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Abstract

Inspired by the paper “Robust Dynamic Classes Revealed by Measuring the Response

Function of a Social System” [2] which analyzed time series of YouTube views, we present an

original method for characterizing and visualizing collective public attention using social media.

Focussing on 40 billion messages posted to twitter between September 2008 and January 2013,

we classify worldwide events into a taxonomy of 5 mathematical shapes. Words corresponding

to holidays, political figures, social movements, seasonal trends, celebrities and natural disasters

are grouped according to the rate at which their popularity rises and falls in the time series

of mentions. In the future, our method will be used to analyze the time series of phrases in

many online ecosystems, and quantify and visualize the public response to news events, natural

disasters, and policy changes.

[11]
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Chapter 0: Brief Review of Robust Dynamic Classes Revealed

by Measuring the Response Function of a Social System

Here we provide a summary and critique of the inspiring paper by Riley Crane and

Didier Sornette. It is the hope that this explanation of the study will aid in illuminating part

of the motivation (Section 1) of expanding the techniques of this study to Twitter.

This study by Crane and Sornette examined the possibility of distinct classes which

described the shape of views over time on a given YouTube video over time. As mentioned in

the original paper, the event of an individual viewing a YouTube video can be influenced, or

triggered, in many ways including chance, emails, word of mouth, links on websites, news, and

through media sources [2]. To account for this, a complex model must be used to fit an

equation to the instantaneous rate of views [2]. The model used in the paper includes two key

components, first, an exponential distribution of waiting times, and second, an equation to

model the cascading spread of information over a network structure.

To better understand the first component, it is useful to discuss basic theory on how

decisions may be made by an individual. In queuing theory, the human thought process is

modeled by a dynamic priority queue that helps individuals keep track of various

responsibilities, events, and appointments [2, 15]. When the possibility of a new task is

introduced, the event is assigned a position in the queue based on its relative priority as

determined by the individual [15]. When a task is performed, it is removed from the queue as

it no longer requires attention [15]. This can be a complex process as the priority of tasks may

change for a variety of reasons, and new events can be added at any moment. The addition of

new tasks can be represented with a Poisson random process [15]. In this study, the first

component in modeling an instantaneous rate of views is a power law distribution of waiting

times used to describe the distribution produced by the queuing process. The exponential

decay nature of the distribution means that an individual is more likely to view a video soon

after being introduced to it rather than waiting a prolonged period of time [8, 12]. This

distribution of delay between cause and action provides the first major component in the

model. Here ✓ is the desired unknown which is determined empirically from the data.

�(t) ⇡ 1

t

1+✓

0 < ✓ < 1 (1)
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The second major equation used to produce the dynamic classes is the self-excited

Hawkes conditional Poisson process [6]. This equation is used to model the cascading nature

of an action, event, or trend over a network. It also is conveniently used to model how an

epidemic may spread through a population [2, 6]. The model works well for this study as after

individuals view a certain video of interest they may, or may not, impact others to view it

through email, text, social media, or in conversation[2].

�(t) = V (t) +
X

i,t

i

t

µ

i

�(t� t

i

) (2)

This “instantaneous rate of views” maintains the rate of views of a particular YouTube

video [2]. Here the key parameter, t, represents the current time. Breaking down the equation

into pieces, there are two main arguments, the instant turn on views, and the views that are

caused by the influence of viewers prior. The first component, V (t), will account for the

’exogenous’ views that occur spontaneously in a time series model. The second part of

equation 2 models the cascading spread of influence to view a video over time. The

summation extends over each individual i who views the video in question at time t

i

, where

t

i

 t. It is helpful to consider each user as a node in a network, where nodes are linked to

other individuals who they may influence to view a video. Thinking in this way, for each i

there is a corresponding µ

i

which corresponds to its degree, i.e. how many future individuals

that individual is potentially capable of influencing [2]. This fluctuating µ

i

is then multiplied

by the probability that another user has viewed the video in the time interval (t� t

i

) which is

given from equation 1 described above. In summary, at each time step, each individual who

has viewed the topic video becomes an indicator of who may view the video after them which

is found by the product of the total number of connections that individual has and the

probability that at the time since the original view that a subsequent view will have occurred.

In correspondence to the models outlined above, the study defines distinct ’classes’ that

will be used to group videos who’s views follow a similar shape. In constructing the dynamic

classes that will classify each YouTube video that exhibits a burst in activity, two major

distinctions are made between a video that exhibits an exogenous burst and a video which

exhibits endogenous growth. An exogenous type event has minimal, if any, precursory growth

usually due to the unexpected nature of the event [2, 12]. It is characterized by a sudden,

sharp spike in growth followed by a rapid decay shortly after the peak is reached. Usually,

when speaking of events, these correspond to responses to natural disasters and other

unforeseen events. In terms of YouTube videos, these may include highlights of a sporting

event in which an unexpected feat was accomplished or simply videos which may become

popular once, but don’t remain in the public eye. In contrast, endogenous burst are

characterized by anticipating precursory growth leading up to a big event, and a somewhat
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symmetrical decay afterwards [2, 12] . With the peak usually corresponding to the time when

the notable event occurs, there is plenty of time for buildup, and decay is prolonged. This type

of burst can be produced, for example, by anticipation for the release of a summer blockbuster,

or a presidential election. In terms of YouTube, this may correspond to a movie trailer.

The second distinction that further classifies a video in the study is the notion of

criticality [2]. This relates directly to the network analogy of how well connected a network is.

If a network is well connected, a trend, information, or an epidemic will spread easier [2].

Conversely, a sparse network will be characterized by minimal spreading as each node is not

well connected [2]. In this paper, a network which is “ripe” for spreading (i.e. many connected

individuals) is classified as critical, and a network which does not allow for significant

cascading influences is classified as subcritical [2]. The following classes were thus determined

from data on views of YouTube videos over time to create a model for classes describing

collective human behavior using equations 1 and 2.

Exogenous Sub-Critical:

This class corresponds to the class of activity over a sparsely connected

network; in this paper this is defined to be when hµ
i

i < 1. On a network, this

corresponds to a situation where the average degree of each node is less than 1, so

there are many isolated nodes. The sub-critical label stipulates that the initial

burst of activity, occurring at t
c

, that began the burst does not cascade more than

a few generations. This model is proportional to equation 1 [2].

A

bare

(t) ⇡ 1

(t� t

c

)1+✓

(3)

Exogenous Critical:

In this class the network is ripe for a particular video i.e., has a

well-connected following of interested individuals, spreading is observed to

continue over numerous generations as these individuals continue to influence their

contacts to view the topic video. Here hµ
i

i is defined to be close to 1, so in almost

every case, each individual will have the potential to inspire a neighbor (in the

network sense) to view the video [2].
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A

ex�c

(t) ⇡ 1

(t� t

c

)1�✓

(4)

Endogenous Critical:

Here, in addition to a ripe network, the topic video has some notion of

expectation, that is to say, it likely pertains to an event that users can anticipate.

This precursory growth and word-of-mouth spreading leads to symmetric-like

growth and decay around the peak time, t
c

. As seen in the model below, the t� t

c

term is in absolute value to account for a non-zero number or views before the

peak event, corresponding to an endogenous event. The buildup and decay rates

surrounding this peak event are, in principle, fairly symmetric around the t

c

point

[2].

A

en�c

(t) ⇡ 1

|t� t

c

|1�2✓
(5)

Endogenous Sub-Critical

This last class serves as a catch-all for videos that do not exhibit bursts, but

simply fluctuate stochastically. This class is not one of the dynamic classes that

were discovered as the fluctuations can be approximated with a general Poisson

process [2].

A

en�sc

(t) ⇡ ⌘(t) where ⌘(t) is a noise process (6)

Once a time series plot of the total number of views around the burst of activity had

been obtained, a peak fraction analysis was performed as a preliminary sort into one of the

three classes (equations 3-5) [2] . The peak fraction of view is defined to be the fraction of

view that occurred on the day that the rate of views peaked [2]. By the nature of the

exogenous subcritical class, there is little growth, and little cascading into following

generations, so it is predicted that most of the total views will occur on the defined peak day,

accordingly, the peak fraction, 80%  F  100% [2]. For the exogenous critical class, there is

7



still no preliminary growth, but the views may have influence on a number of generations after

the peak, thus the peak fraction will be slightly decreased when compared to the exogenous

subcritical; 20%  F  80% [2]. Unlike the exogenous classes, the endogenous class is

characterized by substantial precursory growth followed by a slow decay. As a result, the peak

fraction for endogenous critical events will be significantly smaller than the exogenous classes;

0%  F  20% [2]. See Figure 6.

Once the video has been sorted into one of the three classes, the decay exponent for each

event was determined through a least-squared fit on the logarithm of the data on the videos in

that class, as determined by the peak fraction analysis [2].

Results: After examining a large sample of YouTube videos to search for burst-type

activity in views that may fit into one of the three dynamic classes only about 10%(about

500,000 videos) fit [2]. After sorting the refined set of videos through the peak fraction

analysis described above, the distribution of the exponents was assessed to obtain a value for ✓

in the class equations. Based on a plot of likely exponents, the following value ✓ = 0.4± 0.1

was determined [2]. As a result, the exogenous subcritical exponent becomes 1.4, the

exogenous critical, 0.6, and the endogenous critical, 0.2.

It is highlighted in the paper that the common value of ✓ = 0.4 which applies to all three

dynamic classes is in agreement with other studies such as one that examined the rank of

book sales which found ✓ = 0.3± 0.1 [2] [12]. It is argued that ✓ a↵ects the overall persistence

of the collective number of views [2]. In this way, a large ✓ value corresponds to a case where

the individual response time to the external, initial introduction of the topic, here a YouTube

video, is rapid. Crane and Sornette highlight the paradoxical e↵ect that a larger ✓ leads to a

slower, more persistent response in the collective system [2].
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Chapter 1: Motivation

Since its creation in 2006, the number of messages posted on the social media website

Twitter has increased to nearly 400 million per day (March, 2013) [14]. Twitter has become a

viable resource in the field of data science and analytics [1]. The instantaneous and

widespread response of its users provides a wealth of opinions, reactions, and statements

about events happening all over the world, yielding ample opportunity to study and quantify

the behavior of the activity Twitter users generate.

Twitter provides an ideal environment to study volume around particular words and

phrases due to the intrinsic information associated with individual words. In this way,

examining a relative frequency plot of a particular word over time can provide very useful

information not only about the amount of tweets that occur around the period of a major

event, but also are directly tied to the meaning of the word that the tweet frequency

represents. A time series, in this study, is described as a data plot that tracks the relative

number of tweets containing a particular word over time, i.e the history of that word. In this

way, as one can imagine, a word’s usage over time may fluctuate greatly, if it is tied to a very

opinionated topic, a major event, or a seasonal trend. The potential of tracking search volume

and user activity on the Internet has just begun to be realized by the scientific world [1]. The

goal of this research project is threefold.

First, the project aims to understand and quantify the behavior of time series in a

meaningful way. Given a time series of interest one would hope to achieve the ability to isolate

data from a well-fit burst in activity, and extract useful information about the burst that can

then be used to better understand the event or topic that a word is associated with. In this

way there becomes a straightforward method to quantify a time series and break it down into

meaningful events which are then classified according to a defined taxonomy of event shapes.

Second, the project will, through the analysis of carefully selected time series, gain an

understanding of the implications of such bursts in monitoring public opinions and

understanding human behavior. In particular, we create a taxonomy of the shapes of events

observed on Twitter. In addition to identifying and classifying bursts in time series the study

aims to develop a method which will determine the best time scale to fit event intervals to.

The data for each time series is the relative frequency of a particular word’s usage measured

every day over the interval of September 2008 to January 2013. This corresponds to 1606 data

points for each time series. We classify the event duration by the interval in which the burst is
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observed, thus a burst over 21 data points would correspond to a real-world trend of three

weeks.

Third, the project will work towards the ability to replicate the study performed by

Crane and Sornette on YouTube but instead on Twitter. Of particular interest is determining

the ✓ factor for bursts on Twitter to see how it compares to the value of ✓ = 0.4 described in

the Crane paper [2]. In addition, this study will begin to explore other functional forms, such

as the exponential, for the possibility that they provide a better explanation of burst activity

on Twitter.

One can imagine that the data for any given word over a large period of time is very

noisy and this is exactly the case with most time series we encounter. In particular, this

creates a challenge when fitting event intervals as there is a large diversity in the duration of

interesting bursts in almost any time series. Many burst may appear and disappear over a

period of only a few days. Other trends have a much longer duration. In addition, a large

scale trend may contain a wealth of micro-bursts that cumulatively make up the large scale

trend. Of course for many time series one would hope to capture the large scale trends with a

long duration, while for equally as many other times series one would like to fit very small

bursts that only occur for brief periods. This becomes one of the challenges that this study

addresses and develops a method to deal with such diversity in burst duration and makeup.

Below we exhibit four characteristic time series that demonstrate some of the aforementioned

diversity in burst and trend shape.
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(b) Flu raw times series

Figure 1: (a) Raw time series for mentions of the word “christmas” on Twitter. One notices
a period of build up before each Christmas day. Classifications of this time series
would hope to find five event intervals which correspond to each Christmas. (b) Raw
time series for “flu” on Twitter. Here we exhibit the uncertainty into classifying the
number of meaningful event intervals as well as their durations. One clear burst,
corresponding to the Swine Flu scare in 2009 [4], is evident as well as a few smaller
intervals which have a type of burst growth and decay.
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(b) Watermelon raw times series

Figure 2: (a) Raw time series for the word “occupy.” Here we highlight the notion of a macro-
trend, the Occupy movement [13], which itself is composed of small micro-shocks. The
analysis aims to recognize the large scale trend of the occupy movement and classify
it as one event. (b) Raw time series for mentions of “watermelon”. This time series is
unique in that the bursts in activity follow a much more relaxed and seasonal pattern.
In particular, the bursts are not as extreme, but instead are somewhat symmetrical in
build up and decay. Analysis hopes to capture the seasonal fluctuations of watermelon
mentions.
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Chapter 2: Taxonomy of Classifications

As in the study by Crane and Sornette on YouTube videos we define distinct classes to

describe the shape of a given burst interval. Previously defined by Crane and Sornette were

four major classes; endogenous (sub-critical / critical) and exogenous (sub-critical / critical)

[2]. Here, an endogenous burst would be characterized by a symmetrical, usually slower,

build-up and decay around a peak and a exogenous burst would correspond to a sudden shock

and characterized by a sharp spike in frequency followed by a decay. The duration of the decay

determined the classification of sub-critical or critical. Only the endogenous critical events

were considered as the sub-critical type is reserved for time series which don’t exhibit any

large burst of activity [2]. Thus there are three major classes examined by Crane and Sornette.

In this study we expand our classifications from three to five as we examine time series

on Twitter. In shifting the medium from the Crane and Sornette study on YouTube [2] to

Twitter it quickly becomes apparent that an expansion of the types of events is required.

Whereas on YouTube, most burst activity is described by a “shock” type event in which a

video becomes viral overnight, on Twitter there are many instances where there is a profound

anticipation surrounding a given word, followed by a sharp decline. We expand our

classifications to include a distinction between “shock” events characterized by a sharp

increase in frequency and corresponding decay and “anticipated” events in which there is a

notable buildup to a peak in frequency followed by a rapid decline. In many ways the

anticipated bursts behave as mirror images of the shock type events. Just as the decay

exponent of events was the focus of the YouTube study [2], in this study we maintain this

view and place the same emphasis on the buildup exponent for anticipated events.

Figure 3: Google Trends [7] produces the following for the search volume of “Tsunami” over the
time period of early 2004 to April 2006. This type of event is what is typical of a shock
type event. As shown there is almost no build-up precluding a sharp spike. After the
peak there is a relaxation. This decay exponent is the interest of the YouTube study
as well as this one.
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Figure 4: Google Trends [7] search volume for the word “Christmas” for the 2013 holiday season.
This is the perfect example of an anticipated event, which we introduce in this study.
In contrast to a shock event like a tsunami, search volume, and Twitter mentions of
Christmas has a profound buildup and almost immediately drops o↵. The build-up
exponent is what we will be interested in for anticipated events.

Figure 5: As in the YouTube study ([2], symmetrical events (endogenous), which have similar
buildup and decay, are considered in this study. Words like “Watermelon”, shown
above from Google Trends [7], exhibit this seasonal and symmetric type event.

As depicted in Figures 3-5 we note the three major classifications that we will refer to for

the remainder of the report, anticipated, shock, and endogenous. Within the anticipated and

shock classifications we also distinguish between sub-critical and critical which corresponds to

the relaxation and buildup of the shock and anticipated events respectively.
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Chapter 3: Redefining the Classification Scheme

In the study conducted on YouTube [2], events were classified by a peak fraction defined

as the number of views on a given video divided by the total number of views for that video

(See Figure 6 below from Crane and Sornette paper [2])

Figure 6: Peak fraction classification visualization. Seen in the image above from the Crane and
Sornette paper are distinctions between sub-critical and critical events. [2]

As mentioned above, the notion of a peak fraction is introduced. In the Crane study the

classification for an event was determined by a simple metric of the peak fraction [2]. A large

peak fraction would therefore correspond to a video that had a large spike and quickly

relaxed, exogenous sub-critical. A slightly lower peak fraction would correspond to a similar

situation but the exogenous event would exhibit more memory since the initial shock and thus

maintain a higher number of views in the relaxation [2]. Lastly, the endogenous critical class

would have a relatively low peak fraction as this class is not characterized by significant,

sudden bursts but rather a slow and symmetric build-up and relaxation [2].

Here we define a new way to classify a burst of activity in a time series. After

determining the event interval around a peak we fix a function to the buildup interval and the

decay interval. After both are determined we take the di↵erence of the two exponents (or

powers) to classify the event. We call this the “Score” of the event.
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Score
i

= ↵

i

� �

i

(7)

where ↵

i

and �

i

correspond to the exponential, or power, coe�cient in the fit to the relaxation

and build-up intervals of the i

th burst in a time series respectively.

An expected event will have a negative score, whereas a positive score will correspond to a

shock event. How positive or negative the score is will classify the event as critical or

sub-critical. This translates to how quickly the decay occurs after the peak of a shock event.

Endogenous events, such as watermelon, have near zero scores. We classify events according to

their score on a scale bracketing zero.

Classification
i

=

8
>>>>>>>>><

>>>>>>>>>:

Anticipated Exogenous Sub-Critical, if �1  Score
i

 �1

Anticipated Exogenous Critical, if � 1  Score
i

 0.01

Endogenous, if � 0.01  Score
i

 0.01

Shock Exogenous Critical, if 0.01  Score
i

 1

Shock Exogenous Sub-Critical, if 1  Score
i

 1

(8)
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Chapter 4: Methods

Before detailing the process to produce the best results we take a brief detour to outline

prior attempts at determining event intervals in a time series that did not yield as much

success but nonetheless lend insight into the series of attempts which led to the current

version. While the scheme, described in section 3, of determining the classification for an

event interval based on its Score
i

remains constant across all methods that will be outlined

what will change is the way in which the event intervals are determined.

In hopes to make the proposed method of classifying a time series as transparent as

possible we continue by detailing the exact procedure performed on each time series in a

“pseudo-code” manner. While the methods described are the most recent iteration of this

procedure, the refinement of the process is ongoing and may improve as new approaches are

applied to the main method.

Determining the best scale to fit an event interval is indeed a quite challenging problem.

As described earlier, any one given time series may contain events that occur on many scales

and must be fit accordingly. Here we decide that that an imperfect fit of small event over large

duration is preferred to finding an interval too that is not large enough to span the lifetime of

a large scale event. That is to say that we would rather overestimate the interval in which an

event is defined to occur than underestimate it.

We continue by outlining some attempts on fitting the best interval around a given spike

in a time series:

Method 1:

We present the following scheme for determining event intervals around a

given spike by monitoring the R-squared statistic for a fit as the length of a fit

interval is increased. Given a local maximum in a time series, t0, we set out to find

the best place to begin the event, t
start

and also end, t
end

. We propose the

following possibility. To determine either t
start

or t
end

we set out from the local

maximum in one direction, either forwards in time, to determine t

end

, or

backwards, to determine t

start

. As we expand the bound on our interval we include

more and more data points in out interval of interest. Accordingly we continuously

fit our functional form to the current interval, determine the value for the

parameter of interest, and also record the R-squared statistic for this fit. We
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continue to expand our interval in both directions. We then look for the point at

which there is a marked drop-o↵ in the R-squared statistic. This would indicate

that the fit of the functional form is no longer good and the interval is thus

defined. We do this moving outward in both directions from t0 and yield a value

for t
start

and t

end

. The event interval for that local maximum is now defined to be

{t
start

: t
end

}.
We find that in general, due to the large amount of noise in the data for any

given time series that the R-squared statistic can fluctuate greatly as we increase

our interval size. This in turn produces another noisy time series to analyze with

the hope of determining a critical point where the R-squared statistic no longer is

su�ciently large. In particular this method was observed to yield very small event

intervals and performed poorly when applied to large scale trends with long event

durations.

Method 2

In a similar attempt as in Method 1 here we modify our approach slightly by

instead of monitoring the R-squared statistic as we increase the size of the event

interval but instead the value of the fit parameter of interest. As in Method 1 after

we determine a local maximum at t0 we set out in both directions to determine

t

start

and t

end

. For each iteration we increase the size of the fit interval and record

the value of parameter of interest (ex. for a power law this value would be the ↵ in

the fit
1

t

↵

). We monitor the value of this parameter over time and look for the

point at which the slope of the line connecting two successive values of the

parameter undergoes a sharp change. This would indicate that the interval has

grown too large and perhaps the interval has collided with a neighboring event

interval.

Here, as in Method 1, we find that it is di�cult to find the ideal time to stop

the fit, and attempts to do so yielded very small event intervals.

Method 3

In contrast to Methods 1 & 2, in Method 3 we explore the ability to smooth a

time series to aid in determining the start and end of each interval. Prior studies

have explored the avenue of using smoothing to help classify a time series [16].

Here we present an original method which incorporates the use of smoothing by a

moving average. We define a smoothing parameter ⇢ which we will use to

determine the best scale to define event intervals on. For each value of ⇢ between

the odd values of 1 and 99 we compute a moving average of the time series in
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question where the size of the moving average window is ⇢, centered around each

point in the time series. This naturally will temper the noise in the data and also

will make spikes more moderate. Especially on Twitter data since the resolution is

daily, many time series exhibit a data point, corresponding to one day, in which

there is a large spike that far exceeds the activity on the day prior and after. This

smoothing procedure will produce a subdued version that can then be used to

determine new event intervals.

Given a particular smoothing parameter, ⇢, we have a smooth version of our

original time series. We define an event interval in the following way. After finding

the peak location of a local maximum we set out in each direction of t0. We

continue in each direction until a value of a local minimum is reached. Upon

reaching the first local minimum the interval expansion is ceased. In this way we

have defined the interval {t
start

: t0} [ {t0 : t
end

} where t0 is a local maximum and

t

start

and t

end

are local minimums of the smoothed time series.

Given one of the aforementioned methods for determining the individual event intervals

we continue by walking through the process of quantifying a time series into a sequence of

classified events.

In addition to choosing a method for determining event intervals we also must choose the

form of the function in which to fit each buildup and decay interval for each interval. Here we

explore two major types of classification, an exponential function, and a power law function.

Given an event interval we fit one of the two functions to the intervals I
pre

= {t
start

: t0} and

I

post

= {t0 : t
end

}. We define the functional forms of the functions as follows:

Exponential

V (t) = ↵e

(t�t0)� (9)

Equation 9 describes the exponential functional form for the decay interval, I
post

. For I
pre

we

note that we would have a t0 � t .The parameter � is the key value which will be used to

determine Score
i

described in equation 7.

Power Law

V (t) = ↵(t� t0)
� (10)

Equation 10, like 9 describes the fit for the decay interval. Likewise the parameter � is what

will be used in equation 7.

We define the following procedure for classifying a given time series.
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1. Determine the locations of the local maxima, t0
i

defined to be peaks that exceed the

average of the span of the time series.

2. Determine a preliminary I

pre

and I

post

for each t0
i

by finding the closest local minimum

on each side of t0
i

.

3. Resize the interval for each as t0
i

according to the method(1,2,or 3).

4. Once the I

pre

and I

post

are determined, fit the corresponding functional form to each

interval to determine the parameters ↵
i

and �

i

in equation 7 which correspond to the �’s

described in equations 9 and 10.

5. Determine the Score
i

for each local maxima found in step 1.

6. Classify the event interval {t
start

: t
end

} according to the scale in equation 8.

For methods 1 and 2 the above method is all that is used to determine the classification

of the events in a time series. For method 3 however there is the added caveat that we repeat

the above process for each smoothing parameter, ⇢ 2 1� 99 | ⇢ is an odd number. For each

value of ⇢ we repeat steps 1-6. We note that as we increase the value of ⇢ we find fewer local

maximums in step 1. We thus have produced 50 classifications for the given time series each

fitting the events to a larger time scale.

We now clarify how we decide which of the 50 classifications best describes the time series.

For each classification corresponding to a value of ⇢:

1. Compute the R-squared value for the fit of both the I

pre

and I

post

. For each interval

determined around each t0
i

we average the two R-squared values. This becomes the

R-squared for that event interval.

2. Compute the p-value for the fit of both the I

pre

and I

post

. For each interval determined

around each t0
i

we keep the maximum of the two p-values. This becomes the p-value for

that event interval.

3. Average all the R-squared values for all event intervals found, call this R
⇢

.

4. Find the maximum of all the p-values for all event intervals found, call this p
⇢

.

To determine the best parameter, ⇢, for a given time series we find the classification which

maximizes the ratio
R

⇢

p

⇢

. To visualize this incrementing of the smoothing parameter we

develop a “Trend Plot” which plots all classifications for a time series for each value of ⇢. This

presents a visual representation of the transition of the events in a time series from their micro

features to their macro trends.

It is also important to note one additional change to the model as the value of ⇢ is

increased. Given the natural tendency of an event which has a larger lifetime to have similar �

values in equations 9 and 10 we must adjust the initial threshold of the classifications
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described in equation 8 very slightly. For this model we choose to decrease the exogenous

critical/sub-critical threshold and endogenous threshold by a total of 90% from the original

value achieved at the final ⇢ value. Thus at a ⇢ value of 99 we will have a new classification

scheme:

Classification
i

=

8
>>>>>>>>><

>>>>>>>>>:

Anticipated Exogenous Sub-Critical, if �1  Score
i

 �0.1

Anticipated Exogenous Critical, if � 0.1  Score
i

 0.001

Endogenous, if � 0.001  Score
i

 0.001

Shock Exogenous Critical, if 0.001  Score
i

 0.1

Shock Exogenous Sub-Critical, if 0.1  Score
i

 1

(11)
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Chapter 5: Results

Here we present the Trend Plots for each of the four characteristic time series described

in Section 1. First we present the Trend Plots for the exponential fit described in equation 9.

We then present the same plots for the power law fit described in equation 10. Since we are

creating the Trend Plots it is transparent that the method being implemented in the following

plots is Method 3.

We think it beneficial for the reader to explain the mechanism of the Trend Plots

presented in Figures 7-22. The Trend Plots are a variant of the denodrogram plot in that it

presents a visualization of the shapes of events in a time series in a hierarchy of micro to

macro scale. It is also similar in the way in which it optimizes the best classification of a time

series. We now describe the layout of the Trend Plot.

Along the top of the plot, the raw time series for the given word is plotted in red.

Directly below the time series is a series of classifications for the time series with varying ⇢

values which increases as one moves down the vertical axis. Recall that a lower smoothing

parameter, ⇢, will result in smaller event intervals and thus more events. For each value of ⇢

the event intervals found with that corresponding value are plotted as colored bars. The color

of each section corresponds to the type of event that interval was classified as. For clarification

we define:

Color
i

=

8
>>>>>>>>><

>>>>>>>>>:

Powder Blue ! Anticipated Exogenous Sub-Critical

Yellow ! Anticipated Exogenous Critical

Green ! Endogenous

Red ! Shock Exogenous Critical

Blue ! Shock Exogenous Sub-Critical

Note that there is no overlap between the event intervals within one value of ⇢. However,

if two events of the same type appear adjacent in the time series, there is no distinction plotted

on the Trend Plot. This will show up on the subsequent classification of the time series.

Along the Eastern edge of the Trend Plot the average R-squared statistic, R
⇢

is plotted

as the ⇢ value is varied. Likewise, p
⇢

and the ratio we wish to optimize,
R

⇢

p

⇢

is plotted in a
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similar fashion. R
⇢

is plotted in a thin red line, p
⇢

in a thin blue line, and
R

⇢

p

⇢

in a thicker

green line. The domain for the R-squared statistic and the p-value is naturally [0,1]. Thus we

adopt this same scale to plot
R

⇢

p

⇢

on. To do so we normalize by adjusting all computed ratios

of
R

⇢

p

⇢

by the max value found across all value of ⇢. In this way the best classification using

this scheme will be denoted when the ratio reaches 1.

To illustrate where this maximum is achieved a thin dashed line is drawn across the main

figure at the smoothing parameter which maximized the ratio
R

⇢

p

⇢

. Additionally, the smooth

time series which determined the scale of the events is plotted over the top plot of the raw

time series in black.
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Figure 7: Trend Plot for the “christmas” time series.
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Figure 8: Christmas Time Series, ⇢ = 57
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Figure 9: Trend Plot for the “flu” time series.
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Figure 10: Flu Time Series, ⇢ = 41
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Figure 11: Trend Plot for the “occupy” time series.
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Figure 12: Occupy Time Series, ⇢ = 99
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Figure 13: Trend Plot for the “watermelon” time series.
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Figure 14: Watermelon Time Series, ⇢ = 57
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Figure 15: Trend Plot for the “christmas” time series (Power Law)

Sep08 Sep09 Sep10 Sep11 Sep12

0

2

4

6

8

10

12

14

x 10
−3

Date / Classification

F
re

q
u
e
n
cy

CHRISTMAS

 

 

1 2 3 4 55

Exo − Sub Anticipated
Exo − Crit Anticipated
Endogenous
Exo − Crit Shock
Exo − Sub Shock

Figure 16: Christmas Time Series, ⇢ = 29 (Power law fit)
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Figure 17: Trend Plot for the “flu” time series (Power Law)
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Figure 18: Flu Time Series, ⇢ = 97 (Power law fit)
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Figure 19: Trend Plot for the “occupy” time series (Power Law)
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Figure 20: Occupy Time Series, ⇢ = 99 (Power law fit)

29



WATERMELON

0 0.5 1

R
−

S
q
u
a
re

d
 / P

va
l

Sep08 Feb09 Jul09 Dec09 May10 Sep10 Feb11 Jul11 Dec11 May12 Oct12

0

10

20

30

40

50

60

70

80

90

100

Date

S
m

o
o
th

in
g
 P

a
ra

m
e
te

r 
(d

a
ys

)

 

 

Exo − Sub Anticipated

Exo − Crit Anticipated

Endogenous

Exo − Crit Shock

Exo − Sub Shock

Figure 21: Trend Plot for the “watermelon” time series. (Power Law)
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Figure 22: Watermelon Time Series, ⇢ = 93 (Power law fit)

We begin our discussion of Figures 7-22 with the exponentially fit Trend Plots. As seen

in Figure 7, the optimized value of
R

⇢

p

⇢

occurs at ⇢ = 57. However, we see that the

classification for every Christmas as a anticipated exogenous sub-critical event is robust for

values of ⇢ 2 [21 : 89]. This broad plateau of the
R

⇢

p

⇢

value indicates not only that this is the

correct classification for the Christmas time series, but also that the fitting of the model using

equation 9 is reasonable. In addition, this successful classification lends merit to the

optimization of the
R

⇢

p

⇢

value as a means of determining the best ⇢ and hence the best scale to

consider the major events in a time series. Although the simplicity of the christmas time series
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represents an idealized testing ground, it provides the best example for describing the ideal

dynamics of the Trend Plot scheme. We note that for ⇢ values up to 21 there is a period of

transience in which smaller event intervals within the larger scale trend of one Christmas

season are identified. As ⇢ increases, the classification of anticipated exogenous sub-critical

remains.

In Figure 8 we explore the Christmas time series with the event regions colored according

to their classification. We see that there are only five peaks found, each corresponding to one

Christmas. Also shown on this plot is the location of the peaks determined by the model

(plotted with dashed lines).

Figure 9 shows a more characteristic Trend Plot of a time series in the dataset. As

compared with the Christmas plot we see that there is a larger variety in the type of events in

the time series. Here we also note that the value of
R

⇢

p

⇢

does not show a plateau but instead a

sharp peak. Some of the sharpness in the spike is due to the normalization of the
R

⇢

p

⇢

ratio,

but in general we see that the classification performs well in finding a shock exogenous critical

event around the large spike. Here we again see a window of resilience for the optimum

classification between the ⇢ values of 33 and 59. In this interval we see only slight variation in

the classifications despite the peaked value of
R

⇢

p

⇢

. As ⇢ increases we see the e↵ects of the

variable threshold taking place. In particular, we note that the classification of the main peak

changes from critical to sub-critical after ⇢ exceeds 89.

Figure 10 shows the classification for the flu time series. Of particular note is the main

spike where the frequency of the use of the word flu demonstrates a profound peak

corresponding to the height of Swine Flu [4]. This main event interval is classified as a shock

exogenous critical event whereby a sudden outbreak of Swine Flu in the news prompted a

response on the social network of Twitter. The critical classification indicates that this trend

did not decay quickly but instead remained in the public eye for some time after the peak.

Surrounding the main peak we see two anticipated events. While perhaps the event interval

on these is too large considering their relatively low peak value, the large scale trend of the

spike at the height of the Swine Flu outbreak is correctly identified and classified.

Figure 11 demonstrates the success of the process in correctly identifying a macro trend

comprised of micro shocks as one event. In this case, the Occupy movement provides a perfect

example [13]. Several micro shocks are visible which appear on top of the large macro swell of

the mentions of Occupy. As ⇢ increases we see that the number of event intervals found

decreases and the micro events blend into one macro trend.

Figure 11 shows the classification for the Occupy time series. We note that the

classification as a shock exogenous critical event feels correct give the nature of the Occupy

movement [13]. In the case that one would want to examine the micro shocks that make up

the macro Occupy movement, a di↵erent model for determining the best classification would
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be needed.

Last of the exogenous fit examples we examine the watermelon Trend Plot in Figure 13.

We note in particular that the optimization ratio
R

⇢

p

⇢

is fairly unstable, exhibiting several

spikes and no plateau like in Figure 7. This seasonal type of trend perhaps does not fit as well

into the exogenous model as do more characteristic bursts seen in figures prior. If we consider

the ⇢ values before 57 transient behavior we see that there is not a lot of uniform agreement

between the seasonal swells of watermelon. Some of the seasons are split into smaller events

and some classifications do not agree with one another across season. After ⇢ reaches 50 we

see that the model settles down with a general agreement that there are 4 major trend regions

in the time series. The spike at ⇢ = 57 stands out from the rest of the classifications as it is

the last ⇢ value before the classifications tend to drift away from the desired endogenous

classification. The fact that the first watermelon season is classified as an anticipated

exogenous critical event is perhaps explained by the changing nature of Twitter. In its early

stages, Twitter frequencies were in a heightened period of flux as more users and languages

were introduced. Other studies have examined the composition and applications of languages

on social media and note that Twitter adoption across countries, which may speak di↵erent

languages, does not occur at the same rate [10]. This tends to settle down in later years in the

time series. This is why, perhaps, the biggest spike in the Christmas time series in Figure 8

occurs during the 2008 Christmas.

Figure 14 demonstrates some of this fluctuation in frequency in the first seasonal swell by

classifying the macro seasonal trend as two distinct events. Clearly this is not desirable, but is

likely due to the volatile state of Twitter frequencies in the early going [10]. We see that the

second, third, and fourth seasons are all correctly found to be endogenous. The fourth trend

depicts an interesting dynamic. While it appears that the smoothing of the time series found

the second of a triad of micro spikes atop the seasonal watermelon trend, the model then

shifts the fitting intervals to split on the first spike. This is due to act that its micro peak is

slightly higher than the middle peak. It is interesting that the classification as an endogenous

event still holds, and likely would still hold if the middle micro peak was used as the spilt

between I

pre

and I

post

.

As described above we see that the model in equation 9 for an exponential burst

performs quite well in identifying good classifications of the event intervals and optimizing the

best value of ⇢ to describe a time series. We now move to compare these with the Trend Plots

that result from using equation 10, the power law fit, to determine intervals.

Figures 15 and 16 show the Trend Plot and classification plot for Christmas using a

power law fit. We note from the start that, like Figure 7, there is a large plateau in the ratio
R

⇢

p

⇢

. Despite this, the classifications of the event intervals in the first three Christmases as

shock events does not feel correct. In examining the fits of the power laws in those regions, the

fits are in fact reasonable and do fit the data well. Where the classification breaks down
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however is in using equation 7 to determine the type of event. Due to the fact that the power

laws are very sensitive and also depend on a pre factor, the ↵

i

and �

i

values are very similar

and in fact are the reverse of what one would expect. i.e. one would think that ↵
i

, the

relaxation exponent would be greater than �

i

since it appears that the volume of mentions of

Christmas mentions after the peak dray faster than it grows before the peak.

Figures 17 and 18 depict the flu time series under the power law fit. Here we see that,

compared to the exponential counterpart in Figures 9 and 10 that the classifications are the

same up to criticality. In addition, the exponential finds a smaller ⇢ value which in turn

results in four total event intervals instead of the three found in the power law fit version.

For the power law classification of the Occupy time series in Figures 19 and 20 we see

that again, like in the exponential fit, the best classification for the movement is found to be

one macro event. This again feels like the best classification, however the fact that it is found

as a sub-critical event does not seem to fit the ideal shape of a trend that becomes very

quickly popular but decays very rapidly.

Lastly, in Figures 21 and 22 we see the power law classifications for the watermelon time

series. Here we see that compared to the exponential classification that the ⇢ value is found to

be much larger, finding larger event intervals for the seasonal watermelon swells. Additionally,

the fit of these event intervals appears to perform worse than exponential classifications.

While one could describe the watermelon swells as anticipated events, they do not fit the

characteristic spike model intended for this class. The endogenous class is still the desired fit

for the watermelon seasons. Also strange about this classification is the fact that the third

event interval is found as a shock. This does not fit the model, or desired class, but is

conceivable given the fact that the distinction between a shock and an anticipated event is a

simple negation of the Score

i

. In this way, if the seasonal trend for one watermelon cycle

lacked build up in comparison to its decay, it could be found to be a shock by the model, and

in fact is.
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Chapter 6: Future Work

Here we address the potential for further work stemming from the preliminary findings

and methods presented in this report. The exploratory methods presented here open the door

for many improvements, advances, and new applications. Given the di�culty in determining

the best way to partition a diverse population of time series, the procedure presented in

Method 3, using an exponential fit, appears to do a decent job in classifying events in a way

that a human might. A highlight of the method is the byproduct of the Trend Plot which can

be used to provide a micro to macro scale look at the history of a word. However, this may

not be the best way to classify the shape of an event in a predetermined event interval. Due to

the nuances of curve fitting, perhaps a simpler approach could reveal itself to be more natural

in classifying events. This in turn, if it does prove to be a more successful method of

classifying event intervals into one of the five classifications, will result in one step back in that

we may lose the ability to use the method of maximizing the ratio
R

⇢

p

⇢

.

After observing the results of the current methods, it is the recommendation of this study

to continue to use the ratio
R

⇢

p

⇢

to determine the best scale to fit event intervals but change

the way in which events are classified. A simple area comparison of I
pre

to I

post

may yield a

good starting place to separate shock events from anticipated events. Preliminary attempts

are described and presented in section 7.

Given that the base study by Crane and Sornette fit power laws to the intervals of

interest and determined the critical ✓ = 0.4 value corresponding to the video sharing website

of YouTube it is proposed that the fits in future work use the power law equation presented in

equation 10 [2]. This continuity across studies will allow comparison to the ✓ value found in

the Crane study and other studies cited by Crane and Sornette [2, 12]. Achieving this

comparison may yield information regarding the similarities and di↵erences between the

cascades and networks pertaining to di↵erent social systems.

Given the results presented in Section 5, it may seem counterintuitive to the reader that

we here recommend the use of power law fits in the event intervals and not exponentials. The

figures presented in Section 5, and the analysis of them, tend to favor a bias for using

exponential fits, however much of the discussion regarding the performance of the power law

fit versus the exponential in the Trend Plots centered on the discussion on how well the

classifications of the event intervals agreed with what one might hope. Given the above

recommendation to devise a new, independent and simple method to bin an event interval, it

enables the ability to continue to include the power law fit as the fit of choice for revealing

robust classes, as in the Crane study (equations 3-5).

We now turn to address some of the future work contingent on the successful
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implementation of the above methods. Granted success in the ability to classify a time series

by the best ⇢ value, event intervals, and event classifications we can begin to examine the

distributions of the decay exponents of the events in a given class such as the anticipated

exogenous critical class. In keeping with the study on YouTube we propose that for shock

classified events the exponent of interest be the ↵

i

in equation 7 and �

i

for anticipated events

[2]. In this way we keep the focus on the relaxation of a shock event, thus we keep the notion

of the cascades and influence intact. Likewise for anticipated events we capture the interesting

information from a storytelling standpoint, and we are able to speculate on a model for how

an event grows to a maximum. For endogenous events, either ↵
i

or �
i

should su�ce as in

principle the event is symmetric.

In addition to determining the corresponding ✓ value for Twitter, we now address further

applications of the successful classification of events in a time series. Of particular interest is

the ability to predict how an event will play out given its build up dynamics. Prior studies

have examined the predictability of events on Twitter [9]. A confirmation and comparison

using our methods and model would be informative. This would seem to be easier for

anticipated events as there is more data preceding the spike to draw maps from. The nature of

shock events is that they are largely unpredictable. There is currently a lot of interest

regarding the ability to predict the future given a large amount of data [1, 5, 9] . Once a large

number of event intervals are classified perhaps a macro quality specific to that shape will

reveal itself and lend itself towards methods of predicting the shape of anticipated style events

in real time.

Another possible application and extension of this study is quantifying the mood of each

class of events. Recent research done on Twitter has made advances in quantifying and

interpreting the happiness score of a word [3]. With the successful classification of events in a

time series in a word one would be able to start to gauge, on a human emotion scale, the

sentiment of certain classes of events [3]. For example, the time series for Christmas consists

of five event intervals which are all anticipated. Next, one would associate the happiness score

for the word Christmas to the classification of anticipated events. On the other hand, a time

series like the one for the word occupy contains one large scale event that is a shock. One

could then bin the happiness score for Occupy into the shock class. Continuing in this way for

all classified time series that demonstrate a uniform classification, i.e. all the event intervals

are of the same type, one would be able to address the question whether anticipated or shock

events are viewed in a more positive or negative way. Framed in a hypothesis, one could ask,

do the events we anticipate have a higher happiness index then shock or surprise events?

We see that just from this short section that there is still much work to be done in

improving and expanding the characterization of events in Twitter word frequency time series.

This study has explored some techniques that may lend future research on the project valuable

insight; in particular, the suggestions made in the preceding paragraphs. We also see that the
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potential uses of the successful implementation of the inspiration of this study are vast and

exciting [1, 5, 9]. It is the hope of the authors of this project that the outlined improvements

and expansions to the current model will be explored and implemented in the near future

enabling the ability to begin to answer some very interesting questions, like the happiness

question posed in this section, about how social media, in particular Twitter, reflects the user

base and how big data in the form of classified event intervals can be applied in the future.
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Chapter 7: Preliminary results of future methods

Here we briefly explore the possibility, described in section 6, regarding using a new

classification method for event intervals once they are determined. In particular, once we have

an event interval in a given time series, instead of classifying by equation 7, we instead classify

from an area based analysis. Since we desire to classify first whether an event is of the

anticipated or shock variety we preliminarily determine this by comparing the sum of all

activity in I

pre

to I

post

.

Classification
i

=

8
>><

>>:

Anticipated, if
P
I

pre

f

i

>

P
I

post

f

i

Shock, if
P
I

pre

f

i

<

P
I

post

f

i

where f

i

is the frequency on day i (12)

Next we aim to determine criticality of the event interval. To do so we examine the event

interval of interest for each event. i.e. for anticipated events we examine I

pre

and for shock

events we examine I

post

. Here we compare the area of the interval to half the area of the

rectangle with height, h = f

t0 and length, l = duration of I
pre

(I
post

). We call this

TriangularArea

i

. Critical events will fill a larger fraction of this area than sub-critical events

thus we can define for anticipated events:

Criticality
i

=

8
>>>>>><

>>>>>>:

Sub-Critical, if

P
I

pre

f

i

TriangularArea

i

< 0.20

Critical, if

P
I

pre

f

i

TriangularArea

i

> 0.20

where f

i

is the frequency on day i

(13)

Lastly we have one condition for the possibility of an endogenous event in which we define

Classification
i

= Endogenous if

P
I

pre

f

i

TriangularArea

i

> .30 and

P
I

post

f

i

TriangularArea

i

> .30

(14)
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Acknowledging that the following results are preliminary, we generate Trend Plots for the four

characteristic time series defined in this study.
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(a) Christmas area Trend Plot
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(b) Flu area Trend Plot
OCCUPY
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(c) Occupy area Trend Plot
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(d) Watermelon area Trend Plot

Figure 23: (a) Chistmas, (b) Flu, (c) Occupy, (d) Watermelon area Trend Plots
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