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ABSTRACT

The purpose of the present study is to explore the feasibility of estimating and correcting systematic
model errors using a simple and efficient procedure, inspired by papers by Leith as well as DelSole and Hou,
that could be applied operationally, and to compare the impact of correcting the model integration with
statistical corrections performed a posteriori. An elementary data assimilation scheme (Newtonian relax-
ation) is used to compare two simple but realistic global models, one quasigeostrophic and one based on the
primitive equations, to the NCEP reanalysis (approximating the real atmosphere). The 6-h analysis cor-
rections are separated into the model bias (obtained by time averaging the errors over several years), the
periodic (seasonal and diurnal) component of the errors, and the nonperiodic errors. An estimate of the
systematic component of the nonperiodic errors linearly dependent on the anomalous state is generated.

Forecasts corrected during model integration with a seasonally dependent estimate of the bias remain
useful longer than forecasts corrected a posteriori. The diurnal correction (based on the leading EOFs of
the analysis corrections) is also successful. State-dependent corrections using the full-dimensional Leith
scheme and several years of training actually make the forecasts worse due to sampling errors in the
estimation of the covariance. A sparse approximation of the Leith covariance is derived using univariate and
spatially localized covariances. The sparse Leith covariance results in small regional improvements, but is
still computationally prohibitive. Finally, singular value decomposition is used to obtain the coupled com-
ponents of the correction and forecast anomalies during the training period. The corresponding heteroge-
neous correlation maps are used to estimate and correct by regression the state-dependent errors during the
model integration. Although the global impact of this computationally efficient method is small, it succeeds
in reducing state-dependent model systematic errors in regions where they are large. The method requires
only a time series of analysis corrections to estimate the error covariance and uses negligible additional
computation during a forecast. As a result, it should be suitable for operational use at relatively small
computational expense.

1. Motivation

Numerical weather forecasting errors grow with time
as a result of two contributing factors. First, atmo-
spheric instabilities amplify uncertainties in the initial
conditions, causing indistinguishable states of the atmo-
sphere to diverge rapidly on small scales. This phenom-

enon is known as internal error growth. Second, model
deficiencies introduce errors during the model integra-
tion leading to external error growth. These deficiencies
include inaccurate forcings and parameterizations used
to represent the effect of subgrid-scale physical pro-
cesses as well as approximations in numerical differen-
tiation and integration, and result in large-scale system-
atic forecast errors. Current efforts to tackle internal
error growth focus on improving the estimate of the
state of the atmosphere through assimilation of obser-
vations and ensemble forecasting (Anderson 2001;
Whitaker and Hamill 2002; Ott et al. 2004; Hunt et al.
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2004). Ideally, model deficiencies should be addressed
by generating more accurate approximations of the
forcing, improving the physical parameterizations, or
by increasing the grid density to resolve smaller-scale
processes. However, unresolved phenomena and model
errors will be present no matter how accurate the pa-
rameterizations are, no matter how fine the grid reso-
lution becomes. As a result, it is important to develop
empirical algorithms to correct forecasts to account for
model errors. Empirical methods that consider the
model a “black box” are particularly valuable because
they are independent of the model. As the methods of
data assimilation and generation of initial perturbations
become more sophisticated and reduce the internal er-
ror, the impact of model deficiencies and their depen-
dence on the “flow of the day” become relatively more
important (Hamill and Snyder 2000; Houtekamer and
Mitchell 2001; Kalnay 2003).

Estimates of the systematic model error may be de-
rived empirically using the statistics of the short-term
forecast errors, measured relative to a reference time
series. For example, the mean short-term forecast error
provides a sample estimate of the stationary component
of the model error bias. The output of operational nu-
merical weather prediction models is typically postpro-
cessed to account for any such known biases in the
forecast field by model output statistics (MOS; Glahn
and Lowry 1972; Carter et al. 1989). However, offline
bias correction has no dynamic effect on the forecast;
internal and external errors are permitted to interact
nonlinearly throughout the integration as they grow
and eventually saturate. A more robust approach to
error correction should be to estimate the short-term
forecast errors as a function of the model state. A cor-
responding state-dependent correction would then be
made every time step of the model integration to retard
growth in the component of the error generated by the
model deficiencies. Several studies have produced
promising results by empirical correction in simulations
using simple global circulation models (GCMs) with
artificial model errors.

Leith (1978) proposed a statistical method to account
for model bias and systematic errors linearly dependent
on the flow anomalies. Leith derived a state-dependent
empirical correction to a simple dynamical model by
minimizing the tendency errors relative to a reference
time series. Leith’s correction operator attempts to pre-
dict the error in the model tendency as a function of the
model state. While Leith’s empirically estimated state-
dependent correction term is only optimal for a linear
model, it is shown to reduce the nonlinear model’s bias.
However, the technique is subject to sampling errors
and requires many orders of magnitude more compu-

tation time during the forecast than the biased model
integration alone. The method is discussed in detail in
section 6.

Faller and Schemm (1977) used a similar technique
on coarse- and fine-grid versions of a modified Burgers
equation model. Statistical correction of the coarse-grid
model by multiple regression to parameterize the ef-
fects of subgrid-scale processes improved forecast skill.
However, the model equations were found to be insen-
sitive to small perturbations of the initial conditions.
They concluded that the coarse-grid errors were due
entirely to truncation and that the procedure was sen-
sitive to sampling errors. Schemm et al. (1981) intro-
duced two procedures for statistical correction of nu-
merical predictions when verification data are only
available at discrete times. Time interpolation was
found to introduce errors into the regression equations,
rendering the procedure useless. Applying corrections
only when verification data were available, they were
successful in correcting artificial model errors, but the
procedure failed on the National Meteorological Cen-
ter (NMC) barotropic-mesh model. Later, Schemm and
Faller (1986) dramatically reduced the small-scale 12-h
errors of the NMC model. Errors at the larger scales
grew due to randomization of the residual errors by the
regression equations.

Klinker and Sardeshmukh (1992) used January 1987
6-h model integrations to estimate the state-indepen-
dent tendency error in operational European Centre
for Medium-Range Weather Forecasts (ECMWF) fore-
casts. By switching off each individual parameteriza-
tion, they isolated the contribution to the error of each
term. They found that the model’s gravity wave param-
eterization dominated the 1-day forecast error. Saha
(1992) used a simple Newtonian relaxation or nudging
of a low-resolution version of the NMC operational
forecast model to estimate systematic errors. Verifying
against the high-resolution model, Saha was able to re-
duce systematic errors in independent forecasts by add-
ing artificial sources and sinks to correct errors in heat,
momentum, and mass. Nudging and a posteriori cor-
rection were seen to give equivalent forecast improve-
ments.

By nudging of several low-resolution GCMs toward a
high-resolution model, Kaas et al. (1999) estimated em-
pirical orthogonal functions (EOFs) for horizontal dif-
fusion. They found that the kinetic energy dissipation
due to unresolved scales varied strongly with model
resolution. The EOF corrections were most effective in
reducing the climatological errors of the model whose
resolution was closest to that of the high-resolution
model. D’Andrea and Vautard (2000) estimated the
time-derivative errors of the three-level global quasi-
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geostrophic (QG) model of Marshall and Molteni
(1993) by finding the model forcing that minimized the
6-h forecast errors relative to a reference time series.
They derived a flow-dependent empirical parameter-
ization from the mean tendency error corresponding to
the closest analogues in the reference time series. The
subsequent corrected forecasts exhibited improved cli-
mate statistics in the Euro–Atlantic region, but not in
others.

DelSole and Hou (1999) perturbed the parameters of
a two-layer QG model on an 8 � 10 grid (Ngp � 160
degrees of freedom) to generate a “nature” run and
then modified it to create a “model” containing a pri-
marily state-dependent error. They found that a state-
independent error correction did not improve the fore-
cast skill. By adding a state-dependent empirical cor-
rection to the model, inspired by the procedure
proposed by Leith, they were able to extend forecast
skill up to the limits imposed by observation error.
However, Leith’s technique requires the solution of a
Ngp-dimensional linear system. As a result, before the
procedure can be considered useful for operational use,
a low-dimensional representation of Leith’s empirical
correction operator is required.

Renwick and Wallace (1995) used several low-di-
mensional techniques described by Bretherton et al.
(1992) to identify predictable anomaly patterns in 14
winters of Northern Hemisphere 500-mb height fields.
The most predictable anomaly pattern in ECMWF op-
erational model forecasts was found to be similar to the
leading EOF of the analyzed 500-mb height anomaly
field. Applying canonical correlation analysis to the de-
pendent sample (first seven winters), they found the
amplitude of the leading pattern to be well predicted
and showed the forecast skill to increase with the am-
plitude of the leading pattern. The forecast skill of the
independent sample (second seven winters) was not
well related to the patterns derived from the dependent
sample. A posteriori statistical correction of indepen-
dent sample forecasts slightly decreased RMS errors,
but damped forecast amplitude considerably. They con-
cluded that continuing model improvements should
provide better results than statistical correction and
skill prediction in an operational setting.

Ferranti et al. (2002) used singular value decomposi-
tion (SVD) (Golub and Van Loan 1996) analysis to
identify the relationship between fluctuations in the
North Atlantic Oscillation and ECMWF operational
forecasts errors in 500-hPa height for seven winters in
the 1990s. They found that the anomalous westerly
(easterly) flow over the eastern North Atlantic (west-
ern Europe) was weakened by a consistent underesti-
mation of the magnitude of pressure anomalies over

Iceland. Large (small) error amplitudes were seen to be
located in regions of the maximum westerly (easterly)
wind anomaly; the trend was reversed on the flanks of
the jet. The flow-dependent component of the errors
accounted for 10% of the total error variance.

The purpose of the present study is to explore the
feasibility of estimating and correcting systematic
model errors using a simple and efficient procedure
that could be applied operationally. The monthly, diur-
nal, and state-dependent components of the short-term
forecast errors are estimated for two simple but realistic
GCMs using the National Centers for Environmental
Prediction (NCEP) reanalysis as truth. Section 2 de-
scribes the two GCMs used for the numerical experi-
ments. Section 3 describes the simple method of data
assimilation used to generate a time series of model
forecasts and the technique used to estimate the corre-
sponding systematic errors. Section 4 illustrates the
substantial forecast improvement resulting from state-
independent correction of monthly model forcing when
verifying against independent data. Section 5 describes
attempts to generate full-dimensional and low-order
empirical estimates of model error as a function of the
model state, using Leith’s method and a new computa-
tionally inexpensive approach based on SVD. The pa-
per concludes with a discussion of implications for op-
erational use and future directions of research.

2. Global circulation models

a. The quasigeostrophic model

The first model used in this study was developed by
Marshall and Molteni (1993); it has been used for many
climate studies (e.g., D’Andrea and Vautard 2000). The
model is based on spherical harmonics, with triangular
truncation at wavenumber 21. The QG model has three
vertical levels (800, 500, and 200 hPa) and integrates the
quasigeostrophic potential vorticity equation with dis-
sipation and forcing:

q̇ � �J��, q� � D��� � S, �1�

where � is the streamfunction and q is the potential
vorticity (q � 	2�); J represents the Jacobian operator
of � and q. The linear dissipation D is dependent on �
and orography, and includes a relaxation coupling the
three vertical levels. The forcing term S is time inde-
pendent but varies spatially, representing the average
effects of diabatic heating and advection by the diver-
gent flow. This forcing is determined by requiring that
the time-averaged values of the other terms in (1) are
zero. In other words, the forcing is defined so the vor-
ticity tendency is zero for the climatology (given by the
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mean NCEP reanalysis streamfunction during January
and February from 1980 to 1990, the model simulates a
perpetual winter). If the climatological streamfunction
and vorticity are denoted as �̂ and q̂, the time average
of (1) can be written

S � 
J��̂, q̂�� � 
D��̂�� � 
J��̂�, q̂���, �2�

where the angle brackets are ensemble averages over
time and primes represent deviations from this time
average. The first two terms in (2) generate a mean
state; the last term adds the average contribution of
transient eddies (D’Andrea and Vautard 2000).

b. The SPEEDY model

The primitive equation model used in this study
[known as SPEEDY (simplified parameterizations,
primitive equation dynamics); Molteni 2003] has trian-
gular truncation T30 at seven sigma levels (0.950, 0.835,
0.685, 0.510, 0.340, 0.200, and 0.080). The basic prog-
nostic variables are vorticity (�), divergence (	), abso-
lute temperature (T), specific humidity (Q), and the
logarithm of surface pressure [log(ps)]. These variables
are postprocessed into zonal and meridional wind (u,
), geopotential height (Z), T, Q, and log(ps) at pres-
sure levels (925, 850, 700, 500, 300, 200, and 100 hPa).
The model dissipation and time-dependent forcing are
determined by climatological fields of sea surface tem-
perature (SST), surface temperature, and moisture in
the top soil layer (about 10 cm), snow depth, bare-
surface albedo, and fractions of sea ice, land–sea, and
land surface covered by vegetation. The model contains
parameterizations of large-scale condensation, convec-
tion, clouds, shortwave and longwave radiation, surface
fluxes, and vertical diffusion (Molteni 2003). No diurnal
variation exists in the model forcing; forcing fields are
updated daily.

Despite the approximations made in deriving each
model, they produce realistic simulations of extratropi-
cal variability, especially in the Northern Hemisphere
(Marshall and Molteni 1993; Molteni 2003). The
SPEEDY model also provides a more realistic simula-
tion of the Tropics, as well as the seasonal cycle. Since
the model forcings (including SST) are determined by
the climatology, one cannot expect realistic simulations
of interannual variability. More advanced GCMs in-
clude not only observed SST but also changes in green-
house gases and aerosols, as well as more advanced
physical parameterizations. Despite the absence of
variable forcing, if run for a long period of time (de-
cades), both models reproduce a realistic climatology.
While they were designed for climate simulations, each
model produces forecasts that remain useful globally
for about 2 days.

3. Training

A pair of simple schemes was used to estimate model
errors. The schemes are advantageous in that they pro-
vide estimates of model errors at the analysis time,
when they are still small and growing linearly, and be-
cause they can be carried out at the cost of essentially
one model integration. The first procedure is inspired
by Leith (1978), who integrated “true” initial condi-
tions for 6 h to measure the difference between the
forecast and the verifying analysis. A schematic illus-
trating the procedure, hereafter referred to as direct
insertion, is shown in Fig. 1.

Writing x(t) for the GCM state vector at step t and
M[x(t)] for the model tendency at step t, the model
tendency equation is given by

ẋ�t� � M�x�t��. �3�

The analysis correction at step t is given by the differ-
ence between the truth xt(t) and the model forecast
state xf

h(t), namely,

�xh
a�t� � xt�t� � xh

f �t�, �4�

where h is the forecast lead time, typically h � 6 h.
The second (alternative) procedure for estimating

model errors is Newtonian relaxation or nudging (Hoke
and Anthes 1976; Leith 1991; Saha 1992), done by add-
ing an additional forcing term to relax the model state
toward the reference time series. When reference data
are available (every 6 h), the tendency equation during
nudging is given by

ẋ�t� � M�x�t�� �
�xh

a�t�

�
. �5�

At intermediate time steps, when data are unavailable,
the tendency is given by (3). If the relaxation time scale
� is too large, model errors will grow before the time
derivative can respond (Kalnay 2003, p. 141). If � is
chosen too small, the tendency equation will diverge.
Figure 2 shows that the sensitivity of the assimilation
error to � for the QG and the SPEEDY models is simi-
lar, and that the optimal time scale is � � 6 h, corre-
sponding to the frequency (h) of the assimilation. This
choice for � generates analysis corrections whose statis-
tical properties (e.g., mean, variance, EOFs) are quali-
tatively very similar to those obtained through direct
insertion. As a result, for the remainder of the paper we
will only consider time series generated by direct inser-
tion.

The reference time series used to estimate model er-
rors is given by the NCEP reanalysis. NCEP reanalysis
values of model prognostic variables are available in
6-h corrections, they are interpolated to the model grid
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and denoted at step t by xt(t). Observations of the re-
analysis are taken as truth with no added noise or spar-
sity; observational noise is the focus of much research in
data assimilation (e.g., Ott et al. 2004), but its influence
is ignored in this context since the reanalysis is already
an approximation of the evolution of the atmosphere.
Direct insertion is performed with the QG model by

integrating NCEP reanalysis wintertime vorticity for
the years between 1980 and 1990. The SPEEDY model
is integrated using NCEP reanalysis values of �, 	, T, Q,
and log(ps) for the years between 1982 and 1986. A
longer time period was used to train the QG model
because it has an order of magnitude fewer degrees of
freedom than the SPEEDY model.

The time series of analysis corrections is separated by
month and denoted �xa

6(t)
Nref
t�1 [Nref � 31 � 4 � 5 (days �

6-h intervals � years) for January training of SPEEDY].
The time average of the analysis corrections (bias) is
given by 
�xa

6� � (1/Nref) �Nref
t�1 �xa

6(t), and 
xt� � (1/Nref)
�Nref

t�1 xt(t) is the 5-yr reanalysis climatology for the month
in which steps t � 1, . . . , Nref occur. The method of direct
insertion is also used to generate 
�xa

h� for h � 6j ( j � 2,
3, . . . , 8), giving 12-h, 18-h, . . . , and 48-h mean bias esti-
mates. These estimates will be used to make an a poste-
riori bias correction. The reanalysis states, model fore-
casts, and corresponding analysis corrections are then
separated into their anomalous and time average compo-
nents, namely,

xt��t� � xt�t� � 
xt�, �6�

x6
f ��t� � x6

f �t� � 
xt�, �7�

�x6
a��t� � �x6

a�t� � 
�x6
a�. �8�

Figure 3 illustrates the bias calculated from 5 yr of
6-h SPEEDY forecasts of u, T, and Q for January and
July. These state-independent errors are clearly associ-
ated with contrasts in land–sea forcing, topographic
forcing, and the position of the jet. The zonal wind and
temperature exhibit a large polar bias, especially in the
winter hemisphere. The 6-h zonal wind errors show an
underestimation of the westerly jets of 2–5 m s�1 east of
the Himalayan mountain range (January) and east of
the Australian Alps (July), especially on the poleward
side. The mean temperature error over Greenland is
larger during the Northern Hemisphere winter. There
is little humidity bias in the polar regions, most likely
due to the lack of moisture variability near the poles.
The SPEEDY convection parameterization evidently
transports too little moisture from lower levels (which
are too moist) to upper levels (which are too dry). The
following section describes attempts to correct the
model forcing to account for this bias.

4. State-independent correction

a. Monthly bias correction

In this section, the impact of correcting for the bias of
the model during the model integration is compared
with a correction a posteriori, as done, for example, in

FIG. 1. Schematic illustrating the direct insertion procedure for
generating time series of model forecasts and analysis corrections.
In the figure, xt(t) is the NCEP reanalysis at time and is used as an
estimate of the truth; x f

6(t � 1) is the 6-h forecast generated from
the initial condition xt(t); and �xa

6(t � 1) � xt(t) � x f
6(t � 1) is the

6-h error correction or analysis increment in an operational set-
ting.

FIG. 2. Mean RMS error at 500 hPa as a function of relaxation
time scale � (relative to the interval h between observations of the
reanalysis), verifying against reanalysis during relaxation. As ex-
pected, the optimal � is equal to h for both the QG and SPEEDY
models. However, nudging is successful for longer relaxation
times as well.
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FIG. 3. Mean 6-h analysis correction 
�xa
6 � (shades) and 5-yr reanalysis climatology 
xt � (contours) in SPEEDY forecasts of zonal

velocity u (m s�1), temperature T (K), and specific humidity Q (g kg�1) at two levels during (left) January and (right) July from 1982
to 1986.
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MOS. In both cases the impact of the corrections on
5-day forecasts is verified using periods independent
from the training periods. The initial conditions for QG
forecasts are taken from the wintertime NCEP reanaly-
sis data between 1991 and 2000, and for the SPEEDY
forecasts are taken from the NCEP reanalysis data for
1987.

The control forecast is started from reanalysis initial
conditions and integrated with the original biased forc-
ing M(x). The forecast corrected a posteriori is gener-
ated by computing x f

6(1) � 
�xa
6� at step 1, x f

12(2) �

�xa

12� at step 2, . . . , x f
48(8) � 
�xa

48� at step 8, etc. The
corrections in u, , T, Q, and log(ps) at all levels are
obtained from the training period for each month of the
year, and attributed to day 15 of each month. The cor-
rection is a daily interpolation of the monthly mean
analysis correction; for example, on 1 February, the
time-dependent 6-h bias correction is of the form


�x6
a�jan�� � 
�x6

a�feb��
2

�9�

so that the corrections are temporally smooth.
An online corrected or debiased model forecast is

generated with the same initial condition, but with a
corrected model forcing M�. The tendency equation
for the debiased model forecast is given by

ẋ � M�x� �

�x6

a�
h

� M��x�, �10�

where the bias correction is divided by 6 h because it
was computed for 6-h forecasts but it is applied every
time step. The skill of each forecast is measured by the
anomaly correlation (AC), given at time t by

AC �

�
s�1

Ngp

xf��s� · xt��s� cos2��s�

��
s�1

Ngp

�xf��s� cos��s��
2��

s�1

Ngp

�xt��s� cos��s��
2

,

�11�

where �s is the latitude of grid point s and Ngp is the
number of degrees of freedom in the model state vec-
tor. The AC is essentially the inner product of the fore-
cast anomaly and the reanalysis anomaly, with each
gridpoint contribution weighted by the cosine of its lati-
tude and normalized so that a perfect forecast has an
AC of 1. It is common to consider that the forecast
remains useful if AC � 0.6 (Kalnay 2003, p. 27).

Figure 4 illustrates the success of the bias correction
for the QG model. Both the a posteriori and the online
correction of the bias significantly increase the forecast

skill. However, the improvement obtained with the on-
line correction is larger than that obtained with the a
posteriori correction, indicating that the correction
made during the model integration reduces the model
error growth. Applying the bias correction every 6 h for
a single time step gave slightly worse results than ap-
plying it every time step.

Similar results were obtained for the SPEEDY
model and are presented for the 500-hPa zonal wind,
temperature, and geopotential height in Fig. 5 (top
row) for the month of November 1987. To show the
vertical and monthly dependence of the correction, the
time of crossing of AC � 0.6 is plotted for three vertical
levels for the control (second row) and online corrected
(debiased) SPEEDY forecasts (third row) as a function
of the month. The bottom row presents the relative
improvement. For the wind, the debiasing leads to an
increase in the length of useful skill of over 60% at 850
hPa (where the errors are largest), about 50% at 500
hPa, and about 10% at 200 hPa, where the errors are
smallest. For the temperature, where the skill is less
dependent on pressure level, the improvements are be-
tween 20% and 40% at all levels. There is not much
dependence on the annual cycle, possibly because the
verification is global.

As in the QG model, a bias correction made during
the model integration is more effective than a bias cor-
rection performed a posteriori, although they both re-
sult in significant improvements. This is important be-
cause it indicates that the model deficiencies do not

FIG. 4. QG model forecasts, verified against the 1991–2000
NCEP reanalysis, remain useful (AC � 0.6) for approximately 2
days. When the same forecast is postprocessed to remove the bias
fields 
�xa

6�, 
�xa
12�, . . . , 
�xa

48�, the forecasts remain useful for 26%
(12 h) longer. However, when the online corrected (debiased) QG
model is used to generate the forecasts, they remain useful for
38% (18 h) longer.
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FIG. 5. (top) Average November 1987 AC of biased, postprocessed, and debiased SPEEDY forecasts at 500 hPa.
Online bias correction is slightly more effective than postprocessing the biased forecast. (bottom) Relative im-
provement (Ib /Ia) in crossing time of AC � 0.6 at three different levels (solid � 200, dashed � 500, dash–dot � 850
hPa) vs month. SPEEDY forecasts are typically more useful at upper levels (see middle); improvements are more
evident at lower levels and higher latitudes (not shown). For example, biased forecasts of Z at 850 hPa are typically
useful for 20 h in April; debiased model forecasts are useful for 36 h.
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simply add errors; external errors are amplified by in-
ternal error growth. Further iteration of the procedure
does not improve model forecasts. That is, finding the
mean 6-h forecast error in the debiased model M� (10)
and correcting the forcing again does not extend the
usefulness of forecasts.

The positive impact of the interactive correction is
also indicated by an essentially negligible mean error in
the debiased QG model (not shown). The correction of
SPEEDY by 
�xa

6� removes the large polar errors from
the mean error fields, but some of the subpolar features
remain with smaller amplitudes (cf. Fig. 6 with Fig. 3).
This suggests that a nonlinear correction to the
SPEEDY model forcing may be more effective.

b. Error growth

Dalcher and Kalnay (1987) and Reynolds et al.
(1994) parameterized the growth rates of internal and
external error with an extension of the logistic equa-
tion, namely,

�̇ � ��� � ���1 � ��, �12�

where � is the variance of the error anomalies, � is the
growth rate of error anomalies due to instabilities (in-
ternal), and � is the growth rate due to model deficien-
cies (external). These error growth rate parameters
may be estimated from the AC for the control and
debiased model forecasts. The 500-hPa November 1987
estimates of these growth rates (Table 1) demonstrate
significant reduction in the external error growth rate
resulting from online state-independent error correc-
tion. The only exception is the moisture, suggesting that
the correction of the moisture bias conflicts with the
parameterization tuned to the control model bias. As
could be expected, bias correction changes the internal
error growth rate much less than the external rate.

c. Diurnal bias correction

In addition to the time-averaged analysis corrections,
the leading EOFs of the anomalous analysis corrections

FIG. 6. Mean 6-h analysis correction 
�xa
6� in debiased SPEEDY model forecasts of (top left) u (m s�1), (top right) T (K), and (bottom)

Q (g kg�1) during January from 1982 to 1986. The debiased SPEEDY model exhibits significantly less bias in 6-h forecasts of the
dependent sample, especially in polar regions (cf. with Fig. 3).
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are computed to identify the time-varying component.
The spatial covariance of these corrections over the
dependent sample (recomputed using the debiased
model M�) is given by C�x6

a
�x6

a � 
�xa
6� �xa

6�
T�. The two

leading eigenvectors of C�x6
a
�x6

a identify patterns of di-
urnal variability that are poorly represented by the
model (see Fig. 7, top row). Since SPEEDY solar forc-
ing is constant over each 24-h period, it fails to resolve
diurnal changes in forcing due to the rotation of the
earth. Consequently, SPEEDY underestimates (over-
estimates) the near-surface daytime (nighttime) tem-
peratures. This trend is most evident over land in the
Tropics and summer hemisphere.

The time-dependent amplitude of the leading modes
can be estimated by projecting the leading eigenvectors
of C�x6

a
�x6

a onto �xa
6�(t) over the dependent sample. As

expected from the wavenumber-1 structure of the
EOFs, the signals are out of phase by 6 h (see Fig. 7,
middle row). An estimate of time dependence of the
diurnal component of the error is generated by averag-
ing C�x6

a
�x6

a the projection over the daily cycle for the
years 1982–86. A diurnal correction of the seasonally
debiased model M� is then computed online by linearly
interpolating EOFs 1 and 2 as a function of the time of
day. The diurnally corrected model is denoted M��.
Correction of the debiased SPEEDY forcing to include
this diurnal component reduced the 6-h temperature
forecast errors for the independent sample (1987), most
notably over land (see Fig. 7, bottom row). Although
more sophisticated GCMs include diurnal forcings, it is
still common for their forecast errors to have a signifi-
cant time-dependent signal (Marshall et al. 2003). This
signal can be estimated and corrected as has been done
here.

5. State-dependent correction

a. Leith’s empirical correction operator

The time series of anomalous analysis corrections
provides a residual estimate of the linear state-depen-
dent model error. Leith (1978) suggested that these cor-

rections could be used to form a state-dependent cor-
rection. Leith sought an improved model of the form

ẋ � M���x� � Lx�, �13�

where Lx� is the state-dependent error correction. The
tendency error of the improved model is given by

g � ẋt � �M���xt� � Lxt��, �14�

where ẋt is the instantaneous time derivative of the re-
analysis state. The mean square tendency error of the
improved model is given by 
gTg�. Minimizing this ten-
dency error with respect to L, Leith’s state-dependent
correction operator is given by

L � 
�ẋt � M���xt���xt�T� 
xt�xt�T��1, �15�

where ẋt is approximated with finite differences by

ẋt �
xt�t � �t� � xt�t�

�t
�16�

and �t � 6 h for the reanalysis. Note that the term ẋt �
M��(xt) can then be estimated at time t using only the
analysis corrections, namely,

ẋt � M���xt� �
xt�t � �t� � xt�t�

�t
�

x�t
f �t � �t� � xt�t�

�t

�
xt�t � �t� � x�t

f �t � �t�

�t

�
�x�t

a �t � �t�

�t
. �17�

This method of approximating ẋt � M��(xt) is attrac-
tive because the analysis corrections of an operational
model are typically generated during preimplementa-
tion testing. As a result, the operator L may be esti-
mated with no additional model integrations.

To estimate L, we first recompute the time series of
residuals �xa

6�(t) using the online debiased and diurnally
corrected model M��. The cross covariance (Brether-
ton et al. 1992) of the analysis corrections with their
corresponding reanalysis states is given by C�x6

axt �

�xa

6�x
t�T�, the lagged cross covariance is given by

C�x6
axlag

t � 
�xa
6�(t)xt�T(t � 1)�, and the reanalysis state

covariance is given by Cxtxt � 
xt�xt�T�. The covariances
can be computed offline separately on time series pairs
�xa

6� and xt� corresponding to each month so that each
month has its own covariance matrices. In computing
the covariance matrices, we found that weighting each
grid point by the cosine of latitude made little differ-
ence, a result consistent with Wallace et al. (1992).

The finite-difference approximation of ẋt � M��(xt)
given by (17) results in an estimate of L in terms of the

TABLE 1. Error growth rate parameters � and � for the logistic
error growth model (12), estimated from the time-average 500-
hPa November 1987 AC for control and debiased model forecasts.
State-independent online correction significantly reduces the
component of the error growth resulting from model deficiencies.

Model Growth rate u  T Q

Control Internal (�) 0.866 0.811 0.940 0.892
Debiased Internal (�) 0.872 0.799 0.873 0.885
Control External (�) 0.184 0.161 0.126 0.175
Debiased External (�) 0.110 0.108 0.093 0.183
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covariance matrices C�x6
axlag

t and Cxtxt. The empirical
correction operator is given by

L � C�x6
axlag

t Cxtxt
�1. �18�

Note that w � Cxtxt
�1; x� is the anomalous state nor-

malized by its empirically derived covariance; Lx� �

C�x6
axlag

t ; and w is the best estimate of the anomalous
analysis correction corresponding to the anomalous
model state x� over the dependent sample. Assuming
that sampling errors are small and that the external
forecast error evolves linearly with respect to lead time,
this correction should improve the forecast model
M��. Small internal forecast errors grow exponentially

FIG. 7. (top row) The temperature component of the (left) first and (right) second eigenvectors of C�x6
a �xa

6 at the lowest level of the
model (sigma level 0.95). The temperature component of �xa

6� is projected onto EOFs 1 and 2 for (middle row) January 1983. (bottom
row) Generating C�x6

a �xa
6 with diurnally corrected January 1987 forecasts, a reduction of the amplitude in EOFs 1 and 2 is seen.
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with lead time, but those forced by model error tend to
grow linearly (e.g., Dalcher and Kalnay 1987; Reynolds
et al. 1994). Therefore, the Leith operator should pro-
vide a useful estimate of the state-dependent model
error.

Using a model with very few degrees of freedom and
errors designed to be strongly state dependent, DelSole
and Hou (1999) found that the Leith operator was
successful in correcting state-dependent errors relative
to a nature run. However, direct computation of Lx�
requires O(N3

gp) floating point operations (flops) every
time step. For the global QG model, Ngp � O(104),
for the SPEEDY model, Ngp � O(105), and for opera-
tional models Ngp � O(107). It is clear that this opera-
tion would be prohibitive. Approaches to reduce the
dimensionality of the Leith correction are now de-
scribed.

b. Covariance localization

Covariance matrices C�x6
axlag

t and Cxtxt may be com-
puted offline using the dependent sample. To make the
computation more feasible, correlations between dif-
ferent anomalous dynamical variables at the same level
are ignored, for example, u and T at sigma level 0.510 in
SPEEDY. Correlations between identical anomalous
dynamical variables at different levels, for example, q at
800 and 500 hPa in QG, are ignored as well. Miyoshi
(2005) found these correlations to be significantly
smaller than those between identical variables at the
same level in the SPEEDY model. The assumption of
univariate and unilevel covariances could be removed
in an operational implementation by combining geo-
strophically balanced variables into a single variable
before computing covariances, as is usually done in
variational data assimilation (Parrish and Derber 1992).
To further simplify evaluation of the procedure, we
consider only covariance at identical levels for the vari-
ables u, , and T; covariance in Q and log(ps) are ig-
nored. In doing so, a block diagonal structure is intro-
duced to C�x6

axlag
t and Cxtxt, with each block correspond-

ing to the covariance of a single variable at a single
level.

A localization constraint is also imposed on the co-
variance matrices by setting to zero all covariance ele-
ments corresponding to grid points farther than 3000
km away from each other. In an infinite dependent
sample, these covariance elements would be approxi-
mately zero. This constraint imposes a sparse, banded
structure on each block in C�x6

a
�x6

a and Cxtxt. Together,
the two constraints significantly reduce the flops re-
quired to compute Lx�. Another advantage of the re-
duced operator is that it is less sensitive to sampling
errors related to the length of the reanalysis time series.

Figure 8 illustrates the variance explained by the first
few SVD modes of the dense and sparse correction
operators corresponding to the January zonal wind at
sigma level 0.2. The localization constraint is imposed
on the covariance block corresponding to u at sigma
level 0.2 in January for both C�x6

axlag
t and Cxtxt before

SVD of L � C�x6
axlag

t Cxtxt
�1. The explained variance is

given by

r� j� �

�
i�1

j

	i

�
i�1

Nu

	i

, �19�

where �i is the ith singular value and the univariate
covariance block is Nu � Nu. It is useful in determining
how many modes may be truncated in approximating
the correction operator L. To explain 90% of the vari-
ance, more than 400 modes of the dense correction
operator are required whereas only 40 are required of
the sparse operator. Covariance localization has the ef-
fect of concentrating the physically important correla-
tions into the leading modes.

To test Leith’s empirical correction procedure, sev-
eral 5-day forecasts similar to those described earlier
are performed. The initial conditions are taken from a
sample independent of that which was used to estimate
the correction operator L. The first forecast is made
with the online state-independent corrected model
M��. A second forecast is made using the state-
dependent error-corrected model (13). Forecasts cor-

FIG. 8. Explained variance as a function of the number of SVD
modes of the dense and sparse Leith correction operators. SVD is
performed on the univariate covariance block corresponding to
zonal wind at sigma level 0.2. The sparse constraints imposed on
the empirical correction operator concentrate more of the vari-
ance into the dominant modes of the spectrum.

292 M O N T H L Y W E A T H E R R E V I E W VOLUME 135



rected online by the dense (univariate covariance) op-
erator L performed approximately 10% worse (and
took approximately 100 times longer to generate) than
those corrected by the sparse operator, indicating the
problems of sampling without localization. Even when
using the sparse operator, the generation of forecasts
corrected online still took a prohibitively long time, and
only improved forecasts by 1 h. This indicates that de-
spite attempts to reduce the dimensionality of the cor-
rection operator, the sparse correction still requires too
many flops to be useful with an operational model. A
further reduction of the degrees of freedom is described
below, using only the relevant structure of the correc-
tion operator.

c. Low-dimensional approximation

An alternative formulation of Leith’s correction op-
erator is introduced here, based on the correlation of
the leading SVD modes. The dependent sample of
anomalous analysis corrections and model forecasts are
normalized at each grid point by their standard devia-
tion so that they have unit variance; they are denoted
�xa

6� and xf
6�. They are then used to compute the cross

covariance, given by C�x6
ax6

t � 
�xa
6� xf

6�
T�; normalization

is required to make C�x6
ax6

f a correlation matrix. The
matrix is then restricted to the same univariate covari-
ance localization as previously described. The cross co-
variance is then decomposed to identify pairs of spatial
patterns that explain as much of possible of the mean-
squared temporal covariance between the fields �xa

6�
and xf

6�. The SVD is given by

C�x6
ax6

f � U�VT � �
k�1

Ngp

uk	kvk
T, �20�

where the columns of the orthonormal matrices U and
V are the left and right singular vectors uk and vk. Here
� is a diagonal matrix containing singular values �k

whose magnitude decreases with increasing k. The
leading patterns u1 and v1 associated with the largest
singular value �1 are the dominant coupled signals in
the time series �xa

6� and xf
6�, respectively (Bretherton et

al. 1992). Patterns uk and vk represent the kth most
significant coupled signals. Expansion coefficients or
principal components (PCs) ak(t), bk(t) are obtained by
projecting the coupled signals uk, vk onto �xa

6� and xf
6� as

follows:

ak�t� � uk
T · �x6

a��t�

bk�t� � vk
T · x6

f ��t�. �21�

PCs describe the magnitude and time dependence of
the projection of the coupled signals onto the reference
time series.

The heterogeneous correlation maps indicate how
well the dependent sample of normalized anomalous
analysis corrections can be predicted from the principal
components bk (derived from the normalized forecast
state anomalies xf

6�). It is computed by


��x6
a��t�, bk�t�� � � 	k

�
bk
2�t��

�uk. �22�

This map is the vector of correlation coefficients be-
tween the gridpoint values of the normalized anoma-
lous analysis corrections �xa

6� and the kth expansion
coefficient of xf

6�, namely bk. The SPEEDY heteroge-
neous correlation maps (Fig. 9) corresponding to the
three leading coupled SVD modes between the normal-
ized anomalous analysis corrections and model states
illustrate a significant relationship between the struc-
ture of the 6-h forecast error and the model state, at
least for the dependent sample. Locally, the time cor-
relation reaches values of 60%–80%, but the global
average is still small.

d. Low-dimensional correction

The most significant computational expense required
by Leith’s empirical correction involves solving the Ngp-
dimensional linear system Cxtxtw(T) � x�(T) for w at
each time T during a forecast integration. Taking ad-
vantage of the cross covariance SVD and assuming that
C�x6

axlag
t � C�x6

ax6
f and Cxtxt � Cx6

f x6
f , a reduction in com-

putation for this operation, may be achieved by ex-
pressing w � Cxfxf

�1x� as a linear combination of the
orthonormal right singular vectors vk. The assumptions
are reasonable since we are attempting to estimate the
tendency error at time T, not T � 6 h. The empirical
correction operator is given by

Lx� � C�x6
ax6

fCx6
ax6

f �1x�

� C�x6
ax6

f w

� U�VTw � �
k�1

Ngp

uk	kvk
T · w � �

k�1

K

uk	kvk
T · w,

�23�

where for K � Ngp, only the component of w in the
K-dimensional space spanned by the right singular vec-
tors vk can contribute to this empirical correction. This
dependence can be exploited as follows.

Assume the model state at time T during a forecast
integration is given by x(T ). The normalized state
anomaly x�(T) is given by x�(T) � x(T) � 
xt �, normal-
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ized at state vector element s by the standard deviation
of x f

6� over the dependent sample. The component of
x�(T) explained by the signal vk may then be estimated
by computing the new expansion coefficient (PC)

bk(T) � vT
k · x�(T). The right PC covariance over the

dependent sample is given by Cbb � 
bbT�, calculated
using bk from (21). Because of the orthogonality of the
right singular vectors vk, assuming an infinite sample,

FIG. 9. The SVD of C�x6
ax6

f identifies coupled signals between the analysis corrections (shades) and model states (contours) in winds
u and , and temperature T at sigma level (left) 0.95 and (right) 0.2 for January 1982–86. The dominant three signals in the model state
time series xf

6�, namely, v1, v2, v3, are plotted in contours. The corresponding signals in the analysis corrections �xa
6�, namely, u1, u2, and

u3, are used to generate the heterogeneous correlation maps �1, �2, and �3 [see (22)] plotted in shades. The three signals are super-
imposed for graphic simplicity, since they do not overlap. Large local correlations are indicative of persistent patterns whose magnitude
and/or physical location are consistently misrepresented by SPEEDY. For example, coupled signal 1 in  at sigma level 0.2 indicates
that patterns of the shape v1 should be farther east. Coupled signal 3 for the same variable suggests strengthening anomalies of the shape
v3. Coupled signal 2 in u at sigma level 0.95 suggests weakening anomalies of the shape v2.

294 M O N T H L Y W E A T H E R R E V I E W VOLUME 135

Fig 9 live 4/C



PCs bk and bj are uncorrelated for k � j. As a result, we
restrict the finite sample covariance Cbb to be diagonal.
The linear system

Cbb��T � � b�T � �24�

may then be solved for � at time T. The cost of solving
(24) is O(K) where K is the number of SVD modes
retained, as opposed to the O(N2

gp) linear system re-
quired by Leith’s full-dimensional Leith empirical cor-
rection. The solution of (24) gives an approximation of
w(T), namely,

w�T � � Cxfxf
�1 x��T �, �25�

� �
k�1

K

�k�T �vk, �26�

��
k�1

K bk�T �


bk
2�

vk � w̃�T �, �27�

where w̃(T) is generated by solving the linear system
(24) in the space of the leading K singular vectors, while
w(T) requires solving the Ngp-dimensional linear sys-
tem (25) in the space of the model grid. Writing uc

k for
the error signal uk weighted at state vector element s by
the standard deviation of �xa

6 over the dependent
sample, the kth component of the state-dependent er-
ror correction at time T is given by

zk�T � � uk
c	k�k�T �, �28�

where �k is the coupling strength over the dependent
sample, and the weight �k(T) assigned to correction
signal uc

k indicates the sign and magnitude of the cor-
rection that may amplify, dampen, or shift the flow
anomaly local to the pattern uc

k. Then the low-dimen-
sionally corrected model is given at time T by

ẋ�T � � M���x�T �� �
1
h �

k�1

K

zk�T � � M����x�T ��

�29�

so that during forecasts, a few (K) dominant model
state signals vk can be projected onto the anomalous,
normalized model state vector. The resulting sum
�K

k�1zk is the best representation of the original analysis
correction anomalies �xa

6� in terms of the current fore-
cast state x(T). If the correlation between the normal-
ized state anomaly x̃�(T) and the local pattern vk is
small, the new expansion coefficient bk(T) will be neg-
ligible, no correction by uc

k will be made at time T, and
therefore no harm will be done to the forecast. This fact
is particularly important with respect to predicting be-

havior that may vary on a time scale longer than the
training period, for example, El Niño–Southern Oscil-
lation (ENSO) events (Barnston et al. 1999).

A pair of examples of the correction procedure are
shown in Fig. 10. SVD mode k � 2 in T(K) at sigma
level 0.95 (top left) suggests that warm anomalies over
the western Pacific are typically too warm. Mode k � 3
in u (m s�1) at sigma level 0.2 (top right) suggests that
fronts of the shape v3 over the eastern Pacific should be
farther northeast. Online low-dimensional state-
dependent correction improves the local RMS error by
21% in 6-h forecasts of T (left) and 14% in u (right).
Retaining K � 10 modes of the SVD, state-dependent
correction by (29) of both the QG and SPEEDY mod-
els improved forecasts by a few hours. This indicates
that only a small component of the error can be pre-
dicted given the model state over the independent
sample (1987). The low-dimensional correction outper-
formed the sparse Leith operator (Table 2) indicating
that the SVD truncation reduces spurious correlations
unaffected by the covariance localization. Correction
by K � 5 and K � 20 modes of the SVD were slightly
less successful. Heterogeneous correlation maps for
modes K � 20 did not exceed 60% for the dependent
sample. The corrections are more significant in regions
where � is large and at times in which the state anomaly
projects strongly on the leading SVD modes (see ex-
amples in Fig. 10). The global averaged improvement is
small since the state-dependent corrections are local in
space and time. Nevertheless, given that the computa-
tional expense of the low-dimensional correction is or-
ders of magnitude smaller than that of even the sparse
correction operator, and the results are better, it seems
to be a promising approach to generating state-depen-
dent corrections.

The low-dimensional representation of the error is
advantageous compared to Leith’s correction operator
for several reasons. First, it reduces the sampling errors
that have persisted despite covariance localization by
identifying the most robust coupled signals between the
analysis correction and forecast state anomalies. Sec-
ond, the added computation is trivial; it requires solving
a K-dimensional linear system and computing K inner
products for each variable at each level. Finally, the
SVD signals identified by the technique can be used by
modelers to isolate flow-dependent model deficiencies.
In ranking these signals by strength, SVD gives model-
ers the ability to evaluate the relative importance of
various model errors.

Covariance localization (which led to better results
when using the Leith operator) is validated by compar-
ing the signals uk and vk obtained from the SVD of the
sparse and dense versions of C�x6

ax6
f . The most signifi-
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cant structures in the dominant patterns (e.g., ul, v1) of
the sparse covariance matrix are very similar to those
obtained from the dense version. However, the domi-
nant patterns in the dense covariance matrix also con-
tain spurious, small-amplitude noisy structures related
to the nonphysical, nonzero covariance between distant

grid points. Given a long enough reanalysis time series,
this structure would disappear. The structures identi-
fied in the sparse covariance matrix are thus good ap-
proximations of the physically meaningful structures of
the dense covariance matrix. Qualitatively similar
structures (e.g., mean, variance, EOFs) were observed

FIG. 10. (top) Coupled signals uc
k (shades) and vk (contours) between SPEEDY forecast errors and states. SVD mode k � 2 in T(K)

at (left) sigma level 0.95 suggests that warm anomalies over the western Pacific are typically too warm. Mode k � 3 in u (m s�1) at
(right) sigma level 0.2 suggests that fronts of the shape v3 over the eastern Pacific should be farther northeast. (middle) Six-hour forecast
generated by the online state-independent corrected model M�� (contours) and analysis correction (shades) in (left) T(K) at sigma
level 0.95 for 30 Jan 1987 and (right) u (m s�1) at sigma level 0.2 for 18 Jan 1987. (bottom) Online low-dimensional state-dependent
correction improves the local RMS error by (left) 21% in T and (right) 14% in u.
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when training was limited to just one year, suggesting
that an operational implementation of this method
should not require several years of training.

Since SVD is performed independently on univariate
blocks of C�x6

ax6
f , patterns u1 in u and u1 in  are not

necessarily in geostrophic balance. Nevertheless,
SPEEDY variables presumably remain in approximate
geostrophic balance after state-dependent correction
because there exist patterns uj in u and uk in  that are
in geostrophic balance with u1 in u and u1 in  respec-
tively. Also, the large spatial extent of the covariance
localization produces SVD patterns that are synopti-
cally balanced.

6. Summary and discussion

This paper considers the estimation and correction of
state-independent (seasonal and diurnal) and state-
dependent model errors of a pair of simple GCMs. The
two approaches used to create the time series of analy-
sis corrections and model states needed for training,
(direct insertion and nudging toward a reanalysis used
as an estimate of the true atmosphere) are simple; they
require essentially a single long model integration and
give similar estimates of the bias. In an operational
setting, time series of model states and analysis incre-
ments are already available from preimplementation
testing.

Although the procedure is inspired by Leith (1978)
and DelSole and Hou (1999), it is tested here using
realistic models, and using as nature a reanalysis under
the assumption that it is much closer to the real atmo-
sphere than any model. The online state-independent
correction, including the EOFs associated with the di-
urnal cycle, resulted in a significant improvement in the

forecast skill (as measured by the AC). Unlike Saha
(1992), this improvement was larger than that obtained
by a posteriori corrections of the bias, indicating the
importance of correcting the error during the integra-
tion. The results are also significantly different from
those of DelSole and Hou (1999), who obtained a very
small improvement from the state-independent correc-
tion, and a very large improvement from the state-
dependent correction using Leith’s formulation. Their
results were probably optimistic in that the model er-
rors were by construction very strongly state depen-
dent. The results presented here, found using global
atmospheric models and comparing with a reanalysis of
the real atmosphere, are probably more realistic with
respect to the relative importance of mean and state-
dependent corrections. Nevertheless, our results are
probably optimistic since the improvement of the debi-
ased model M� (10) relative to the biased model M (3)
is larger for the simple GCMs tested here than could be
expected in an operational model. It is not clear how
large the analysis correction and forecast state coupled
signal size would be for more sophisticated models, but
operational evidence suggests that state dependent er-
rors are not negligible.

It was necessary to introduce a horizontal and verti-
cal localization of the components of Leith’s empirical
correction operator to reduce sampling problems. Mul-
tilevel and multivariate covariances were ignored to
make the computation practical. The assumptions un-
derlying the localization require model-dependent em-
pirical verification; implementation on a more realistic
model may require that the localization be multivariate
in order to have a balanced correction. The Leith–
DelSole–Hou method with the original dense covari-
ance matrix makes forecasts worse. With the sparse
covariance, however, there is an improvement of about
1 h, still at a large computational cost.

A new method of state-dependent error correction
was introduced, based on SVD of coupled analysis cor-
rection and forecast state anomalies. The cross covari-
ance is the same as that which appears in Leith’s for-
mulation, but it would be prohibitive to compute it us-
ing an operational model. The new method, based on
using the SVD heterogeneous correlation maps as the
basis of linear regression, doubles the improvement and
is many orders of magnitude faster. The method can be
applied at a rather low cost, both in the training and in
the correction phases, and yields significant forecast im-
provements, at least for the simple but realistic global
QG and SPEEDY models. It could be applied with low
computational cost and minimal sampling problems to
data assimilation and ensemble prediction, applications

TABLE 2. Comparison of Leith’s dense correction operator with
its corresponding sparse and low-dimensional approximations, in-
cluding the number of flops needed to generate the state-depen-
dent correction per time step. Numbers are time-averaged im-
provements in crossing time of AC � 0.6 for daily 5-day 500-hPa
geopotential height forecasts made with model (29) during Janu-
ary 1987, measured against the crossing time observed in forecasts
made by the online state-independent corrected SPEEDY model
M��. Univariate covariances were used to calculate the dense
Leith operator so that it may be applied block by block.

Dense L Sparse L
Low-D
approx

Flops per time step O(N3
gp) O(N2

gp) O(Ngp)
Global improvement �8% (�4 h) 2% (1 h) 4% (2 h)
NH Extratropics

improvement
�6% (�3 h) 4% (2 h) 6% (3 h)
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where accounting for model errors has been found to
be important. The method may be particularly useful
for forecasting of severe weather events where a pos-
teriori bias correction will typically weaken anomalies.
The patterns identified by SVD could also be used to
identify sources of model deficiencies and thereby
guide future model improvements.

A disadvantage of empirical correction is that opera-
tional model upgrades may require fresh computation
of the dominant correction and state anomaly signals.
However, analysis increments generated during pre-
implementation tests of an operational model can be
used as a dependent sample to estimate the model error
and state anomaly covariance. With such a collection of
past data, it may not be necessary to run an operational
model in order to generate the necessary sample.

Flow-dependent estimates of model error are of par-
ticular interest to the community attempting to develop
an efficient ensemble Kalman filter for data assimila-
tion (Bishop et al. 2001; Whitaker and Hamill 2002; Ott
et al. 2004; Hunt et al. 2004). Naive data assimilation
procedures assume the model error to be constant, and
represent its effect by adding random noise to each
ensemble member. More sophisticated procedures add
a random selection of observed model tendencies to
each ensemble member, or artificially increase the
background forecast uncertainty through variance in-
flation. Other state-dependent procedures increase the
forecast uncertainty in local contracting directions of
state space (Danforth and Yorke 2006). The SVD tech-
nique described in this paper can be combined with an
ensemble-based data assimilation scheme to provide
time- and state-dependent estimates of the model error,
for example, in the local ensemble transform Kalman
filter (LETKF) being developed by the chaos group at
the University of Maryland (Ott et al. 2004; Hunt et al.
2004). The empirical correction method described here
involves local computations commensurate with the
treatment of covariance localization in the LETKF. In
a data assimilation implementation, the SVD method
would involve appending a K-dimensional estimate of
the model error to each ensemble member.
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