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Abstract

A sociotechnical system is a collection of humans and algorithms that interact under
the partial supervision of a decentralized controller. These systems often display in-
tricate dynamics and can be characterized by their unique emergent behavior. In this
work, we describe, analyze, and model aspects of three distinct classes of sociotech-
nical systems: financial markets, social media platforms, and elections. Though our
work is diverse in subject matter content, it is unified though the study of evolution-
and adaptation-driven change in social systems and the development of methods used
to infer this change.

We first analyze evolutionary financial market microstructure dynamics in the
context of an agent-based model (ABM). The ABM’s matching engine implements
a frequent batch auction, a recently-developed type of price-discovery mechanism.
We subject simple agents to evolutionary pressure using a variety of selection mech-
anisms, demonstrating that quantile-based selection mechanisms are associated with
lower market-wide volatility. We then evolve deep neural networks in the ABM and
demonstrate that elite individuals are profitable in backtesting on real foreign ex-
change data, even though their fitness had never been evaluated on any real financial
data during evolution.

We then turn to the extraction of multi-timescale functional signals from large
panels of timeseries generated by sociotechnical systems. We introduce the discrete
shocklet transform (DST) and associated similarity search algorithm, the shocklet
transform and ranking (STAR) algorithm, to accomplish this task. We empirically
demonstrate the STAR algorithm’s invariance to quantitative functional parameteri-
zation and provide use case examples. The STAR algorithm compares favorably with
Twitter’s anomaly detection algorithm on a feature extraction task. We close by using
STAR to automatically construct a narrative timeline of societally-significant events
using a panel of Twitter word usage timeseries.

Finally, we model strategic interactions between the foreign intelligence service
(Red team) of a country that is attempting to interfere with an election occurring
in another country, and the domestic intelligence service of the country in which the
election is taking place (Blue team). We derive subgame-perfect Nash equilibrium
strategies for both Red and Blue and demonstrate the emergence of arms race inter-
ference dynamics when either player has “all-or-nothing” attitudes about the result of
the interference episode. We then confront our model with data from the 2016 U.S.
presidential election contest, in which Russian military intelligence interfered. We
demonstrate that our model captures the qualitative dynamics of this interference for
most of the time under study.



For N.

...the sunsets and the mountains never changed, the stars were the same stars.
-Roberto Bolaño
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List of Figures

2.1 A cartoon of the financial system considered here is shown. Agents
interact via the mechanism of a frequent batch auction, explained in
Section 2.1, and are subject to a type of probabilistic selection mech-
anism that discards agents with low fitness, which is here defined by
profit, and replaces discarded agents with new agents whose parame-
ters are drawn from the distribution of parameters among remaining
agents. Statistics from market activity and the selection process are
gathered during iterations of the simulation and subsequently analyzed. 12

2.2 Means and standard deviation of parameter time series differ by selec-
tion mechanism. The left panel displays parameter time series averaged
over agents; a single time series is plotted for each run of the simula-
tion. The right panel displays parameter time series averaged over
both agents and runs of the simulation. Overall, the quantile selec-
tion mechanism leads to lower spatial standard deviations across runs
of the simulation, as can be observed in the left panel. While both
the quantile and mixed selection mechanisms show decaying average
Nshares and ν, fitness-proportionate selection shows no such behavior.
The fitness-proportionate selection mechanism shows larger variation
across runs of the simulation in these variables as well, with much larger
extreme values of ν than either of the other mechanisms. When aver-
aged over both agents and runs of the simulation, pbid shows effectively
no variation in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 When uncoupled from time, distributions of parameters are similar
across selection mechanisms. These distributions are calculated by
computing the empirical pdfs over the union of time series of parame-
ters over all points in time and runs of the simulation. The mixed selec-
tion mechanism displays the heaviest tails in the distributions of pbid
and Nshares, followed by the fitness-proportionate mechanism. From
top to bottom: the quantile-based, mixed, and fitness-proportionate
mechanisms. The blue dashed curves and titles indicate optimal fits
to the empirical distributions as computed using maximum likelihood
estimation. The distributions of pbid and Nshares are well-fit by a t-
distribution, while the distribution of ν is well-fit by a log-normal dis-
tribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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2.4 The mean power spectral density (PSD) exponent of population price
time series, 〈γ〉Nsim = 1

Nsim

∑Nsim
n=1 γn, where γn is defined by Sxx(ω) ∼

ω−γn . All PSD exponents converge to a value near 〈γ〉Nsim ∼ 1.8,
though the quantile mechanism has the largest exponent and hence
the average price time series associated with the quantile mechanism
is less autocorrelated than the others. . . . . . . . . . . . . . . . . . . 22

2.5 Mean profit levels differed by selection mechanism. The quantile (trun-
cation) selection mechanism lead to average profits that were approx-
imately an order of magnitude higher than that of the second-most
profitable mechanism, the mixture of fitness-proportionate selection
and quantile selection. While returning positive average profits, fitness-
proportionate selection was the least profitable of the non-control selec-
tion mechanisms. In this context, average profit is defined by 〈π(t)〉j,sim =

1
NsimNagents

∑Nsim
n=1

∑
j active at time t πj,n(t) . . . . . . . . . . . . . . . . . . 23

2.6 Micro-macro volatility correlation varies by selection mechanism. We
chose an arbitrary rerun and show the average volatility preference,
〈ν(t)〉j = 1

Nagents

∑
j active at time t νj(t), displayed as a solid curve, plotted

against macro-volatility calculated as the solution of a GARCH(1, 1)
process, displayed as a dashed curve. After calculation, these processes
were normalized to have zero mean and unit variance for display on
the same scale. From top to bottom: Mquantile,Mmixed, andMfps. . . 27

2.7 Micro and macro volatility measures are highly correlated when fitness-
proportionate selection is included in the selection mechanism (i.e., the
mechanism is either mixed or fitness-proportionate). There is correla-
tion between micro and macro volatility under the pure quantile mech-
anism, but the effects of agents’ volatility preferences are muted in
comparison. Calculated values were used in a kernel density estimate,
plotted above, computed using Gaussian kernels and the Silverman
rule for bandwidth estimation. . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Parameters to theoretical models of pbid, Nshares, and ν were fit using
maximum likelihood estimation and differential evolution, as described
in the text. Displayed here are the fit distributions of the theoretical
models for the mixed mechanism in dashed blue curves, random vari-
ates drawn from the theoretical model in solid blue curves, and fit
distributions of the ABM in magenta curves., Calculated optimal val-
ues of free parameters for each model are displayed in the title of each
panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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2.9 At each generation g of the evolutionary process, we initialize K inde-
pendent markets in which agents (Sec. 2.2.3) interact via the matching
engine described in Sec. 2.2.2. At the end of T timesteps, agents subject
to evolution are pooled, selection is applied, and then new agents are
introduced using the mechanism described in Sec. 2.2.4. The process
then begins again in generation g + 1. . . . . . . . . . . . . . . . . . 34

2.10 In panel A, we display an example orderbook corresponding with a
very simple market simulation (α = (66, 33, 0, 0, 0, 0, 0) along with the
resulting asset price time series. We denote bid interest by negative
numbers (corresponding with positive Db(x, t) later) and ask interest
by positive numbers (corresponding with positive Da(x, t) later). We
display the time series of total bid and ask interest in panel B and the
time series of ∆X in panel C. Differences in total bid and ask interest
are strongly associated with changes in level of ∆X. The periodicity of
large drops in ∆V̂ (b) and ∆V̂ (a) is due to end-of-day orderbook clearing
by the matching engine. . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.11 Evolving neural network agents quickly dominate all static agents; av-
erage wealth of neural network agents increases until about g = 40,
where it plateaus while the average wealth of other static trading
agents remains largely flat or decreases over time. In particular, mean-
reverting and fundamental-value traders suffer large average wealth
losses, even though fundamental-value traders start as the most prof-
itable agent type. We also find that a static momentum trading strat-
egy is, on average, the strategy that is least dominated by evolving
neural networks and can actually be sustainably profitable for multiple
generations; this result corresponds with the finding that a momentum-
based strategy can be profitable in real financial markets [1]. . . . . 47

2.12 Asset price superdiffusion emerges as a byproduct of evolutionary pres-
sure. Superdiffusion is defined by a superlinear relationship between
mean squared deviation of a time series and time itself. At each gen-
eration g we fit a model of the form E[(X(g)

t − µ)2] ∝ tγg and plot the
resulting γg as a function of generation g. This exponent of dispersion
stabilizes at roughly γg ' 1.8 after approximately 10 generations of
evolution (indicated by the vertical black line at g = 10), which in-
fluences our selection of g = 10 for validation and testing of evolved
strategies on real data. . . . . . . . . . . . . . . . . . . . . . . . . . 49
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2.13 Elite evolved trading algorithms are able to obtain positive profit under
a wide variety of backtested trading conditions. We show the spot price
of EUR/USD for the first 106 seconds of July 2016 in the black curve;
this time series displays both large increases and decreases during this
time period, as well as regions of relatively low and high volatility.
Despite these varied conditions, an elite evolved algorithm was able
to capture positive profit (shown in the blue curve) over this time
period, showing large gains in profit during both price drawdowns and
ramp-ups. We note that this particular observation is significantly
below the mean total profit generated by elite evolved algorithms, as
demonstrated in Fig. 2.14. . . . . . . . . . . . . . . . . . . . . . . . 52

2.14 The profit distributions of all evolved neural networks, random neural
networks, and elite individuals when evaluated on real FX spot rate
data differ significantly, as we demonstrate in panel A. In panel B, we
demonstrate that elite evolved neural network trading strategies have
significantly higher mean profits on test data than do random neu-
ral network strategies or the set of all evolved strategies evaluated on
validation data. (The separation between validation and test data is
irrelevant for the set of all evolved neural networks, as these networks
evolved in the agent-based model, not through evaluation on real data.)
The data do not appear to have a diverging second moment; we do not
concern ourselves with issues that arise with bootstrapping in distri-
butions with tail exponent α < 2 [2]. . . . . . . . . . . . . . . . . . . 53

3.1 The discrete shocklet transform is generated through cross-correlation
of pieces of shocks; this figure displays effects of the action of group el-
ements ri ∈ R4 on a base “shock-like” kernel K. The kernel K captures
the dynamics of a constant lower level of intensity before an abrupt
increase to a relatively high intensity which decays over a duration of
W/2 units of time. By applying elements of R4, we can effect a time
reversal (r1) and abrupt cessation of intensity followed by asymptotic
convergence to the prior level of intensity (r2), as well as the combi-
nation of these effects (r3 = r1 · r2). In Section 3.3.3 we illuminate a
typology of shock dynamics derived from combinations of these basic
shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 This figure provides a schematic for the construction of more compli-
cated shock dynamics from a simple initial shape (K(S)). By acting
on a kernel with elements ri of the reflection group R4 and function
concatenation, we create shock-like dynamics, as exemplified by the
symmetric shocklet kernel K(C) = K(S) ⊕ [r1 · K(S)] in this figure. . . 60
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3.3 A comparison between the standard discrete wavelet transform (DWT)
and our discrete shocklet transform (DST) of a sociotechnical time
series. Panel B displays the daily time series of the rank rt of the word
“trump” on Twitter. As a comparison with the DST, we computed the
DWT of rt using the Ricker wavelet and display it in panel A. Panel
C shows the DST of the time series using a symmetric power shock,
K(S)(τ |W, θ) ∼ rect(τ)τ θ, with exponent θ = 3. We chose to compare
the DST with the DWT because the DWT is similar in mathematical
construction (see Appendix D.2 for a more extensive discussion of this
assertion), but differs in the choice of convolution kernel (a wavelet, in
the case of the DWT, and a piece of a shock, in the case of the DST)
and the method by which the transform accounts for signal at multiple
timescales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Effects of the reflection group R4 on the shocklet transform. The top
four panels display the results of the shocklet transform of a random
walk xt = xt−1 + zt with zt ∼ N (0, 1), displayed in the bottom panel,
using the kernels rj · K(S), where rj ∈ R4. . . . . . . . . . . . . . . . 68

3.5 Intricate dynamics of sociotechnical time series. Panels A and D show
the time series of the ranks down from top of the word “bling” on Twit-
ter. Until mid-summer 2015, the time series presents as random fluctu-
ation about a steady, relatively-constant level. However, the series then
displays a large fluctuation, increases rapidly, and then decays slowly
after a sharp peak. The underlying mechanism for these dynamics was
the release of a popular song titled “Hotline Bling”. To demonstrate
the qualitative difference of the “bling” time series from draws from a
null random walk model, the details of which are given in Appendix
D.2. Panels A, B, and C show the discrete shocklet transform of the
original series for “bling” and the random walks ∑t′≤t ∆rσit, showing
the responsiveness of the DST to nonstationary local dynamics and its
insensitivity to dynamic range. Panels D, E, and F, on the other hand,
display the discrete wavelet transform of the original series and of the
random walks, demonstrating the DWT’s comparatively less-sensitive
nature to local shock-like dynamics. . . . . . . . . . . . . . . . . . . 71
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3.6 The shock indicator function is relatively insensitive to functional forms
K(·) and values of the kernel’s parameter vector θ so long as the ker-
nel functions are qualitatively similar (e.g., for cusp-like dynamics—as
considered in this figure and in Eq. 3.10—K(C) displaying increasing
rates of increase followed by decreasing rates of decrease). Here we
have computed the shock indicator function CK(S)(τ |θ) (Eq. 3.12) for
three different time series: two sociotechnical and one null example.
From left to right, the top row of figures displays the rank usage time
series of the word “bling” on Twitter, the price of the cryptocurrency
Bitcoin, and a simple Gaussian random walk. Below each time series
we display parameter sweeps over combinations of (θ,Wmax) for two
kernel functions: one kernel given by the function of Eq. 3.10 and an-
other of the identical form but constructed by setting K(S)(τ |W, θ) to
the function given in Eq. 3.1. The `1 norms of the shock indicator
function are nearly invariant across the values of the parameters θ for
which we evaluated the kernels. However, the shock indicator function
does display dependence on the maximum window size Wmax, with
large Wmax associated with larger `1 norm. This is because a larger
window size allows the DST to detect shock-like behavior over longer
periods of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 The Shocklet Transform And Ranking (STAR) algorithm combines
the discrete shocklet transform (DST) with a series of transformations
that yield intermediate results, such as the cusp indicator function
(item (3) in the figure) and windows during which each univariate
time series displays shock-like behavior (item (4) in the figure). Each
of these intermediate results is useful in its own right, as we show in Sec.
3.3. We display the final output of the STAR algorithm, a univariate
indicator that condenses information about which of the time series
exhibits the strongest shock-like behavior at each point in time. . . . 75
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3.8 We modeled the log odds ratio of a U.S. economic recession using
three ordinary least squares regression models. Each model used one
of the ADV method’s anomaly indicator, the shock indicator function
resulting from the discrete shocklet transform, and the windows of
shock-like behavior output by the STAR algorithm as elements of the
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or STAR outperformed the model that used features constructed by
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3.11 Time series of the ranked and weighted shock indicator function. At
each time step t, the weighted spike indicator functions (WSIF) are
sorted so that the word with the highest WSIF corresponds to the
top time series, the words with the second-highest WSIF corresponds
to the second time series, and so on. Vertical ticks along the bottom
mark fluctuations in the word occupying ranks 1 and 2 of WSIF values.
Top panels present the ranks of WSIF values for words in the top 5
WSIF values in a given time step for the sub-sampled period of 60
days. An interactive version of this graphic is available at the authors’
webpage: http://compstorylab.org/shocklets/ranked_shock_

weighted_interactive.html. . . . . . . . . . . . . . . . . . . . . . 101
3.12 Time series of the ranked and weighted spike indicator function. At

each time step t, the weighted spike indicator functions (WSpIF) are
sorted so that the word with the highest WSpIF corresponds to the
top time series, the words with the second-highest WSpIF corresponds
to the second time series, and so on. Vertical ticks along the bot-
tom mark fluctuations in the word occupying ranks 1 and 2 of WSpIF
values. Top panels present the ranks of WSpIF values for words in
the top 5 WSpIF values in a given time step for the sub-sampled
period of 60 days. The top left panel, demonstrates the competi-
tion for social attention between geopolitical concerns‚Äîstreet protests
in Egypt–and popular artists and popular culture influence–Rebecca
Black and Demi Lovato. The top right panel displays the language sur-
rounding the 2016 U.S. presidential election immediately after Donald
Trump announced his candidacy. An interactive version of this graphic
is available at the authors’ webpage: http://compstorylab.org/
shocklets/ranked_spike_weighted_interactive.html. . . . . . 102
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3.13 Extracted shock segments show diverse behavior corresponding to di-
vergent social dynamics. We extract “important” shock segments (those
that breach the top k = 20 ranked weighted shock indicator at least
once during the decade under study) and normalize them as described
in Section 3.3. We then find the densities of shock points t∗1, mea-
sured using the maxima of the within-window time series, and alter-
natively measured using the maxima of the (relative) shock indica-
tor function. We calculate relative maxima of these distributions and
spatially-average shock segments whose maxima were closest to these
relative maxima; we display these mean shock segments along with
sample shock segments that are close to these mean shock segments
in norm. We introduce a classification scheme for shock dynamics:
Type I (panel A) dynamics are those that display slow buildup and
fast relaxation; Type II (panel B) dynamics, conversely, display fast
(shock-like) buildup and slow relaxation; and Type III (panel C) dy-
namics are relatively symmetric. Overall, we find that Type III dy-
namics are most common (40.9%) among words that breach the top
k = 20 ranked weighted shock indicator function, while Type II are
second-most common (36.4%), followed by Type I (22.7%). . . . . . 103

4.1 Though simple, the random walk latent space election model is an ap-
proximation to varied population candidate preference updates. The
latent election process evolves according toXk+1 = Xk+ 1

N

∑
1≤n≤N ξn,k,

where ξn,k is voting agent n’s shift toward the left (< 0) or right (> 0)
of the political spectrum at time k. In the center panel, the solid curve
is a draw from the latent election process resulting from the preference
updates ξn,t ∼ B

(
0.1T−t

T
+ 1.5 t

T
, 0.1T−t

T
+ 1.5 t

T

)
, where B(α, β) is the

Beta distribution and we have set T = 365. This change in politi-
cal preference shift distribution describes an electorate with increasing
resistance to change in their political viewpoints. We display the pref-
erence shift distributions at t = 0 (t = T ) in Panel A (Panel B). For
contrast, the dashed curve is a draw from the latent election process re-
sulting from ξn,t ∼ B

(
1.5T−k

T
+ 0.1 k

T
, 1.5T−k

T
+ 0.1 k

T

)
, which describes

an electorate in which the component agents often have changing polit-
ical preferences. We show the corresponding preference shift distribu-
tions at t = 0 (t = T ) in Panel D (Panel E). Despite these preference
updates that are, in some sense, opposites of each other, the latent
processes Xt are statistically very similar and are both well-modeled
by the continuum approximation dXt = σdWt. . . . . . . . . . . . . 108
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4.2 Example value functions corresponding to the system Eqs. 4.11 and
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λR = λB = 0, ΦR(x) = 2[Θ(x) − Θ(−x)], and ΦB(x) = 2[Θ(|x| >
0.1) − Θ(|x| ≤ 0.1)] with ∆ = 0.1, while panels C and D display
VR(x, t) and VB(x, t) respectively for λR = λB = 2, ΦR(x) = 2 tanh(x),
and ΦB(x) = 1

2x
2Θ(−x). For each solution we enforce Neumann no-

flux boundary conditions and set σ = 0.6. The solution is computed
on a grid with x ∈ [−3, 3], setting dx = 0.025, and integrating for
Nt = 8000 timesteps. . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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the electoral process in the bottom panel. We draw these realizations
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and ΦB(x) = 1

2x
2Θ(−x). For this parameter set, Blue is fighting a

losing battle—the bottom panel clearly shows that, even with Blue
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both players results in a significantly lower E[Zt] than for the electoral
process without any interference. . . . . . . . . . . . . . . . . . . . . 119
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final condition is set to ΦB(x) = 1

2x
2Θ(−x). We vary the coupling

parameters over [0, 3] and display the resulting standard deviation of
the control policies uR(x) and uB(x). Panels A and B represent one
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system of equations with a different set of final conditions. In panel A,
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equations with a different set of final conditions. In contrast with Fig.
4.4 we alter Blue’s final condition from ΦB(x) = −1

2x
2Θ(−x) in panel
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condition from continuous to discontinuous causes a greater than 100%
increase in the maximum value of the mean of Red’s control policy. . 122

xvi



4.6 In the case of strong coupling (λR and λB � 0), discontinuous fi-
nal solutions by either player cause superexponential growth in the
magnitude of each player’s control policy. Here we set λR = λB =
3 and integrate three systems, varying only one final condition in
each. Panel A displays a system with two continuous final condi-
tions: ΦR(x) = tanh(x) and ΦB(x) = 1

2x
2Θ(−x). Panel B displays

the mean Red and Blue control policies when the Red final condition
is changed to ΦR(x) = Θ(x) − Θ(−x) as the Blue final condition re-
mains equal to 1

2x
2Θ(−x), while panel C shows the control policies

when ΦB(x) = Θ(|x| > 1.) − Θ(|x| < 1) and ΦR(x) = tanh(x). The
shaded regions correspond to the middle 80 percentiles (10th to 90th
percentiles) of uR(t) and uB(t) for each t. When either player has a
discontinuous final condition, the inter-percentile range is substantially
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conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7 Result of the path integral Monte Carlo solution method applied to
Eq. 4.20 with the final condition Φ(x) = Θ(|x| > 1) − Θ(|x| ≤ 1) and
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analytical control policy at t = T is given by u(t) = −1
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The numerically-determined value functions at time t = 0 are shown
above in black curves, while the Laplace approximations at t = 0 are
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4.9 If player ¬i credibly commits to a strategy of playing a constant strat-
egy with value equal to v for the entire duration of the game, player
i’s (exponentially-transformed) value function ϕ(x, t) has an integral
representation given by Eq. 4.25. We display dynamics of ϕ(x, t) in
the case where Φ(x) = tanh(ax) for x ∈

(
−3

2 ,
3
2

)
and logarithmically

equally-spaced values of a ∈ [10−3, 105]. For a < 10−1, the value func-
tion is nearly constant as a values this small render the final condition
nearly constant over this range of the state space. When a > 101,
∂
∂x
ϕ(x, t) rapidly increases in magnitude near x = 0 as t→ T . . . . . 130
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to the exact value function given in Eq. 4.32. Dashed curves indicate
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work; if the edge between words i and j already exists, the weight of the
edge is incremented. The edge weight increment at time t is given by
wij,t = Ri,t+Rj,t

2 , the average of the weighted shock indicator for words
i and j, with the total edge weight thus given by wij = ∑

twij,t. After
initial construction, the backbone of the network is extracted using the
method of Serrano et al. [5]. The network is pruned further by retain-
ing only those nodes i, j and edges eij for which wij is above the p-th
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D.3 Intricate dynamics of sociotechnical time series. Sociotechnical time
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from top of the word “bling” on Twitter. Until 2015/10/31, the time
series presents as random fluctuation about a steady trend that is
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a large fluctuation, increases rapidly, and then decays slowly after a
sharp peak. The underlying mechanism for these dynamics was the
release of a popular song titled “Hotline Bling” by a musician known
as “Drake”. Returns ∆rt = rt+1−rt are calculated and their histogram
is displayed in panel C. To demonstrate the qualitative difference of
the “bling” time series from other time series with an identical returns
distribution, elements of the symmetric group σi ∈ ST are applied to
the returns of the original series, ∆rt 7→ ∆rσit, and the resultant noise
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1.1 Sociotechnical systems

This dissertation is about the modeling and analysis of sociotechnical systems. We

define a “sociotechnical system” to be a system that is composed of humans and

algorithms that interact, both competitively and cooperatively, under the partial

supervision of a (usually decentralized) controller. We will now clarify various parts

of this definition and explain why we believe that each of these parts is necessary.

• What is an algorithm? — Any particular sequence of steps that is taken to

achieve a goal is an algorithm by definition. What we mean is a formalized

algorithm, designed with some measure of optimality in mind, that is written

for execution by, and usually executed on, a computer. In this sense, algorithms

attempt to solve well-defined optimization problems, meaning that the objec-

tive function to be optimized can be concisely described and evaluated relatively

easily. In general, algorithms attempt to find the solution to only one optimiza-

tion problem at a time and do not consider the consequences to other problem

spaces of the actions that they take in solving the problem for which they were

designed. Algorithms are usually designed by humans. This is not always the

case; for example, the field of genetic programming applies evolutionary pres-

sure to populations of computer programs, while gradient-based optimization

methods apply automatic differentiation to the parameters of algorithms that

are represented as directed, acylic graphs.

• Why differentiate between humans and algorithms? — In general, humans do

not solve problems in the same ways in which they design algorithms to solve

problems [7, 8, 9, 10]. That is to say, humans do not usually specify a formal
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objective function and then carefully construct a method by which the function

can be optimized.

Though this dissertation is not about satisficing or heuristic decision-making

strategies, we raise this point because we hypothesize that this divergence be-

tween humans’ and algorithms’ decision-making procedures when applied in

the same problem space is the partial generator of many interesting phenom-

ena. We display examples of these phenomena in each chapter. In Ch. 2 we

demonstrate, in the context of an agent-based model (ABM), that interactions

between heuristic trading strategies and trading strategies that are gradually

optimized through evolutionary pressure generate multiple observed statistical

features of real-world asset markets. Using the discrete shocklet transform, a

qualitative, shape-based similarity search method developed in Ch. 3, we show

that socially-significant events—events that are meaningful to humans for some

cultural reason—generate word usage time series that are statistically differ-

ent from time series corresponding to function words or words that are used

seasonally. And in Ch. 4, we show that a model of rational interference in a

two-candidate first-past-the-post election exhibits drastically different behavior

depending on the motives of the interfering agent and the agents that seeks to

mitigate such interference. Each of these results provides both direct (data-

driven) and indirect (model-driven) evidence to suggest that our hypothesis is

not without merit.

• Why both cooperative and competitive? — Cooperation and competition are

not mutually-exclusive, though cooperation can be analyzed entirely within

the framework of non-cooperative game theory without loss of generality [11].
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Within the same universe, coalitions of agents can agree to cooperate for a

certain length of time and then compete or vice versa. Cooperation can also

emerge from competitive behavior. This fact has explicit ramifications for ob-

served phenomena generated by a collection of humans and algorithms. For

example, cooperative behavior between trading agents emerges in the context

of the ABM introduced in Ch. 2 even as these agents are subject to strong

evolutionary pressure and hence are competing with one another.

• What is a controller, and what is it controlling? — Human society generally

operates under laws or de facto rules of play promulgated by states or state-like

entities [12]. Agent-to-agent interactions are also governed by private rules and

regulations created, and actions (potential or actual) taken, by the creators of

the marketplace in which the interactions take place. We term a “controller”

the rules, regulations, and potential or actual actions taken by the designers

of the framework in which the humans and algorithms are interacting. Exam-

ples of these controllers, both public and private, are: the terms of service of

Twitter and Facebook coupled with their power to remove (or not) automated

accounts; limit-up / limit-down bands set by stock exchanges’ matching en-

gines; and supervision of electoral processes, counting of votes, and restrictions

on campaign finance. It is clear to us that well-designed rules and regulatory

actions can play an integral role in ensuring the stability of collections of inter-

acting humans and algorithms, just as poorly-designed or -implemented ones

can generate deleterious outcomes for members of such a collection. Thus, even

when not explicitly modeled or accounted for in data analysis, we believe that it

is vital to acknowledge the existence of these controllers and consider the ways
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in which their existence and operation affects the activity, both observable, and

latent, of the collection of interacting agents.

It is obvious that such a controller need not be centralized. As an example, the

current U.S. National Market System (NMS), the network of exchanges that

trade public common stocks, consists of no fewer than 13 active stock exchanges

and an uncertain number of less-regulated alternative trading systems (ATS).

Each of these trading venues has its own rules of operation: in what manner

agents may submit orders to the venue, what types of orders are allowed in the

first place, how these orders can be modified or canceled, how much the price of

the stock is allowed to move in a fixed amount of time, and so on. But trading

agents are perfectly capable of interacting in more than one stock exchange or

ATS, and frequently do so [13]. Hence, agents are subject to control from more

than one source; the control is decentralized. An even simpler example is the

voting system for federal nation-wide elections (i.e., presidential elections) in the

United States; each state has its own voter registration laws and regulations.

So this dissertation is about sociotechnical systems—and we now have a concrete

outline of what it means for a system to be sociotechnical. But this dissertation is

also particularly about dynamic phenomena. Many static phenomena are interesting

as well: calculations of risk in uncertain environments, one-shot games of imperfect

information, inference of network structure and properties of observed networks, and

others. But we are chiefly interested in dynamic phenomena because, as reasoning

agents ourselves, we interact with the world around us in a dynamic way. Dynamic

interactions are at the core of the language of science; Bayes’s theorem is fundamen-

tally a statement about how best to update posterior probabilities of events as we
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obtain new information with the passage of time.

Our focus will be on systems that change in time, either through exogenous shocks,

agent adaptation and strategic interaction, or evolutionary pressure. The models that

we develop in Chs. 2 and 4 each are fundamentally dynamic, though the way in which

agents interact with one another through time differs. In the ABM, cooperation and

competition occurs intra-generation, but changes in model composition arising from

application of selective pressure occur inter-generation in evolutionary time. In the

model of electoral interference, agents are explicitly rational and construct optimal

closed-loop policies through backward induction.

1.2 Outline

We now briefly outline the content of this work.

1.2.1 Chapter 2

In Ch. 2, we introduce an agent-based model of a financial market. This market is

based on a new type of auction type, the frequent batch auction (FBA), that can

be used to reduce the potential profitability of high-frequency trading algorithms

[14, 15]. While we do not make normative comments on this objective, we do outline

the differences between an FBA and a continuous double auction, the auction type

more prominent in today’s markets, review some of the existing literature on FBAs,

and describe the logic used in the implementation of the auction.

Using this agent-based model, we conduct two experiments on the interplay between

evolutionary dynamics and market microstructure. We first explore the extent to
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which the design of the evolutionary mechanism affects volatility in the ABM. Agents

have “volatility preferences” that control the degree to which they gain utility from

increasing or lowering the variance about the mean of the order prices that they

submit. We show that selection mechanisms incorporating a quantile-based compo-

nent are associated with lower aggregate volatility preferences and hence with lower

macro volatility across the market at large. The second experiment demonstrates

what we believe is a new paradigm in training automated trading strategies. Instead

of training strategies on past market data in an effort to predict future market prices

or returns, we show that it is possible to instead design an ABM to be an accurate

simulacrum of a real financial market, and then train or evolve trading strategies in

the ABM. The trained or evolved strategies are subsequently used to trade in real

markets. We demonstrate that trading algorithms evolved in this way are profitable

in a backtesting environment.

1.2.2 Chapter 3

Putting aside the modeling for a chapter, we introduce a qualitative, shape-based,

timescale-independent similarity search algorithm, termed the Shocklet Transform

and Ranking (STAR) algorithm, that is used for annotating shocks, spikes, and cusps

in observed sociotechnical time series. Inspired by the diverse behavior exhibited by

time series of word usage on Twitter, one integral piece of this algorithm is the Dis-

crete Shocklet Transform (DST), a time-space integral transform that uses archetypal

kernels and actions of the 2-dimensional reflection group to extract shock-, spike-, or

cusp-like dynamics at all timescales from N sociotechnical time series. These ex-

tracted dynamics are then combined into N indicator time series that display the
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degree to which the original time series exhibit these dynamics at all timescales.

From the indicator time series, a univariate ranking time series (first-most shocklike,

second-most shocklike, etc.) and defines the observations of an N + 1-dimensional

Markov chain for which the transition probability pn′n represents the probability of

switching from time series n being the most shocklike to time series n′ being the most

shocklike 1. We then demonstrate the utility of the DST and STAR in annotating

functionally-anomalous behavior in sociotechnical time series ranging from the data

that initially inspired our construction of this algorithm (time series of word usages

on Twitter) to asset price data and U.S. macroeconomic indicators of recesesion.

1.2.3 Chapter 4

In our final chapter, we return to modeling with a bare-bones model of rational

electoral interference. After justifying our assumption that an election not subject to

foreign power interference is reasonably well-described by a random walk in a latent

space, we derive plausible goals of foreign intelligence agencies wishing to interfere

with elections and the corresponding goals of domestic intelligence agencies who wish

to stifle such interference. We derive a system of coupled nonlinear partial differential

equations that describe the value functions of these actors, solve them numerically,

and derive analytical results in some simplified cases. In particular, we are able to

use path integral control when one player credibly commits to playing a particular

deterministic strategy for the entire game, and we derive the analytical solutions of the

value function when this deterministic strategy is constant over the entire time of the
1 The +1 in the dimensionality of the Markov chain is due to the simple fact that, at time t,

perhaps none of the timeseries are shocklike. In this case we just say the most shocklike timeseries
is ∅.
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game. We then turn to a recent example of electoral interference by foreign intelligence

agencies: Russian interference in the U.S. 2016 presidential election contest. We fit

a discrete-time version of our analytical model, represented as a Bayesian structural

time series model, to observed election time series and time series of tweets by Russian

intelligence bot accounts. Then, through a Gaussian process optimization procedure,

we fit the parameters of our analytical model using the latent time series inferred by

the structural time series model.
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Chapter 2

Agent-based modeling of modern

financial markets
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2.1 Micro-to-macro volatility in frequent

batch auctions

Frequent Batch Auction 
 

Time  t

no
t ↦ t + 1

yes
Selection? 

 
Probability p

Selection mechanism 
 

Mechanism  

t ↦ t + 1

New agents with parameters 
from remaining population 

Selected out of
population

Measured quantities

Figure 2.1: A cartoon of the financial system considered here is shown. Agents interact via
the mechanism of a frequent batch auction, explained in Section 2.1, and are subject to a
type of probabilistic selection mechanism that discards agents with low fitness, which is here
defined by profit, and replaces discarded agents with new agents whose parameters are drawn
from the distribution of parameters among remaining agents. Statistics from market activity
and the selection process are gathered during iterations of the simulation and subsequently
analyzed.

The concept of adaptive financial markets has been studied extensively in quanti-

tative finance for nearly twenty years. The efficient markets hypothesis (EMH), which

in its weakest form states that the price of an asset should, under conditions including

costless information and agents with rational expectations about the future, reflect

all publicly-available past information, has been an influential starting point for the

study of financial theory since its initial publication in the late 1960s [16]. However,
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there is empirical evidence that this hypothesis does not hold. A well-documented

momentum effect exists for asset prices: assets that have done well (poorly) in past

time periods will tend to do well (poorly) in future time periods, for periods rang-

ing up to a year in the future [17]. In addition, there have been objections to the

rational expectations assumption of EMH on a theoretical basis [18, 19, 20]. Critics

of the EMH have proposed a so-called “adaptive-markets hypothesis” (AMH), in the

framework of which the population of agents is in constant flux, adapting to changing

market forces and subject to evolutionary pressure [21]. The rise of high-frequency

trading (HFT) in response to a shift in the regulatory environment in U.S. asset

markets in the mid-2000s is one factor that has lent credence to the AMH theory

[22, 23, 24].

As a result of the apparent adaptive nature of modern financial markets, there has

been substantial application of agent-based model (ABM) methods to model various

market features of interest [25, 26, 27]. Such models often assume constant a particu-

lar selection mechanism by which agents of low fitness (usually, low profitability) are

selected out of the market and agents of higher fitness remain [28, 29, 30]. However,

the design of the selection mechanism may have a material effect on measurable quan-

tities in the marketplace, such as price or return time series, preferences (parameters)

of high-fitness agents, and volatility.

In this work, we analyze the role of various selection mechanisms in determining the

preferences of a population of evolving zero-intelligence agents interacting through the

means of an auction mechanism. Comparing two fundamentally distinct mechanisms—

one a global mechanism based on population profit quantiles and the other a local

mechanism based on sample profitability—we show that this choice not only affects
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Figure 2.2: Means and standard deviation of parameter time series differ by selection mech-
anism. The left panel displays parameter time series averaged over agents; a single time
series is plotted for each run of the simulation. The right panel displays parameter time
series averaged over both agents and runs of the simulation. Overall, the quantile selection
mechanism leads to lower spatial standard deviations across runs of the simulation, as can
be observed in the left panel. While both the quantile and mixed selection mechanisms show
decaying average Nshares and ν, fitness-proportionate selection shows no such behavior. The
fitness-proportionate selection mechanism shows larger variation across runs of the simu-
lation in these variables as well, with much larger extreme values of ν than either of the
other mechanisms. When averaged over both agents and runs of the simulation, pbid shows
effectively no variation in time.

the dynamic behavior and distribution of agent parameters as shown in Figures 2.2

and 2.3, but also has a significant effect on micro-macro volatility correlations. We

find that incorporating local fitness-proportionate selection greatly increases the cor-

relation between a micro-level, risk aversion parameter and macro-level volatility as

measured by standard financial econometric machinery, compared to purely quantile-

based selection.

Theory and simulation

We focus our attention on the mechanism by which agents of low fitness—unprofitable

agents— are selected out of the market. In real-world financial markets, agents whose
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trading strategies produce low returns on capital can experience an outflow of funds to

agents whose strategies produce better returns as investors seek the highest possible

return subject to their risk preferences. In a world of perfect information, firms

would thus be selected out of a market according to a type of fitness-proportionate

selection. Real financial markets—and markets of all kinds—are rife with information

asymmetries [31, 32]; here, we focus on the situation of perfect information to highlight

the importance of the selection mechanism on macro-level observables.

Agent i’s fitness function at time t is given by its profit at that time, defined as

πi(t) = ci(t) + si(t)X(t), (2.1)

where ci and si are the amount of cash held by agent i (units of currency), and

number of shares of the asset held by agent i, respectively, and X is the price of

the asset. Agents are permitted to “sell short": they are not restricted to have a

non-negative amount of cash. Agents are zero-intelligence [33, 34] in the sense that

their actions are purely random given a set of parameters; agents do not adapt in our

model but are subject to evolutionary pressure across generations. The behavior of

an agent is determined by three parameters: pbid,i, the probability of submitting a

bid order in a time period given that the agent trades in that time period; Nshares,i,

the mean number of shares submitted by the agent in a time period; and νi, the so-

called “volatility preference" of the agent, the role of which we will describe presently.

Given the asset price at time t, X(t), the agent submits a bid order with probability

pbid,i (equivalently, an ask order with probability 1 − pbid,i) with number of shares

distributed asNi(t) ∼ Poisson(Nshares,i) and price distributed according to the random
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variable

X
(order)
i (t+ 1) = X(t) + νiui(t), (2.2)

where ui(t) ∼ U [−1, 1]. The volatility preference parameter thus encodes a measure

of regard for the current price level X(t): low νi implies a preference for the current

price level, while larger values lead to larger moves in both positive and negative

directions. This parameter is interpreted as a measure of risk aversion (small ν) or

risk neutrality / risk seeking (large ν).

Figure 2.3: When uncoupled from time, distributions of parameters are similar across selec-
tion mechanisms. These distributions are calculated by computing the empirical pdfs over the
union of time series of parameters over all points in time and runs of the simulation. The
mixed selection mechanism displays the heaviest tails in the distributions of pbid and Nshares,
followed by the fitness-proportionate mechanism. From top to bottom: the quantile-based,
mixed, and fitness-proportionate mechanisms. The blue dashed curves and titles indicate op-
timal fits to the empirical distributions as computed using maximum likelihood estimation.
The distributions of pbid and Nshares are well-fit by a t-distribution, while the distribution
of ν is well-fit by a log-normal distribution.

Market price is determined by a frequent batch auction (FBA), introduced by Budish

et al. as a response to HFT strategies [15, 14], which we now describe briefly. Modern
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financial markets primarily use a continuous double auction (CDA) mechanism to

match buyers and sellers, though FBA has recently attracted much theoretical and

intellectual property interest [35, 36], and batch auctions more generally have been

in use since at least 2001 on the Paris Bourse [37]. CDA and FBA share several

attributes. Both mechanisms are double-sided mechanisms in which any number of

buyers and sellers may participate, and participants may enter or leave the market

at any time under both mechanisms. Both mechanisms also maintain an order book,

which accumulates orders that have not yet been executed. In practice, both mech-

anisms feature a similar price-time execution priority for resting orders, though the

implementation may vary slightly. In other words, orders that have a better price,

bids with higher prices or asks with lower prices, are executed first. Ties in price are

broken by the age of the order, with older orders executing first.

CDAs allow agents to submit orders at any time, and these orders are immediately

matched against resting orders if possible. Orders that are not immediately executed

will be added to the order book, where they will wait for a counter-party to accept

their conditions. This procedure results in trading that occurs continuously, aligning

with the name of the mechanism. On the other hand, FBAs divide trading into

discrete intervals. Within each interval agents may submit orders at any time, which

are then placed in the order book. At the end of a trading interval, a single uniform

execution price is selected by locating the intersection of the supply and demand

curves (i.e. price and quantity of orders from both sides of the market are used to

identify the execution price). Orders to buy with a limit price at least as high as the

selected execution price and orders to sell with a limit price at least as low as the

selected execution price are then eligible to execute. Eligible orders are then matched
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together following price-time priority, i.e. bids with higher prices and asks with lower

prices are matched first, with ties broken by order age, and further ties broken by

uniform random selection. The orders that did not execute at time t remain in the

book and are reconsidered for execution in future time periods until such time as

the matching engine considers them to be “stale", or too old for consideration. The

implementation of FBA considered here sets the maximum allowed time for an order

to remain in the book to be 24 time periods, or one day.

Since the aim of this work is to understand the effects of selection pressure and

different selection mechanisms on macro-statistics of market activity, we attempt to

abstract away other details of real-world asset markets. Though the U.S. National

Market System (NMS) is a fragmented market with no fewer than thirteen exchanges

operating at time of writing [38], we consider only a single exchange and matching

engine here. As noted above, agents are effectively zero-intelligence; though they are

subject to selective pressure and thus the population of agents may become more

profitable over time as weak agents are selected out, individual agents do not adapt

to changing market circumstances.

2.1.1 Selection mechanisms

Selection occurs with constant probability of pselection = 1
24 each time period, so that

there is a selection event in one out of every 24 time periods (hours) on average.

We consider three selection mechanisms: a quantile-based mechanism (truncation se-

lection), denoted by Mquantile; a type of fitness-proportionate selection, Mfps, and

a mixture of the two mechanisms, Mmixed, each of which is a well-known selection

method [39]. The quantile-based mechanism removes agents i whose profit satisfies

18



πi(t) < F←π(t)(q), where q is a quantile (number between 0 and 1) and F←π(t) is the quan-

tile function of the profit distribution across all agents active at time t. We set q = 0.1

to remove the bottom 10% of agents each time the quantile-based mechanism is ac-

tivated. The fitness-proportional selection mechanism is a standard implementation

of such a procedure: a random sample S(t) of agents is selected from the population

and each is kept in the population with probability given by pi(t) = πi(t)∑
j∈S(t) πj(t)

. We

set |S(t)| = 10 in this implementation. The mixed selection mechanism interpolates

between Mquantile and Mfps. When a selection event occurs, with probability 1
2 the

mechanismMquantile is used and with probability 1
2 ,Mfps is used.

When agents are selected out of the population, new agents are added to replace

the ones that have exited so that the number of agents in the population is con-

served. We set the number of agents Nagents = 100 in each run of the simulation.

When new agents enter the model after a selection event, with probability pinnovation

they draw their governing parameters (pbid, Nshares, and ν) from stationary proba-

bility distributions that do not change with selective pressure, and with probability

1 − pinnovation they draw their governing parameters from the distributions of these

parameters among the members of the population of agents that did not get selected

out of the market. In this work, we set pinnovation = 0.01. We choose these selec-

tion mechanisms not because they are in some way optimal methods for selecting

individuals in an evolving system—in fact, the disadvantages of fitness-proportionate

selection are well-documented [40]—but for their interpretation in the context of a

financial market. The quantile-based method models an environment in which an

investing public (individuals, firms, etc.) actively avoid firms that are performing

badly in the market, but do not actively seek out firms whose profits are the highest.
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In contrast, a fitness-proportionate scheme models a scenario in which investors seek

out the firms that have the highest total profits and allocate their funds to these firms

in proportion to their past performance. We also included a control simulation model

in which no selection was present and all agents initially in the simulation at time

t = 0 remained in the simulation for the entire time.

We turn briefly to a theoretical model of the evolution of agents’ parameters: pbid,

Nshares, and ν. For the sake of convenience we pass to a continuous time description,

though the discrete time of the simulation is recovered by simply setting dt = 1
24 days.

We assume that prices evolve according to a zero-mean Lévy flight,

dX(t) = σXdL
(α)
X (t), X(0) = X0, (2.3)

with tail exponent α ∈ (1.7, 2) as suggested by Mandelbrot [41]. This model has been

shown to give superior fit to real data when compared with the geometric Brownian

motion model of asset prices [42, 43]. Since any agent whose bid probability deviates

too far from the natural equilibrium of p∗bid = 1
2 will soon become rapidly unprofitable

and hence be selected out of the market, we assume pbid evolves according to a type

of Ornstein-Uhlenbeck process,

dpbid(t) = θpbid(p∗bid − pbid(t)) dt+ σpbiddL
(α)
pbid

(t). (2.4)

In contrast, there is no logical steady state for Nshares, so we assume that its evolution

is governed by a standard random walk with heavy-tailed increments arising from the
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auction mechanism,

dNshares(t) = µNshares dt+ σNshares dL
(α)
Nshares

(t). (2.5)

The parameter µNshares is interpreted as evolutionary drift. The interpretation of

volatility preference ν as a measure of risk aversion (small ν) or risk neutrality /

seeking (large ν) gives insight into a possible model for its evolution. Simply put,

volatility preference increments in proportion to the current level of volatility pref-

erence: if the population is risk averse, the variation in volatility preference should

be low; if the population is risk neutral or risk-seeking, the variation in volatility

preference will likely be high. Incorporating an evolutionary drift term, a reasonable

model for this phenomenon is

dν(t) = ν(t)[µνdt+ σνdL
(α)
ν (t)]. (2.6)

For example, orders submitted according to Eq. 2.2 with ν much larger than the

population average are unlikely to be executed if the resultant price is favorable to

the submitting agent (i.e., very high ask price or very low bid price relative to the last

equilibrium price) and will result in a large financial loss to the agent if the resultant

price is likely to be executed (i.e., very high bid price or very low ask price).

We seek an understanding of the effects of the selection mechanism on micro- and

macro-market statistics. Are there cross-mechanism differences between optimal pa-

rameter combinations, or, more fundamentally, is there a steady-state optimal pa-

rameter combination at all? How do the time series of parameters—which, in a real

financial market, would be unobservable—affect macro-observable quantities such as
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Figure 2.4: The mean power spectral density (PSD) exponent of population price time se-
ries, 〈γ〉Nsim = 1

Nsim

∑Nsim
n=1 γn, where γn is defined by Sxx(ω) ∼ ω−γn. All PSD exponents

converge to a value near 〈γ〉Nsim ∼ 1.8, though the quantile mechanism has the largest expo-
nent and hence the average price time series associated with the quantile mechanism is less
autocorrelated than the others.
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leptokurticity of returns or volatility? To answer these questions, we first character-

ize basic macro properties of the simulations under each selection mechanism. Aside

from the price X(t) and return r(t) = log10X(t) − log10X(t − 1) time series, we

calculate the price power spectral density, defined by Sxx(ω) = X̂(ω)X̂†(ω), where

we have defined the Fourier transform on the interval [0, T ] by

X̂(ω) = 1√
T

T∑
t=1

X(t)e−iωt∆t, (2.7)

where ∆t = 1
24 , so that the units of the Fourier transform are 1/days. For financial

price time series we expect Sxx(ω) ∼ ω−γ, where γ ∈ (1.7, 2). Brownian motion has

Figure 2.5: Mean profit levels differed by selection mechanism. The quantile (trun-
cation) selection mechanism lead to average profits that were approximately an or-
der of magnitude higher than that of the second-most profitable mechanism, the mix-
ture of fitness-proportionate selection and quantile selection. While returning posi-
tive average profits, fitness-proportionate selection was the least profitable of the non-
control selection mechanisms. In this context, average profit is defined by 〈π(t)〉j,sim =

1
NsimNagents

∑Nsim
n=1

∑
j active at time t πj,n(t)
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γ = 2, while real asset markets exhibit γ ∼ 1.8 in price dynamics [41, 44]. Time

series of the parameters pbid,j, Nshares,j, and νj are described and their distributions

are fit and compared with distributions predicted from the theoretical models de-

scribed above. Finally, we analyze the link between the agent-level micro-volatility

parameters νj and macro-volatility as measured from price or return time series and

remark on its differentiation by selection mechanism.

Results

We ran 1000 runs of the artificial asset market simulation for each selection mechanism

(control,Mquantile,Mfps, andMmixed) for a total of 4000 simulations. Each simulation

was composed of 24 “hour" trading periods in each trading “day". A total of 252

trading days per year (in analogy with the calendar of the U.S. national market

system) resulted in a total of 6048 trading periods per simulation. The number of

agents in each simulation was held constant at 100. To determine that the number

of runs of the simulation was adequate for the calculation of population averages, we

generated reruns of the simulation until temporal averages of the population price

time series power spectral density exponents appeared to converge. This convergence

is displayed in Figure 2.4.

The mean profitability of agents under each selection mechanism is displayed in Figure

2.5. Here, we define an average over both runs of the simulation and active agents,

viz.

〈π(t)〉j, sim = 1
NagentsNsim

Nsim∑
n=1

∑
j active at time t

πj,n(t). (2.8)

The purely quantile-based mechanism displays average profitability that is over an

order of magnitude greater than eitherMmixed orMfps, whileMmixed was still much
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more profitable on average than was Mfps. This differentiation is likely to due to

the fact that Mquantile selects out the ten worst-performing individuals each time

it is active, while Mfps selects out on average |S(t)| − ∑
j∈S(t) pj = 9 individuals

that are randomly sampled from the population; while the individuals selected out

are, on average, the worst performing individuals in that particular S(t), they are

by no means the worst-performing individuals in the entire population. Though

this implementation of Mfps results in significantly less selective pressure on the

population than does Mquantile, this choice is made to hold constant the number of

individual agents involved in the selection step of the market simulation.

Agents’ parameters—the probability of submitting a bid, pbid,j, the mean number of

shares submitted in an order Nshares,j, and the volatility preference νj—were influ-

enced by the choice of selection mechanism. Overall, Mquantile was associated with

lower standard deviations of parameter time series as calculated over runs of the sim-

ulation. Figure 2.2 displays parameter time series for all runs of the simulation in the

left panel, and averages over runs of the simulation in the right panel. BothMquantile

and Mmixed showed time decay toward lower values in Nshares and ν when averaged

over both active agents and runs of the simulation. On the contrary,Mfps showed no

decay in either parameter when the same average was performed. When decoupled

from time, distributions of the parameters showed remarkable similarity across mech-

anisms, showing evidence for a unified underlying evolutionary model as proposed in

Eqs. 2.4 - 2.6, the parameters of which depend on the selection mechanism. These

time-decoupled distributions are displayed in Figure 2.3.
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2.1.2 Volatility correlation

Since it seems reasonable that a fitness-proportionate selection mechanism most

closely approximates the selection mechanism operating in today’s financial asset mar-

kets, we are particularly interested in correlations between micro-volatility—agents’

volatility preferences νj—and macro measures of volatility. We are interested in the

effects of mechanism on these macro measures of volatility, and particularly wish to

test if micro-volatility is correlated with macro-volatility in the cases of Mfps and

Mmixed, as this could provide some insight into how volatility is generated in real

financial markets. Macro-volatility—volatility as measured from market-wide statis-

tics such as price and returns—is often modeled using a generalized autoregressive

conditional heteroskedasticity (GARCH) model [45], which, in its most basic form,

hypothesizes that log returns r(t) = log10X(t)− log10X(t−1) can be decomposed as

r(t) = µ+ ε(t) (2.9)

ε(t) = σ(t)z(t) (2.10)

σ2(t) = ξ + αε2(t− 1) + βσ2(t− 1), (2.11)

where z(t) ∼ N (0, 1). For each simulation, we compute a GARCH model of the form

given above and calculate the Spearman correlation coefficient ρ(〈ν〉, σ) between the

average agent volatility preference 〈ν(t)〉j = 1
Nagents

∑
j active at time t νj(t) and the fitted

volatility σ(t). Figure 2.6 displays 〈ν(t)〉j and σ(t) for an arbitrarily chosen run of

the simulation. Figure 2.7 displays the empirical probability density function (pdf) of

ρ(〈ν〉j, σ) across all non-control simulations. (The pdf of correlations for the control
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Figure 2.6: Micro-macro volatility correlation varies by selection mechanism. We
chose an arbitrary rerun and show the average volatility preference, 〈ν(t)〉j =

1
Nagents

∑
j active at time t νj(t), displayed as a solid curve, plotted against macro-volatility cal-

culated as the solution of a GARCH(1, 1) process, displayed as a dashed curve. After cal-
culation, these processes were normalized to have zero mean and unit variance for display
on the same scale. From top to bottom: Mquantile,Mmixed, andMfps.
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Figure 2.7: Micro and macro volatility measures are highly correlated when fitness-
proportionate selection is included in the selection mechanism (i.e., the mechanism is either
mixed or fitness-proportionate). There is correlation between micro and macro volatility un-
der the pure quantile mechanism, but the effects of agents’ volatility preferences are muted
in comparison. Calculated values were used in a kernel density estimate, plotted above,
computed using Gaussian kernels and the Silverman rule for bandwidth estimation.
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is sharply peaked about zero and uninteresting as there is no evolution of νj in this

case.) The pdf of correlation coefficients for Mquantile is bimodal, with one mode

about zero and another near ρ = 0.5, while for Mmixed and Mfps the pdfs are are

peaked near ρ ' 0.75 with a long left tail.

Since the theoretical models for the evolution of agents’ parameters given by Eqs.

2.4 - 2.6 contain nine free parameters in total, to assess their suitability as a first-

order theoretical model of the evolutionary phenomena occurring here we must fit

these parameters from the data generated by the agent-based model. To do this we

hypothesize a parametric form ptheo(x|β) for each distribution: p(pbid), p(Nshares), and

p(ν). The optimal values of β are defined as the vector that minimizes

∫
x∈Ω

pabm(x) log
(
pabm(x)
ptheo(x|β)

)
dx, (2.12)

the Kullback-Leibler (KL) divergence of the theoretical distribution away from the

distribution produced by the ABM. The domain of integration Ω is defined as all

observed values of the quantity x for each time step and each run of the simulation.

This integral is minimized using differential evolution [46], at each iteration of which

a number of simulations of the theoretical model Eqs. 2.4 - 2.6 are calculated and

the maximum likelihood estimation of the parameter vector β is found, which is then

substituted into the functional form of ptheo used in the definition of KL divergence.

Figure 2.8 displays comparisons between the fitted theoretical distributions and dis-

tributions arising from the ABM for Mmixed. To emphasize that the restriction of

the fit distribution to a parameterized form does not result in a model that fits the

data poorly, random variates drawn from each model are drawn and their histogram
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Figure 2.8: Parameters to theoretical models of pbid, Nshares, and ν were fit using maximum
likelihood estimation and differential evolution, as described in the text. Displayed here are
the fit distributions of the theoretical models for the mixed mechanism in dashed blue curves,
random variates drawn from the theoretical model in solid blue curves, and fit distributions
of the ABM in magenta curves., Calculated optimal values of free parameters for each model
are displayed in the title of each panel.
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is plotted along with the fit distributions. The calculated optimal values of the free

parameters for each model are displayed in the title of each panel. There is strong

restorative force (θpbid = 5.306) to the equilibrium bid probability pbid = 1
2 , while

there is negative evolutionary drift in mean number of shares submitted per order

(µNshares = −0.015) and volatility preference (µν = −0.001).

Discussion

We find that choice of selection mechanism is associated with differential behavior

of asset price spectra, agent parameter distributions and time series, and volatility.

While the probability of submitting a bid order fluctuates regularly about its natural

equilibrium value of p∗bid = 1
2 under all three mechanisms, the time series of the average

number of shares traded and the volatility preference parameter varies functionally

depending on the presence of a quantile-based component to the selection mechanism.

When a quantile-based component is not present (Mfps), these time series vary in the

mean case very little from their initial values, with a slight upward trend. However,

when a quantile-based component is present, in the mean case these series exhibit a

steady trend toward lower values. In both Nshares and ν,Mmixed trends most strongly

toward lower values and does not appear to converge in the time period covered by

our simulation (252 days of trading once per hour), suggesting that longer simulation

run times are necessary to discern the nature of the steady state of these parameters

under mechanisms containing a quantile-based component, if such steady-states exist.

All three mechanisms show significant correlation between micro-volatility, as mea-

sured by the risk-aversion / volatility preference parameter ν, and market-wide volatil-
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ity measured from the market price using standard econometric models (GARCH). All

distributions of Pearson correlation coefficients of micro- and macro-volatility exhib-

ited negative skew (more weight in the left-hand tail). The quantile-based mechanism

displayed bimodality in this distribution, with a small peak near zero correlation and

a large peak near ρ = 0.5. Contrasting with this, Mmixed andMfps were unimodal,

with peaks near ρ ' 0.75, displaying a strong median correlation between micro- and

macro-volatility.

Taken together, these results paint a picture of nontrivial interaction between selection

mechanism and market outcomes. Mechanisms that include a fitness-proportionate

component show higher volatility than a purely quantile-based mechanism, and under

those mechanisms micro-volatility is more highly correlated with observable macro-

volatility, providing a possible mechanistic explanation for the generation of macro-

volatility in real financial markets. However, mechanisms that contain a quantile-

based component show significant evolutionary drift in the average number of shares

submitted per order and in volatility preference. When taken along with the fact that

these mechanisms produced far higher average profits than did the purely fitness-

proportionate method, this suggests that lower values of these parameters are—in a

population of zero-intelligence agents, at least—associated with higher average profit

levels, possibly due to an increase in risk-aversion among the population of agents and

a corresponding decrease in the frequency of agents that experience massive trading

losses.

Our study has several areas on which future work could improve, the most important

of which being our neglection of other selection mechanisms. There are far more—and

more realistic!—mechanisms that provide a model for how agents may be removed
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from, and added to, a financial market. Drawing definitive conclusions about the

nature of market selection and competition from a study of only two fundamental

mechanisms is ill-advised, and we decline to do this. Another shortcoming is our

lack of variation of many parameters in this study. In order to understand these

mechanisms in more depth, a detailed study of macro-observable market statistics

as a function of, e.g., tournament size, quantile, and mixture probability between

the two fundamental mechanisms is required. Future work should focus on inclusion

of more and different selection mechanisms, as well as inclusion of more advanced

agents.

2.2 Evolving trading agents

Ab initio artificial intelligence—algorithms that are capable of learning or evolving

master-level performance from a zero-knowledge baseline in a task normally performed

by humans—is a long-held goal of the field in general [47]. Recent years have seen

substantial progress toward this goal [47, 48, 49]. One particular area of interest is

the development of algorithms that are able to trade financial assets without human

supervision. This problem is relatively difficult not only due to its fundamentally-

stochastic nature (unlike the deterministic non-cooperative games of Go, chess, shogi,

and Atari with which algorithms have had such success), but because of obvious

economic incentives: if an algorithm has a non-transient ability to make a statistically

significant positive profit, the owner of that algorithm stands to reap large financial

gains.

Though there has been prior work on ab initio trading strategies, such work has fo-
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Figure 2.9: At each generation g of the evolutionary process, we initialize K independent
markets in which agents (Sec. 2.2.3) interact via the matching engine described in Sec. 2.2.2.
At the end of T timesteps, agents subject to evolution are pooled, selection is applied, and
then new agents are introduced using the mechanism described in Sec. 2.2.4. The process
then begins again in generation g + 1.

cused on small, homogeneous collections of agents that interact over shorter timescales

than those considered in this study [50]. Trading strategies that use statistical and al-

gorithmic methods more broadly are exceptionally common in the quantitative finance

literature [51, 52, 53], and are used in practice with mixed results [54, 55, 56]. Evolu-

tionary approaches to the development of trading strategies have focused on the devel-

opment of technical trading rules using observed market data as the training dataset

and then backtesting the evolved rules on out-of-sample test data. [57, 58]. Like-

wise, evolutionary computation and agent-based models have been used extensively

to study the macro properties of artificial asset markets rather than specifically study-

ing the micro properties of individual trading strategies [59, 60, 61, 62, 63, 64, 65].

However, to our knowledge there has been no academic study of the possibility of de-

veloping in vivo trading strategies using purely ab initio methods—trading strategies

that train or evolve using artificial data only, and then in actuality trade on real asset
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prices—which is the approach that we take here.

We pursue this objective for two reasons: first, achieving this goal would be a

useful step in the development of evolutionary “self-play” techniques in the context

of stochastic games with many players [66, 67, 68]; and second, this would demonstrate

that the development of profitable trading strategies could be realized by attempting

to simulate with increasing accuracy the underlying mechanisms of financial markets

instead of by predicting future real market prices.

The paper proceeds as follows: in Sec. 4.2, we describe the theory and details

behind our agent-based financial market model, including the design of the price-

discovery (auction) mechanism, heterogeneous agent population, evolutionary algo-

rithm (summarized graphically in Fig. 2.9), and method to convert evolved individuals

into trading strategies; in Sec. 3.3 we summarize descriptive and quantitative results

of the evolutionary dynamics and the performance of evolved trading algorithms back-

tested on real data; and in Sec. 3.4 we discuss these results and provide suggestions

for future work.

2.2.1 Theory and simulation

Our simulation methodology is based on an agent-based market model (ABM) com-

posed of a matching engine and heterogeneous agents, which we describe in turn 1.

We then turn to an outline of the evolutionary mechanism, how it interfaces with the

ABM, and the methodology by which we generate functional trading strategies from

evolved agents.
1All source used in this project is open-source and available at

https://gitlab.com/daviddewhurst/coco-neuro-trader-abm
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Figure 2.10: In panel A, we display an example orderbook corresponding with a very simple
market simulation (α = (66, 33, 0, 0, 0, 0, 0) along with the resulting asset price time series.
We denote bid interest by negative numbers (corresponding with positive Db(x, t) later) and
ask interest by positive numbers (corresponding with positive Da(x, t) later). We display the
time series of total bid and ask interest in panel B and the time series of ∆X in panel C.
Differences in total bid and ask interest are strongly associated with changes in level of ∆X.
The periodicity of large drops in ∆V̂ (b) and ∆V̂ (a) is due to end-of-day orderbook clearing
by the matching engine.
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2.2.2 Details of price discovery mechanism

At each timestep t, agents can submit orders to the matching engine, which attempts

both find an equilibrium price for that timestep and to match orders with one another

so that exchange of shares for cash can occur. Orders are described by a three-tuple,

o = (s,N (o), X(o)), consisting of the desired side s ∈ {buy, sell}, the number of

shares that the agent would like to purchase or sell N (o), and the requested price at

which the agent would like to transact X(o). The matching engine collects all orders

submitted to it and matches bid orders with ask orders using a frequent batch auction

(FBA) mechanism [14, 15]. This mechanism is an alternative to the continuous double

auction (CDA) mechanism that is in use in most securities markets. Both CDAs

and FBAs are double-sided auctions, meaning that they match multiple buyers with

multiple sellers of an asset at the same time, unlike auctions that match a single

seller with multiple buyers (e.g., English, Japanese, or Dutch auctions) [69, 70, 71].

However, CDAs and FBAs differ fundamentally as CDAs operate in continuous time

and FBAs operate in discrete time. CDAs match orders as they are received; if the

order cannot be immediately executed, it is placed into an order book where it waits

to be matched with a future incoming order. In contrast, an FBA collects orders

in discrete time trading intervals. At the end of each trading interval, orders are

sorted according to price preference (bids are sorted from highest to lowest price,

while asks are sorted from lowest to highest). Matching then occurs in price-time

priority order, meaning that bids with a higher price and asks with a lower price are

matched first. Ties in price are broken by age, where older orders—orders that are
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already resting in the order book from previous batches—are matched first 2. Orders

submitted at timestep t that also do not execute at timestep t remain in the orderbook

for consideration in future time periods. Orders that remain in the orderbook—and

hence are not matched with new, arriving orders—past a certain amount of time are

considered “stale” by the matching engine and are removed. In our implementation,

we set this period of time to be one day (or 100 time increments). Agents are able to

observe the price Xt at time t and the volume of resting bid (b) and ask (a) orders in

the orderbook at price level x at time t, written Db(x, t) and Da(x, t). All statistics

used by agents in calculating side of book, price level and number of shares to submit

are functions of these observable random variables and of the agents’ own internal

state, which we describe in the next section. We display an example orderbook, along

with the corresponding price trajectory, in panel A of Fig. 2.10.

2.2.3 Heterogeneous agents

Our agent population is heterogeneous, comprised of seven qualitatively distinct va-

rieties (species) of agents that analyze statistical behavior of asset prices differently

and concomitantly exhibit divergent trading behavior. We do not apply evolutionary

pressure to six out of seven of these species; we thus separate the descriptions of the

agents below into those not subject to evolutionary pressure (static agents) and those

that do evolve.
2 The price discovery algorithm used in our matching engine implementation is a modified version

of the logic used in the Australian Securities Exchange’s matching engine [72]. An open-source
implementation of the matching engine is at https://gitlab.com/daviddewhurst/dragonbridge-abm.
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Static agents

There are six types of agents in our model to which we do not apply evolutionary

pressure. We give a brief overview of them below (the curious reader is encouraged

to consult the supplementary information for more detail).

• Zero-intelligence (zi): Inspired by work on statistical aspects of asset markets

[33, 34], these agents submit a random bid or ask order with order price uni-

formly distributed around the last market price and number of shares Poisson-

distributed around a fixed value (here set to be 100 shares).

• Zero-intelligence priceless (zip): identical to zero-intelligence agents, except

these agents submit “market” orders — orders that do not have a price but

rather have first-priority execution and execute against the highest bid (for a

market ask) or lowest ask (for a market bid).

• Momentum (mo): Momentum trading agents postulate that prices that have

recently risen will continue to rise (and that prices that have recently fallen will

continue to fall) [73, 74]. Our agents submit bid orders if the change in price is

above some positive threshold and ask orders if the change in price is below a

symmetric negative threshold.

• Mean-reverting (mr): postulate a return to some mean value of the asset price

[75, 76]. When the asset prices moves above a rolling mean value, these agents

submit ask orders; when the price moves below the rolling mean, they submit

bid orders.

• Market-making (mm): market-making strategies attempt to profit off of small
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price imbalances on either side of the orderbook; in doing so, they provide

liquidity to the asset market [77, 78].

• Fundamental-value (fv): these agents have a certain fixed price set at which they

“believe” the asset is fairly valued; if the asset price rises above that fundamental

value, they submit ask orders, while if the asset price falls below it, they submit

bid orders. Note that this approach differs from that of mr traders since fv

traders’ valuations of the asset do not change over time.

The typology of strategies illuminated here has a nonempty intersection with that

introduced in the context of modern-day futures markets [79] but does exhibit some

differences — in particular, we do not implement a pure “high-frequency trader” agent

since this does not make sense in the context of an FBA [15, 80]. We implement such

a wide variety of strategies so that, in order for evolving agents to achieve high fitness,

they must perform well in many different environments. We believe this will increase

the likelihood of high-fitness agents’ performing well when confronted with real price

data on which to trade, since real asset markets are also composed of heterogeneous

agents [79].

Evolvable agents

We model technologically-advanced agents that are subject to evolutionary pressure

as deep neural networks, denoted by fθ (we will omit the vector of parameters θ when

it is contextually unnecessary). These neural networks take as inputs changes in price,

changes in total orderbook volume, and changes in internal state (cash, shares held,

and profit) and output a three-tuple of side (bid or ask), number of shares in the
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order, and price level of the order:

(st, N (o)
t ,∆X(o)

t ) = f(∆X,∆V̂ (b),∆V̂ (a),∆c,∆N,∆π) (2.13)

We briefly mathematically describe the inputs of this function and their derivation

from observable market statistics. The change in asset price from t− 1 to t is given

by ∆Xt = Xt −Xt−1, while the change in cash (∆c), shares (∆N), and profit (∆π)

are defined analogously. The total bid and ask interest in the orderbook at time t are

given by V̂ (b)
t =

∫Xt
0 Db(x, t) dx and V̂ (a)

t =
∫∞
Xt
Da(x, t) dx respectively; we then have

∆V̂ (b)
t = V̂

(b)
t − V̂

(b)
t−1 and ∆V̂ (a)

t = V̂
(a)
t − V̂

(a)
t−1. The neural network is a four-layer

feed-forward model. The two hidden layers have 20 and 10 neurons respectively, for

a total of 383 evolvable parameters in each neural network 3.

It is an analytical convenience to consider a single generation of the evolutionary

process described in Sec. 2.2.4 as a draw from a stochastic function G(α,M), where

α describes the specification of the agents in the model and M is the evolutionary

mechanism (selection and mutation); we will describe these parameters in some detail

in Sec. 2.2.4. This function yields orderbooks and price time series; each call to the

function yields a tuple of bid and ask order density and a price time series,

(Db(x, t), Da(x, t), Xt) = G(α,M). (2.14)

This way of looking at the process makes it easy to express Monte Carlo estimates

of theoretical quantities and provides the theoretical basis for conversion of evolved

agents into trading algorithms as we outline in Sec. 2.2.5. We can re-express the above
3 Number of parameters is equal to number of parameters in the weight matrices plus the number

of parameters in the bias vectors = 350 + 33.
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integrals as Monte Carlo estimates (which is how we compute them in practice) so that

V̂
(b)
t ≈ ∑

observed bids x′ Db(x′, t) and V̂
(a)
t ≈ ∑

observed asks x′ Da(x′, t), where Db(x, t),

Da(x, t), and Xt are given by Eq. 2.14. As a visual reference point, in Panel B of

Fig. 2.10 we display an example realization of Monte Carlo-approximated ∆V̂ (b) and

∆V̂ (a), while in panel C of this figure we display the corresponding ∆X.

2.2.4 Evolutionary dynamics

We provide a summary of the evolutionary dynamics in Fig. 2.9. We first describe the

selection and mutation mechanismM, since this mechanism changes on the objective

of the simulation, and then describe the simulation in general. We set the evolutionary

mechanismM to be either tournament selection-based or the identity (no evolution):

we use the tournament selection mechanism when we are attempting to evolve agents

of high fitness, while we use the identity mechanism when we are generating empirical

market statistics for use with real data, as described in Sec. 2.2.5.

The tournament selection mechanism is standard [39], designed as follows: given a

population of evolvable agents, at the end of each generation a tournament of τ agents

is selected from the population at random. We set τ = 17. These agents are sorted

by fitness—their total profit π in the market simulation of the past generation—

so that π(1) ≥ π(2) ≥ · · · ≥ π(τ). Agent (i) is selected to remain with probability

p(1− p)i−1, where we set p = 1
2 ; the remaining agents are discarded. A total of τ − 1

new agents are initialized with the parameters from the selected agent (i), denoted

by θ(i) = (θ(i),1, ..., θ(i),L) where the agent has a total of L parameters. These new

parameters are then subjected to centered Gaussian mutation; the parameters of new

agent i′ are given by θi′ = θ(i) + zi′ , where zi′ ∼ N (0, γ2Σ) and we set γ = 0.1. The
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covariance matrix Σ of the Gaussian is diagonal, with Σ`` = Var(θ(i),`). The τ − 1

agents are added back into the entire population of evolvable agents for use in further

generations, described in the next paragraph.

At each of g = 1, ..., G generations, we initialize k = 1, ..., K independent markets,

which we set to K = 24. We set G = 100. In each market, we initialize NA agents

with agent parameter vector distributed as (αa,k)a∈A = αk ∼ p(α), where A is the

set of agent types outlined in Sec. 2.2.3. Given a drawn αk, there are αzi,k zero

intelligence agents, αmo,k momentum agents, and so on. The probability distribution

p(α) is a joint distribution over agent types that factors as a uniform distribution

over the number of neural network agents and a multinomial distribution over the

number of other agents that is dependent on the number of drawn neural network

agents. Given a number of neural network agents αnn,k drawn uniformly at random

between nnmin and nnmax, the remaining NA − αnn,k are drawn from a multinomial

distribution with probabilities ρa = 1
6 . We set nnmin = 2 and nnmax = 10. Within

each market, agents interact vis-à-vis the matching engine described in Sec. 2.2.2,

trading for a total of T timesteps within each generation. We set T = 500 and set

the number of trading timesteps per day equal to 100, as outlined in the previous

section. After T timesteps, the population of neural networks is pooled—removed

from each simulation and collated into one set—and the evolutionary mechanismM

is applied to all ∑K
k=1 αnn,k neural networks, generating a (partially) new population,

as outlined in the previous paragraphs of this section. The new population of neural

networks is then shuffled and divided into K new independent markets according to

the αnn,k, along with new static agents again drawn from the multinomial distribution

with equal probabilities, and the process begins again in generation g + 1.
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2.2.5 From evolved agent to trading algorithm

We convert evolved neural networks into executable trading strategies that we sub-

sequently backtest on real financial data. The major impediment to simply using

the evolved networks as trading strategies is the lack of readily-available orderbook

information for real financial markets: though such information is available for sale,

it is prohibitively expensive to purchase [13]. Instead, we use orderbook data gen-

erated by G(α,M) as a surrogate for real orderbook data, which we believe to be

an important input into the algorithms as orderbook data has been shown to carry

non-zero information about future prices and be useful in making profitable short-

term trading decisions [81, 82, 83]. We reason that, if G(α,M) is a good simulacrum

of the true orderbook-generating process active in a real financial market, then the

values of ∆V̂ (b) and ∆V̂ (a) generated by the agent-based model, given an observed

value of ∆X from a real market, should be similar to the changes in resting bid and

ask volume that existed in the real market, even though we do not have access to

that data.

Because of our lack of orderbook data, we must simulate ∆V̂ (b) and ∆V̂ (a) that

correspond with the observed change in price ∆X. To do this, we first simply draw

many values from G(α, id) (the generative model with no evolutionary mechanism).

Then, given ∆X from the asset market, we draw multiple (∆V̂ (b), ∆V̂ (a)) pairs from

their empirical joint pdf conditioned on this observation, which is generated by the

draws from G(α, id):

(∆V̂ (b),∆V̂ (a)) ∼ p̂G(α,id)(∆V (b),∆V (a)|∆X), (2.15)
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and evaluate f using the conditional expectation of these values; this new “marginal-

ized” algorithm is given by

fmarg(∆Xt,∆ct,∆Nt,∆πt)

= f(∆X,E[∆V̂ (b)|∆X], E[∆V̂ (a)|∆X],∆c,∆N,∆π),
(2.16)

where the expectations are taken under the pdf displayed in Eq. 2.15. As with the

non-marginalized algorithm f , fmarg returns a side, change in shares, and change in

price:

(st, N (o)
t ,∆X(o)

t ) = fmarg(∆Xt,∆ct,∆Nt,∆πt). Since we are backtesting the trading

algorithm and hence it is impossible to perform price discovery, we do not use ∆X(o)
t .

We simply simulate the execution of a market buy (st = 1) or sell (st = −1) order for

N
(o)
t spot contracts of the asset and then update the algorithm’s internal state. As

in the evolutionary process within the agent-based model, we allow the algorithm to

sell short so that Nt may be negative.

We implement three basic risk management routines that supervise the execution

of the algorithm. These routines act as “circuitbreakers” to halt the algorithm’s

operation if certain risk limits are reached and consist of two versions of the traders’

adage “cut your losses but let your winners run,” ensuring that maximum loss is

capped at some user-set limit, and one leverage limit routine that halts execution

if the algorithm is long or short a certain large number of contracts (we set this

number equal to 150) [84]. (The interested reader is referred to the supplementary

information for more detail.) Though these routines pale in comparison with real

risk-management software used in algorithmic trading [85, 86, 87], we believe that

they are sufficient for the purposes of this work.
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2.2.6 Results

Evolutionary dynamics

We ran 100 independent simulations of the entire process outlined in Sec. 2.2.4. This

resulted in a total of 24,000 (= 24 independent markets per generation × 100 gener-

ations × 100 independent simulations) conditionally independent market simulations

from which to sample evolved neural networks for validation and testing on real finan-

cial asset data. At each generation of each simulation, we saved the best individual

for possible further use.

Evolved neural networks (nn) quickly became the dominant species of trading

agent, though they were not profitable at g = 0 (at which point they were simply

random neural networks with normally-distributed weights and biases). Fig. 2.11

displays average (solid curves) and median (dashed curves) wealth trajectories for

each agent type; these statistics are calculated over all simulations at that generation.

The average and median wealth of nn agents increases quickly until about g = 10. It

then increases more slowly until about g = 40, when it plateaus. Concomitant with

the rise in average and median nn wealth is a decline in the wealth of nearly every

other agent type. In particular, though fundamental value (fv) agents started out as

the most profitable agent type (due to their strong beliefs about “true” asset values

and market power, in early generations they had the ability to collectively set market

price), they became the second-worst performing agent type as nn agents became

more profitable. It is notable that momentum trading agents are the only static

agent type that was still able to make positive profits during multiple sequential later

generations (in particular g > 30), long after all other static agents had become, on

46



Figure 2.11: Evolving neural network agents quickly dominate all static agents; average
wealth of neural network agents increases until about g = 40, where it plateaus while the
average wealth of other static trading agents remains largely flat or decreases over time. In
particular, mean-reverting and fundamental-value traders suffer large average wealth losses,
even though fundamental-value traders start as the most profitable agent type. We also
find that a static momentum trading strategy is, on average, the strategy that is least dom-
inated by evolving neural networks and can actually be sustainably profitable for multiple
generations; this result corresponds with the finding that a momentum-based strategy can be
profitable in real financial markets [1].
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average, very unprofitable. This is consistent with the finding that real asset prices

may exhibit momentum effects and that trading strategies based on exploiting this

momentum may result in positive expected profit [17].

As evolution progressed through generations, statistical properties of asset price

time series Xt changed significantly. The mean square deviation (MSD) of Xt in

generation g, defined by the exponent γg in the relationship Eg[(X(g)
t − µt)2] ∝ tγg

where µt is the intertemporal mean of X(g)
t , begins in the sub- or normally-diffusive

region (γg ≤ 1) but quickly rises to γg ≈ 1.8 near g = 10 and remains there for the

remainder of evolutionary time. We display the MSD of asset prices by generation in

Fig. 2.12. MSD that grows superlinearly with time is termed anomalous superdiffusion

[88, 89] and is commonly observed in real asset markets [90, 91, 92]. This may provide

evidence that observed asset price superdiffusion in real asset markets is partially

driven by purely endogenous evolutionary dynamics.

Validation and testing of evolved strategies

We chose a subsample of the neural networks that we extracted from the market

simulations for consideration as algorithmic trading strategies to be used on real data.

Though all evolved neural networks that we saved had high fitness in the context of

the agent-based model, we hypothesized that it would not be the case that all of them

would have high fitness when backtested on observed asset price data. We selected

the high-fitness neural networks saved at generation g = 10, the set of which we will

denote by A10, for two reasons. First, this was the approximate “elbow” of log10 π,

as displayed in Fig. 2.11; at generations later than approximately g = 10, nn agents

exhibited decreasing marginal log10 π. Second, this generation was the point at which
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Figure 2.12: Asset price superdiffusion emerges as a byproduct of evolutionary pressure.
Superdiffusion is defined by a superlinear relationship between mean squared deviation of a
time series and time itself. At each generation g we fit a model of the form E[(X(g)

t −µ)2] ∝
tγg and plot the resulting γg as a function of generation g. This exponent of dispersion
stabilizes at roughly γg ' 1.8 after approximately 10 generations of evolution (indicated by
the vertical black line at g = 10), which influences our selection of g = 10 for validation
and testing of evolved strategies on real data.
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the exponent of the MSD of asset prices appeared to stabilize at γg ≈ 1.8.

The asset prices produced by the interaction of agents in the ABM do not appear

to exhibit geometric (multiplicative noise) dynamics, but rather arithmetic (addi-

tive noise) dynamics. Though many real financial assets do exhibit geometric- or

geometric-like dynamics [93], other assets, such as foreign exchange (FX) spot con-

tracts, typically display quasi-arithmetic dynamics instead [94]. We thus test our

evolved neural networks on FX spot rate data, eight and a half (January 2015 through

July 2019) years of millisecond-sampled EUR/USD and GBP/USD spot exchange

rate data sourced from an over-the-counter trading venue 4. We do not implement

transaction costs in our backtesting as, if these are constant, their marginal incidence

on profit decreases as the amount of leverage (net number of contracts traded) in-

creases. We separate this dataset into a validation (2010 - 2015) and testing (2015

- 2019) split. Although this split is unnecessary in the context of overfitting to data

(because the neural networks are just static at this point; their evolution occurred in

the ABM and they do not update their weights based on the observed FX data), it

is part of a method by which we lower the probability of false positive discovery of

high-performance trading algorithms. The top k algorithms in A10, ranked by total

profit accumulated by trading on validation data, were then used to trade on the

test dataset; if these algorithms accumulated high profit on the validation dataset by

chance, it is likely that they would not perform well on the test dataset. We set k = 5

and will denote these “elite” trading strategies by Aelite in what follows.

To create trading algorithms from the evolved neural networks, we followed the

procedure described in Sec. 2.2.5. We resampled the spot FX rate time series at the
4The data is available from https://www.truefx.com/, which sources it from the Integral OCX

ECN.
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10s resolution, setting as Xt the mean price during that 10s interval multiplicatively

rescaled by a constant (100/X0) so that the price on the first second of each month was

equal to 100. Agents traded during the first 106 seconds (approximately 16.2 days5)

of each month, a number of timesteps that we chose arbitrarily to avoid possible edge

effects occurring at the end of the month. We will refer to one 106s time interval of

trading on a single spot rate (EUR/USD or GBP/USD) as a single trading episode.

In Fig. 2.13, we display an example time series of spot FX rate (EUR/USD during

July of 2016) and corresponding profit made by an evolved neural network in this

trading episode. In this example, though the spot rate fluctuates considerably and

has |XT − X0| < 0.01 USD/contract, the profit time series increases fairly steadily

throughout the entire time period, netting a total of πT ≈ 0.125 USD.

Evolved strategies differed significantly from random neural network strategies.

We compared the distribution of profit on the validation dataset by A10, profit on

the test dataset by Aelite, and profit on the test dataset by 20 random neural net-

work agents (Arandom) and display empirical cdfs of these distributions, along with

bootstrapped pdfs of the means of these distributions, in Fig. 2.14. Elite individuals

(the top k = 5 performers on the validation dataset) have the greatest maximum

absolute difference (Kolmogorov-Smirnov statistic) between the empirical cdf of their

profit and the other cdfs (D(Aelite,Arandom) = 0.4488, D(Aelite,A10) = 0.3809) while

the maximum distance between the empirical cdf of random neural network profit

and all evolved neural network profit was smaller, but still significantly greater than

zero (D(A10,Arandom) = 0.0956), as demonstrated in panel A. Though the A10 and

Arandom profit distributions are far more similar to each other than they are to that
5 16.2 days ≈ 106s

60s/m×60s/h×24h/trading day× 5trading days
7days
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Figure 2.13: Elite evolved trading algorithms are able to obtain positive profit under a wide
variety of backtested trading conditions. We show the spot price of EUR/USD for the first
106 seconds of July 2016 in the black curve; this time series displays both large increases
and decreases during this time period, as well as regions of relatively low and high volatility.
Despite these varied conditions, an elite evolved algorithm was able to capture positive profit
(shown in the blue curve) over this time period, showing large gains in profit during both
price drawdowns and ramp-ups. We note that this particular observation is significantly
below the mean total profit generated by elite evolved algorithms, as demonstrated in Fig.
2.14.
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Figure 2.14: The profit distributions of all evolved neural networks, random neural networks,
and elite individuals when evaluated on real FX spot rate data differ significantly, as we
demonstrate in panel A. In panel B, we demonstrate that elite evolved neural network trading
strategies have significantly higher mean profits on test data than do random neural network
strategies or the set of all evolved strategies evaluated on validation data. (The separation
between validation and test data is irrelevant for the set of all evolved neural networks, as
these networks evolved in the agent-based model, not through evaluation on real data.) The
data do not appear to have a diverging second moment; we do not concern ourselves with
issues that arise with bootstrapping in distributions with tail exponent α < 2 [2].
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of Aelite, they differ significantly in their tails: the A10 distribution has a higher likeli-

hood of observing larger losses (though the magnitude of these losses are still severely

damped by the risk management routines detailed in Sec. 2.2.5) and larger gains than

does the Arandom distribution. It is possible this occurred because many agents in A10

had high fitness in their particular realization of the ABM with agent concentration

vector α, but α did not resemble the (effectively unobservable) makeup of agents

that generated the real spot price time series. The mean profit of A10 on validation

data was higher than that of Arandom on test data, though estimates of this mean

(displayed in panel B of Fig. 2.14) have greater dispersion that estimates of the mean

of A10 profit. It is likely (probability ≈ 0.7617) that the true mean of the A10 profit

distribution is greater than the mean of the Arandom profit distribution. However,

distributions of estimated mean for both sets of agents do contain zero (though the

estimated probabilities that the mean is greater than zero are 0.7863 for Arandom and

0.9241 for A10).

Crucially, mean Aelite profit on test data is very far from zero (approximately 0.267

USD per trading episode) and the estimated distribution of mean profit is bounded

away from zero. We discuss these results further in the supplementary information.

2.2.7 Discussion and conclusion

We construct a method to develop ab initio trading algorithms using an agent-based

model of a financial market. We subject expressive agents to evolutionary pressure,

using profit generated in the agent-based model as the fitness function. We then back-

test high-performing agents backtest on real financial asset price data (spot foreign

exchange rates). We further tested “elite” evolved agents—agents that performed well
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on validation data (EUR/USD and GBP/USD from 2010 to 2015)—on test data, the

same currency pairs but during the time interval 2016 through 2019. We find that it

is possible for evolved trading algorithms to make significantly positive backtesting

profit for extended periods of time during varying market conditions, even though

these evolved algorithms had never experienced real financial data during the pro-

cess of evolution. This result provides evidence that a paradigm shift in the design

of automated trading algorithms— from prediction of future market states to, in-

stead, closely modeling the underlying mechanisms and agents of which the market

is composed—may be both feasible and profitable.

Though this result is promising, it is important to note some shortcomings of our

research and avenues for further exploration. First, and most importantly, we have

not actually tested the performance of the “elite” evolved agents in a real market,

but only backtested them on real market data. The difference between these actions

is profound; the ultimate expression of confidence in a trading strategy is to use it

with one’s own capital and we have not yet done this [95]. Though the elite agents

are consistently profitable when backtested, this does not guarantee that they will be

profitable when used to trade “live” in a real financial market. If elite agents generated

according to the methodology laid out in Secs. 2.2.4 and 2.2.5 are profitable when

used to trade spot contracts in foreign exchange markets, we will be more confident

in stating that this methodology is a robust method of generating ab initio trading

algorithms.

Second, our implementations of multiple components of our methodology were

intended as proofs-of-concept; four-layer feed-forward neural networks are decidedly

not at the cutting-edge of neural network design [96]. Future work could focus on
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improving the expressiveness and realism of agents used in the agent-based model,

modifying the evolvable neural networks to use a recurrent architecture, using differ-

ent order types in the matching engine (and hence increasing dimensionality of the

neural networks’ action space), and in general attempting to more closely match the

composition of the agent-based model with the structure of modern-day securities

markets (in particular, spot FX rate markets).

Finally, there is substantial room for more analysis of the free parameters in our

agent-based model—for example, tuning the parameters of the tournament selection

adaptively so that later generations do not evolve to simply exploit the structure

of the agent-based model but rather continue to explore novel trading strategies.

More generally, we should improve the design of the mechanism by which we select

high-performing individuals from the model to be backtested on real data. We have

used only a heuristic measure—the apparent stabilization of the MSD exponent and

decreasing marginal log profit—as indicators as from which generation we should

select, and what follows this is essentially just rejection sampling from the space

of agents that are high-performers in the agent-based model through evaluation of

these agents on validation data. We believe that there are probably better ways to

implement this step.
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Chapter 3

Shape-based time series similarity

search
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3.1 Introduction

The tasks of peak detection, similarity search, and anomaly detection in time series

is often accomplished using the discrete wavelet transform (DWT) [97] or matrix-

based methods [98, 99]. For example, wavelet-based methods have been used for

outlier detection in financial time series [100], similarity search and compression of

various correlated time series [101], signal detection in meteorological data [102], and

homogeneity of variance testing in time series with long memory [103]. Wavelet

transforms have far superior localization in the time domain than do pure frequency-

space methods such as the short-time Fourier transform [104]. Similarly, the chirplet

transform is used in the analysis of phenomena displaying periodicity-in-perspective

(linearly- or quadratically-varying frequency), such as images and radar signals [105,

106, 107, 108]. Thus, when analyzing time series that are partially composed of

exogenous shocks and endogenous shock-like local dynamics, we should use a small

sample of such a function—a “shock”, examples of which are depicted in Fig. 3.1, and

functions generated by concatenation of these building blocks, such as that shown

in Fig. 3.2. In this work, we introduce the Discrete Shocklet Transform (DST),

generated by cross-correlation functions of a shocklet. As an immediate example

(and before any definitions or technical discussion), we contrast the DWT with the

DST of a sociotechnical time series—popularity of the word “trump” on the social

media website Twitter—in Fig. 3.3, which is a visual display of what we claim is the

DST’s suitability for detection of local mechanism-driven dynamics in time series.

We will show that the DST can be used to extract shock and shock-like dynamics

of particular interest from time series through construction of an indicator function
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Figure 3.1: The discrete shocklet transform is generated through cross-correlation of pieces
of shocks; this figure displays effects of the action of group elements ri ∈ R4 on a base “shock-
like” kernel K. The kernel K captures the dynamics of a constant lower level of intensity
before an abrupt increase to a relatively high intensity which decays over a duration of W/2
units of time. By applying elements of R4, we can effect a time reversal (r1) and abrupt
cessation of intensity followed by asymptotic convergence to the prior level of intensity (r2),
as well as the combination of these effects (r3 = r1 · r2). In Section 3.3.3 we illuminate a
typology of shock dynamics derived from combinations of these basic shapes.
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that compresses time-scale-dependent information into a single spatial dimension us-

ing prior information on timescale and parameter importance. Using this indica-

tor, we are able to highlight windows in which underlying mechanistic dynamics are

hypothesized to contribute a stronger component of the signal than purely stochas-

tic dynamics, and demonstrate an algorithm—the Shocklet Transform And Ranking

(STAR) algorithm—by which we are able to automate post facto detection of endoge-

nous, mechanism-driven dynamics. As a complement to techniques of changepoint

analysis, methods by which one can detect changes in the level of time series [109, 110],

the DST and STAR algorithm detect changes in the underlying mechanistic local dy-

namics of the time series. Finally, we demonstrate a potential usage of the shocklet

transform by applying it to the LabMT Twitter dataset [111] to extract word usage

time-series matching the qualitative form of a shock-like kernel at multiple timescales.
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Figure 3.2: This figure provides a schematic for the construction of more complicated shock
dynamics from a simple initial shape (K(S)). By acting on a kernel with elements ri of the
reflection group R4 and function concatenation, we create shock-like dynamics, as exempli-
fied by the symmetric shocklet kernel K(C) = K(S) ⊕ [r1 · K(S)] in this figure.
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3.2 Data and Theory

3.2.1 Data

Twitter is a popular micro-blogging service that allows users to share thoughts and

news with a global community via short messages (up to 140 or, from around Novem-

ber 2017 on, 280 characters, in length). We purchased access to Twitter’s “decahose”

streaming API and used it to collect a random 10% sample of all public tweets au-

thored between September 9, 2008 and April 4, 2018 [112]. We then parsed these

tweets to count appearances of words included in the LabMT dataset, a set of roughly

10,000 of the most commonly used words in English [111]. The dataset has been used

to construct nonparametric sentiment analysis models [113] and forecast mental ill-

ness [114] among other applications [115, 116, 117]. From these counts, we analyze

the time series of word popularity as measured by rank of word usage: on day t, the

most-used word is assigned rank 1, the second-most assigned rank 2, and so on to

create time series of word rank rt for each word.

3.2.2 Theory

Algorithmic details: description of the method

There are multiple fundamentally-deterministic mechanistic models for local dynam-

ics of sociotechnical time series. Nonstationary local dynamics are generally well-

described by exponential, bi-exponential, or power-law decay functions; mechanistic

models thus usually generate one of these few functional forms. For example, Wu
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Figure 3.3: A comparison between the standard discrete wavelet transform (DWT) and our
discrete shocklet transform (DST) of a sociotechnical time series. Panel B displays the daily
time series of the rank rt of the word “trump” on Twitter. As a comparison with the DST,
we computed the DWT of rt using the Ricker wavelet and display it in panel A. Panel C
shows the DST of the time series using a symmetric power shock, K(S)(τ |W, θ) ∼ rect(τ)τ θ,
with exponent θ = 3. We chose to compare the DST with the DWT because the DWT is
similar in mathematical construction (see Appendix D.2 for a more extensive discussion of
this assertion), but differs in the choice of convolution kernel (a wavelet, in the case of
the DWT, and a piece of a shock, in the case of the DST) and the method by which the
transform accounts for signal at multiple timescales.
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and Huberman described a stretched-exponential model for collective human atten-

tion [118], and Candia et al. derived a biexponential function for collective human

memory on longer timescales [119]. Crane and Sornette assembled a Hawkes pro-

cess for video views that produces power-law behavior by using power-law excitement

kernels [120], and Lorenz-Spreen et al. demonstrated a speeding-up dynamic in collec-

tive social attention mechanisms [121], while De Domenico and Altmann put forward

a stochastic model incorporating social heterogeneity and influence [122], and Ierly

and Kostinsky introduced a rank-based, signal-extraction method with applications

to meteorology data [123]. In Sec. 3.2.2 we conduct a literature review, contrasting

our methods with existing anomaly detection and similarity search time series data

mining algorithms and demonstrating that the DST and associated STAR algorithm

differ substantially from these existing algorithms. We have open-sourced implemen-

tations of the DST and STAR algorithm; code for these implementations is available

at a publicly-accessible repository 1.

We do not assume any specific model in our work. Instead, by default we define a

kernel K(·) as one of a few basic functional forms: exponential growth,

K(S)(τ |W, θ) ∼ rect(τ − τ0)eθ(τ−τ0); (3.1)

monomial growth,

K(S)(τ |W, θ) ∼ rect(τ − τ0)τ θ; (3.2)

power-law decay,

K(S)(τ |W, θ) ∼ rect(τ − τ0)|τ − τ0 + ε|−θ, (3.3)
1 Python implementations of the DST and STAR algorithms are located at this git repository:

https://gitlab.com/compstorylab/discrete-shocklet-transform
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or sudden level change (corresponding with a changepoint detection problem),

K(Sp)(τ |W, θ) ∼ rect(τ − τ0)[Θ(τ)−Θ(−τ)], (3.4)

where Θ(·) is the Heaviside step function. The function rect is the rectangular function

(rect(x) = 1 for 0 < x < W/2 and rect(x) = 0 otherwise), while in the case of the

power-law kernel we add a constant ε to ensure nonsingularity. The parameter W

controls the support ofK(·)(τ |W, θ); the kernel is identically zero outside of the interval

[τ −W/2, τ + W/2]. We define the window parameter W as follows: moving from a

window size ofW to a window size ofW +∆W is equivalent to upsampling the kernel

signal by the factor W + ∆W , applying an ideal lowpass filter, and downsampling

by the factor W . In other words, if the kernel function K(·) is defined for each of

W linearly spaced points between −N/2 and N/2, moving to a window size of W to

W + ∆W is equivalent to computing K(·) for each of W + ∆W linearly-spaced points

between −N/2 and N/2. This holds the dynamic range of the kernel constant while

accounting for the dynamics described by the kernel at all timescales of interest. We

enforce the condition that ∑∞t=−∞K(·)(t|W, θ) = 0 for any window size W .

It is decidedly not our intent to delve into the question of how and why deterministic

underlying dynamics in sociotechnical systems arise. However, we will provide a brief

justification for the functional forms of the kernels presented in the last paragraph as

scaling solutions to a variety of parsimonious models of local deterministic dynamics:

• If the time series x(t) exhibits exponential growth with a state-dependent growth
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damper D(x), the dynamics can be described by

dx(t)
dt = λ

D(x(t))x(t), x(0) = x0. (3.5)

If D(x) = x1/n, the solution to this IVP scales as x(t) ∼ tn, which is the

functional form given in Eq. 3.2. When D(x) ∝ 1 (i.e., there is no damper on

growth) then the solution is an exponential function, the functional form of Eq.

3.1.

• If instead the underlying dynamics correspond to exponential decay with a time-

and state-dependent half-life T , we can model the dynamics by the system

dx(t)
dt = − x(t)

T (t) , x(0) = x0 (3.6)

dT (t)
dt = f(T (t), x(t)), T (0) = T0. (3.7)

If f is particularly simple and given by f(T , x) = c with c > 0, then the

solution to Eq. 3.6 scales as x(t) ∼ t−1/c, the functional form of Eq. 3.3. The

limit c→ 0+ is singular and results in dynamics of exponential decay, given by

reversing time in Eq. 3.1 (about which we expound later in this section).

• As another example, the dynamics could be essentially static except when a

latent variable ϕ changes state or moves past a threshold of some sort:

dx(t)
dt = δ (ϕ(t)− ϕ∗) , x(0) = x0 (3.8)

dϕ(t)
dt = g(ϕ(t), x(t)), ϕ(0) = ϕ0. (3.9)

65



In this case the dynamics are given by a step function from x0 to x0 +1 the first

time ϕ(t) changes position relative to ϕ∗, and so on; these are the dynamics we

present in Eq. 3.4.

This list is obviously not exhaustive and we do not intend it to be so.

We can use kernel functions K(·) as basic building blocks of richer local mechanistic

dynamics through function concatenation and the operation of the two-dimensional

reflection group R4. Elements of this group correspond to r0 = id, r1 = reflection

across the vertical axis (time reversal), r2 = negation (e.g., from an increase in usage

frequency to a decrease in usage frequency), and r3 = r1 · r2 = r2 · r1. We can

also model new dynamics by concatenating kernels, i.e., “glueing” kernels back-to-

back. For example, we can generate “cusplets” with both anticipatory and relaxation

dynamics by concatenating a shocklet K(S) with a time-reversed copy of itself:

K(C)(τ |W, θ) ∼ K(S)(τ |W, θ)⊕ [r1 · K(S)(τ |W, θ)]. (3.10)

We display an example of this concatenation operation in Fig. 3.2. For much of the

remainder of the work, we conduct analysis using this symmetric kernel.

The discrete shocklet transform (DST) of the time series x(t) is defined by

CK(S)(t,W |θ) =
∞∑

τ=−∞
x(τ + t)K(S)(τ |W, θ), (3.11)

which is the cross-correlation of the sequence and the kernel. This defines a T ×NW

matrix containing an entry for each point in time t and window width W considered.
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To convey a visual sense of what the DST looks like when using a shock-like, asym-

metric kernel, we compute the DST of a random walk xt − xt−1 = zt (we define

zt ∼ N (0, 1)) using a kernel function K(S)(τ |W, θ) ∼ rect(τ)τ θ with θ = 3 and display

the resulting matrix for window sizes W ∈ [10, 250] in Fig. 3.4. The effects of time

reversal by action of r1 are visible when comparing the first and third panels with

the second and fourth panels, and the result of negating the kernel by acting on it

with r2 is apparent in the negation of the matrix values when comparing the first and

second panels and with the third and fourth. For this figure, we used a random walk

as an example time series here as there is, by definition, no underlying generative

mechanism causing any shock-like dynamics; these dynamics appear only as a result

of integrated noise. We are equally likely to see large upward-pointing shocks as large

downward-pointing shocks because of this, which allows us to see the activation of

both upward-pointing and downward-pointing kernel functions.

As a comparison with this null example, we computed the DST of a sociotechnical

time series, the rank of the word “bling” among the LabMT words on Twitter, and

two draws from a null random walk model, and displayed the results in Fig. 3.5.

Here, we calculated the DST using the symmetric kernel given in Eq. 3.10. (For

more statistical details of the null model, see Appendix D.2.) We also computed

the DWT of each of these time series and display the resulting wavelet transform

matrices next to the shocklet transform matrices in Fig. 3.5. Direct comparison of

the sociotechnical time series (rt) with the draws from the null models reveals rt’s

moderate autocovariance as well as the large, shock-like fluctuation that occurs in

late July of 2015. (This underlying driver of this fluctuation was the release of a

popular song entitled “Hotline Bling” on July 31st, 2015.) In comparison, the draws
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Figure 3.4: Effects of the reflection group R4 on the shocklet transform. The top four
panels display the results of the shocklet transform of a random walk xt = xt−1 + zt with
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from the null model have a covariance with much more prominent time scaling and do

not exhibit dramatic shock-like fluctuations as does rt. Comparing the DWT of these

time series with the respective DST provides more evidence that the DST exhibits

superior space-time localization of shock-like dynamics than does the DWT.

To aggregate deterministic behavior across all timescales of interest, we define the

shock indicator function as the function

CK(S)(t|θ) =
∑
W

CK(S)(t,W |θ)p(W |θ), (3.12)

for all windows W considered. The function p(W |θ) is a probability mass function

that encodes prior beliefs about the importance of particular values of W . For ex-

ample, if we are interested primarily in time series that display shock- or shock-like

behavior that usually lasts for approximately one month, we might specify p(W |θ) to

be sharply peaked about W = 28 days. Throughout this work we take an agnostic

view on all possible window widths and so set p(W |θ) ∝ 1, reducing our analysis to a

strictly maximum-likelihood based approach. Summing over all values of the shocklet

parameter θ defines the shock indicator function,

CK(S)(t) =
∑
θ

CK(S)(t|θ)p(θ) (3.13)

=
∑
θ,W

CK(S)(t,W |θ)p(W |θ)p(θ). (3.14)

In analogy with p(Wθ), the function p(θ) is a probability density function describing

our prior beliefs about the importance of various values of θ. As we will show later

in this section, and graphically in Fig. 3.6, the shock indicator function is relatively
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insensitive to choices of θ possessing a nearly-identical `1 norm for wide ranges of θ

and different functional forms of K(S).

After calculation, we normalize CK(S)(t) so that it again integrates to zero and has

maxt CK(S)(t) −mint CK(S)(t) = 2. The shock indicator function is used to find win-

dows in which the time series displays anomalous shock- or shock-like behavior. These

windows are defined as

{t ∈ [0, T ] : intervals where CK(S)(t) ≥ s} . (3.15)

where the parameter s > 0 sets the sensitivity of the detection.

The DST is relatively insensitive to quantitative changes to its functional parameter-

ization; it is a qualitative tool to highlight time periods of unusual events in a time

series. In other words, it does not detect statistical anomalies but rather time peri-

ods during which the time series appears to take on certain qualitative characteristics

without being too sensitive to a particular functional form. We analyzed two example

sociotechnical time series—the rank of the word “bling” on Twitter (for reasons we

will discuss presently)— and the price time series of Bitcoin (symbol BTC) [124], the

most actively-used cryptocurrency [125], and of one null model, a pure random walk.

For each time series, we computed the shock indicator function using two kernels,

each of which had a different functional form (one kernel given by the function of

Eq. 3.10 and one of the identical form but constructed by setting K(S)(τ |W, θ) to

the function given in Eq. 3.1), and evaluating each kernel over a wide range of its

parameter θ. We also vary the maximum window size from W = 100 to W = 1000 to

explore the sensitivity of the shock indicator function to this parameter. We display
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Figure 3.5: Intricate dynamics of sociotechnical time series. Panels A and D show the
time series of the ranks down from top of the word “bling” on Twitter. Until mid-summer
2015, the time series presents as random fluctuation about a steady, relatively-constant
level. However, the series then displays a large fluctuation, increases rapidly, and then
decays slowly after a sharp peak. The underlying mechanism for these dynamics was the
release of a popular song titled “Hotline Bling”. To demonstrate the qualitative difference
of the “bling” time series from draws from a null random walk model, the details of which
are given in Appendix D.2. Panels A, B, and C show the discrete shocklet transform of the
original series for “bling” and the random walks

∑
t′≤t ∆rσit, showing the responsiveness of

the DST to nonstationary local dynamics and its insensitivity to dynamic range. Panels D,
E, and F, on the other hand, display the discrete wavelet transform of the original series
and of the random walks, demonstrating the DWT’s comparatively less-sensitive nature to
local shock-like dynamics.
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Figure 3.6: The shock indicator function is relatively insensitive to functional forms K(·)

and values of the kernel’s parameter vector θ so long as the kernel functions are qualitatively
similar (e.g., for cusp-like dynamics—as considered in this figure and in Eq. 3.10—K(C) dis-
playing increasing rates of increase followed by decreasing rates of decrease). Here we have
computed the shock indicator function CK(S)(τ |θ) (Eq. 3.12) for three different time series:
two sociotechnical and one null example. From left to right, the top row of figures displays
the rank usage time series of the word “bling” on Twitter, the price of the cryptocurrency
Bitcoin, and a simple Gaussian random walk. Below each time series we display parame-
ter sweeps over combinations of (θ,Wmax) for two kernel functions: one kernel given by the
function of Eq. 3.10 and another of the identical form but constructed by setting K(S)(τ |W, θ)
to the function given in Eq. 3.1. The `1 norms of the shock indicator function are nearly
invariant across the values of the parameters θ for which we evaluated the kernels. However,
the shock indicator function does display dependence on the maximum window size Wmax,
with large Wmax associated with larger `1 norm. This is because a larger window size allows
the DST to detect shock-like behavior over longer periods of time.
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the results of this comparative analysis in Fig. 3.6. For each time series, we plot the

`1 norm of the shock indicator function for each (θ,W ) combination. We find that, as

stated earlier in this section, the shock indicator function is relatively insensitive to

both functional parameterization and value of the parameter θ; for any fixed W , the

`1 norm of the shock indicator function barely changed regardless of the value of θ or

choice of K(·). However, the maximum window size does have a notable effect on the

magnitude of the shock indicator function; higher values of W are associated with

larger magnitudes. This is a reasonable finding, since higher maximum W means

that the DST is able to capture shock-like behavior that occurs over longer times-

pans and hence may have values of higher magnitude over longer periods than for

comparatively lower maximum W .

That the shock indicator function is a relative quantity is both beneficial and prob-

lematic. The utility of this feature is that the dynamic behavior of time series derived

from systems of widely-varying time and length scales can be directly compared; while

the rank of a word on Twitter and—for example—the volume of trades in an equity

security are entirely different phenomena measured in different units, their shock in-

dicator functions are unitless and share similar properties. On the other hand, the

Shock Indicator Function carries with it no notion of dynamic range. Two time se-

ries xt and yt could have identical shock indicator functions but have spans differing

by many orders of magnitude, i.e., diam xt ≡ maxt xt − mint xt � diam yt. (In

other words, the diameter of a time series in interval I is just the dynamic range of

the time series over that interval.) We can directly compare time series inclusive of

their dynamic range by computing a weighted version of the shock indicator function,

CK(t)∆x(t), which we term the weighted shock indicator function (WSIF). A simple
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choice of weight is

∆x(t) = diam
t∈[tb,te]

xt, (3.16)

where tb and te are the beginning and end times of a particular window. We use this

definition for the remainder of our paper, but one could easily imagine using other

weighting functions, e.g., maximum percent change (perhaps applicable for time series

hypothesized to increment geometrically instead of arithmetically).

These final weighted shock indicator functions are the ultimate output of the shocklet

transform and ranking (STAR) algorithm; the weighting corresponds to the actual

magnitude of the dynamics and constitutes the “ranking” portion of the algorithm,

while the weighting will only be substantially larger than zero if there existed intervals

of time during which the time series exhibited shock-like behavior as indicated in Eq.

3.15. We present a conceptual, bird’s-eye view of the STAR algorithm (of which the

DST is a core component) in Fig. 3.7. Though this diagram is lacking in technical

detail, we have included it in an effort to provide a bird’s-eye view of the entire STAR

algorithm and to help orient the reader on the conceptual process underpinning the

algorithm.

Algorithmic details: Comparison with existing methods

On a coarse scale, there are five nonexclusive categories of time series data mining

tasks [126]: similarity search (also termed indexing), clustering, classification, summa-

rization, and anomaly detection. The STAR algorithm is a qualitative, shape-based,

timescale-independent, similarity search algorithm. As we have shown in the pre-

vious section, the discrete shocklet transform (a core part of the overarching STAR

algorithm) is qualitative, meaning that it does not depend too strongly on values of
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Figure 3.7: The Shocklet Transform And Ranking (STAR) algorithm combines the discrete
shocklet transform (DST) with a series of transformations that yield intermediate results,
such as the cusp indicator function (item (3) in the figure) and windows during which each
univariate time series displays shock-like behavior (item (4) in the figure). Each of these
intermediate results is useful in its own right, as we show in Sec. 3.3. We display the final
output of the STAR algorithm, a univariate indicator that condenses information about
which of the time series exhibits the strongest shock-like behavior at each point in time.
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functional parameters or even the functions used in the cross-correlation operation

themselves, as long as the functions share the same qualitative dynamics (e.g., increas-

ing rates of increase followed by decreasing rates of decrease for cusp-like dynamics);

hence, it is primarily shape-based rather than relying on the quantitative definition

of a particular functional form. STAR is timescale-independent as it is able to detect

shock-like dynamics over a wide range of timescales limited only by the maximum

window size for which it is computed. Finally, we believe that it is best to categorize

STAR as a similarity search algorithm as this seems to be the best-fitting label for

STAR that is given in the five categories listed at the beginning of this section; STAR

is designed for searching within sociotechnical time series for dynamics that are sim-

ilar to the shock kernel in some way, albeit similar in a qualitative sense and over

any arbitrary timescale, not functionally similar in numerical value and characteristic

timescale. However, it could also be considered a type of qualitative, shape-based

anomaly detection algorithm because we are searching for behavior that is, in some

sense, anomalous compared to a usual baseline behavior of many time series (though

see discussion at the beginning of the anomaly detection subsection near the end of

this section: STAR is an algorithm that can detect defined anomalous behavior, not

an algorithm to detect arbitrary statistical anomalies).

As such, we are unaware of any existing algorithm that satisfies these four criteria

and believe that STAR represents an entirely new class of algorithms for sociotech-

nical time series analysis. Nonetheless, we now provide a detailed comparison of the

DST with other algorithms that solve related problems, and in Sec. 3.3.1 provide an

in-depth quantitative comparison with another nonparametric algorithm (Twitter’s

anomaly detection algorithm) that one could attempt to use to extract shock-like
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dynamics from sociotechnical time series.

Similarity search - here the objective is to find time series that minimize some simi-

larity criterion between candidate time series and a given reference time series. Algo-

rithms to solve this problem include nearest-neighbor methods (e.g., k-nearest neigh-

bors [127] or a locality-sensitive hashing-based method [128, 129]), the discrete Fourier

and wavelet transforms [130, 131, 101, 132]; and bit-, string-, and matrix-based repre-

sentations [133, 134, 126, 135]. With suitable modification, these algorithms can also

be used to solve time series clustering problems. Generic dimensionality-reduction

techniques, such as singular value decomposition / principal components analysis

[136, 137, 138], can also be used for similarity search by searching through a dataset

of lower dimension. Each of these classes of algorithms differs substantially in scope

from the discrete shocklet transform. Chief among the differences is the focus on the

entire time series. While the discrete shocklet transform implicitly searches the time

series for similarity with the kernel function at all (user-defined) relevant timescales

and returns qualitatively-matching behavior at the corresponding timescale, most of

the algorithms considered above do no such thing; the user must break the time

series into sliding windows of length τ and execute the algorithm on each sliding

window; if the user desires timescale-independence, they must then vary τ over a de-

sired range. An exception to this statement is Mueen’s subsequence similarity search

algorithm (MSS) [139], which computes sliding dot products (cross-correlations) be-

tween a long time series of length T and a shorter kernel of length M before defining

a Euclidean distance objective for the similarity search task. When this sliding dot

product is computed using the fast Fourier transform, the computational complexity

of this task is O(T log T ). This computational step is also at the core of the discrete
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shocklet transform, but is performed for multiple kernel function arrays (more pre-

cisely, for the kernel function resampled at multiple user-defined timescales). Unlike

the discrete shocklet transform, MSS does not subsequently compute an indicator

function and does not have the self-normalizing property, while the matrix profile

algorithm [135] computes an indicator function of sorts (their “matrix profile”) but

is not timescale-independent and is quantitative in nature; it does not search for a

qualitative shape match as does the discrete shocklet transform. We are unaware of

a similarity-search algorithm aside from STAR that is both qualitative in nature and

timescale-independent.

Clustering - given a set of time series, the objective is to group them into groups,

or clusters, that are more homogeneous within each cluster than between clusters.

Viewing a collection of N time series of length T as a set of vectors in RT , any

clustering method that can be effectively used on high-dimensional data has poten-

tial applicability to clustering time series. Some of these general clustering meth-

ods include k-means and k-medians algorithms [140, 141, 142], hierarchical methods

[143, 144, 145], and density-based methods [143, 146, 147, 148]. There are also meth-

ods designed for clustering time series data specifically, such as error-in-measurement

models [149], hidden Markov models [150], simulated annealing-based methods [151],

and methods designed for time series that are well-fit by particular classes of paramet-

ric models [152, 153, 154, 155]. Although the discrete shocklet transform component

of the STAR algorithm could be coerced into performing a clustering task by using

different kernel functions and elements of the reflection group, clustering is not the

intended purpose of the discrete shocklet transform or STAR more generally. In ad-

dition, none of the clustering methods mentioned replicate the results of the STAR
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algorithm. These clustering methods uncover groups of time series that exhibit simi-

lar behavior over their entire domain; application of clustering methods to time series

subsequences carries leads to meaningless results [156]. Clustering algorithms are

also shape-independent in the sense that they cluster data into groups that share

similar features, but do not search for specific known features or shapes in the data.

In contrast with this, when using the STAR algorithm we already have specified a

specific shape—for example, the shock shape demonstrated above—and are searching

the data across timescales for occurrences of that shape. The STAR algorithm also

does not require multiple time series in order to function effectively, differing from

any clustering algorithm in this respect; a clustering algorithm applied to N = 1 data

points trivially returns a single cluster containing the single data point. The STAR

algorithm operates identically on one or many time series as it treats each time series

independently.

Classification - classification is the canonical supervised statistical learning problem

in which data xi is observed along with a discrete label yi that is taken to be a function

of the data, yi = f(xi)+ε; the goal is to recover an approximation to f that precisely

and accurately reproduces the labels for new data [157]. This is the category of time

series data mining algorithms that least corresponds with the STAR algorithm. The

STAR algorithm is unsupervised—it does not require training examples (“correct

labels”) in order to find subsequences that qualitatively match the desired shape. As

above, the STAR algorithm also does not require multiple time series to function well,

while (non-Bayesian) classification algorithms rely on multiple data points in order

to learn an approximation to f 2.
2 Bayesian classification algorithms can perform classification based only on prior information, but

this is also not similar to the STAR algorithm, since the STAR algorithm is a maximum-likelihood
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Summarization - since time series can be arbitrarily large and composed of many

intricately-related features, it may be desirable to have a summary of their behav-

ior that encompasses the time series’s “most interesting” features. These summaries

can be numerical, graphical, or linguistic in nature. Underlying methodologies for

time series summary tasks include wavelet-based approaches [158, 159], genetic al-

gorithms [160, 161], fuzzy logic and systems [162, 163, 164], and statistical methods

[165]. Though intermediate steps of the STAR algorithm can certainly be seen as

a time series summarization mechanism (for example, the matrix computed by the

DShT or the weighted shock indicator functions used in determinning rank relevance

of individual time series at different points in time), the STAR algorithm was not

designed for time series summarization and should not be used for this task as it will

be outperformed by essentially any other algorithm that was actually designed for

summarization. Any “summary” derived from the STAR algorithm will have utility

only in summarizing segments of the time series the behavior of which match the

kernel shape, or in distinguishing segments of the time series that do have a similar

shape as the kernel from ones that do not.

Anomaly detection - if a “usual” model can be defined for the system under study, an

anomaly detection algorithm is a method that finds deviations from this usual behav-

ior. Before we briefly review time series anomaly detection algorithms and compare

them with the STAR algorithm, we distinguish between two subtly different concepts:

this data mining notion of anomaly detection, and the physical or social scientific no-

tion of anomalous behavior. In the first sense, any deviation from the “ordinary”

model is termed an anomaly and marked as such. The ordinary model may not be a

method that by definition requires at least one time series to operate.
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parametric model to which the data is compared; for example, it may be implicitly

defined as the behavior that the data exhibits most of the time [166]. In physical and

social sciences, on the other hand, it may be observed that, given a particular set of

laboratory or observational conditions, a material, state vector, or collection of agents

exhibits phenomena that is anomalous when compared to a specific reference situa-

tion, even if this behavior is “ordinary” for the conditions under which the phenomena

is observed. Examples of such anomalous behavior in physics and economics include:

spectral behavior of polychromatic waves that is very unusual compared to the spec-

trum of monochromatic waves (even though it is typical for polychromatic waves

near points where the wave’s phase is singular) [167]; the entire concept of anomalous

diffusion, in which diffusive processes with mean square displacement (autocovari-

ance functions) scaling as 〈r(t)〉 ∼ tα are said to diffuse anomalously if α 6≈ 1 (since

α = 1 is the scaling of the Wiener process’s autocovariance function) [168, 169], even

though anomalous diffusion is the rule rather than the exception in intra-cellular and

climate dynamics, as well as financial market fluctuations; and behavior that deviates

substantially from the “rational expectations” of non-cooperative game theory, even

though such deviations are regularly observed among human game players [170, 171].

This distinction between algorithms designed for the task of anomaly detection and

algorithms or statistical procedures that test for the existence of anomalous behavior,

as defined here, is thus seen to be a subtle but significant difference. The DST and

STAR algorithm fall into the latter category: the purpose for which we designed the

STAR algorithm is to extract windows of anomalous behavior as defined by compar-

ison with a particular null qualitative time series model (absence of clear shock-like

behavior), not to perform the task of anomaly detection writ large by indicating the
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presence of arbitrary samples or dynamics in a time series that does not in some way

comport with the statistics of the entire time series.

With these caveats stated, it is not the case that there is no overlap between anomaly

detection algorithms and algorithms that search for some physically-defined anoma-

lous behavior in time series; in fact, as we show in Sec. 3.3.1, there is some significant

convergence between windows of shock-like behavior indicated by STAR and windows

of anomalous behavior indicated by Twitter’s anomaly detection algorithm when the

underlying time series exhibits relatively low variance. Statistical anomaly detection

algorithms typically propose a semi-parametric model or nonparametric test and con-

front data with the model or test; if certain datapoints are very unlikely under the

model or exceed certain theoretical boundaries derived in constructing the test, then

these datapoints are said to be anomalous. Examples of algorithms that operate in

this way include: Twitter’s anomaly detection algorithm (ADV), which relies on gen-

eralized seasonal ESD test [172, 173]; the EGADS algorithm, which relies on explicit

time series models and outlier tests [174]; time-series model and graph methodologies

[175, 176]; and probabilistic methods [177, 178]. Each of these methods is strictly

focused on solving the first problem that we outlined at the beginning of this sub-

section: that of finding points in one or more time series during which it exhibits

behavior that deviates substantially from the “usual” or assumed behavior for time

series of a certain class. As we outlined, this goal differs substantially from the one

for which we designed STAR: searching for segments of time series (that may vary

widely in length) during which the time series exhibits behavior that is qualitatively

similar to underlying deterministic dynamics (shock-like behavior) that we believe is

anomalous when compared to non-sociotechnical time series.
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3.3 Empirical results

3.3.1 Comparison with Twitter’s anomaly detec-

tion algorithm

Through the literature review in Sec. 4.2 we have demonstrated that, to our knowl-

edge, there exists no algorithm that solves the same problem for which STAR was

designed—to provide a qualitative, shape-based, timescale-independent measure of

similarity between multivariate time series and a hypothesized shape generated by

mechanistic dynamics. However, there are existing algorithms designed for nonpara-

metric anomaly detection that could be used to alert to the presence of shock-like

behavior in sociotechnical time series, which is the application for which we originally

designed STAR. One leading example of such an algorithm is Twitter’s Anomaly De-

tection Vector (ADV) algorithm 3. This algorithm uses an underlying statistical test,

seasonal-hybrid ESD, to test for the presence of outliers in periodic and nonstation-

ary time series [172, 173]. We perform a quantitative and qualitative comparison

between the STAR and ADV to compare their effectiveness at the task for which we

designed STAR—determining qualitative similarity between shock-like shapes over a

wide range of timescales—and to contrast the signals picked up by each algorithm,

which, as we show, differ substantially. Before presenting results of this analysis,

we note that this comparison is not entirely fair; though ADV is a state-of-the-art

anomaly detection algorithm, it was not designed for the task for which we designed

STAR, and so it is not exactly reasonable to assume that ADV would perform as well
3 https://github.com/twitter/AnomalyDetection.
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as STAR on this task. In an attempt to ameliorate this problem, we have chosen a

quantitative benchmark for which our a priori beliefs did not favor the efficacy of

either algorithm.

As both STAR and ADV are unsupervised algorithms, we compare their quantitative

performance by assessing their utility in generating features for use in a supervised

learning problem. Since the macro-economy is a canonical example of a sociotechnical

system, we consider the problem of predicting the probability of a U.S. economic

recession using only a minimal set of indicators from financial market data. Models for

predicting economic recessions variously use only real economic indicators [179, 180,

181], only financial market indicators [182, 183], or a combination of real and financial

economic indicators [184, 185]. We take an approach that is both simple and relatively

granular, focusing on the ability of statistics of individual equity securities to jointly

model U.S. economic recession probability. For each of the equities that was in the

Dow Jones Industrial Average between 1999-07-01 to 2017-12-31 (a total of K = 32

securities), we computed both the DST (outputting the shock indicator function),

STAR algorithm (outputting windows of shock-like behavior), and the ADV routine

on that equity’s volume traded time series (number of shares transacted), which we

sampled at a daily resolution for a total of T = 6759 observations for each security.

We then fit linear models of the form

E

[
log p

1− p

]
= Xβ, (3.17)

where pt is the recession probability on day t as given by the U.S. Federal Reserve

(hence p is the length-T vector of recession probabilities) 4. When we the model rep-
4 Data is available at https://fred.stlouisfed.org/series/RECPROUSM156N.
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resented by Eq. 3.17 using ADV or STAR as the algorithms generating features, the

design matrix X is a binary matrix of shape T × (K + 1) with entry Xtk equal to one

if the algorithm indicated an anomaly or shock-like behavior respectively in security

k at time t and equal to zero if it did not (the +1 in the dimensionality of the matrix

corresponds to the prepended column of ones that is necessary to fit an intercept in

the regression). When we fit the model using the shock indicator function generated

by the DST, the matrix X is instead given by the matrix with column k equal to

the shock indicator function of security k. We evaluate the goodness of fit of these

linear models using the proportion of variance explained (R2) statistic; these results

are summarized graphically in Fig. 3.8. The linear using ADV-indicated anomalies

as features had R2
ADV = 0.341, while the model using the shock indicator function as

columns of the design matrix had R2
DST = 0.455 and the model using STAR-indicated

shocks as features had R2
STAR = 0.496. This relative ranking of feature importance

remained constant when we used model log-likelihood ` as the performance metric

instead of R2, with ADV, DST, and STAR respectively exhibiting `ADV = −16, 278,

`DST = −15, 633, and `STAR = −15, 372. Each linear model exhibited a distribution

of residuals εt that did not drastically violate the zero-mean and distributional-shape

assumptions of least-squares regression; a maximum likelihood fit of a normal prob-

ability density to the empirical error probability distribution p(εt) gave mean and

variance as µ = 0 to within numerical precision and σ2 ≈ 6.248, while a maximum

likelihood fit of a skew-normal probability density [186] to the empirical error prob-

ability distribution gave mean, variance, and skew as µ ≈ 0.043, σ2 ≈ 6.025, and

a ≈ 2.307. Taken in the aggregate, these results constitute evidence to suggest that

features generated by the DST and STAR algorithms are superior in the task of clas-
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sifying time periods as belonging to recessions or not than are features derived from

the ADV method.

As a further comparison of the STAR algorithm and ADV, we generated anomaly

windows (in the case of ADV) and windows of shock-like behavior (in the case of

STAR) for the usage rank time series of each of the 10,222 words in the LabMT

dataset. We computed the Jaccard similarity index for each word w (also known as

the intersection over union) between the set of STAR windows {ISTARi (w)}i and the

set of ADV windows {IADVi (w)}i,

Jw(STAR,ADV ) =

(⋃
i I

STAR
i (w)

)
∩
(⋃

i I
ADV
i (w)

)
⋃
j∈{STAR,ADV }

⋃
i I

j
i (w)

. (3.18)

We display the word time series and ADV and STAR windows for a selection of

words pertaining to the 2016 U.S. presidential election in Fig. 3.9. (These words

display shock-like behavior in a time interval surrounding the election, as we demon-

strate in the next section, hence our selection of them as examples here.) A figure

for each word that depicts the usage rank time series along with ADV and STAR-

indicated windows is available at the authors’ website 5. We display the distribution

of all Jaccard similarity coefficients in Fig. 3.10. Most words have relatively little

overlap between anomaly windows returned by ADV and windows of shock-like dy-

namics returned by STAR, but there are notable exceptions. In particular, a review

of the figures contained in the online index suggests that ADV’s and STAR’s windows

overlap most when the shock-like dynamics are particularly strong and surrounded by

a time series with relatively low variance; they agree the most when hypothesized un-
5 http://compstorylab.org/shocklets/all_word_plots/
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derlying deterministic mechanics are strongest and the effects of noise are lowest. The

pronounced spikes in the words “crooked” and “stein” in Fig. 3.9 are an example of

this phenomenon. However, when the time series has high variance or exhibits strong

nonstationarity, ADV often does not indicate that there are windows of anomalous

behavior while STAR does indicate the presence of shock-like dynamics; the panels

of the words “trump”, “jill”, and “hillary” in Fig. 3.9 demonstrate these behaviors.

Taken in the aggregate, these results suggest that a state-of-the-art anomaly detec-

tion algorithm, such as Twitter’s ADV, and a qualitative, shape-based, timescale-

independent similarity search algorithm, such as STAR, do have some overlapping

properties but are largely mutually-complementary approaches to identifying and

analyzing the behavior of sociotechnical time series. While ADV and STAR both

identify strongly shock-like dynamics that occur when the surrounding time series

has relatively low variance, their behavior diverges when the time series is strongly

nonstationary or has high variance. In this case, ADV is an excellent tool for indicat-

ing the presence of strong outliers in the data, while STAR continues to indicate the

presence of shock-like dynamics in a manner that is less sensitive to the time series’s

stationarity or variance.

3.3.2 Social narrative extraction

We seek both an understanding of the intertemporal semantic meaning imparted by

windows of shock-like behavior indicated by the STAR algorithm and a characteriza-

tion of the dynamics of the shocks themselves. We first compute the shock indicator

and weighted shock indicator functions (WSIFs) for each of the 10,222 labMT words

filtered from the gardenhose dataset, described in section 3.2.1, using a power kernel
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with θ = 3. At each point in time, words are sorted by the value of their WSIF. The

j-th highest valued WSIF at each temporal slice, when concatenated across time,

defines a new time series. We perform this computation for the top ranked k = 20

words for the entire time under study. We also perform this process using the “spike”

kernel of Eq. 3.4 and display each resulting time series in Fig. 3.11 (shock kernel)

and Fig. 3.12 (spike kernel). (We term the spike kernel as such because we have
dK(Sp)(τ)

dτ = δ(τ) on the domain [−W/2,W/2], the Dirac delta function; its underlying

mechanistic dynamics are completely static except for one point in time during which

the system is driven by an ideal impulse function.) The j = 1 word time series is

annotated with the corresponding word at relative maxima of order 40. (A relative

maximum xs of order k in a time series is a point that satisfies xs > xt for all t such

that |t− s| ≤ k.) This annotation reveals a dynamic social narrative concerning pop-

ular events, social movements, and geopolitical fluctuation over the past near-decade.

Interactive versions of these visualizations are available on the authors’ website 6. To

further illuminate the often-turbulent dynamics of the top j ranked weighted shock

indicator functions, we focus on two particular 60-day windows of interest, denoted

by shading in the main panels of Figs. 3.11 and 3.12. In Fig. 3.11, we outline a period

in late 2011 during which multiple events competed for collective attention:

• the 2012 U.S. presidential election (the word “herman”, referring to Herman

Cain, a presidential election contender);

• Occupy Wall Street protests (“occupy” and “protestors”);

• and the U.S. holiday of Thanksgiving (“thanksgiving”)
6http://compstorylab.org/shocklets/
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Each of these competing narratives is reflected in the top-left inset. In the top right

inset, we focus on a time period during which the most distinct anomalous dynamics

corresponded to the 2014 Gaza conflict with Israel (“gaza”, “israeli”, “palestinian”,

“palestinians”, “gathered”). In Fig. 3.12, we also outline two periods of time: one, in

the top left panel, demonstrates the competition for social attention between geopo-

litical concerns:

• street protests in Egypt (“protests”, “protesters” “egypt”, “response”);

• and popular artists and popular culture (“rebecca”, referring to Rebecca Black,

a musician, and “@ddlovato”, referring to another musician, Demi Lovato).

In the top right panel we demonstrate that the most prominent dynamics during late

2015 are those of the language surrounding the 2016 U.S. presidential election imme-

diately after Donald Trump announced his candidacy (“trump”, “sanders”, “donald”,

“hillary”, “clinton”, “maine”).

We note that these social narratives uncovered by the STAR algorithm might not

emerge if we used a different algorithm in an attempt to extract shock-like dynam-

ics in sociotechnical time series. We have already shown (in the previous section)

that at least one state-of-the-art anomaly detection algorithm is unlikely to detect

abrupt, shock-like dynamics that occur in time series that are nonstationary or have

high variance. We display side-by-side comparisons of the indicator windows gener-

ated by each algorithm for every word in the LabMT dataset in the online appendix

(http://compstorylab.org/shocklets/all_word_plots/). A review of figures in the on-

line appendix corresponding with words annotated in Figs. 3.11 and 3.12 provides

evidence that an anomaly detection algorithm, such as ADV, may not necessarily
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capture the sane dynamics as does STAR. We include selected panels of these figures

in Appendix D.3, displaying words corresponding with some peaks of the weighted

shock and spike indicator functions. (We hasten to note that this of course does not

preclude the possibility that anomaly detection algorithms might indicate dynamics

that are not captured by STAR.)

3.3.3 Typology of local mechanistic dynamics

To further understand divergent dynamic behavior in word rank time series, we an-

alyze regions of these time series for which Eq. 3.15 is satisfied—that is, where the

value of the shock indicator function is greater than the sensitivity parameter. We

focus on shock-like dynamics since these dynamics qualitatively describe aggregate

social focusing and subsequent de-focusing of attention mediated by the algorithmic

substrate of the Twitter platform. We extract shock segments from the time series

of all words that made it into the top j = 20 ranked shock indicator functions at

least once. Since shocks exist on a wide variety of dynamic ranges and timescales,

we normalize all extracted shock segments to lie on the time range tshock ∈ [0, 1]

and have (spatial) mean zero and variance unity. Shocks have a focal point about

their maxima by definition, but in the context of stochastic time series (as considered

here), the observed maximum of the time series may not be the “true” maximum

of the hypothesized underlying deterministic dynamics. Shock points—hypothesized

deterministic maxima—of the extracted shock segments were thus determined by two

methods: The maxima of the within-window time series,

t∗1 = arg max
tshock∈[0,1]

xtshock ; (3.19)
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and the maxima of the time series’s shock indicator function,

t∗2 = arg max
tshock∈[0,1]

CK(S)(tshock). (3.20)

We then computed empirical probability density functions of t∗1 and t∗2 across all

words in the LabMT dataset. While the empirical distribution of t∗1 is uni-modal,

the corresponding empirical distribution of t∗2 demonstrated clear bi-modality with

peaks in the first and last quartiles of normalized time. To better characterize these

maximum a posteriori (MAP) estimates, we sample those shock segments xt the

maxima of which are temporally-close to the MAPs and calculate spatial means of

these samples,

〈xtshock〉n = 1
|M|

∑
n∈M

x
(n)
tshock , (3.21)

where

.M =
{
n :

∣∣∣∣∣ arg max
tshock∈[0,1]

x
(n)
tshock − t

∗
∣∣∣∣∣ < ε

}
. (3.22)

The number ε is a small value which we set here to ε = 10/503 7. We plot these curves

in Fig. 3.13. Shock segments that are close in spatial norm to the 〈xtshock〉n—that is,

shock segments xtshock that satisfy

‖xtshock − 〈xtshock〉n‖1 ≤ F←‖xs−〈xtshock 〉n‖1
(0.01), (3.23)

7 This value comes from an arbitrary but small number of indices (five) we allow a shock segment
to vary (±) about the index of the MAP estimate of the distributions of shock points, each of
which can be considered as multinomial distributions supported on a 503-dimensional vector space.
The number 503 is the dimension of each shock segment after time normalization since the longest
original shock segment in the labMT dataset was 503 days.
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where F←Z (q) is the quantile function of the random variable Z—are plotted in thin-

ner curves. From this process, three distinct classes of shock segments emerge, cor-

responding with the three relative maxima of the shock point distributions outlined

above:

- Type I: exhibiting a slow buildup (anticipation) followed by a fast relaxation;

- Type II: with a correspondingly short buildup (shock) followed by a slow re-

laxation;

- Type III: exhibiting a relatively symmetric shape.

Words corresponding to these classes of shock segments differ in semantic context.

Type I dynamics are related to known and anticipated societal and political events

and subjects, such as:

• “hampshire” and “republican”, concerning U.S. presidential primaries and gen-

eral elections,

• “labor”, “labour”, and “conservatives”, likely concerning U.K. general elections,

• “voter”, “elected”, and “ballot”, concerning voting in general, and

• “grammy”, the music awards show.

To contrast, Type II (shock-like) dynamics describe events that are partially- or

entirely-unexpected, often in the context of national or international crises, such as:

• “tsunami” and “radiation”, relating to the Fukushima Daichii tsunami and nu-

clear meltdown,
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Classification Shock shape Words
Type I Slow buildup, fast re-

laxation
rumble, veterans, dusty, labour,
scattered, hampshire, #tinychat,
elected, ballot, selection, labor,
entering, beam, phenomenon,
voters, mamma, anonymity, re-
publican, #nowplaying, indict-
ment, wages, conservatives, pulse,
knee, grammy, essays, #tcot,
kentucky, fml, netherlands, jin-
gle, valid, whitman, syracuse,
dems, deposit, bail, tomb, walker,
reader

Type II Fast buildup, slow re-
laxation

xbox, chained, yale, bomb-
ing, holocaust, connecticut,
#tinychat, civilian, jill, turkish,
tsunami, ferry, #letsbehon-
est, beam, agreement, riley,
ethics, phenomenon, harriet,
privacy, israeli, #nowplaying,
gun, dub, pulse, killings, herman,
enormous, fbi, dmc, searched,
norman, joan, affected, arthur,
sandra, radiation, army, walker,
reader,

Type III Roughly symmetric rumble, memorial, sleigh, vet-
erans, costumes, greeks, brit-
ney, separated, father’s, shark,
grammys, labor, costume, x-mas,
bunny, commonwealth, clause,
olympics, olympic, daylight, cy-
ber, wrapping, rudolph, drowned,
re-election

Table 3.1: Words for which at least one shock segment was close in norm to a spatial mean
shock segment as detailed in Section 3.3. We display the distributions of “shock points”—
hypothesized deterministic maxima of the noisy mechanistically-generated time series—in
Fig. 3.13. Every word may also have several “shock points” where each point could corre-
sponds to a different shock dynamics due to the way each word is used throughout its life
span on the platform, hence a few of these examples (e.g. rumble, anonymity, #nowplaying)
appear in multiple categories.
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• “bombing”, “gun”, “pulse”, “killings”, and “connecticut”, concerning acts of

violence and mass shootings, in particular the Sandy Hook elementary school

shooting in the United States;

• “jill” (Jill Stein, a 2016 U.S. presidential election competitor), “ethics”, and

“fbi”, pertaining to surprising events surrounding the 2016 U.S. presidential

election, and

• “turkish”, “army”, “israeli”, “civilian”, and “holocaust”, concerning interna-

tional protests, conflicts, and coups.

Type III dynamics are associated with anticipated events that typically re-occur and

are discussed substantially after their passing, such as

• “sleigh”, “x-mas”, “wrapping”, “rudolph”, “memorial”, “costumes”, “costume”,

“veterans”, and “bunny”, having to do with major holidays, and

• “olympic” and “olympics”, relating to the Olympic games.

We give a full list of words satisfying the criteria given in Eqs. 3.22 and 3.23 in

Table ??. We note that, though the above discussion defines and distinguishes three

fundamental signatures of word rank shock segments, these classes are only the MAP

estimates of the true distributions of shock segments, our empirical observations of

which are displayed as histograms in Fig. 3.13; there is an effective continuum of

dynamics that is richer, but more complicated, than our parsimonious description

here.
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3.4 Discussion

We have introduced a nonparametric pattern detection method, termed the discrete

shocklet transform (DST) for its particular application in extracting shock- and shock-

like dynamics from noisy time series, and demonstrated its particular suitability for

analysis of sociotechnical data. Though extracted social dynamics display a contin-

uum of behaviors, we have shown that maximizing a posteriori estimates of shock

likelihood results in three distinct classes of dynamics: anticipatory dynamics with

long buildups and quick relaxations, such as political contests (Type I); “surprising”

events with fast (shock-like) buildups and long relaxation times, examples of which are

acts of violence, natural disasters, and mass shootings (Type II); and quasi-symmetric

dynamics, corresponding with anticipated and talked-about events such as holidays

and major sporting events (Type III). We analyzed the most “important” shock-like

dynamics—those words that were one of the top-20 most significant at least once

during the decade of study—and found that Type III dynamics were the most com-

mon among these words (40.9%) followed by Type II (36.4%) and Type I (22.7%).

We then showcased the discrete shocklet transform’s effectiveness in extracting coher-

ent intertemporal narratives from word usage data on the social microblog Twitter,

developing a graphical methodology for examining meaningful fluctuations in word—

and hence topic—popularity. We used this methodology to create document-free

nonparametric topic models, represented by pruned networks based on shock indica-

tor similarity between two words and defining topics using the networks’ community

structures. This construction, while retaining artifacts from its construction using

intrinsically-temporal data, presents topics possessing qualitatively sensible semantic
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structure.

There are several areas in which future work could improve on and extend that

presented here. Though we have shown that the discrete shocklet transform is a

useful tool in understanding non-stationary local behavior when applied to a variety

of sociotechnical time series, there is reason to suspect that one can generalize this

method to essentially any kind of noisy time series in which it can be hypothesized

that mechanistic local dynamics contribute a substantial component to the overall

signal. In addition, the DST suffers from noncausality, as do all convolution or

frequency-space transforms. In order to compute an accurate transformed signal

at time t, information about time t + τ must be known to avoid edge effects or

spectral effects such as ringing. In practice this may not be an impediment to the

DST’s usage, since: empirically the transform still finds “important” local dynamics,

as shown in Fig. 3.11 near the very beginning (the words “occupy” and “slumdog”

are annotated) and the end (the words “stormy” and “cohen” are annotated) of time

studied. Furthermore, when used with more frequently-sampled data the lag needed

to avoid edge effects may have decreasing length relative to the longer timescale over

which users interact with the data. However, to avoid the problem of edge effects

entirely, it may be possible to train a supervised learning algorithm to learn the

output of the DST at time t using only past (and possibly present) data. The DST

could also serve as a useful counterpart to phrase- and sentence-tracking algorithms

such as MemeTracker [187, 188]. Instead of applying the DST to time series of simple

words, one could apply it to arbitrary n-grams (including whole sentences) or sentence

structure pattern matches to uncover frequency of usage of verb tenses, passive/active

voice construction, and other higher-order natural language constructs. Other work
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could apply the DST to more and different natural language data sources or other

sociotechnical time series, such as asset prices, economic indicators, and election

polls.
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Figure 3.8: We modeled the log odds ratio of a U.S. economic recession using three ordi-
nary least squares regression models. Each model used one of the ADV method’s anomaly
indicator, the shock indicator function resulting from the discrete shocklet transform, and
the windows of shock-like behavior output by the STAR algorithm as elements of the design
matrix. The models that used features constructed by the DST or STAR outperformed the
model that used features constructed by ADV as measured by both R2 (displayed in the top
panel) and model log-likelihood. The black curve in the top panel displays the null distribu-
tion of R2 under the assumption that no regressor (column of the design matrix) actually
belongs to the true linear model of the data [3, 4]. The lower panel displays the empirical
probability distributions of the model residuals εi.
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Figure 3.9: Comparison of STAR and Twitter’s Anomaly Detection Vector (ADV) algorithm
used for detecting phenomena in Twitter 1gram time series. The Jaccard similarity coeffi-
cient is presented for each 1-gram and the region where events on detected are shaded for
the respective algorithm. Blue-shaded windows correspond with STAR windows of shock-like
behavior, while red-shaded windows correspond with ADV windows of anomalous behavior
(and hence purple windows correspond to overlap between the two). In general, ADV is
most effective at detecting brief spikes or strong shock-like signals, whereas STAR is more
sensitive to longer-term shocks and shocks that occur in the presence of surrounding noisy
or nonstationary dynamic. ADV does not treat strong periodic fluctuations as anomalous by
design; though this may or may not be a desirable feature of a similarity search or anomaly
detection algorithm, it is certainly not a flaw in ADV but simply another differentiator
between ADV and STAR.
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Figure 3.10: Complimentary cumulative distribution function (CCDF) of Jaccard similar-
ity coefficients for regions that Twitter’s ADV and our STAR algorithm detect patterns or
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Figure 3.11: Time series of the ranked and weighted shock indicator function. At each time
step t, the weighted spike indicator functions (WSIF) are sorted so that the word with the
highest WSIF corresponds to the top time series, the words with the second-highest WSIF
corresponds to the second time series, and so on. Vertical ticks along the bottom mark fluc-
tuations in the word occupying ranks 1 and 2 of WSIF values. Top panels present the ranks
of WSIF values for words in the top 5 WSIF values in a given time step for the sub-sampled
period of 60 days. An interactive version of this graphic is available at the authors’ webpage:
http://compstorylab.org/shocklets/ranked_shock_weighted_interactive.html.
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Figure 3.12: Time series of the ranked and weighted spike indicator function. At each time
step t, the weighted spike indicator functions (WSpIF) are sorted so that the word with the
highest WSpIF corresponds to the top time series, the words with the second-highest WSpIF
corresponds to the second time series, and so on. Vertical ticks along the bottom mark fluctu-
ations in the word occupying ranks 1 and 2 of WSpIF values. Top panels present the ranks of
WSpIF values for words in the top 5 WSpIF values in a given time step for the sub-sampled
period of 60 days. The top left panel, demonstrates the competition for social attention
between geopolitical concerns‚Äîstreet protests in Egypt–and popular artists and popular cul-
ture influence–Rebecca Black and Demi Lovato. The top right panel displays the language
surrounding the 2016 U.S. presidential election immediately after Donald Trump announced
his candidacy. An interactive version of this graphic is available at the authors’ webpage:
http://compstorylab.org/shocklets/ranked_spike_weighted_interactive.html.
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Figure 3.13: Extracted shock segments show diverse behavior corresponding to divergent so-
cial dynamics. We extract “important” shock segments (those that breach the top k = 20
ranked weighted shock indicator at least once during the decade under study) and normalize
them as described in Section 3.3. We then find the densities of shock points t∗1, measured
using the maxima of the within-window time series, and alternatively measured using the
maxima of the (relative) shock indicator function. We calculate relative maxima of these
distributions and spatially-average shock segments whose maxima were closest to these rela-
tive maxima; we display these mean shock segments along with sample shock segments that
are close to these mean shock segments in norm. We introduce a classification scheme for
shock dynamics: Type I (panel A) dynamics are those that display slow buildup and fast
relaxation; Type II (panel B) dynamics, conversely, display fast (shock-like) buildup and
slow relaxation; and Type III (panel C) dynamics are relatively symmetric. Overall, we find
that Type III dynamics are most common (40.9%) among words that breach the top k = 20
ranked weighted shock indicator function, while Type II are second-most common (36.4%),
followed by Type I (22.7%).
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Chapter 4

Non-cooperative dynamics in elec-

tion interference
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4.1 Introduction

In democratic and nominally-democratic countries, elections are societally and polit-

ically crucial events in which power is allocated [189]. In fully-democratic countries

elections are the method of legitimate governmental change [190]. One country, whom

we will label “Red”, may wish to influence or appear to influence the outcome of an

election in another country, whom we will label “Blue”, because of the importance

or perceived importance of elections in Blue with respect to Red’s interests. Such

attacks on democracies are not new; it is estimated that the United States (U.S.) and

Russia or its predecessor, the Soviet Union, often interfere in the elections of other

nations and have consistently done this since 1946 [191]. Though academic study of

this area has increased [192], we are unaware of much formal modeling of noncooper-

ative dynamics in an election interference game. Recent approaches to the study of

this phenomena have focused mainly on the compilation of coarse-grained (e.g., yearly

frequency) panels of election interference events and qualitative analysis of this data

[193, 194], and data-driven studies of the aftereffects and second-order effects of in-

terference operations [195, 196]. Attempts to create theoretical models of interference

operations are more sparse and include qualitative causal models of cyberoperation

influence on voter preferences [197] and models of the underlying reasons that a state

may wish to interfere in the elections of another [198].

Here, we consider a Red - Blue two-player game in which Red wishes to influence a

two-candidate, zero-sum election taking place in Blue’s country, as outlined above. In

this context, we think of Red and Blue as the respective foreign (Red) and domestic

(Blue) intelligence services of the two countries. Red wants a particular candidate
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(candidate A) to win the election, while Blue wants the effect of Red’s interference to

be minimized. We characterize this problem theoretically, deriving a noncooperative,

non-zero-sum differential game, and then explore the game numerically. We find that

all-or-nothing attitudes by either Red or Blue can lead to arms-race conditions in

interference operations. In the event that one party credibly commits to playing a

particular strategy, we derive further analytical results.

Turning to a recent instance of election interference, we confront our model with

the 2016 U.S. presidential election in which Russia conducted interference operations

[199]. After fitting a Bayesian structural time series model to election polls and social

media posts associated with Russian Internet Research Agency Twitter troll accounts,

we show that our model, though simple, is able to adequately capture many of the

observed and inferred parameters’ dynamics. We close by proposing some theoretical

and empirical extensions to our work.

4.2 Theory

4.2.1 Election interference model

We consider the case of a simple election between two candidates in a homogeneous

environment (e.g., no institutions such as an Electoral College) so that the election

process at any time t ∈ [0, T ], a noisy representation of which is a public poll, can be

represented by a scalar Zt ∈ [0, 1]. The model is set in continuous time here; when we

estimate parameters statistically in Sec. 4.3 we move to a discrete-time analogue. We

hypothesize that the election dynamics take place in a latent space, where dynamics
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are represented by Xt ∈ R. Without loss of generality, we will set x < 0 to be

values of the latent poll that favor candidate A and x > 0 that favor candidate B.

The latent and observable space are related by Zt = φ(Xt), where φ is a sigmoidal

function which we choose to be φ(x) = 1
1+e−x . (This choice is arbitrary; any sigmoidal

function that is bounded between zero and one will suffice, leading only to different

parameter estimates in the context of statistical estimation.) The actual result of the

election is given by φ(XT ), by which we mean the number of votes that are earned by

candidate B is φ(XT ). The election takes place in a population of N voting agents,

each of whom updates their preferences over the candidates in the latent space at each

time step tn by a small random variable ξn,tn , each of which satisfies En [ξn,tk ] = 0

for all t. The election process’s increments are the sample mean of the realizations of

the voting agents’ preferences at time t. In the absence of interference, the stochastic

election model is thus very simple—an unbiased random walk, which we write as

Xtk+1 = Xtk + 1
N

∑
1≤n≤N

ξn,tk∆t, (4.1)

where ∆t = tk+1 − tk. We display sample realizations of this process for different

distributions of ξn,tk in Fig. 4.1. Though one distribution of ξn,tk describes the process

of hardening of political preferences and another characterizes a system in which

voting agents usually have fluctuating political preferences, the sample paths of Xtk

are statistically similar since 1
N

∑
n ξn,tk does not vary much between the distributions.

When N is large we can reasonably approximate this process by the Wiener process,

dXt = σdWt, where σ2 ≈ Var
(

1
N

∑
1≤n≤N ξn,t

)
, which is valid in the limit of large

N . If the preference change random variables ξn,k did not satisfy En[ξn,k] = 0, this

would not necessarily be true. For example, if {ξn,k}k≥0 were a random walk or were
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Figure 4.1: Though simple, the random walk latent space election model is an approx-
imation to varied population candidate preference updates. The latent election process
evolves according to Xk+1 = Xk + 1

N

∑
1≤n≤N ξn,k, where ξn,k is voting agent n’s shift

toward the left (< 0) or right (> 0) of the political spectrum at time k. In the center
panel, the solid curve is a draw from the latent election process resulting from the pref-
erence updates ξn,t ∼ B

(
0.1T−tT + 1.5 t

T , 0.1
T−t
T + 1.5 t

T

)
, where B(α, β) is the Beta dis-

tribution and we have set T = 365. This change in political preference shift distribution
describes an electorate with increasing resistance to change in their political viewpoints.
We display the preference shift distributions at t = 0 (t = T ) in Panel A (Panel B).
For contrast, the dashed curve is a draw from the latent election process resulting from
ξn,t ∼ B

(
1.5T−kT + 0.1 kT , 1.5

T−k
T + 0.1 kT

)
, which describes an electorate in which the compo-

nent agents often have changing political preferences. We show the corresponding preference
shift distributions at t = 0 (t = T ) in Panel D (Panel E). Despite these preference updates
that are, in some sense, opposites of each other, the latent processes Xt are statistically very
similar and are both well-modeled by the continuum approximation dXt = σdWt.

108



trend-stationary for each n, then {En[ξn,k]}k≥0 would also respectively be a random

walk or trend-stationary and hence its sum would not be well-described by a random

walk model. A unit root or trend-stationary ξn,k would model a population in which

political preferences were undergoing a shift in population-wide distribution rather

than just in individual preferences. However, even if En[ξn,k] 6= 0 for each n, it

is also not necessarily the case that a version of the random walk model is not a

valid approximation for the electoral process. If the stochastic evolution equation

for En[ξn,k] has as its solution a stationary colored noise with exponentially-decaying

covariance function, then the sum (integral) of this noise will satisfy a Stratonovich-

type equation [200, 201, 202] that may be a suitably generalized (in terms of the

covariance structure) version of the basic random walk model considered here.

We denote the control policies of Red and Blue— the functions by which Red and

Blue attempt to influence (or prevent influence on) the election—by uR(t) and uB(t).

These functions are one-dimensional continuous-time stochastic processes (time se-

ries); the term “policy” originates from the fields of economics and reinforcment

learning. These control policies are abstract variables in the context of our model

but can be interpreted as monetary expenditures on interference operations. We will

assume that Red and Blue can affect the mean trajectory of the election but not its

volatility (variance of its increments). We make this assumption because Xt is an

approximation to the process described by Eq. 4.1 and, as displayed in Fig. 4.1 and

described above, this process’s statistical characteristics do not change much even

when the voting population’s underlying preference change distributions are signifi-

cantly different. Thus, under the influence of Red’s and Blue’s control policies, the
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election dynamics become

dXt = f(uR(t), uB(t))dt+ σdWt, X0 = y. (4.2)

To first order expansion we have f(uR(t), uB(t)) = a0 + aRuR(t) + aBuB(t) + O(u2)

which is most accurate near u = 0, so we approximate the state equation by

dXt = [uR(t) + uB(t)]dt+ σdWt, X0 = y, (4.3)

since we have assumed a priori zero drift and can absorb constants into the definition

of the control policies. We will use Eq. 4.3 as the state equation for the remainder of

the paper.

4.2.2 Subgame-perfect Nash equilibria

Red and Blue each seek to minimize separate scalar cost functionals of their own

control policy and the other agent’s control policy; for now, we will assume that the

agents do not incur a running cost from the value of the state variable. The cost

functionals can thus be written

EuR,uB,X

{
ΦR(XT ) +

∫ T

0
CR(uR(t), uB(t)) dt

}
, (4.4)

and

EuR,uB,X

{
ΦB(XT ) +

∫ T

0
CB(uR(t), uB(t)) dt

}
. (4.5)
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The functions CR and CB represent the running cost or benefit of conducting election

interference operations. We assume the cost functions have the form

Ci(uR, uB) = u2
i − λiu2

¬i (4.6)

for i ∈ {R,B}. (The notation ¬i indicates the other player—for example, if i = R,

¬i = B—and originates in the study of noncooperative economic games.) The non-

negative scalar λi parameterizes the utility gained by player i from observing player

¬i’s effort; if λi is high, player i gains utility from player ¬i’s expending resources,

while if λi = 0, player i has no regard for ¬i’s level of effort but only for their own

running cost and the final cost. The assumption of quadratic control is common

in optimal control theory as it can be justified as a Taylor approximation to an

arbitrary even cost function. If we write an arbitrary analytic cost function for player

i as Ci(uR, uB) = C(i)(ui) − λiC(¬i)(u¬i) and make the assumptions that it is equally

costly to conduct operations that favor candidate A or candidate B (hence imposing

that C(i) and C(¬i) are even) and that player i conducting no interference operations

results in player i’s incurring no direct cost from this choice, then the first non-zero

term in the Taylor expansion of Ci is given by Eq. 4.6.

Though the running cost functions are equivalent across players in form, the final

conditions differ between Red and Blue because of their qualitatively distinct objec-

tives. Since Red wants to influence the outcome of the election in Blue’s country in

favor of candidate A, their final cost function ΦR must satisfy ΦR(x) < ΦR(y) for all

x < 0 and y > 0; in our example final conditions presented here we also assume that

ΦR is monotonically non-decreasing everywhere, but we relax this assumption in Sec.
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4.3 in which we confront this model with election interference-related data; to the

extent that this model describes reality, it is probably not true that these restrictive

assumptions on the final condition are always satisfied by all Red teams conducting

election interference operations. One possible final condition that satisfies these re-

quirements is ΦR(x) = c0 + c1x, but this allows the somewhat unrealistic limiting

condition of infinite benefit (cost) if candidate A gets 100% (0%) of the vote in the

election. We will thus also consider two Red final conditions with bounded extremal

cost: one smooth, ΦR(x) = tanh(x); and one discontinuous, ΦR(x) = Θ(x)−Θ(−x).

By Θ(·) we mean the Heaviside step function.

Blue is attempting to ameliorate the effects of Red’s control policy—reduce the overall

impact of Red’s interference operations on the electoral process—hence the form of

the state dynamics presented in Eq. 4.3. Since Blue is a priori indifferent between the

outcomes of the election, at first glance it appears that the final condition ΦB(x) = 0

is a reasonable modeling choice. However, for the case λB = 0, this results in Blue

taking no action at all in the game due to the functional form of Eq. 4.6. In other

words, if Blue does not gain utility from Red expending resources, then Blue will not

try to stop red from interfering in an election in Blue’s country! Hence it appears

likely that Blue must actually have nontrivial preferences over the election outcome.

We present three possible alternatives for a cost function representing Blue’s prefer-

ences; as in the case of Red’s final condition, this list is entirely non-exhaustive. Blue

may simply be suspicious that a result was due to Red’s interference if XT is too

far from E0[XT ] = 0. An example of a smooth function that represents these pref-

erences over the election outcome is ΦB(x) = 1
2x

2. However, this neglects the reality

that Red’s objective is not to have either candidate A or candidate B win by a large
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margin, but rather to have candidate A win (i.e., have XT < 0). Thus Blue might

be unconcerned about larger positive values of the state variable and, modifying the

previous function suitably, have ΦB(x) = 1
2x

2Θ(−x). Alternatively, Blue may accept

the result of the election as long as it does not stray “too far” from the initial ex-

pected value. An example of a discontinuous final condition that can represent these

preferences is ΦB(x) = Θ(|x| > ∆) − Θ(|x| ≤ ∆), where ∆ > 0 is Blue’s accepted

margin of error.

A nondenumerable panolopy of other final conditions can be hypothesized, but the

example functions that we have presented here give some qualitative sense of the

range of possible payoff structures. We include:

• “First-order” functions that could result from the Taylor expansion about zero of

an arbitrary analytic final condition—linear, in the case of Red’s antisymmetric

final condition, and quadratic in the case of Blue’s smooth symmetric final

condition (which is the first non-constant term in the Taylor expansion of an

even analytic function);

• Smooth functions that represent preferences over the result of the electoral

process that we deem marginally more realistic, such as bounded benefit / cost

and the recognition that Red (by assumption) favors one candidate in particular;

and

• Discontinuous final conditions that model “all-or-nothing” preferences over the

outcome (either candidate A wins or they do not; either Red interferes less than

a certain amount or they interfere more).

These functions do not capture some interesting behavior that might exist in real
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election interference operations. For example, Red’s preferences concerning the result

of the election outccome might be as follows: “we would prefer that candidate A

wins the election, but if they cannot, then we would like candidate B to win by

a landslide so that we can claim the electoral system in Blue’s country was rigged

against candidate A”. These preferences correspond to a final condition with a global

minimum at some x < 0 but a secondary local minimum at x � 0; this situation is

clearly not modeled by any of the final conditions given above. In Sec. 4.3 we will

drop the assumption that the final conditions are parameterized according to any of

the functional forms considered in thise section and instead infer them from observed

election and election interference proxy data.

The application of the dynamic programming principle [203, 204] to Eqs. 4.3, 4.4,

and 4.5 leads to a system of coupled Hamilton-Jacobi-Bellman equations for the

value functions of Red and Blue,

− ∂VR

∂t
= min

uR

{
∂VR

∂x
[uR + uB] + u2

R − λRu
2
B + σ2

2
∂2VR

∂x2

}
, (4.7)

and

− ∂VB

∂t
= min

uB

{
∂VB

∂x
[uR + uB] + u2

B − λBu
2
R + σ2

2
∂2VB

∂x2

}
. (4.8)

The dynamic programming principle does not result in an Isaacs equation because

the game is not zero-sum and the cost functionals for Red and Blue can have different

functional forms. (The Isaacs equation is a nonlinear elliptic or parabolic equation

that arises in the study of two-player, zero-sum games in which one player attempts

to maximize a functional and the other player attempts to minimize it [205, 206].)

Performing the minimization with respect to the control variables gives the Nash
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equilibrium control policies,

uR(t) = −1
2
∂VR

∂x

∣∣∣∣∣
(t,Xt)

(4.9)

uB(t) = −1
2
∂VB

∂x

∣∣∣∣∣
(t,Xt)

, (4.10)

and the exact functional form of Eqs. 4.7 and 4.8,

−∂VR

∂t
= −1

4

(
∂VR

∂x

)2

− 1
2
∂VR

∂x

∂VB

∂x
− λR

4

(
∂VB

∂x

)2

+ σ2

2
∂2VR

∂x2 , VR(x, T ) = ΦR(x);

(4.11)

−∂VB

∂t
= −1

4

(
∂VB

∂x

)2

− 1
2
∂VB

∂x

∂VR

∂x
− λB

4

(
∂VR

∂x

)2

+ σ2

2
∂2VB

∂x2 , VB(x, T ) = ΦB(x).

(4.12)

When solved over the entirety of state space, solutions to Eqs. 4.11 and 4.12 constitute

the strategies of a subgame-perfect Nash equilibrium because, no matter the action

taken by player ¬i at time t, player i is able to respond with the optimal action

at time t + dt. Given the solution pair VR(x, t) and VB(x, t), the distribution of

Z = (x, uR, uB)T can be written analytically. Substitution of Eqs. 4.9 and 4.10

into Eq. 4.3 gives dx = −1
2

{
∂VR
∂x
|(t,x) + ∂VB

∂x
|(t,x)

}
dt + σdW . We discretize the state

equation to obtain
xn+1 − xn + ∆t

2 [V ′Rn + V ′Bn]

− (∆t)1/2σwn − yδn,0 = 0,
(4.13)

with wn ∼ N (0, 1) and where we have put V ′in ≡ V ′i (xn, tn). Thus the distribution of
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an increment of the latent electoral process is

p(xn+1|xn) = 1√
2πσ2∆t

e−
∆t
2σ2 (xn+1−xn

∆t + 1
2 [V ′Rn+V ′Bn]−y δn0

∆t )2
. (4.14)

Now, using the Markov property of Xt, we have

p(x1, ..., xN |x0) =
N−1∏
n=0

p(xn+1|xn) (4.15)

= 1
(2πσ2∆t)N/2 exp {−S(x1, ..., xN)} , (4.16)

where
S(x1, ..., xN) = 1

2σ2

N−1∑
n=0

∆t
[
xn+1 − xn

∆t

+ 1
2[V ′Rn + V ′Bn]− yδn,0

∆t

]2
.

(4.17)

TakingN →∞ asN∆t = T remains constant gives a standard Gaussian path integral

with an action S(x(t)) that incorporates the derivatives of the value functions. Since

uR and uB are just time-dependent functions of x(t), their distributions can also be

found explicitly using the probability distribution Eq. 4.16 and the appropriate (time-

dependent) Jacobian transformation. Unfortunately, these analytical results are of

limited utility because we are unaware of analytical solutions to the system given in

Eqs. 4.11 and 4.12, and hence V ′R(x, t) and V ′B(x, t) must be approximated. However,

we will have something to say about analytical solutions presently in the case that

player i announces a credible commitment to a particular control path.

In the general case presented above, we find the value functions VR(x, t) and VB(x, t)

numerically through backward iteration, enforcing a Neumann boundary condition at

x = ±3, which corresponds to bounding polling popularity of candidate B from below
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by 4.7% and from above by 95.3% 1. Fig. 4.2 displays example realizations of the value

functions for different λi and final conditions. The value functions display diffusive

behavior in common due to the game’s stochasticity, but also differ qualitatively

depending on the effect of the final condition propagating backward in time. When

the final conditions are discontinuous, as is the case in the top panels of Fig. 4.2, the

derivatives of the value function assume greater magnitudes and vary more rapidly

throughout the game than do the derivatives of the value function when the final

conditions are continuous; this is a typical feature of solutions to equations of HJB-

type [207] and has consequences for the game-theoretic interpretation of these results,

as we discuss below. Fig. 4.2 also demonstrates that the extrema of the value functions

are not as large in magnitude when λR = λB = 0 as when λR = λB = 2; this is because

higher values of λi mean that player i derives utility not only from the final outcome

of the game but also from causing player ¬i to expend resources in the game.

Eqs. 4.7 and 4.8 give the closed-loop control policies uR and uB respectively given the

current state Xt and time t. We display samples of uR, uB, and the electoral process

Zt in Fig. 4.3 to illuminate some of the qualitative properties of this game before

considering a more comprehensive sweep over parameters. We simulate the game

with parameters λR = λB = 2, ΦR(x) = x, and ΦB(x) = 1
2x

2Θ(−x). We plot the

control policies in the top panel including the mean control policies E[uR] and E[uB],

displayed in thicker curves. For this parameter set, it is optimal for Red to begin

play with a relatively large amount of interference and, in the mean, decrease the

level of interference over time. Conversely, throughout the game Blue increases their

resistance to Red’s interference. Despite this resistance, the bottom panel reveals
1 Code to recreate simulations and plots in this paper—or to create new simulations and “what-if”

scenarios—is located at https://gitlab.com/daviddewhurst/red-blue-game.
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Figure 4.2: Example value functions corresponding to the system Eqs. 4.11 and 4.12. Panels
A and B display VR(x, t) and VB(x, t) respectively for λR = λB = 0, ΦR(x) = 2[Θ(x) −
Θ(−x)], and ΦB(x) = 2[Θ(|x| > 0.1) − Θ(|x| ≤ 0.1)] with ∆ = 0.1, while panels C and
D display VR(x, t) and VB(x, t) respectively for λR = λB = 2, ΦR(x) = 2 tanh(x), and
ΦB(x) = 1

2x
2Θ(−x). For each solution we enforce Neumann no-flux boundary conditions

and set σ = 0.6. The solution is computed on a grid with x ∈ [−3, 3], setting dx = 0.025,
and integrating for Nt = 8000 timesteps.
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Figure 4.3: We display realizations of uR and uB in the top panel and paths of the electoral
process in the bottom panel. We draw these realizations from the game simulated with
parameters λR = λB = 2, ΦR(x) = x, and ΦB(x) = 1

2x
2Θ(−x). For this parameter set, Blue

is fighting a losing battle—the bottom panel clearly shows that, even with Blue attempting to
stop Red from interfering in the game, optimal play by both players results in a significantly
lower E[Zt] than for the electoral process without any interference.
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that, for this parameter set, Red is able to accomplish their objective of causing

candidate A to win: in the mean case, candidate A enjoys a comfortable lead in the

election poll by the final time.

To gain a better idea of the qualitative nature of this game for a more varied set

of parameters, we conducted a coarse parameter sweep over λR, λB, ΦR, and ΦB.

Figs. 4.4 and 4.5 displays the results of this parameter sweep for two combinations

of final conditions; holding Blue’s final condition of ΦB(x) = 1
2x

2Θ(−x) constant,

we compare the means and standard deviations of the Nash equilibrium strategies

uR(t) and uB(t) across values of the coupling parameters λR, λB ∈ [0, 3] as Red’s

final condition changes from ΦR(x) = tanh(x) to ΦR(x) = Θ(x) − Θ(−x). For

these combinations of final conditions, higher values of the coupling parameters λi

cause greater fluctuation in control policies. This increase in fluctuation is more pro-

nounced when Red’s final condition is discontinuous, which is sensible since in this case

limt→T− uR(x, t) = −1
2δ(x). Appendix ?? contains similar figures for each 32 = 9 com-

binations of Red example final conditions, ΦR(x) ∈ {tanh(x),Θ(x)−Θ(−x), x} and

Blue example final conditions, ΦB(x) ∈
{

1
x
x2, 1

2x
2Θ(−x),Θ(|x| > ∆)−Θ(|x| < ∆)

}
.

We also find that certain combinations of parameters lead to an “arms-race” effect

in both players’ control policies; for these parameter combinations, Nash equilibrium

strategies entail superexponential growth in the magnitude of each player’s control

policy near the end of the game. Figure 4.6 displays E[uR] and E[uB] for these pa-

rameter combinations, along with the middle 80 percentiles (10th to 90th percentile)

of uR(t) and uB(t) for each t. This precipitous growth in the magnitude of the con-

trol policies occurs when either player has a discontinuous final condition. Although

a discontinuous final condition by player i leads to a greater increase in the mean
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Figure 4.4: Example sweeps over the coupling parameters λR and λB when Blue’s final
condition is set to ΦB(x) = 1

2x
2Θ(−x). We vary the coupling parameters over [0, 3] and

display the resulting standard deviation of the control policies uR(x) and uB(x). Panels A
and B represent one coupled system of equations, while panels C and D represent a coupled
system of equations with a different set of final conditions. In panel A, Red’s value function
is set to ΦR(x) = tanh(x), while in panel B it is given by ΦR(x) = Θ(x) − Θ(−x), where
Θ(·) is the Heaviside function. We display a glyph of the corresponding final condition in
the upper right corner of each panel. Changing Red’s continuous final condition tanh(x) to
the discontinuous Θ(x) − Θ(−x) results in substantially increased variation in the control
policies of both players.
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Figure 4.5: Example sweeps over the coupling parameters λR and λB when Blue’s final con-
dition is set to ΦB(x) = 1

2x
2Θ(−x). We vary the coupling parameters over [0, 3] and display

the resulting means of the control policies uR(x) and uB(x). Panels A and B represent one
coupled system of equations, while panels C and D represent a coupled system of equations
with a different set of final conditions. In contrast with Fig. 4.4 we alter Blue’s final con-
dition from ΦB(x) = −1

2x
2Θ(−x) in panel C to ΦB(x) = Θ(|x| > 0.1) − Θ(|x| ≤ 0.1) in

panel D, while Red’s final condition is held constant at ΦR(x) = tanh(x). Altering Blue’s
final condition from continuous to discontinuous causes a greater than 100% increase in the
maximum value of the mean of Red’s control policy.
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Figure 4.6: In the case of strong coupling (λR and λB � 0), discontinuous final solutions by
either player cause superexponential growth in the magnitude of each player’s control policy.
Here we set λR = λB = 3 and integrate three systems, varying only one final condition in
each. Panel A displays a system with two continuous final conditions: ΦR(x) = tanh(x)
and ΦB(x) = 1

2x
2Θ(−x). Panel B displays the mean Red and Blue control policies when

the Red final condition is changed to ΦR(x) = Θ(x) − Θ(−x) as the Blue final condition
remains equal to 1

2x
2Θ(−x), while panel C shows the control policies when ΦB(x) = Θ(|x| >

1.) − Θ(|x| < 1) and ΦR(x) = tanh(x). The shaded regions correspond to the middle 80
percentiles (10th to 90th percentiles) of uR(t) and uB(t) for each t. When either player
has a discontinuous final condition, the inter-percentile range is substantially wider for both
players than when both players have continuous final conditions.
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magnitude in player i’s control policy than in player ¬i’s, the distribution of each

player’s policy exhibits a similar superexponential growth in dispersion (and hence

in magnitude). To the extent that this model reflects reality, this points to a general

statement about election interference operations: An all-or-nothing mindset by either

Red or Blue regarding the final outcome of the election leads to an arms race that

negatively affects both players. This is a general feature of any situation to which the

model described by Eqs. 4.3 – 4.5 applies.

4.2.3 Credible commitment

If player ¬i credibly commits to playing a particular strategy v(t) on all of [0, T ],

then the difficult problem of player i’s finding a subgame-perfect Nash equilibrium

strategy profile becomes a slightly easier problem of optimal control. Player i now

seeks to find the policy u(t) that minimizes the functional

Eu,X

{
Φ(XT ) +

∫ T

0
(u(t)2 + λv(t)2) dt

}
, (4.18)

subject to the modified state equation

dx = [u(t) + v(t)]dt+ σdW . (4.19)
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Following the logic of Eqs. 4.7 and 4.9, player i’s value function is now given by the

solution to the considerably-simpler HJB equation

−∂V
∂t

= −1
4

(
∂V

∂x

)2

+ v(t)∂V
∂x

+ λv(t)2 + σ2

2
∂2V

∂x2 ,

V (x, T ) = Φ(x).
(4.20)

Though nonlinear, this HJB equation can be transformed into a backward Kolmogorov

equation through a change of variables and subsequently be solved using path inte-

gral methods [208]. Setting V (x, t) = −η logϕ(x, t), substituting in Eq. 4.20, and

performing the differentiation, we are able to remove the nonlinearity if and only if
η2

4
1
ϕ2

(
∂ϕ
∂x

)2
= σ2η

2
1
ϕ2

(
∂ϕ
∂x

)2
, so we set η = 2σ2. Performing the change of variables,

Eq. 4.20 is now linear and has a time-dependent drift and sink term,

∂ϕ

∂t
= λ

2σ2v(t)2ϕ(x, t)− v(t)∂ϕ
∂x
− σ2

2
∂2ϕ

∂x
,

ϕ(x, T ) = exp
{
− 1

2σ2 Φ(x)
} (4.21)

Application of the Feynman-Kac formula gives the solution to Eq. 4.21 as [209]

ϕ(x, t) = exp
{
− λ

2σ2

∫ T

t
v(t′)2 dt′

}
×

EYt

{
exp

[
− 1

2σ2 Φ(YT )
] ∣∣∣∣∣Yt = x

}
,

(4.22)

where Yt is defined by

dYt = v(t) dt+ σdWt, Y0 = x. (4.23)

Using this formalism, path integral control can be applied to estimate the value

function for arbitrary v(t). Fig. 4.7 displays path integral solutions to Eq. 4.20 when
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player ¬i credibly commits to playing v(t) = t2 for the duration of the game and

player i’s final cost function takes the form Φ(x) = Θ(|x| > 1) − Θ(|x| ≤ 1). In the

further restricted case where there is a credible commitment by one party to play

v(t) = v, a constant control policy, we can say more about the nature of solutions.

We will also show presently why this constraint is actually not all that restrictive.

Under this assumption, the probability law corresponding with Eq. 4.23 is given by

u(y, t) = 1√
2πσ2t

exp
{ 1

2σ2t
[(y − x)− vt]2

}
, (4.24)

so that the (exponentially-transformed) value function reads

ϕ(x, t) =
exp

{
−λv2

2σ2 (T − t)
}

√
2πσ2(T − t)

×

∞∫
−∞

exp
{
− 1

2σ2

[
Φ(y) + ((y − x)− v(T − t))2

T − t

]}
dy.

(4.25)

This integral can be evaluated exactly for many Φ(y) and, for many Φ, can be approx-

imated using the method of Laplace. When t → T so that the denominator of the

argument of the exponential in Eq. 4.25 approaches zero, Laplace’s approximation to

the integral reads

∞∫
−∞

exp
{
− 1

2σ2

[
Φ(y) + ((y − x)− v(T − t))2

T − t

]}
dy

'
√

2πσ2(T − t) exp
{
− 1

2σ2 Φ(x+ (T − t)v)
}
,

(4.26)
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Figure 4.7: Result of the path integral Monte Carlo solution method applied to Eq. 4.20
with the final condition Φ(x) = Θ(|x| > 1) − Θ(|x| ≤ 1) and v(t) = t2. Approximate
value functions are computed using N = 10000 trajectories sampled from Eq. 4.23 for each
point (x, t). Approximate value functions are displayed in Panel A for t ∈ {0, 0.75, 1− dt}
and the corresponding approximate control policies in Panel B, along with their smoothed
counterparts (15-step moving averages, plotted in dashed curves). Panel C displays real-
izations of Yt, the process generating the measure under which the solution is calculated.
This method can be advantageous over numerical solution of the nonlinear PDE when the
final condition is discontinous, as here, since in this case Eq. 4.20 has a solution for all
t ∈ [0, T ] only in the sense of distributions. The analytical control policy at t = T is given
by u(t) = −1

2 [δ(x− 1)− δ(x+ 1)].
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so that, inverting the transformation above, the value function can be approximated

by

V (x, t) = λv2(T − t) + Φ(x+ (T − t)v), (4.27)

and the control policy by

u(t) = −1
2Φ′(x+ (T − t)v). (4.28)

Fig. 4.8 displays the results of approximating the value function with Eq. 4.27 at

t = 0, along with the true (numerically-determined) value function at both t = 0 and,

for reference, t = T .

It is interesting to analyze the dependence of the Laplace-approximated value func-

tion on a free parameter. If the simplicity of the Laplace approximation is to have

practical utility, the approximated control policy should ideally have similar scaling

and asymptotic properties as the true control policy; solving an optimization prob-

lem for optimal values of the free parameter, which we will denote by a, may be one

approach to satisfying this desideratum. To this end, as a case study we consider

the behavior of the approximate value function V (a)(x, t) and its corresponding con-

trol policy u(a)(x, t) when the final condition is Φ(a)(x) = tanh(ax) as a → ∞. We

consider this specific example because Φ(a)(x) → Θ(x) − Θ(−x), where Θ(·) is the

Heaviside function; this limit can be the source of complicated behavior in a variety of

fields such as piecewise-smooth dynamical systems (both deterministic and stochas-

tic) [210, 211], Coulombic friction [212], and evolutionary biology [213]. Fig. 4.9

displays the exponentially-transformed value function Eq. 4.25 with final condition

Φi(x) = tanh(ax) for player i when player ¬i commits to playing a constant strategy
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Figure 4.8: When player ¬i commits to playing a constant strategy profile v(t) = v for a
fixed interval of time, an analytic approximate form for player i’s value function V (x, t) is
given by V (x, t) ' λv2(T −t)+Φ(x+(T −t)v). The numerically-determined value functions
at time t = 0 are shown above in black curves, while the Laplace approximations at t = 0
are displayed in dashed curves. The curves of lighter hue are the value functions at the final
time T . The top panel demonstrates results for the final condition Φ(x) = 1

2x
2, while the

bottom panel has Φ(x) = tanh(x).
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Figure 4.9: If player ¬i credibly commits to a strategy of playing a constant strategy with
value equal to v for the entire duration of the game, player i’s (exponentially-transformed)
value function ϕ(x, t) has an integral representation given by Eq. 4.25. We display dynamics
of ϕ(x, t) in the case where Φ(x) = tanh(ax) for x ∈

(
−3

2 ,
3
2

)
and logarithmically equally-

spaced values of a ∈ [10−3, 105]. For a < 10−1, the value function is nearly constant as
a values this small render the final condition nearly constant over this range of the state
space. When a > 101, ∂

∂xϕ(x, t) rapidly increases in magnitude near x = 0 as t→ T .

of v for the entire time period. (The value function is computed numerically; we do

not use the Laplace approximation here.) As t → T , larger values of the steepness

parameter a lead to an increasingly hard boundary betweeen areas of the state space

that are costly for player i (positive values of x) and those that are less costly (neg-

ative values of x). Though this behavior is qualitatively similar to behavior arising

from the final condition Φi(x) = Θ(x) − Θ(−x), we will show presently, using the

Laplace approximation, that there are significant scaling differences in the control

policies resulting from these strategies. From the Laplace approximation result (Eqs.

4.26 and 4.27), the value function is approximately

V (a)(x, t) ≈ λv2(T − t) + tanh {a[x+ v(T − t)]} , (4.29)
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and hence the control policy is approximately given by

u(a)(x, t) ≈ −a2sech2 {a[x+ v(T − t)]} , (4.30)

with both expansions valid when 1
σ2(T−t) is large. When Φ(x) = Θ(x) − Θ(−x), the

value function can be computed analytically; we have

1√
2σ2(T − t)

∞∫
−∞

exp
{
− 1

2σ2

[
Θ(y)−Θ(−y) + ((y − x)− v(T − t))2

T − t

]}
dy

= cosh
( 1

2σ2

)
+ sinh

( 1
2σ2

)
erf

−x+ v(T − t)√
2σ2(T − t)

 ,
(4.31)

whereupon we find that

V (x, t) = λv2(T − t)− 2σ2 log
cosh

( 1
2σ2

)
+ sinh

( 1
2σ2

)
erf

−x+ v(T − t)√
2σ2(T − t)


(4.32)

and

u(x, t) = −

√√√√ 2σ2

π(T − t)
exp

(
−(x+v(T−t))2

2σ2(T−t)

)
coth

(
1

2σ2

)
+ erf

(
− x+v(T−t)√

2σ2(T−t)

) . (4.33)

The approximate control policy u(a)(x, t) and the limiting control policy have similar

purely negative bell-like shapes but also differ substantially as t → T : The true

control policy decays as a Gaussian (though a Gaussian modulated by the asymmetric

function erf(·)), while the approximate policy displays logistic decay and hence is

larger in magnitude farther from its global minimum than is the true policy; while

the approximate policy is symmetric, u(x, t) is asymmetric due to the error function

term. The differences between u(a)(x, t) and u(x, t) can be minimized by considering
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the free parameter a as a function of t and solving the functional minimization problem

min
a(t)

T∫
t

∞∫
−∞

[u(a(t))(x, t)− u(x, t)]2 dx dt. (4.34)

The variational principle implies a stationary point of this problem is given by the

solution to
∞∫
−∞

[u(a(t))(x, t)− u(x, t)]∂u
(a(t))(x, t)
∂a(t) dx = 0. (4.35)

We are unable to compute this integral analytically upon substituting Eqs. 4.30 and

4.33; we instead find the solution to the problem of Eq. 4.34 by numerically solving

Eq. 4.35 using the secant method for each of 100 linearly-spaced t ∈
[

1
2 ,

9975
10000

]
. We

display the optimal a(t), along with the corresponding u(a(t))(x, t) and true u(x, t) in

Fig. 4.10. We find that the optimal a(t) grows superexponentially as t→ T and that

the accuracy of the approximation increases in this limit, which is expected given

that u(a)(x, t) is derived using the Laplace approximation and it is in this limit that

the Laplace approximation is valid.

Even with the seemingly-restrictive assumption of credible committment to a constant

control policy v, this theory can be used to provide a method for value function

approximation in a noncooperative scenario. For arbitrary v(t), expansion about

t + ∆t gives v(t + ∆t) = v(t) + v′(t)∆t, leading to an approximate value function

iteration over a small time increment ∆t,

V (x, t+ ∆t) ≈ λv(t)2(T − t) + Φ(x+ (T − t)[v(t) + v′(t)∆t]). (4.36)

In application, both of v(t) and v′(t) can be estimated from possibly-noisy data on
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Figure 4.10: The solution to the problem formulated in Eq. 4.34 is a superexponentially-
increasing a(t) parameter in the Laplace method-derived value function V (a)(x, t) =
tanh(ax). We use this value function as an approximation to the exact value function
given in Eq. 4.32. Dashed curves indicate u(x, t), while solid curves indicate u(a)(x, t). The
lower-right inset axis displays the same data as the main axis and also includes u(x, t) and
u(a)(x, t) at the last simulation timestep, t = 0.9975, to demonstrate the increasing accuracy
of the approximation as t→ T . The lower-left inset displays the optimal a(t).
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t′ ∈ [0, t] and used in this approximation.

4.3 Application

A recent notable example of election interference operations is that of the Russian

military foreign intelligence service (GRU)’s and Internet Research Agency (IRA)’s

operations in the 2016 U.S. presidential election contest to attempt to harm one candi-

date’s chances of winning (Hilary Clinton) and aid another candidate (Donald Trump)

[199]. Though Russian foreign intelligence had conducted election interference oper-

ations in the past at least once before, in the Ukrainian elections of 2014 [214], the

2015–16 operations were notable in that IRA operatives used the microblogging web-

site Twitter in an attempt to influence the election outcome. When this attack vector

was discovered, Twitter accounts associated with IRA activity were shut down and

all data associated with those accounts was collected and analyzed [215, 216, 217].

There has been extensive analysis of the qualitative and statistical effects of these

and other election attack vectors (e.g., Facebook advertisement purchases) on elec-

tion polling and the outcome of the election [218], while there has also been some work

on the detection of election influence campaigns more generally [219, 220]. However,

to the best of the authors’ knowledge, there exists no publicly-available effort to

reverse-engineer the exact qualitative nature of the control policies used by the the

IRA—Red team—and by U.S. domestic and foreign intelligence agencies—Blue team.

In an effort to perform data-driven simulation of Red-Blue dynamics, we fit a form

of the model described in Sec. 4.2.1 and compare it to qualitative theoretical pre-
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dictions, finding the free parameters in the model that best describe the observed

data and inferred latent controls. It is relatively nontrivial to fit the parameters of

the theoretical model because we are faced with two distinct sources of uncertainty:

first, we cannot observe either Red’s or Blue’s control policy directly because foreign

and domestic intelligence agencies shroud their activities in secrecy; and second, the

payoff structure to each player at the final time, which is necessary for a unique solu-

tion to Eqs. 4.11 and 4.12, is also secret and unknown to us. To partially circumvent

these issues, we construct a two-stage model. The first stage is a Bayesian structural

time series model, depicted graphically in Fig. 4.11, through which we are able to

infer distributions of discretized analogues of uR(t), uB(t), and x(t). Once these dis-

tributions are in hand, we minimize a loss function that compares the means of these

distributions to the means of distributions produced by the model described in Sec.

4.2.1.

Since the U.S. presidential election system is of nontrivial complexity, owing both

to the number of minor party candidates that also compete and also to the unique

Electoral College system, we make the simplifying assumptions stated in Sec. 4.1—

namely, that only two candidates contest the election and that the election process

is modeled by a simple “candidate A versus candidate B” poll. Though there are

undoubtedly better methods for forecasting elections, such as compartmental infection

models [221], prediction markets [222], and more sophisticated Bayesian models [223,

224], we purposefully construct our statistical model to closely mimic the underlying

election model of Sec. 4.2.1 to test the ability of this underlying model, coupled with

our model of noncooperative interaction, to reproduce inferred control and observed

election dynamics through posterior and posterior predictive distributions. We can
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observe neither the Red uR(t) nor Blue uB(t) control policies, but are able to observe

a proxy for uR, namely, the number of tweets sent by IRA-associated accounts in the

year leading up to the 2016 election 2. This dataset contains a total of 2,973,371 tweets

from 2,848 unique Twitter handles. Of these tweets, a total of 1,107,361 occurred in

the year immediately preceding the election (08/11/2015 - 08/11/2016). We grouped

these tweets by day and used the time series of total number of tweets on each day as

an observable from which uR could be inferred. We restricted the time range of the

model to begin at the later of the end dates of the Republican National Convention (21

July 2016) and Democratic National Convention (28 July 2016) since the later of these

dates, 28 July 2016, is the day on which the race is officially between two major party

candidates. Of the above tweets, 363,131 occurred during the 102 days beginning on

28 July 2016 and ending the day before Election Day. We note that the presence of

minor party candidates doubtless played a role in the result of the election, but even

the most prominent minor parties (Libertarian and Green) received only single-digit

support [225, 226]. We do not model these parties and instead consider only the zero-

sum electoral contest between the two major parties. We used the RealClearPolitics

poll aggregation as a proxy for the electoral process itself 3, averaging polls that

occurred at the same timestamp and using the earliest date in the date range of the

poll if it was conducted over multiple days as the timestamp of that observation.

Using these two observed random variables, we fit a Bayesian structural time series

model [227] of the form presented in Fig. 4.11. We briefly describe the structure of

the model and explain our choices of priors and likelihood functions. In the analytical
2Data can be downloaded at https://github.com/fivethirtyeight/

russian-troll-tweets/
3Data can be downloaded at https://www.realclearpolitics.com/epolls/2016/

president/us/general_election_trump_vs_clinton_vs_johnson_vs_stein-5952.html

136

https://github.com/fivethirtyeight/russian-troll-tweets/
https://github.com/fivethirtyeight/russian-troll-tweets/
 https://www.realclearpolitics.com/epolls/2016/president/us/general_election_trump_vs_clinton_vs_johnson_vs_stein-5952.html
 https://www.realclearpolitics.com/epolls/2016/president/us/general_election_trump_vs_clinton_vs_johnson_vs_stein-5952.html


Figure 4.11: We approximate the time series components of the analytical model defined in
Sec. 4.2.1 by a Bayesian structural time series model that we subsequently confront with data
pertaining to the 2016 U.S. presidential election. Observed random variables are denoted by
gray-shaded nodes, while latent random variables are represented by unshaded nodes or red
(uR,t) and blue (uB,t) nodes. We observe a noisy election poll, denoted by Zt, and a time
series of tweets associated with the Russian Internet Research Agency, denoted by Tweets.
Our objective in this modeling stage is to infer the latent electoral process, denoted by Xt,
and the latent control policies.
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model, we model the latent control policies uR(t) and uB(t) implicitly as time- and

state-dependent Wiener processes. This is seen by recalling that the state equation

evolves according to a Wiener process and applying Ito’s lemma to the deterministic

functions of a random variable −1
2
∂VR
∂x′

∣∣∣
x′=xt

and −1
2
∂VB
∂x′

∣∣∣
x′=xt

, which define the control

policies. A discretized version of the Wiener process is a simple Gaussian random

walk; we thus model the latent Red and Blue control policies by Gaussian random

walks:

p(uR,t|uR,t−1, µR, σ) = N (uR,t−1 + µR, σ
2) (4.37)

p(uB,t|uB,t−1, µB, σ) = N (uB,t−1 + µB, σ
2) (4.38)

Similarly, the latent election process is modeled by a discretized version of the state

evolution equation, Eq. 4.3:

p(Xt|Xt−1, uR, uB)

= N (Xt−1 + uB,t−1 − uR,t−1, 1)
(4.39)

We assume that the latent election model is subject to normal observation error

in latent space. Since we chose a logistic function as the link between the latent and

real (on (0, 1)) election spaces, the likelihood for the observed election process is thus

given by a Logit-Normal distribution. The pdf of this distribution is

p(Zt|Xt, σZ) =
√

1
2πσ2

Z

exp
{
− (logit(Zt)−Xt)2

2σ2
Z

}
Zt(1− Zt)

. (4.40)

Though the number of IRA tweets that occur on any given day is obviously a non-
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negative integer, we chose not to model it this way. The usual model for a “count”

random variable, such as the tweet time series, is a Poisson distribution with time-

dependent rate parameter. However, this model imposes a strong assumption on the

variance of the count distribution (namely, that the variance and mean are equal)

which does not seem realistic in the context of the tweet data. Instead of searching

for a discrete count distribution that meets some optimality criterion, we instead

chose to first normalize the tweet time series to have zero mean and unit variance

(thus making it a continuous random variable rather than a discrete one) and then

to shift the time series so that the the new time series was equal to zero on the day

during our study with the fewest tweets. We then modeled this time series Tweetst

by a normal observation likelihood,

p(Tweetst|uR,t, σTweets) = N (uR,t, σ2
Tweets). (4.41)

We placed a weakly-informative prior, a Log-Normal distribution, on each standard

deviation random variable (σ, σZ , σTweets), and zero-centered Normal priors on each

mean random variable (µR, µB). This model is high-dimensional, since the observed

time series Tweets and Z and latent time series X, uR, and uB are inferred as T -

dimensional vectors possessing the covariance structure imposed by the (biased) ran-

dom walk assumption; in total this model has 5T + 5 = 515 degrees of freedom.

We fit this statistical model, a graphical representation of which is displayed in Fig.

4.11, using the No-U-Turn Sampler algorithm [228], sampling 2000 draws from the

model’s distribution from each of two independent Markov chains, not including 1000
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draws per chain of burn-in. The sampler appeared to converge well based on graphical

consideration (i.e., the “eye test”) of draws from the posterior predictive distribution

of Zt and Tweetst, and—more importantly—because maximum values of Gelman-

Rubin statistics [229] for all variables satisfied Rmax < 1.01 except for that of σZ

(Rmax = 1.07646). Each of these values is well below the level R = 1.1 advocated by

Brooks and Gelman [230]. Fig. 4.12 displays draws from the posterior and posterior

predictive distribution of this model. Panel A displays draws of Xt from the posterior

distribution, along with E[Xt] and logit(Zt), while in panel B we show posterior draws

of uR and uB, along with E[uR] and E[uB] in thick red and blue curves respectively. In

panel C, we display Tweetst and draws from its posterior predictive distribution. On

10/06/2016, Tweetst exhibits a large spike that is very unlikely under the posterior

predictive distribution. This spike likely corresponds with a statement made by the

U.S. federal government on this date that officially recognized the Russian government

as culpable for hacking the Democratic National Committee computers.

After inferring the latent control policies and electoral process, we searched for the

parameter values θ = (λR, λB, σ,ΦR,ΦB) of the theoretical model described in Sec.

4.2.2 that best explain the observed data and latent variables inferred by the time

series model described in this section. For clarity in reference, we will hereafter refer

to this theoretical model as M̂ and the Bayesian structural time series model derived

earlier in this section asM. We use Legendre polynomials to approximate the final

conditions of Eqs. 4.11 and 4.12, ΦR and ΦB, setting Φi(x) ' ∑K
k=0 aikPk(x), so that

the actual parameter vector considered is θ = (λR, λB, σ, a0,r, ..., aK,r, a0,b, ..., aK,b).

In contrast with M, M̂ has relatively few degrees of freedom since the assumption

of state and policy co-evolution via solution of coupled partial differential equations
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Figure 4.12: Panel A displays the logit of the observed election time series (black curve)
logit(Zt), along with the posterior distribution of the latent electoral process Xt. Panel B
displays the mean latent control policies in thick red and blue curves, along with their pos-
terior distributions. Panel C shows the true tweet time series (subject to the normalization
described in the main body) along with draws from its posterior predictive distribution. The
large spike in the tweet time series that is not predicted by the posterior predictive distribu-
tion corresponds to the day (10/06/2016) on which the U.S. federal government officially
accused Russia of hacking the Democratic National Committee computers.
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(Eqs. 4.11 and 4.12) substantially restricts the system’s dynamics. In total, M̂ has

2K + 3 free parameters; we set K = 10 for a total of 23 degrees of freedom. The

theoretical model M̂ can be viewed as a generative probabilitistic function so that,

to find values of parameters that ensure M̂ best describes observed and inferred

reality, we draw (ûR, ûB, X̂) ∼ p̂(ûR, ûB, X̂|θ,M̂) and minimize a loss function of

these generated values and the values inferred byM. We defined a loss function of

the form

L(θ|M̂) =
∑
(y,ŷ)

[
‖µy − µŷ‖2

2 + ησŷ
]
, (4.42)

where y ∈ {uR, uB, X} and ŷ ∈ {ûR, ûB, X̂}. We have defined the mean and standard

deviation under the corresponding distribution by µ and σ respectively. The `2 loss

terms penalize deviation by M̂ from the mean ofM’s inferred posterior distribution,

while the standard deviation term imposes a penalty on dispersion. We minimized the

loss function of Eq. 4.42 using a Gaussian-process Bayesian optimization algorithm,

the details of which are beyond the scope of this work but are readily found in any

review paper on the subject [231, 232, 233]. Fig. 4.13 displays the result of this

optimization procedure for K = 10 and η = 0.002. For this set of hyperparameters,

we found coupling parameter values of λR = 0.1432 and λB = 1.7847 and a latent

space volatility of σ = 0.7510. Panel A of Fig. 4.13 displays logit(Zt) in a thick black

curve and draws of X̂ from M̂ in grey curves; logit(Zt) is centered in the distribution

of X̂ and hence has a high probability under M̂. In panel B, we show E[uR] and

E[uB] in thick red and blue curves respectively along with empirical distributions of

ûR and ûR. These empirical distributions exhibit heteroskedasticity; their variance

increases as t → 102 days—the last day before the election. In Fig. 4.14 we expand

on panel B, displaying a forest plot with the time-to-go T − t on the vertical axis
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Figure 4.13: Parameter values found though application of a Bayesian optimization algo-
rithm to the problem of finding optimal parameters of M̂ using the objective function given
by Eq. 4.42 generate the above distributions of latent election process X and Red and Blue
control policies, uR and uB. We ran the optimization algorithm with the number of terms
of the Legendre expansion of ΦR and ΦB set to K = 10 and set the variance regularization
to η = 0.002, which resulted in fit parameters of λR = 0.849, λB = 0.727, and σ = 1.509.
Panel A displays draws from the latent electoral process under M̂, along with logit(Zt), the
logit-transformed real polling popularity process. Panel B displays draws from the distribu-
tions of ûR and ûB under M̂, while panel C displays the inferred final conditions ΦR(x)
and ΦB(x).

and the middle 80 (10th to 90th) percentiles of the empirical distributions of ûR

and ûB under M̂ on the horizontal axis. lie in the credible intervals for the first

approximate fortnight after the end of the Democratic National Convention. One

possible explanation for this phenomena is that, although the election does officially

become a two-candidate contest at that time (notwithstanding our previous comments

about third-party candidates), the effects of the Republican and Democratic primaries

may take time to dissipate; unmodeled dynamics of noncooperative games in the

presence of many candidates may still be dominant during this time. Finally, we

display the inferred final conditions ΦR(x) and ΦB(x) in panel C of Fig. 4.13.
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Figure 4.14: The mean latent Red and Blue control policies inferred in the context of M
fall within the middle 80 percentiles of M̂ for almost the entire time period of study. The
thick red and blue curves represent E[uR] and E[uB] respectively, while the upper and lower
boundaries of the filled regions are the 10th and 90th percentiles of the respective probability
distributions under M̂. During the first roughly 10 days after the Democratic National
Convention (which occurred on 7/28/2016, or T − t = 103 on this plot), E[uR] or E[uB]
fall outside of this credible interval.
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Discussion and conclusion

We introduce, analyze, and numerically solve (analytically solve in simplified cases) a

simple, first-principles model of noncooperative strategic interference by a foreign in-

telligence service from one country (Red) in an election occurring in another country

(Blue) and attempts by Blue’s domestic intelligence service to counter this interfer-

ence. Though simple, our model is able to provide qualitative insight into the dynam-

ics of such strategic interactions and performs well when fitted to polling and social

media data surrounding the 2016 U.S. presidential election contest. We find that

all-or-nothing attitudes regarding the outcome of the election interference (whether

or not it was successful) with no gradation of utility, even if these attitudes are held

by only one player, result in an arms race of spending on interference and counter-

interference operations by both players. We then find analytical solutions to player

i’s optimal control problem in the case where player ¬i credibly commits to a strat-

egy v(t) and detail an analytical value function approximation that can be used by

player i even when player ¬i does not commit to a particular strategy as long as

player ¬i’s current strategy and its derivative can be estimated. We demonstrate

the applicability of our model to real election interference scenarios by analyzing the

Russian effort to interfere in the 2016 U.S. presidential election through observation

of Russian Internet Research Agency (IRA) troll account posts on the website Twit-

ter. Using this data, along with aggregate presidential election polling data, we infer

the time series of Russian and U.S. control policies and find parameters of our model

that best explain these inferred (latent) control policies. We show that, for most of

the time under consideration, our model provides a good explanation for the inferred
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variables.

There are several areas in which our work could be improved. From a theoretical

point of view, our model is one of the simplest that can be proposed to model this

situation. While from an a priori point of view it is derived using a minimum of

assumption about the election mechanics, electorate, and cost (equivalently, utility)

functions of the respective intelligence agencies and hence is justafiable on the grounds

of parsimony and acceptable empirical performance (on at least one election contest),

the kind of assumptions that we make are rather unrealistic. Though a pure ran-

dom walk model for am election is not without serious precedent [234], a prudent

extension of this work could incorporate non-interference-related state dynamics as a

generalization of Eq. 4.3, e.g., as

dx = [µ0 + µ1x+ uR(t) + uB(t)]dt+ σdW . (4.43)

This state equation can account for simple drift in the election results as a candi-

date endogenously becomes more or less popular or capture possible mean-reverting

behavior in a hotly-contested race. Another interesting extension would introduce

state-dependent running costs, particularly in the running cost of the Red player.

Though the action of election interference is nominally intended to cause a particular

candidate to win or lose, there are often other goals as well, such as undermining

the Blue citizens’ trust in their electoral process. Thus, Red might gain utility even

just from having a particular candidate pull ahead in polls multiple times when that

candidate would not have otherwise done so, even if the candidate does not actually

win the election. In the context of our model, this can be represented by setting Red’s
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cost functional to be

EuR,uB,X

{
ΦR(XT ) +

∫ T

0
[−Θ(−Xt)

+ u2
R(t)− λRu

2
B(t)] dt

}
.

(4.44)

Both of these modifications are relatively easy to incorporate into the model and

will not change the qualitative nature of Red and Blue’s HJB equations since their

effects will simply be to introduce an additional drift term (Eq. 4.43) or a contin-

uous, non-differentiable source term (Eq. 4.44) into the HJB equations (Eqs. 4.11

and 4.12); the fundamental nature of these equations as nonlinear parabolic equa-

tions coupled through quadratic terms of self and other-player first spatial derivatives

remains unchanged as these modifications to the theory do not introduce any new

coupling terms. With the modification of Eq. 4.43, the HJB equations become

− ∂VR

∂t
= (µ0 + µ1x)∂VR

∂x
− 1

4

(
∂VR

∂x

)2

− 1
2
∂VR

∂x

∂VB

∂x
− λR

4

(
∂VB

∂x

)2

+ σ2

2
∂2VR

∂x2 ,

VR(x, T ) = ΦR(x)

(4.45)

and
− ∂VB

∂t
= (µ0 + µ1x)∂VB

∂x
− 1

4

(
∂VB

∂x

)2

− 1
2
∂VB

∂x

∂VR

∂x
− λB

4

(
∂VR

∂x

)2

+ σ2

2
∂2VB

∂x2 ,

VB(x, T ) = ΦB(x),

(4.46)
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while with the modification of Eq. 4.44 Red’s HJB equation reads

− ∂VR

∂t
= −1

4

(
∂VR

∂x

)2

− 1
2
∂VR

∂x

∂VB

∂x

− λR

4

(
∂VB

∂x

)2

−Θ(−x) + σ2

2
∂2VR

∂x2 ,

VR(x, T ) = ΦR(x).

(4.47)

A more fundamental qualitative change would be to expand the scope of Red’s inter-

ference to alter the latent volatility of the election process. For example, the objective

of Red’s interference operations might be not only to change the drift of the state

equation to make it more likely for candidate A to win, but also to increase the

uncertainty associated with the election’s polling.

In addition to theoretical modifications, other work could simply extend the present

results to other elections using similarly fine-grained data or, ideally, even more gran-

ular data. The principal difficulty with this approach lies in the inherent difficulty of

finding any data at all with which to work. Though there do exist public datasets of

election interference episodes [194], the characteristic timescale of this data is much

longer than that used in our analysis. As we note in Sec. 4.3, we are able to confront

our model to data only because the Russian interference in the 2016 U.S. presiden-

tial election was so well-publicized and because the interference took place at least

partially through the mechanism of Twitter, a public data source. Even so, we found

it necessary to infer the variables in which we were actually interested. Other than

this event, we were unable to find any publicly-available data of sufficient temporal

resolution for any other publicly-acknowledged election interference episode.
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Tables referenced in Chapter 3
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Classification Cusp shape Words
Type I Slow buildup, fast re-

laxation
rumble veterans dusty labour
scattered hampshire #tinychat
elected ballot selection labor en-
tering beam phenomenon voters
mamma anonymity republican
#nowplaying indictment wages
conservatives pulse knee grammy
essays #tcot kentucky fml nether-
lands jingle valid whitman syra-
cuse dems deposit bail tomb
walker reader

Type II Fast buildup, slow re-
laxation

xbox chained yale bombing holo-
caust connecticut #tinychat civil-
ian jill turkish tsunami ferry
#letsbehonest beam agreement
riley ethics phenomenon harriet
privacy israeli #nowplaying gun
dub pulse killings herman enor-
mous fbi dmc searched norman
joan affected arthur sandra radi-
ation army walker reader

Type III Roughly symmetric rumble memorial sleigh veterans
costumes greeks britney sepa-
rated father’s shark grammys
labor costume x-mas bunny
commonwealth clause olympics
olympic daylight cyber wrapping
rudolph drowned re-election

Table A.1: Words for which at least one cusp segment was close in norm to a spatial mean
cusp segment as detailed in Section 3.3. We display the distributions of “cusp points”—
hypothesized deterministic maxima of the noisy mechanistically-generated time series—in
Fig. 3.13.
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Figures referenced in Ch 4.
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Figure B.1: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = x and Blue final condition ΦB(x) = 1

2x
2Θ(−x). Intensity of color corresponds to

mean of control policy.
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Figure B.2: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = x and Blue final condition ΦB(x) = 2[Θ(|x| − 0.1) − Θ(0.1 − |x|)]. Intensity of
color corresponds to mean of control policy.
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Figure B.3: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = x and Blue final condition ΦB(x) = 1

2x
2. Intensity of color corresponds to mean

of control policy.
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Figure B.4: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = 2[Θ(x)−Θ(−x)] and Blue final condition ΦB(x) = 1

2x
2Θ(−x). Intensity of color

corresponds to mean of control policy.
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Figure B.5: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = 2[Θ(x)−Θ(−x)] and Blue final condition ΦB(x) = 2[Θ(|x| − 0.1)−Θ(0.1− |x|)].
Intensity of color corresponds to mean of control policy.
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Figure B.6: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = 2[Θ(x)−Θ(−x)] and Blue final condition ΦB(x) = 1

2x
2. Intensity of color corre-

sponds to mean of control policy.
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Figure B.7: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = tanh(x) and Blue final condition ΦB(x) = 1

2x
2Θ(−x). Intensity of color corre-

sponds to mean of control policy.
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Figure B.8: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = tanh(x) and Blue final condition ΦB(x) = 2[Θ(|x| − 0.1)−Θ(0.1− |x|)]. Intensity
of color corresponds to mean of control policy.
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Figure B.9: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = tanh(x) and Blue final condition ΦB(x) = 1

2x
2. Intensity of color corresponds to

mean of control policy.

We now present analogous figures for the standard deviations instead of the mean.
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Figure B.10: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = x and Blue final condition ΦB(x) = 1

2x
2Θ(−x). Intensity of color corresponds to

std of control policy.
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Figure B.11: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = x and Blue final condition ΦB(x) = 2[Θ(|x| − 0.1) − Θ(0.1 − |x|)]. Intensity of
color corresponds to std of control policy.
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Figure B.12: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = x and Blue final condition ΦB(x) = 1

2x
2. Intensity of color corresponds to std of

control policy.
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Figure B.13: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = 2[Θ(x)−Θ(−x)] and Blue final condition ΦB(x) = 1

2x
2Θ(−x). Intensity of color

corresponds to std of control policy.
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Figure B.14: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = 2[Θ(x)−Θ(−x)] and Blue final condition ΦB(x) = 2[Θ(|x| − 0.1)−Θ(0.1− |x|)].
Intensity of color corresponds to std of control policy.

190



Figure B.15: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = 2[Θ(x)−Θ(−x)] and Blue final condition ΦB(x) = 1

2x
2. Intensity of color corre-

sponds to std of control policy.
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Figure B.16: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = tanh(x) and Blue final condition ΦB(x) = 1

2x
2Θ(−x). Intensity of color corre-

sponds to std of control policy.
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Figure B.17: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = tanh(x) and Blue final condition ΦB(x) = 2[Θ(|x| − 0.1)−Θ(0.1− |x|)]. Intensity
of color corresponds to std of control policy.
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Figure B.18: Parameter sweep over coupling parameters λR, λB with Red final condition
ΦR(x) = tanh(x) and Blue final condition ΦB(x) = 1

2x
2. Intensity of color corresponds to

std of control policy.
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Appendix C

Algorithmic details of neuroevo-

lution trading agents

All code used to create the results of this paper is available online at

https://gitlab.com/daviddewhurst/coco-neuro-trader-abm; code segments below are

listed here only for convenience.

Algorithmic details of agents

All agents (except for neural network agents) submit a number of shares that is

distributed Poisson with mean value E[N ] = 100 by default.

• Zero intelligence: submit bid with probability st ∼ Bernoulli(pbid,). We set

pbid,=
1
2 . Order price is distributed uniformly around the last equilibrium price

from the matching engine, X(o)
t = Xt−1 + νut, where ut ∼ U(−1, 1) and ν > 0

is the so-called “micro-volatility” preference of the agent [235].

• Zero intelligence plus: the same as a zero-intelligence agent except they submit

no order price.
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• Momentum: These agents implement a very simple momentum algorithm based

on the change in price between the current price and the last observed price:

1 dp = s e l f . l a s t − p # p i s the p r i c e ; s e l f . l a s t i s the l a s t

observed p r i c e

2 i f dp > 0 :

3 s i d e = ' ask '

4 p r i c e = p + s e l f . dx # s e l f . dx i s a smal l p r i c e increment

5 e l i f dp < 0 :

6 s i d e = ' bid '

7 p r i c e = p − s e l f . dx

8 e l s e :

9 s i d e = np . random . cho i c e ( [ ' ask ' , ' bid ' ] )

10 p r i c e = p

We set the price increment dx = 0.05, but this is obviously arbitrary. In par-

ticular, one could set this to be a random variable that takes other information

about market state as parameters.

• Fundamental-value: these agents have a “true valuation” estimate of what they

think the traded asset is actually worth. If the price of the asset is below this

value, they submit a bid, while if it is above this value, they submit an ask.

1 i f p == orde r s .NaP: # how we denote no p r i c e in fo rmat ion returned

by matching eng ine

2 re turn [ ]

3 # mean_price i s the agent ' s true−va luat i on es t imate

4 # pr i c e_to l e r ance i s the agent ' s e s t imate o f e r r o r around the t rue

mean p r i c e

5 # that they are w i l l i n g to accept
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6 e l i f p > s e l f . mean_price + s e l f . p r i c e_to l e r ance :

7 s i d e = ' ask '

8 p r i c e = p + s e l f . dx + s e l f . vo l_pre f ∗ np . random . random ( ) − s e l f

. vo l_pre f / 2 # vol_pre f i s nu from above

9 e l i f p < s e l f . mean_price − s e l f . p r i c e_to l e r ance :

10 s i d e = ' bid '

11 p r i c e = p − s e l f . dx + s e l f . vo l_pre f ∗ np . random . random ( ) − s e l f

. vo l_pre f / 2

12 e l s e :

13 re turn [ ]

As with any other agent with a vol_pref attribute, this algorithm can be made

deterministic by setting self.vol_pref = 0.

• Mean reversion: this agent anticipates a return to some rolling mean. If the

price is higher than the rolling mean, the agent submits an ask order. If the

price is lower than the rolling mean, it submits a bid order.

1 s e l f . p r i c e s [ s e l f . current_ind ] = p # a l i s t o f r e c en t p r i c e s

2 # implementation o f r o l l i n g window s i n c e order they ' re s to r ed doesn

' t matter

3 # s e l f . window i s number o f p r i c e s that are s to r ed

4 s e l f . current_ind = ( s e l f . current_ind + 1) % s e l f . window

5

6 s e l f . mean_price = s e l f . p r i c e s [ s e l f . p r i c e s > 0 ] . mean ( )

7 i f p == orde r s .NaP:

8 re turn [ ]

9 e l i f p > s e l f . mean_price + s e l f . p r i c e_to l e r ance :

10 s i d e = ' ask '

11 p r i c e = p − s e l f . vo l_pre f ∗ np . random . random ( )
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12 e l i f p < s e l f . mean_price − s e l f . p r i c e_to l e r ance :

13 s i d e = ' bid '

14 p r i c e = p + s e l f . vo l_pre f ∗ np . random . random ( )

15 e l s e :

16 re turn [ ]

We set self.window = 50 by default.

• Market making: this agent provides liquidity on both sides of a limit order book

in an attempt to collect small profits that result from other market participants

crossing the spread. Like the mean reverting agent, this agent keeps a rolling list

of recent prices to which it refers when calculating likelihood of price movements.

1 s e l f . p r i c e s [ s e l f . current_ind ] = s e l f . eng ine s [ e id ] . eq # i n t e r f a c i n g

with one o f po s s i b l y many matching eng ines

2 s e l f . current_ind = ( s e l f . current_ind + 1) % s e l f . window

3 p = s e l f . p r i c e s [ s e l f . p r i c e s > 0 ] . mean ( )

4

5 # React to inventory imbalance

6 # target_inventory_s ize i s g en e r a l l y assumed to be a smal l number

7 d ive rgence = ( s e l f . shares_held − s e l f . ta rge t_inventory_s ize )

8 i f d ive rgence > s e l f . inventory_to l e rance :

9 s e l f . s h i f t = max(0 . 0 1 , s e l f . s h i f t − 0 . 01 ) # s h i f t s r e f e r e n c e

p r i c e

10 s e l f . spread += 0.01 # s h i f t s how f a r on e i t h e r s i d e o f the

equ i l i b r i um the agent w i l l p l ace o rde r s

11 e l i f d ive rgence < − s e l f . i nventory_to l e rance :

12 s e l f . s h i f t += 0.01 # s h i f t p r i c e up

13 s e l f . spread += 0.01

14 e l s e :
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15 s e l f . s h i f t = 0 .

16 s e l f . spread = max(0 . 0 1 , s e l f . spread − 0 . 01 )

Unlike the other agents described, the market-making agent then submits two

orders instead of only one.

1 buy_order = orde r s . Order (

2 s e l f . uid ,

3 f ' { s e l f . uid }−{ s e l f . order_number} ' ,

4 ' bid ' ,

5 max( i n t ( s e l f . sha r e s − d ive rgence ) , 10) , # adapt ive ly c a l c u l a t e

number o f sha re s to lower inventory imbalance

6 np . round (p − s e l f . spread + s e l f . s h i f t , 2) ,

7 t ime_in_force=0,

8 )

9 s e l f . order_number += 1

10

11 s e l l_o rd e r = orde r s . Order (

12 s e l f . uid ,

13 f ' { s e l f . uid }−{ s e l f . order_number} ' ,

14 ' ask ' , max( i n t ( s e l f . sha r e s + d ive rgence ) , 10) ,

15 np . round (p + s e l f . spread + s e l f . s h i f t , 2) ,

16 t ime_in_force=0,

17 )

18 s e l f . order_number += 1

Marginalization procedure

We provide some more details on how we attempt to marginalize over unobserved

market variables using analogues of those variables generated by the agent-based
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model (ABM). Recall from the main paper that we can view the ABM as just a

stochastic function G(α,M) that, given an agent parameter vector α and evolutionary

mechanismM (which may be the identity mechanism, i.e. no selection or mutation),

generates orderbooks Db(x, t)|α, Da(x, t)|α and price time series Xt|α. Our first step

is simply to jointly obtain many orderbooks and price time series by calling G(α,M)

many times for a variety of different α. We then have random fields of orderbooks

Db = {Db(x, t)|α}α, Da = {Da(x, t)|α}α and price time series X = {Xt|α}α indexed

by the vectors α that we draw from some joint distribution p(α). In our implementa-

tion, we just set p(α) to a multinomial distribution with equal probabilities of picking

each agent type.

We called G(α, id) once for each saved evolved neural network and added the evolved

neural network to the simulation. (One simple modification of our work would be to

not add the evolved neural networks to these marginalization simulations and see how

this affects the performance of the networks on real data. We hypothesize that it may

have a significant effect because the effects of the network itself will not be reflected

in the marginalization data, which more closely simulates a real market in which the

neural network has very little market power, but we are unsure of the direction in

which the effect would be.) Given these random fields of orderbooks and price time

series, we create the price difference ∆X = Xt−Xt−1 and the total resting order vol-

ume time series calculated from the sequence of orderbooks, ∆V̂ (b) and ∆V̂ (a), defined

analogously. The change in price does have an observable real market analogue—the

actual change in price of the spot asset—while the change in resting order volume

does not, since we did not have access to real market orderbook data. We store ∆X

in a ball tree using the `1 distance metric. Given an observed ∆X∗ from real market
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data, we then query the ball tree for the indices i1, ..., ik of the nearest k neighbors of

∆X∗, ∆Xi1 , ...,∆Xik and then extract ∆V̂ (b)
i1 , ...,∆V̂ (b)

ik
and ∆V̂ (a)

i1 , ...,∆V̂ (a)
ik

. We then

approximate the market (∆V (b),∆V (a))|∆X∗ by the approximation to the conditional

expectation given by the result of the nearest-neighbors query:

∆V (b)|∆X∗ ≈ 1
k

k∑
j=1

∆V̂ (b)
ik
, ∆V (a)|∆X∗ ≈ 1

k

k∑
j=1

∆V̂ (a)
ik
. (C.1)

The validity of this procedure rests entirely on the degree to which the mechanics and

dynamics of the ABM simulate the true mechanics and dynamics of the real asset

market. Nothing in the above procedure is guaranteed to produce anything close to

the true, unobservable ∆V (b) and ∆V (a) at all unless the crucial assumption that

(∆V (b),∆V (a))|∆X∗ are distributed “similarly” to (∆V̂ (b),∆V̂ (a))|∆X∗ is satisfied—

and, in our work, we have been cavalier about what exactly “similarly” means. This

is certainly another area on which future research could be conducted.

Risk management routines We implemented some simple risk management rou-

tines to halt the losses of poorly-performing algorithms. These routines come in three

variants: two versions of the traders’ adage “cut your losses but let your winners run,”

and one version that seeks to limit total leverage (net open position of spot contracts).

• “Cut losses” algorithm operating on price levels: halts trading if total profit is

below a certain level.

1 de f cu t_ lo s s e s (

2 pro f i t_ar r ,

3 l ower_l imit=−0.5,

4 method= ' abso lu t e ' ,

5 r o l l_ ind =100 ,
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6 ) :

7 " " " Implements the l e v e l−based adage " cut your l o s s e s and l e t

your winners run . "

8

9 I f the l e v e l o f p r o f i t i s below a c e r t a i n s e t l e v e l , ha l t

t rad ing . Otherwise , keep going .

10

11 : param pro f i t_a r r : array o f p r o f i t s so f a r

12 : type p ro f i t_a r r : index−ab le

13 : param lower_l imit : the l e v e l o f p r o f i t below which t rad ing

should ha l t .

14 : type lower_l imit : ` f l o a t `

15

16 : r e tu rn s : `bool ` , whether or not t rad ing should ha l t

17 " " "

18 i f (method == ' abso lu t e ' ) or ( l en ( p ro f i t_a r r ) <= ro l l_ ind ) :

19 i f p r o f i t_a r r [−1] <= lower_l imit :

20 re turn True

21 re turn Fal se

22

23 e l i f method == ' r o l l i n g ' :

24 max_profit = np .max( p ro f i t_a r r [− r o l l_ ind : ] )

25 i f p r o f i t_a r r [−1] − l ower_l imit < max_profit :

26 re turn True

27 re turn Fal se

28

29 e l s e : # they didn ' t s p e c i f y anything , b e t t e r to ha l t ra the r

than propagate t h e i r e r r o r s

30 re turn True
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If method == ’rolling’ and roll_ind = 0, this is equivalent to halting

trading at time t if πt is less than maxt′=1,...,t πt′− lower_limit. We used these

settings of this algorithm during backtesting.

• “Cut losses” algorithm operating on changes in price level: halts trading if ∆π

is less than some specified cutoff.

1 de f cut_los se s_de l ta (

2 pro f i t_ar r ,

3 l ower_l imit=−0.5,

4 ) :

5 " " " Implements the flow−based adage " cut your l o s s e s and l e t

your winners run . "

6

7 I f the change in p r o f i t i s below a c e r t a i n s e t l e v e l , ha l t

t rad ing . Otherwise , keep going .

8

9 : param pro f i t_a r r : array o f p r o f i t s so f a r

10 : type p ro f i t_a r r : index−ab le

11 : param lower_l imit : the l e v e l o f d e l t a p r o f i t below which

t rad ing should ha l t .

12 : type lower_l imit : ` f l o a t `

13

14 : r e tu rn s : `bool ` , whether or not t rad ing should ha l t

15

16 " " "

17 i f ( l en ( p ro f i t_a r r ) >= 2) and ( p ro f i t_a r r [−1] − pro f i t_a r r [−2]

<= lower_l imit ) :

18 re turn True

19 re turn Fal se
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• Leverage limit: if the total number of spot contracts (long or short, i.e., positive

or negative) is above a set threshold, halts trading.

1 de f l im i t_ l eve rage (

2 shares_arr ,

3 max_shares=150 ,

4 ) :

5 i f np . abs ( shares_arr [−1] ) >= max_shares :

6 re turn True

7 re turn Fal se

The existence of a risk management routine supervising an algorithm’s execution

will, in general, change the algorithm’s profit distribution. As an example, suppose

that a trading algorithm had zero average profit E[π] =
∫∞
−∞ πp(π) dπ = 0 when

unsupervised by a risk management algorithm. If the risk management algorithm

were “perfect” in the sense that it could guaranteed limit loss to no less than −π∗ for

π∗ > 0, then it is the case that the trading algorithm would have positive expected

profit. This is equivalent to the common-sense statement that, if H1 and H2 are two

people who are indistinguishable in every way except for their age, H1 is 70 years

old, and H2 is 80 years old, then the life expectancy of H2 is greater than that of H1.

Of course, no such “perfect” risk management algorithm exists, particularly when

trading in real markets where execution and liquidity concerns become dominant.

Profitability of evolved agents

We tested the profitability of all evolved algorithms on the validation dataset, the

currency pairs EUR/USD and GBP/USD from 1-1-2010 to 12-31-2015, and then

tested the elite evolved algorithms—what we termed the top five most profitable

algorithms on the validation dataset—on a test dataset, EUR/USD and GBP/USD
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from 1-1-2016 to 7-1-2019 (the date we collected this data).

Below, we display the distributions of profit by the elite evolved algorithms on the test

dataset. By total profit, we mean all profit the algorithm earned over all trading

episodes (defined in the main paper) in the test dataset. The probability of profit,

expected profit, and maximum a-posteriori profit are all measured on a per-trading-

episode basis. The red curve superimposed on the histogram is a maximum-likelihood

estimated lognormal pdf, which fits the observed data fairly well in some cases and

not well in others. We fit a lognormal pdf as, if profit accumulates via random posi-

tive and negative percentages changes, the lognormal distribution is the appropriate

limiting distribution by the multiplicative CLT (after shifting the distribution by the

appropriate location and scale parameters).

205



Figure C.1: g = 10, independent simulation 21
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Figure C.2: g = 10, independent simulation 1
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Figure C.3: g = 10, independent simulation 93
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Figure C.4: g = 10, independent simulation 79
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Figure C.5: g = 10, independent simulation 38
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Appendix D

Technical details of the discrete

shocklet transform

D.1 Document-free topic networks

An important application of the DST is the partial recovery of context- or document-

dependent information from aggregated time series data. In natural language pro-

cessing, many models of human language are statistical in nature and require original

documents from which to infer values of parameters and perform estimation [236, 237].

However, such information can be both expensive to purchase and require a large

amount of physical storage space. For example, the tweet corpus from which the

labMT rank dataset used throughout this paper was originally derived is not inex-

pensive and requires approximately 55 TB of disk space for storage1. In contrast, the

dataset used here is derived from the freely-available LabMT word set and is less than
1The dataset is available for purchase from Twitter at http://support.gnip.com/apis/

firehose/overview.html. The on-disk memory statistic is the result of du -h <dirname> |
tail -n 1 on the authors’ computing cluster and so may vary by machine or storage system
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Figure D.1: Topic network inferred from weighted shock indicator functions. At each point
in time, words are ranked according to the value of their weighted shock indicator function
and the top k words are taken and linked pairwise for an upper bound of

(k
2
)
additional edges

in the network; if the edge between words i and j already exists, the weight of the edge is
incremented. The edge weight increment at time t is given by wij,t = Ri,t+Rj,t

2 , the average
of the weighted shock indicator for words i and j, with the total edge weight thus given by
wij = ∑

twij,t. After initial construction, the backbone of the network is extracted using
the method of Serrano et al. [5]. The network is pruned further by retaining only those
nodes i, j and edges eij for which wij is above the p-th percentile of all edge weights in the
backboned network. The network displayed here is constructed by setting k = 20 and p = 50,
where size of the node indicates normalized page rank. Topics are associated with distinct
communities, found using the modularity algorithm of Clauset et al. [6].

400 MB in size. If topics of relatively comparable quality can be extracted from this

smaller and less expensive dataset, the potential utility to the scientific community
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at large, could be high.
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Figure D.2: Topic network inferred from weighted shock indicator functions. At each point
in time, words are ranked according to the value of their weighted shock indicator function
and the top k words are taken and linked pairwise for an upper bound of

(k
2
)
additional edges

in the network; if the edge between words i and j already exists, the weight of the edge is
incremented. The edge weight increment at time t is given by wij,t = Ri,t+Rj,t

2 , the average
of the weighted shock indicator for words i and j, with the total edge weight thus given by
wij = ∑

twij,t. After initial construction, the backbone of the network is extracted using
the method of Serrano et al. [5]. The network is pruned further by retaining only those
nodes i, j and edges eij for which wij is above the p-th percentile of all edge weights in the
backboned network. The network displayed here is constructed by setting k = 20 and p = 50,
where size of the node indicates normalized page rank. Topics are associated with distinct
communities, found using the modularity algorithm of Clauset et al. [6].

We demonstrate that a reasonable topic model for Twitter during the time period
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of study can be inferred from the panel of rank time series alone. This is accomplished

via a multi-step meta-algorithm. First, the weighted Shock Indicator Function Ri is

calculated for each word i. At each point in time t, words are sorted by their respective

shock indicator functions as in Fig. ??. At time step t, the top k words are taken

and linked pairwise for an upper bound of
(
k
2

)
additional edges in the network; if

an edge already exists between word i and j, it is incremented by the mean of the

words’ respective weighted Shock Indicator Function Ri+Rj
2 . Performing this process

for all time periods results in a weighted network of related words. The weights

wij = ∑
t
Ri,t+Rj,t

2 are large when the value of a word’s weighted shock indicator

function is large or when a word is frequently in the top k, even if it is never near the

top. The resulting network can be large; to reduce its size, its backbone is extracted

using the method of Serrano et al. [5] and further pruned by retaining only those

nodes and edges for which the corresponding edge weights are at or above the p-

th percentile of all weights in the backboned network. Topics are associated with

communities in the resulting pruned networks, found using the modularity algorithm

of Clauset et al. [6].

Fig. D.1 and Fig. D.2 display the result of this procedure for k = 20 and p = 50.

Unique communities (topics) are indicated by node color. In the co-shock network

(Fig. D.1), topics include, among others:

• Winter holidays and events (“valentines”, “superbowl”, “vday”,...);

• U.S. presidential elections (“republicans”, “barack”, “clinton”, “presidential”,...);

• Events surrounding the 2016 U.S. presidential election in particular (“clinton’s”,

“crooked”, “giuliani”, “jill”, “stein”,...);
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while the co-shock network displays topics pertaining to:

• popular culture and music (“bieber”, “#nowplaying”, “@nickjonas”, “@justin-

bieber”);

• U.S. domestic politics (“clinton”, “hillary”, “trump”, “sanders”, “iran”, “ses-

sions”,...);

• and conflict in the Middle East (“gaza”, “iraq”, “israeli”, “gathered”)

The predominance of U.S. politics at the exclusion of politics of other nations is likely

because the labMT dataset contains predominantly English words.

D.2 Statistical details

In this appendix we will outline some statistical details of the DST and STAR algo-

rithm that are not necessary for a qualitative understanding of them, but could be

useful for more in-depth understanding or efforts to generalize them.

We first give an illustrative example of how a sociotechnical time series can differ

substantially from two null models of time series that have some similar statistical

properties, displayed in Fig. D.3 (a more information-rich version of Fig. 3.5, displayed

in the main body), panels A and B. In panel A, we display an example sociotechnical

time series in the red curve, usage rank of the word “bling” within the LabMT subset

of words on Twitter (denoted by rt), and σrt, a randomly shuffled version of this time

series. We denote σ ∈ ST , the symmetric group on T elements, and draw σ from the

uniform distribution over ST . It is immediately apparent that the structure of rt and
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σrt are radically different in autocorrelation (both in levels and differences) and we

do not investigate this admittedly-naïve null model any further.

We next consider a random walk null model constructed as follows: first differencing

rt to obtain ∆rt = rt − rt−1, we apply random elements σi ∈ ST and integrate,

displaying the resulting rσit = ∑
t′≤t σi∆rt in panel C of Fig. D.3. Visual inspection

(i.e., the “eye test”) also demonstrates that these time series do not replicate the

behavior displayed by the original rt; they become negative, have a dynamic range

that is almost an order of magnitude larger, and are more highly autocorrelated. We

contrast the results of the DST on rt and draws from this random walk null model in

panels D – G of Fig. D.3. In panel D we display the DST of rt, while in panels E – G

we display the DST of three random σirt. The DSTs of the draws from the random

walk model are more irregular that the DST of rt, displaying many time-domain

fluctuations between large positive values and large negative values. In contrast, the

DST of rt is relatively constant except near August of 2015, where it exhibits a large

positive fluctuation across a wide range of W . The underlying dynamics for this

fluctuation were driven by the release of a popular song called “Hotline Bling” on

July 31st, 2015.

As a couterpoint to the DST, we computed the discrete wavelet transform (DWT) of

rt and the same σirt. We computed the wavelet transform using the Ricker wavelet,

ψ(τ,W ) = 2√
3Wπ1/2

[
1−

(
τ

W

)]
e−τ

2/(2W 2). (D.1)

We chose to compare the DST with the DWT because these transforms are very

similar in many respects: they both depend on two parameters (a location parameter
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τ and a scale parameter W ); they both output a matrix of shape T × NW (NW

rows, one for each value W , and T columns, one for each value of τ). There are

some key difference between these transforms, however. The “kernels” of the wavelet

transform—the kernels—have unique properties not shared by our shock-like kernels:

wavelets ψ(t) are defined on all of R, satisfy limt→±∞ ψ(t) = 0, and are orthonormal.

Our shock-like kernels do not satisfy any of these properties; they are defined on a

finite interval [−W/2,W/2], do not vanish at the endpoints of this interval, and are

not orthogonal functions. Hence, differences in the DST and DWT of a time series

are due primarily to the choice of convolution function—shock-like kernel in the case

of the DST and wavelet in the case of the DWT. We display the DWT of rt and the

same σirt in panels H – K of Fig. D.3. Comparing these transforms with the DSTs

displayed in panels D – G, we see that the DST has increased time-localization over

the DWT in time intervals during which the time series exhibit shock-like dynamics.

As we note in Sec. 3.3.1 (there when comparing STAR to Twitter’s ADV anomaly

detection algorithm), this observation should not be construed as equivalent to the

statement that the DST is in some way superior to the DWT or should supersede the

DWT for general time series processing tasks; rather, it is evidence that the DST is a

superior transform than the DWT for the purpose of finding shock-like dynamics in

sociotechnical time series—a task for which it was designed and the DWT was not.

We finally note an analytical property of the DST that, while likely not useful in

practice, is a fact that should be recorded and may be useful in constructing theoret-

ical extensions of the DST. The DST is defined in Eq. 3.11, which we record here for

ease in reference:

CK(·)(t,W |θ) =
∞∑
−∞

x(t+ τ)K(·)(τ |W, θ), (D.2)
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Figure D.3: Intricate dynamics of sociotechnical time series. Sociotechnical time series
can display intricate dynamics and extended periods of anomalous behavior. The red curve
shows the time series of the ranks down from top of the word “bling” on Twitter. Until
2015/10/31, the time series presents as random fluctuation about a steady trend that is
nearly indistinguishable from zero. However, the series then displays a large fluctuation,
increases rapidly, and then decays slowly after a sharp peak. The underlying mechanism for
these dynamics was the release of a popular song titled “Hotline Bling” by a musician known
as “Drake”. Returns ∆rt = rt+1− rt are calculated and their histogram is displayed in panel
C. To demonstrate the qualitative difference of the “bling” time series from other time series
with an identical returns distribution, elements of the symmetric group σi ∈ ST are applied
to the returns of the original series, ∆rt 7→ ∆rσit, and the resultant noise is integrated and
plotted as rσit = ∑

t′≤t ∆rσit. The bottom-left panel (C) displays time-decoupled probability
distributions of the returns of the plotted time series. The distributions of ∆ri and σ∆ri
are identical, as they should be, but the integrated series have entirely different spectral
behavior and dynamic ranges. Panels [D-G] display the discrete shocklet transform of the
original series and the random walks

∑
t′≤t ∆rσit, showing the responsiveness of the DST to

nonstationary local dynamics and its insensitivity to dynamic range. The right-most column
of panels [H-k] displays the discrete wavelet transform of the original series demonstrating
its comparatively less-sensitive nature to local anomalous dynamics.
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defined for each t. The function K(·) is the shock kernel that is non-zero on τ ∈

[−W/2 + t,W/2 + t]. For t ∈ [−T, T ], this can be rewritten equivalently as

CK(·)(W |θ) = K(W |θ)x, (D.3)

where K(W |θ) is a (2T + 1)× (2T + 1) W -diagonal matrix, CK(·)(W |θ) is the W -th

row of the cusplet transform matrix, and x is the entire time series x(t) considered as

a vector in R2T+1. The matrix K(W |θ) is just the convolution matrix corresponding

to the cross-correlation operation with K(·). If K(W |θ) is invertible, then it is clear

that

x = K(W |θ)−1CK(·)(W |θ), (D.4)

for any 1 < W < T and hence also

x = 1
NW

∑
W

K(W |θ)−1CK(·)(W |θ). (D.5)

This is an inversion formula similar to the inversion formulae of overcomplete trans-

forms such as the DWT and discrete chirplet transform.

When T →∞ (that is, when the signal x(t) is turned on in the infinite past and

continues into the infinite future), this equation becomes the formal operator equation

CK(·)(t,W |θ) = K(W |θ)[x(t)], (D.6)

and hence (as long as the operator inverses are well-defined),

x(t) = 1
NW

∑
W

K(W |θ)−1[CK(·)(t,W |θ)]. (D.7)
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These inversion formulae are, in our estimation, of relatively little utility in practi-

cal application. Whereas inverting a wavelet transform is a common task—it may

be desirable to decompress an image that is initially compressed using the JPEG

2000 algorithm, which uses the wavelet transform for compact representation of the

image—we estimate the probability of being presented with some arbitrary shock-

let transform and needing to recover the original signal from it to be quite low; the

shocklet transform is designed to amplify features of signals to which we already

have access, not to recreate time-domain signals from their representations in other

domains.

D.3 STAR and ADV comparison figures

We display comparisons between windows in which STAR indicates shock-like be-

havior and sets (at times, continuous windows) in which Twitter’s ADV algorithm

indicates anomalous behavior in the time series. We denote STAR windows with blue

shading and ADV sets with red shading (and, hence, overlap with purple shading).
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Figure D.4: Comparison of STAR and ADV indicator windows for some words surrounding
the “Occupy Wall Street” movement during 2010.
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Figure D.5: Comparison of STAR and ADV indicator windows for some words surrounding
popular events (the release of a song called “Heartbreaker” by Justin Bieber and “Roar” by
Katy Perry) and criminal justice-related events (the trial and acquittal of George Zimmer-
man).
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Figure D.6: Comparison of STAR and ADV indicator windows for some words surrounding
the Gaza conflict of 2014.
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Figure D.7: Comparison of STAR and ADV indicator windows for some words surrounding
the autumn of 2017, including Hurricane Harvey, Colin Kaepernick’s kneeling protests, John
McCain, the electoral campaign of Roy Moore in the U.S. state of Alabama, and pumpkins
(a traditional gourd symbolic of autumn in the U.S.)
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