gram, non-proverbial song of that year "rock that body" appeared and disappeared from the Twitter discourse in the span of a few months). While the enormity and fervor of Bieber's fanbase at the time (a period called "Bieber fever"[60]) certainly contributed to its popularity, its continued use over a five-year period is compelling evidence that the proverb became a more integral part of the Twitter lexicon for a time.

In 2020, "Love is Blind" became the title of a literally minded reality dating show in which participants were quarantined in private rooms, only communicating via audio interfaces [61]. In this instance, the proverb was not only an apt description of the show's narrative, but a template for its formation. Additionally, it came to represent a narrative solution to the isolation imposed by the concurrent pandemic. However, the increase in the phrase's popularity seems only to have lasted for the month of the show's release, after which it seems to settle at its former rate of use. The proverb itself is ancient, and translations exist nearly every European language.

While with "never say never" (the most popular proverb on Twitter), we see a sudden rise and slow decay, we see a different pattern in the second most popular proverb, "enough is enough". From 2016 to the present, we see a steady increase in the frequency of "enough is enough" on Twitter. Recent work by Mieder attributes its renewed popularity in part to its constant use by Bernie Sanders [23]. Unlike "never say never" there does not seem to be a single event that precipitates this trend. However, an investigation into the several local maxima suggest a possible narrative correspondence. Many of these local maxima correspond to events related to either police violence or mass shootings.

Famously, survivors of the Parkland shooting in 2018 appeared on the cover of Time Magazine with a simple title: "Enough." [62]. Coverage of the March for Our Lives against gun violence in the New York Times included the title: March for Our Lives Highlights: Students Protesting Guns Say "Enough Is Enough" [63]. When protesters marched in DC in the wake of the murder of George Floyd, Politico's coverage was titled: 'Enough is enough': Thousands descend on D.C. for largest George Floyd protest yet [64]. Inasmuch as proverbs can create metaphorical mappings from

a paradigmatic situation (or narrative) onto a present one, "enough is enough" represents a compelling narrative of continued injustice, and a critical point of retaliation. However, the data from Twitter display a narrative of repeated tragedy in spite of public outcry. The proverb was most popular during the 2018 US midterm elections.

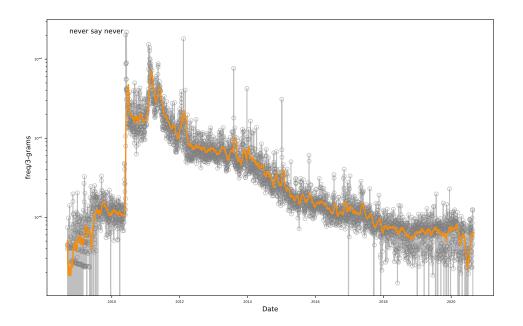


Figure 3.8: While "never say never" was already popular on Twitter as of 2008, its popularity was amplified in 2010 by the release of Justin Bieber's single entitled "Never say never", and his subsequent biographical documentary of the same name. Remarkably, it remained the most popular proverb on Twitter for almost six years, punctuated by anniversaries and reruns of the movie, until it was surpassed by "enough is enough" in 2016.

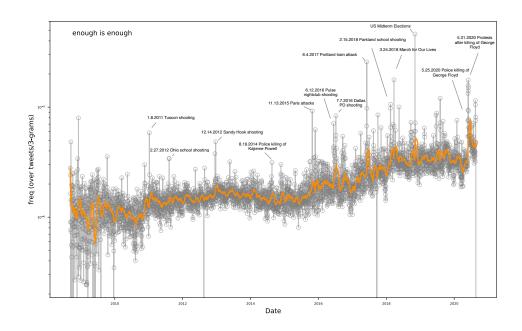


Figure 3.9: The popularity of "enough is enough" on Twitter grew steadily over the last decade, and it has been the most popular proverb on Twitter since 2016, perhaps originating from its constant use by Bernie Sanders. It has since become associated with growing protests against police brutality and gun violence. Annotations reflect violent events and protests.

Chapter 4

DISCUSSION

This study is by no means the first exploring the potential of new and growing digital databases for the future of phraseology. In fact, in one of the most recent textbooks on parameiology, there is a section on proverbs and corpus linguistics. However, as yet, there has been no large-scale effort to examine the dynamics of proverb use across corpora of several domains. Pioneering work by Čermák and Moon validated the usage computational resources to augment quantitative efforts. That work was limited by the available computational and digital resources.

This is the first study to investigate the temporal dynamics of proverb use in digitized text. The emergence of, and changes in, use of routine phrases should be of great interest to those studying language, history, and socio-technical systems.

Much attention has been paid to the use of words and n-grams in general in large corpora, but it is difficult to extract from these instances of individual narrative or metaphorical language use. Proverbs, in their tendency to act as both narrative and metaphor, and in their often relatively fixed structure, are perhaps an ideal test case for our ability to observe broader cultural narratives through the piecemeal, routine stories employed by the folk.

Through novel or context-specific words and phrases, we are able to observe discourse around specific phenomena ("pizzagate", "pandemic", or "Make America Great Again"). In contrast, though proverbs we may be able to observe how we organize specific phenomena into the paradigmatic narratives represented by proverbs.

Much of proverb scholarship has been concerned with the idea of a "paremiological minimum": a minimum proverbial lexicon for a language and culture. Certainly, as shown by Lau, and again in the present study, computational studies of the frequency of proverb use can contribute to understanding of these minima, as those proverbs which seem ubiquitous in large corpora ought to be understood by speakers of a language. Furthermore, temporal analysis of their frequency may further validate that their frequency is related to enduring currency among the folk, rather than correspondence with a specific occurrence. Another concern in paremiology and phraeseology is the origins of sayings. Work like the present study can serve to both validate and expand on previous scholarship on the history of phrases.

In the study of the statistical distribution of natural language, there exists the idea of a kernel lexicon, a subset of words that are essential to communication using a given language. Much literature on the study of culture and education has focused on one might consider a "minimum of cultural literacy". Special attention has been

paid to which proverbs constitute part of that minimum. It is clear from this study that the most common proverbs vary considerably between corpora. However, given the prevalence of these popular proverbs in their respective contexts, we can posit that English learners would benefit in their comprehension of the language if they were familiar with these proverbs.

A natural limitation of this study, and indeed any study that uses extant data to study language, is the issue of representativeness. In this study that limitation is twofold: both the lexicon for directing the search, and the data being searched are inherently limited. While The Dictionary of American Proverbs is extensive, and represents much that is known of proverbs in America, it naturally excludes new proverbs and does not account for many ways in which the structure of the proverbs it contains may be manipulated in their practical use. There are however lexical resources that address recent proverbs, for example The Dictionary of Modern Proverbs, and the methodology of this study may be readily applied to such lexica [65]. Previous studies on proverb frequency have relied on composite corpora, namely variations of the BNC (British National Corpus), which contains manually curated selections from several domains of text. The present approach of studying data from distinct domains allows for both a more limited and more useful interpretation of the results: better to claim that results are representative of proverb use on Twitter for instance, rather than proverb use in English as a whole. Certainly, fieldwork (digital and otherwise) continues to be important in identifying new proverbs and changing structures of existing proverbs. This task may be aided in the future by tools like StoryWrangler, that track n-gram rank, likely capturing new proverbs in the process. The task then would be extracting likely proverbs from these data, which would require both linguistic, cultural, and computational expertise.

Analyses of the frequency and rank of proverbs in this study verify that with ever increasing amounts of machine-readable textual data, we may produce longitudinal phraseological studies.

Furthermore, as machine/robot comprehension of natural language becomes increasingly important, this area too, would benefit from an expanded lexicon that includes proverbs and routine formulae, and understanding of metaphor may be assisted by a more basic understanding of the mapping from general to specific situations that exists in the use of proverbs.

This study is of interest to both the sciences and the humanities. As with any inter-disciplinary research this should be the goal. However, it is worth noting the ways in which the relevance of this work to each area is not entirely different. For instance, in both linguistics and computer sciences, metaphor is a notoriously tricky subject, and any piecemeal work in better understanding how we use metaphors would benefit both equally.

After all, in addition to their practical application, AI and robotics are also reflexive inquiries into the very machinations that make their biological counterparts exhibit the emulated behavior. While, the sciences are interested in using newly available large datasets to quantify cultural change, so researchers in the humanities would like

to use these new technologies to bolster their existing areas of inquiry. It is the hope of this study that, after many such studies bear fruit, the value of interdisciplinary research will not be weighed against the potential for success in one domain, but rather in its potential to bring new understanding to any facet of scholarly endeavor, at both individual and institutional scales.

BIBLIOGRAPHY

- [1] Wolfgang Mieder, Stewart A. Kingsbury, and Kelsie B. Harder, editors. *A Dictionary of American proverbs*. Oxford University Press, New York, 1992.
- [2] George Kingsley Zipf. Human behavior and the principle of least effort: an introduction to human ecology. Martino Publishing [u.a.], Mansfield Centre, Conn, 2012. OCLC: 935178490.
- [3] V.K. Balasubrahmanyan and S. Naranan. Quantitative linguistics and complex system studies*. *Journal of Quantitative Linguistics*, 3(3):177–228, December 1996.
- [4] Jake Ryland Williams, Paul R. Lessard, Suma Desu, Eric M. Clark, James P. Bagrow, Christopher M. Danforth, and Peter Sheridan Dodds. Zipf's law holds for phrases, not words. *Scientific Reports*, 5(1):12209, December 2015.
- [5] Ramon Ferrer i Cancho and Ricard V. Solé. Two Regimes in the Frequency of Words and the Origins of Complex Lexicons: Zipf's Law Revisited . *Journal of Quantitative Linguistics*, 8(3):165–173, December 2001.
- [6] František Čermák. Proverbs: their lexical and semantic features. Number volume 36 in Supplement series of Proverbium Yearbook of International Proverb

- Scholarship. "Proverbium" in cooperation with the Institute of the Czech National Corpus, the University of Vermont, Burlington, Vermont, 2014. OCLC: ocn874753128.
- [7] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, The Google Books Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, and E. L. Aiden. Quantitative Analysis of Culture Using Millions of Digitized Books. *Science*, 331(6014):176–182, January 2011.
- [8] Thayer Alshaabi, Jane L. Adams, Michael V. Arnold, Joshua R. Minot, David R. Dewhurst, Andrew J. Reagan, Christopher M. Danforth, and Peter Sheridan Dodds. Storywrangler: A massive exploratorium for sociolinguistic, cultural, socioeconomic, and political timelines using Twitter. arXiv:2007.12988 [physics], September 2020. arXiv: 2007.12988.
- [9] Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann Copestake, and Dan Flickinger. Multiword Expressions: A Pain in the Neck for NLP. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Alexander Gelbukh, editors, Computational Linguistics and Intelligent Text Processing, volume 2276, pages 1–15. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. Series Title: Lecture Notes in Computer Science.
- [10] Wolfgang Mieder. Proverbs are never out of season: popular wisdom in the modern age. Number v. 7 in International folkloristics. Peter Lang, New York, 2012. OCLC: ocn781594056.
- [11] Wolfgang Mieder. "Proverbs speak louder than words": folk wisdom in art, culture, folklore, history, literature and mass media. P. Lang, New York, 2008.

- [12] Michael D. Lieber. Analogic Ambiguity: A Paradox of Proverb Usage. In Wolfgang Mieder, editor, *Wise words: essays on the proverb*, number vol. 1638 in Garland reference library of the humanities. Garland, New York, 1994.
- [13] Rosamund Moon. Fixed expressions and idioms in English: a corpus-based approach. Oxford studies in lexicography and lexicology. Clarendon Press; Oxford University Press, Oxford: New York, 1998.
- [14] Afsaneh Fazly, Paul Cook, and Suzanne Stevenson. Unsupervised Type and Token Identification of Idiomatic Expressions. Computational Linguistics, 35(1):61– 103, March 2009.
- [15] Ekaterina Shutova. Models of metaphor in NLP. In *Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics*, pages 688–697, Uppsala, Sweden, July 2010. Association for Computational Linguistics.
- [16] George Lakoff and Mark Johnson. Metaphors we live by. Univ. of Chicago Press, Chicago, Ill., 5. [dr.] edition, 1985. OCLC: 178959609.
- [17] Daniel Andersson. Understanding Figurative Proverbs: A Model Based on Conceptual Blending. *Folklore*, 124(1):28–44, April 2013.
- [18] Gözde Ozbal, Carlo Strapparava, Serra Sinem Tekiroglu, and Daniele Pighin. Learning to Identify Metaphors from a Corpus of Proverbs. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2060–2065, Austin, Texas, 2016. Association for Computational Linguistics.
- [19] Gözde Özbal, Carlo Strapparava, and Serra Sinem Tekiroglu. PROMETHEUS:

 A Corpus of Proverbs Annotated with Metaphors. *LREC*, Proceedings of

- the Tenth International Conference on Language Resources and Evaluation (LREC'16):3787–3793, 2016.
- [20] Roger D. Abrams and Barbara A. Babcock. The Literary Use of Proverbs. In Wolfgang Mieder, editor, Wise words: essays on the proverb, number vol. 1638 in Garland reference library of the humanities. Garland, New York, 1994.
- [21] James Obelkevich. Proverbs and Social History. In Wolfgang Mieder, editor, Wise words: essays on the proverb, number vol. 1638 in Garland reference library of the humanities. Garland, New York, 1994.
- [22] Wolfgang Mieder. Proverbs are the best policy: folk wisdom and American politics. Utah State University Press, Logan, Utah, 2005.
- [23] Wolfgang Mieder. "Right makes might": Proverbs and the American Worldview. Indiana University Press, Bloomington, Indiana, 2019.
- [24] Jay Mechling. "Cheaters Never Prosper" and Other Lies Adults Tell Kids: Proverbs asnd the Culture Wars over Character. In Kimberly J. Lau, Peter Tokofsky, and Stephen D. Winick, editors, What goes around comes around: the circulation of proverbs in contemporary life: Essays in Honor of Wolfgang Mieder. Utah State University Press, Logan, 2004.
- [25] Grigorii L'vovich Permiakov. On the Question of a Russian Paremiological Minimum. *Proverbium*, 6:91–102, 1989.
- [26] William Albig. Proverbs and Social Control. Sociology and Social Research, (15), 1931.

- [27] Read Bain. Verbal Stereotypes and Social Control. Sociology and Social Research, (23), 1939.
- [28] Heather A. Haas. Proverb Familiarity in the United States: Cross-Regional Comparisons of the Paremiological Minimum. *Journal of American Folklore*, 121(481):319, July 2008.
- [29] Bartlett Jere Whiting. *Modern Proverbs and Proverbial Sayings*. 2014. OCLC: 1112797799.
- [30] Neal R. Norrick. How Proverbs Mean: Semantic Studies in English Proverbs. DE GRUYTER MOUTON, Berlin, New York, January 1985.
- [31] Kimberly J. Lau. "It's About Time": The Ten Proverbs Most Frequently Used in Newspapers and Their Relation to American Values. *Proverbium*, 13:135–59, 1996.
- [32] David Cram. The Linguistic Status of the Proverb. In Wolfgang Mieder, editor, Wise words: essays on the proverb, Garland reference library of the humanities. Garland, New York, 1994.
- [33] British national corpus, 2001.
- [34] Kathrin Steyer. Proverbs from a Corpus Linguistic Point of View. In Hrisztalina Hrisztova-Gotthardt and Melita Aleksa Varga, editors, Introduction to Paremiology: A Comprehensive Guide to Proverb Studies. DE GRUYTER OPEN, Warsaw, Poland, January 2015.
- [35] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-Law Distributions in Empirical Data. *SIAM Review*, 51(4):661–703, November 2009.

- [36] Gustavo Martínez-Mekler, Roberto Alvarez Martínez, Manuel Beltrán del Río, Ricardo Mansilla, Pedro Miramontes, and Germinal Cocho. Universality of Rank-Ordering Distributions in the Arts and Sciences. *PLoS ONE*, 4(3):e4791, March 2009.
- [37] Peter Sheridan Dodds, David Rushing Dewhurst, Fletcher F. Hazlehurst, Colin M. Van Oort, Lewis Mitchell, Andrew J. Reagan, Jake Ryland Williams, and Christopher M. Danforth. Simon's fundamental rich-get-richer model entails a dominant first-mover advantage. *Physical Review E*, 95(5):052301, May 2017.
- [38] R. F. i. Cancho and R. V. Sole. Least effort and the origins of scaling in human language. Proceedings of the National Academy of Sciences, 100(3):788–791, February 2003.
- [39] Benoit Mandelbrot. An Informational Theory of the Statistical Structure of Languages. In W Jackson, editor, Communication Theory, pages 486–502. Academic Press, Princeton, 1953.
- [40] Jake Ryland Williams, James P. Bagrow, Christopher M. Danforth, and Peter Sheridan Dodds. Text mixing shapes the anatomy of rank-frequency distributions. *Physical Review E*, 91(5):052811, May 2015.
- [41] Eitan Adam Pechenick, Christopher M. Danforth, and Peter Sheridan Dodds. Characterizing the Google Books Corpus: Strong Limits to Inferences of Socio-Cultural and Linguistic Evolution. PLOS ONE, 10(10):e0137041, October 2015.
- [42] Andrew J Reagan, Lewis Mitchell, Dilan Kiley, Christopher M Danforth, and

- Peter Sheridan Dodds. The emotional arcs of stories are dominated by six basic shapes. *EPJ Data Science*, 5(1):31, December 2016.
- [43] P. S. Dodds, J. R. Minot, M. V. Arnold, T. Alshaabi, J. L. Adams, A. J. Reagan, and C. M. Danforth. Computational timeline reconstruction of the stories surrounding Trump: Story turbulence, narrative control, and collective chronopathy. arXiv:2008.07301 [physics], January 2021. arXiv: 2008.07301.
- [44] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking and the dynamics of the news cycle. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining KDD '09, page 497, Paris, France, 2009. ACM Press.
- [45] Timothy R. Tangherlini. Big Folklore: A Special Issueon Computational Folkloristics. The Journal of American Folklore, 129(511):5, 2016.
- [46] James Abello, Peter Broadwell, and Timothy R. Tangherlini. Computational folkloristics. *Communications of the ACM*, 55(7):60–70, July 2012.
- [47] David Robinson. Gutenbergr, 2020. R package version 0.2.0.
- [48] Evan Sandhaus. The New York Times Annotated Corpus. type: dataset.
- [49] The pandas development team. pandas-dev/pandas: Pandas, February 2020.
- [50] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007.
- [51] M. Creasy. 'To Vary the Timehonoured Adage': Ulysses and the Proverb. *English*, 57(217):65–81, January 2008.

- [52] William Glaberson. Assault Case Renews Debate on Rape Shield Law. The New York Times, November 1992.
- [53] Robert Hanley. Jury Chosen in Glen Ridge Assault Trial. The New York Times, October 1992.
- [54] Vote Yes on the Bond Act. The New York Times, October 1996.
- [55] Jaqueline Henry. How the Money Was Spent in Previous Environmental Bond Acts. *The New York Times*, October 1996.
- [56] Paul Swuste, Coen van Gulijk, and Walter Zwaard. Safety metaphors and theories, a review of the occupational safety literature of the US, UK and The Netherlands, till the first part of the 20th century. Safety Science, 48(8):1000–1018, October 2010.
- [57] Wolfgang Mieder. *Proverbs: a handbook*. Greenwood folklore handbooks. Greenwood Press, Westport, Conn, 2004.
- [58] Supreme Court of Georgia. Cunningham v. state 1991, Feb 1991.
- [59] Robert Zemeckis. Forrest Gump, 1994.
- [60] Valerie Tweedle and R. J. Smith. A mathematical model of bieber fever: The most infectious disease of our time? 2012.
- [61] Love Is Blind, February 2020.
- [62] Charlotte Alter. The Young and the Relentless. TIME, March 2018.

- [63] March for Our Lives Highlights: Students Protesting Guns Say 'Enough Is Enough'. *The New York Times*, March 2018.
- [64] Evan Semones. 'Enough is enough': Thousands descend on D.C. for largest George Floyd protest yet. *POLITICO*, June 202.
- [65] Charles Clay Doyle, Wolfgang Mieder, and Fred R. Shapiro. The Dictionary of Modern Proverbs. Yale University Press, New Haven, 2012.

APPENDIX A

Additional Figures

The following figures are in the same format as the timeseries plots in the body, but show data for proverbs ranked 17-32 in their respective corpora.

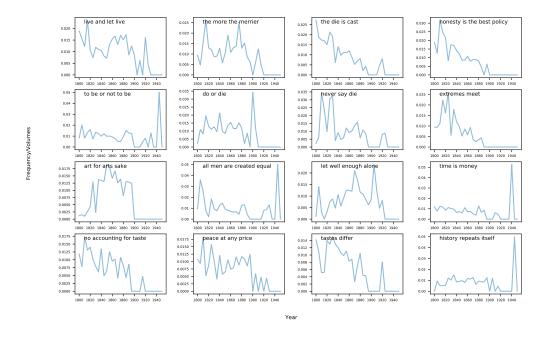


Figure A.1: Timeseries plots for the 17-32 most popular proverbs in Gutenberg by 20 year bins.

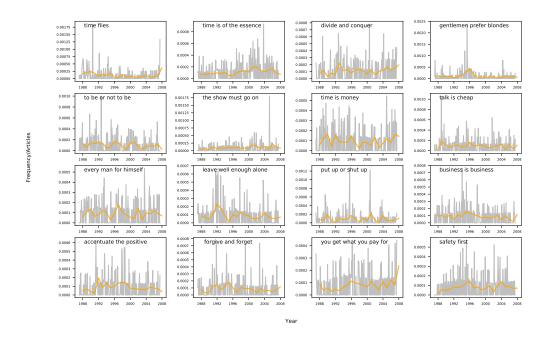


Figure A.2: Timeseries plots for the 17-32 most popular proverbs in The New York Times. The gray represent the data binned by month, and the orange represent the data binned by year.

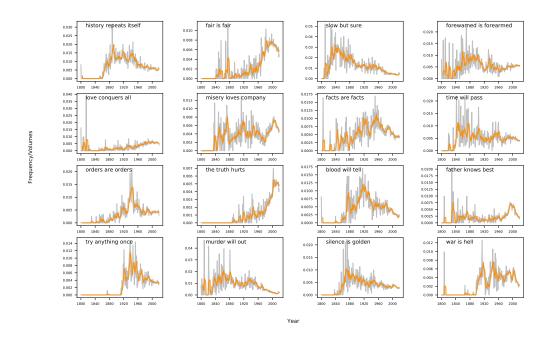


Figure A.3: Timeseries plots for the 17-32 most popular 3-gram proverbs in the Google Books N-gram Corpus. The gray represents the yearly frequency, while the orange represents the 5 year rolling average.

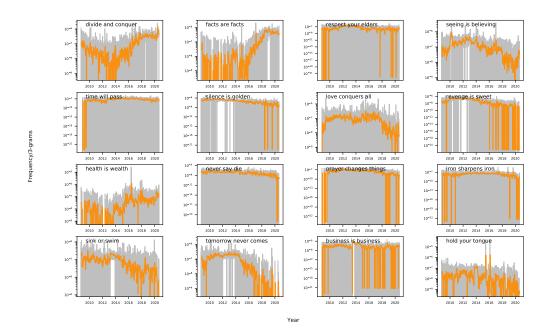


Figure A.4: Timeseries plots for the 17-32 most popular proverbs on Twitter. The gray represents the daily frequency, while the orange represents the 30 day rolling average.

Appendix B

FREQUENCY TABLES

Below are frequency tables for the total count of the 50 most popular proverbs in their respective corpora.

Table B.1: The top 50 proverbs and proverbial expressions (from the Dictionary of American Proverbs) in the entire Gutenberg Corpus.

	Proverb	Count
1	hold your tongue	2,284
2	the sooner the better	1,536
3	be yourself	739
4	let bygones be bygones	685
5	time flies	603
6	alls well that ends well	588
7	one thing at a time	580
8	business is business	534
9	sink or swim	531
10	forgive and forget	477
11	take it or leave it	436
12	nothing is impossible	421
13	better late than never	419
14	every man for himself	414
15	know thyself	394
16	share and share alike	372
17	slow but sure	363
18	live and let live	356

19	the more the merrier	352
20	the die is cast	348
21	honesty is the best policy	339
22	to be or not to be	335
23	do or die	322
24	never say die	319
25	extremes meet	289
26	art for arts sake	286
27	all men are created equal	265
28	let well enough alone	260
29	time is money	250
30	no accounting for taste	249
31	peace at any price	244
32	tastes differ	241
33	history repeats itself	235
34	boys will be boys	235
35	charity begins at home	231
36	love is blind	228
37	the end justifies the means	227
38	one good turn deserves another	224
39	blood is thicker than water	221
40	not wisely but too well	219
41	all things work together for good	213
42	first come first served	201
43	keep the wolf from the door	196
44	dead men tell no tales	195
45	the wages of sin is death	191
46	seeing is believing	187
47	keep a stiff upper lip	186
48	ignorance is bliss	185
49	where theres a will theres a way	183
50	murder will out	179

Table B.2: The top 50 proverbs and proverbial expressions (from the Dictionary of American Proverbs) in The New York Times from 1987-2007

	Proverb	Count
1	to delay may mean to forget	1,075
2	enough is enough	891
3	time will tell	864
4	pay as you go	597
5	take it or leave it	565
6	do or die	528
7	first come first served	463
8	be yourself	348
9	father knows best	307
10	never say never	276
11	live and let live	272
12	money talks	244
13	the sooner the better	240
14	better late than never	224
15	sink or swim	218
16	boys will be boys	213
17	time flies	205
18	time is of the essence	204
19	divide and conquer	198
20	gentlemen prefer blondes	192
21	to be or not to be	187
22	the show must go on	185
23	time is money	174
24	talk is cheap	167
25	every man for himself	166
26	leave well enough alone	163
27	put up or shut up	161
28	business is business	159
29	accentuate the positive	157
30	forgive and forget	151
31	you get what you pay for	142
32	safety first	142
33	too little and too late	140
34	there is no easy way	132
35	let the chips fall where they may	131
36	all men are created equal	129

37	the more the merrier	128
38	history repeats itself	122
39	let bygones be bygones	117
40	one thing at a time	113
41	let nature take its course	106
42	never say die	106
43	seeing is believing	102
44	nothing is impossible	100
45	war is hell	95
46	the worst is yet to come	85
47	actions speak louder than words	82
48	gone but not forgotten	82
49	to each his own	80
50	let the buyer beware	80

Table B.3: The top 50 3-gram proverbs and proverbial expressions (from the Dictionary of American Proverbs) in the Google Books N-gram Corpus.

	Proverb	Count
1	hold your tongue	131,426
2	time will tell	65,640
3	forgive and forget	45,189
4	enough is enough	43,149
5	business is business	30,101
6	sink or swim	26,315
7	nothing is impossible	$25,\!695$
8	easy does it	23,655
9	do or die	21,672
10	time is money	18,856
11	practice makes perfect	17,469
12	never say never	16,649
13	divide and conquer	15,673
14	love is blind	14,439
15	seeing is believing	12,951
16	never say die	12,329
17	ignorance is bliss	11,838
18	history repeats itself	$11,\!529$
19	fair is fair	$10,\!456$
20	slow but sure	$9,\!898$
21	forewarned is forearmed	9,860
22	love conquers all	9,839
23	misery loves company	9,654
24	facts are facts	8,944
25	time will pass	8,389
26	orders are orders	7,620
27	the truth hurts	$7,\!292$
28	blood will tell	6,840
29	father knows best	6,783
30	try anything once	$6,\!388$
31	murder will out	6,349
32	silence is golden	$6,\!278$
33	war is hell	6,136
34	business before pleasure	5,811
35	talk is cheap	5,723
36	revenge is sweet	5,400

37	familiarity breeds contempt	5,095
38	might makes right	4,768
39	consider the source	4,677
40	toe the mark	4,549
41	every little helps	4,139
42	time marches on	4,019
43	nothing is perfect	4,007
44	money is power	3,757
45	circumstances alter cases	3,668
46	respect your elders	3,644
47	gentlemen prefer blondes	2,922
48	mother knows best	2,908
49	love never fails	2,848
50	nobody is perfect	2,801

Table B.4: The top 50 proverbs and proverbial expressions (from the Dictionary of American Proverbs) on Twitter from 2008-2021.

	Proverb	Count
1	never say never	2,549,095
2	enough is enough	2,182,460
3	nothing is impossible	$978,\!533$
4	time will tell	869,662
5	the truth hurts	$748,\!285$
6	forgive and forget	$557,\!294$
7	talk is cheap	$465,\!608$
8	love is blind	426,010
9	practice makes perfect	$405,\!635$
10	nobody is perfect	399,324
11	time is money	383,632
12	ignorance is bliss	377,037
13	do or die	316,328
14	history repeats itself	307,467
15	love never fails	255,795
16	misery loves company	$226,\!217$
17	divide and conquer	94,085
18	facts are facts	$90,\!513$
19	respect your elders	89,372
20	seeing is believing	86,169
21	time will pass	84,432
22	silence is golden	82,346
23	love conquers all	80,964
24	revenge is sweet	69,820
25	health is wealth	$66,\!274$
26	never say die	65,115
27	prayer changes things	63,757
28	iron sharpens iron	57,065
29	sink or swim	50,361
30	tomorrow never comes	$50,\!297$
31	business is business	39,525
32	hold your tongue	34,344
33	nothing is perfect	34,050
34	try anything once	33,370
35	mother knows best	26,848
36	every little helps	23,672

37	never waste time	22,244
38	fair is fair	18,125
39	slow but sure	14,404
40	consider the source	14,201
41	justice is blind	11,604
42	money is power	10,186
43	time works wonders	10,079
44	time changes everything	9,512
45	like attracts like	8,320
46	familiarity breeds contempt	8,166
47	war is hell	7,439
48	easy does it	6,071
49	gentlemen prefer blondes	$5,\!273$
50	courtesy costs nothing	3,890