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ABSTRACT

The purpose of the present study is to use a new method of empirical model error correction, developed
by Danforth et al. in 2007, based on estimating the systematic component of the nonperiodic errors linearly
dependent on the anomalous state. The method uses singular value decomposition (SVD) to generate a
basis of model errors and states. It requires only a time series of errors to estimate covariances and uses
negligible additional computation during a forecast integration. As a result, it should be suitable for
operational use at a relatively small computational expense.

The method is tested with the Lorenz ’96 coupled system as the truth and an uncoupled version of the
same system as a model. The authors demonstrate that the SVD method explains a significant component
of the effect that the model’s unresolved state has on the resolved state and shows that the results are better
than those obtained with Leith’s empirical correction operator. The improvement is attributed to the fact
that the SVD truncation effectively reduces sampling errors. Forecast improvements of up to 1000% are
seen when compared with the original model. The improvements come at the expense of weakening
ensemble spread.

1. Introduction

No matter how well understood a physical process is,
predictions of that process derived from numerical in-
tegration of models are likely to suffer from two factors.
First, nonlinearities amplify uncertainties in the initial
conditions, causing similar states of the system to di-
verge quickly on small scales. Second, deficiencies in
the numerical model introduce errors during integra-
tion. These deficiencies may be structural problems
(wrong equations) and are induced by inaccurate forc-
ings and parameterizations used to represent the effect
of subgrid-scale physical processes and result in large-
scale systematic forecast errors.

Leith (1978) proposed a statistical method to account
for model bias and systematic errors linearly dependent
on state anomalies. Leith derived a state-dependent
empirical correction to a simple dynamical weather

model by minimizing the tendency errors relative to a
reference time series. The resulting correction operator
attempts to predict the error in the model tendency as
a function of the model state. While Leith’s empirically
estimated state-dependent correction term is only op-
timal for a linear model, it was shown to reduce the
nonlinear model’s bias.

DelSole and Hou (1999) perturbed the parameters of
a two-layer quasigeostrophic (QG) model on an 8 ! 10
grid (Nd " 160 degrees of freedom) to generate a “na-
ture” run and then modified it to create a “model”
containing a primarily state-dependent error. They
found that a state-independent error correction did not
improve the forecast skill. By adding a state-dependent
empirical correction to the model, inspired by the pro-
cedure proposed by Leith, they were able to extend
forecast skill up to the limits imposed by observation
error. However, Leith’s technique requires the solution
of a Nd-dimensional linear system. As a result, before
the procedure can be considered useful for operational
use, a low-dimensional representation of Leith’s em-
pirical correction operator is required.

Wilks (2005) used the Lorenz ’96 coupled system as
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the truth and an uncoupled version of the same system
as a model, and developed a stochastic parameteriza-
tion of the effects of the unresolved variables. The cor-
rection resulted in improved agreement between model
and system climatologies, as well as improved ensemble
mean and spread for short-range forecasts. Individually
deterministic forecasts were degraded by the stochastic
parameterization methods. Wilks found the improve-
ment resulting from stochastic forcing to depend
strongly on both the standard deviation and time scale
of the stochastic term, and weakly on its spatial scale.

In what follows, we use the same experimental setup
as Wilks with a low-dimensional representation of
Leith’s empirical correction operator using singular
value decomposition (SVD; Golub and Van Loan 1996)
developed by Danforth et al. (2007). We use the result-
ing SVD modes as a basis for deterministic parameter-
ization of the tendencies of the Lorenz ’96 system un-
resolved by the uncoupled model. Empirical correction
of the uncoupled model using the SVD modes results in
significant forecast improvement (anomaly correlation
and RMSE) when compared with Leith’s operator, at
the expense of weakening ensemble spread. The SVD
method can be extremely computationally efficient, re-
quiring only an inner product and the solution of a
low-dimensional linear system. The paper concludes
with a discussion of applications to numerical weather
prediction.

2. Empirical correction

Following Leith (1978), consider an arbitrary dy-
namical system

ẋ!t" # M$x!t"%, !1"

where x(t) and M[x(t)] are the model state vector and
model tendency at step t, respectively; M is the best
available representation of the governing dynamics of
the physical process whose future behavior we are at-
tempting to predict. Let xa(t) denote the true state of
the dynamical system at step t (estimated, e.g., from an
analysis) and x f

&t(t) denote a prediction of xa(t) gener-
ated by integrating M for time &t from the state xa(t '
&t). Leith considered the difference between xa(t) and
x f

&t(t) for small &t to be an approximation of the model
tendency error. The residual at step t is given by the
difference between the truth xa(t) and the model fore-
cast state x f

&t(t) namely,

!x"t
a !t" # xa!t" ' x"t

f !t", !2"

where &t is the forecast lead time. The smaller &t,
the better (xa

&t(t) is as an approximation of the model
error. The time average of the residuals is an esti-

mate of the model bias, or state-independent error. It is
given by

)!x"t
a * #

1
Na

+
t#1

Na

!x"t
a !t", !3"

where Na denotes number of individual verifications
that can be made comparing forecast and truth. The
truth, model predictions, and corresponding residuals
are then separated into their anomalous and time av-
erage components, namely,

xa#!t" # xa!t" ' )xa* !4"

x"t
f #!t" # x"t

f !t" ' )xa* !5"

!x"t
a#!t" # !x"t

a !t" ' )!x"t
a * !6"

so that deviations from the mean can be analyzed.

a. Leith’s empirical correction operator

Online bias corrected or debiased model predictions
can be generated using an improved modelM,, defined
by the tendency equation

ẋ!t" # M$x!t"% ,
)!x"t

a *
"t

- M,$x!t"%. !7"

The time series of anomalous residuals of M,, obtained
by comparing predictions made by M, with xa(t), pro-
vides an estimate of the linear state-dependent model
error. Leith (1978) suggested that these residuals could
be used to form a state-dependent correction. Leith
sought an improved model of the form

ẋ!t" # M,$x!t"% , Lx!!t", !8"

where x.(t) # x(t) ' )xa* is the anomalous model state
at time t and Lx.(t) is the state-dependent error correc-
tion. The tendency error of the improved model is
given by

g!t" # ẋa!t" ' /M,$xa!t"% , Lxa#!t"0, !9"

where ẋa(t) is the instantaneous time derivative of the
true state. Of course, the true time tendency is un-
known, so ẋa(t) can only be approximated by finite dif-
ferences using the reference time series. The mean
square tendency error of the improved model is given
by )g!(t)g(t)*. Minimizing this tendency error with re-
spect to L, Leith’s state-dependent correction operator
is given by

L # )!ẋa!t" ' M,!xa!t"""#xa#!t"T*)xa#!t"xa#!t"T*'1, !10"
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where ẋa(t) ! M"[xa(t)] is approximated by the residu-
als,

ẋa#t$ !M"%xa#t$& '
xa#t " !t$ ! xa#t$

!t
!

x!t
f #t " !t$ ! xa#t$

!t

(
"x!t

a #t " !t$
!t

, #11$

which for an operational weather model are typically
available from preimplementation testing. As a result,
the operator L may be estimated with no additional
model integrations.

To estimate L, the time series of residuals )xa
*t+(t) is

computed using the online debiased model M". The
cross-covariance (Bretherton et al. 1992) of the residu-
als with their corresponding true states, the lagged
cross-covariance, and the true state covariance are
given by

C"x !t
a xa , -"x!t

a##t$xa##t$T., #12$

C"x !t
a x lag

a , -"x!t
a##t$xa##t ! 1$T., #13$

Cxaxa , -xa##t$xa##t$T., #14$

respectively. The empirical correction operator (10) is
then given by

L ( C"x !t
a x lag

a Cxaxa!1. #15$

We define w(t) ( Cxaxa
!1 · x+(t) to be the anomalous

state normalized by its empirically derived covariance
so that the matrix · vector product Lx!(t) ( C"x !t

a x lag
a w(t)

in Eq. (8) is the best estimate of the anomalous residual
corresponding to the anomalous model state x+ over the
dependent sample. Assuming that sampling errors are
small and that model errors evolve linearly with respect
to lead time, this correction should improve the fore-
cast model M". Errors in initial state grow exponen-
tially with lead time, but those forced by model error
tend to grow linearly (e.g., Dalcher and Kalnay 1987;
Reynolds et al. 1994). Therefore, the Leith operator
should provide a useful estimate of the state-dependent
model error.

Using a model with very few degrees of freedom and
errors that were strongly state-dependent, DelSole and
Hou (1999) found that the Leith operator was very suc-
cessful in correcting state-dependent errors relative to a
nature run. However, the direct computation of Lx+
requires O(N3

d) floating point operations every time
step. For operational models, Nd ( O(109); it is clear
that this operation would be prohibitive. Approaches to
reduce the dimensionality of the Leith correction are
now described.

b. Low-dimensional approximation

An alternative formulation of Leith’s correction
operator is described here, based on the correlation of
the leading SVD modes. For a more detailed deriva-
tion, see Danforth et al. (2007). The dependent sam-
ple of anomalous residuals and model predictions are
normalized at each grid point by their standard devia-
tion so that they have unit variance: they are denoted
)xa

*t+(t) and x f
*t+(t). They are then used to compute the

cross-correlation

C"x !t
a x !t

f , -"x!t
a##t$x!t

f ##t$T., #16$

where normalization is required to make C"x !t
a x !t

f a cor-
relation matrix. The matrix is then decomposed to iden-
tify pairs of spatial patterns that explain as much as
possible of the mean-squared temporal covariance be-
tween the fields )xa

*t+(t) and x f
*t+(t). The SVD is given by

C"x !t
a x !t

f , U!VT ( /
k ( 1

Nd

uk$kvk
T, #17$

where the columns of the orthonormal matrices U and
V are the left and right singular vectors uk and vk; ! is
a diagonal matrix containing singular values 0k whose
magnitude decreases with increasing k. The leading
patterns u1 and v1 associated with the largest singular
value 01 are the dominant coupled signals in the time
series )x a

*t+ and x f
*t+, respectively (Bretherton et al.

1992). Patterns uk and vk represent the kth most signif-
icant coupled signals. Expansion coefficients or princi-
pal components (PCs) ak(t), bk(t) describe the magni-
tude and time dependence of the projection of the
coupled signals onto the reference time series. They are
given by

ak#t$ ( uk
T · "x!t

a##t$, #18$

bk#t$ ( vk
T · x!t

f##t$. #19$

3. Low-dimensional correction

The most significant computational expense required
by Leith’s empirical correction (8) involves solving the
Nd-dimensional linear system Cxaxa w(T) ( x!(T) for w
at each time T during a forecast integration. Assuming
that *t is small (error growth is approximately linear
during the short forecasts used for training), we can
approximate C"x !t

a x lag
a ' C"x !t

a x !t
f and Cxaxa ' Cx !t

f x !t
f .

Then a substantial reduction in computation for this
operation can be achieved by expressing w ( Cxfxf

!1x!
as a linear combination of the leading orthonormal
right singular vectors vk, namely,
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Lx! ! C!x "t
a x "t

f Cx "t
f x "t

f "1x! ! C!x "t
a x "t

f w ! U!VT

w ! #
k!1

Nd

uk#kvk
T · w $ #

k!1

K

uk#kvk
T · w, %20&

where K K Nd should be chosen such that the ex-
plained variance, given by

r%k& !
#
i!1

k

#i

#
i!1

Nd

#i

, %21&

exceeds a system-dependent threshold for k ! K. From
trial and error, it appears that an explained variance of
r(K) $ 0.95 results in the best forecast improvement
for the simple model discussed in the following section.
As a result, K should be chosen to fulfill this, or a
similar, inequality. For the SPEEDY (simplified pa-
rameterizations, primitive equation dynamics) model,
Danforth et al. (2007) found the best results for the
anomaly correlation using a truncation of K ! 10.

It is important to note that only the component of w
in the K-dimensional space spanned by the right singu-
lar vectors vk can contribute to the empirical correction
defined by (20). This dependence can be exploited as
follows. Assume the model state at time T during a
numerical model integration is given by x(T). The nor-
malized state anomaly x!(T) is given by the vector
x'(T ) ! x(T) " (xa) normalized by the standard devia-
tion of x f

*t' over the dependent sample. The component
of x!(T) explained by the signal vk may then be esti-
mated by computing the new principal component
bk(T) ! vT

k · x!(T). The right PC covariance over the
dependent sample is given by Cbb ! (bbT), calculated
using bk from (19). Owing to the orthogonality of the
right singular vectors vk, assuming an infinite sample,
PCs bk and bj are uncorrelated for k + j. As a result, we
restrict the finite sample covariance Cbb to be diagonal.
The linear system

Cbb%%T& ! b%T& %22&

may then be solved for , at time T. As a result, the cost
of solving (22) is O(K) where K is the number of SVD
modes retained, as opposed to the (Nd - Nd) linear
system required by Leith’s full-dimensional empirical
correction. The solution of (22) gives an approximation
of w(T); namely,

w%T & ! Cxfxf"1x!%T &, %23&

$ #
k!1

K

%k%T &vk ! #
k!1

K bk%T &

(bk
2)

vk ! w̃%T &, %24&

where w̃(T) is generated by solving the linear system
(22) in the space of the leading K singular vectors, while
w(T) requires solving the Nd-dimensional linear sys-
tem (23) in the space of the model grid. Writing uc

k for
the error signal uk weighted by the standard deviation
of .xa

*t' over the dependent sample, the kth component
of the state-dependent error correction at time T is
given by

zk%T & ! uk
c#k%k%T &, %25&

where /k is the coupling strength over the dependent
sample [given by the SVD (17)]. The weight ,k(T) as-
signed to residual signal uc

k indicates the sign and mag-
nitude of the correction that may amplify, dampen, or
shift the flow anomaly local to the pattern uc

k. Then the
SVD-corrected model is given at time T by

ẋ%T & ! M 0 1x%T &20
1
"t #k!1

K

zk%T & 3 M001x%T &2 %26&

so that during a prediction, a few (K) dominant model
state signals vk can be projected onto the anomalous,
normalized model state vector. The resulting sum
#K

k!1zk is the best representation of the original residual
anomalies .xa

*t' in terms of the current forecast state
x(T). If the correlation between the normalized state
anomaly x!(T) and the local pattern vk is small, the new
expansion coefficient bk(T) will be negligible, no cor-
rection by uc

k will be made at time T; therefore, no harm
will be done to the prediction. This fact is particularly
important with respect to predicting behavior that may
vary on a time scale longer than the training period, for
example, El Niño–Southern Oscillation (ENSO) events
(Barnston et al. 1999).

The SVD representation of the error is advantageous
compared to Leith’s correction operator for several
reasons. First, it reduces the sampling errors by identi-
fying the most robust coupled signals between the re-
sidual and forecast state anomalies. Second, the added
computation is trivial; it requires solving a K-dimen-
sional linear system and computing K inner products.
Finally, the SVD signals identified by the technique can
be used by modelers to isolate flow-dependent model
deficiencies. In ranking these signals by strength, SVD
gives modelers the ability to evaluate the relative im-
portance of various model errors.

4. Numerical experiments

a. Lorenz ’96 model

In this section we demonstrate the empirical cor-
rection procedures using a simple nonlinear system to
define the truth (the quantity that will be predicted by
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a model). The Nd-dimensional governing equations,
given by Lorenz (1996), are

dxi

dt
! xi"1#xi$1 " xi"2% " xi $ F "

hc
b &

j!J#i"1%$1

iJ

yj

for i ! 1, 2, . . . , I, #27%

dyj

dt
! "cbyj$1#yj$2 " yj"1% " cyj $

hc
b

xfloor'#j"1%!J($1

for j ! 1, 2, . . . , JI, #28%

where Nd ! (J $ 1)I and the subscripts i and j are
treated as periodic with period I and J respectively.
For example, xI$1 ) x1 so that the variables form a
cyclic chain. Equation (27) describes the behavior of a
set of slowly changing, large-amplitude unspecified sca-
lar meteorological quantities, such as temperature, at I
equally spaced grid sites on a latitude circle. Each xi is
coupled to J quickly changing, small-amplitude vari-
ables yj whose dynamics are described by (28). The
notation floor [( j " 1)/J ] describes integer truncation of
the bracketed term and indicates that each of the small-
amplitude y variables in a group is equally affected by
the large-amplitude x variable to which it belongs. In
our experiments, we have used the same parameter val-
ues as Wilks (2005), namely, I ! 8 and J ! 32 for a total
of Nd ! 264 state variables, h ! 1, c ! 10, and b ! 10
(which has the effect of making the small-amplitude
variables yi oscillate 10 times more rapidly than the
large-amplitude variables xi), and the forcing is chosen
to be either F ! 8, 14, or 18. Wilks (2005) chose F ! 18
and F ! 20 to ensure that the deterministic parameter-
izations would be competitive with the stochastic pa-
rameterizations.

This system shares certain properties with many at-
mospheric models: a nonlinear advection-like term, a
linear term representing loss of energy to thermal dis-
sipation, and a constant forcing term F to provide en-
ergy. It has been used in several previous predictability
studies to represent atmospheric behavior (e.g., Lorenz
and Emanuel 1998; Wilks 2005; Danforth and Yorke
2006) and for data assimilation (e.g., Anderson 2001;
Whitaker and Hamill 2002; Ott et al. 2004). The time
unit represents the dissipative decay time of 5 days
(Lorenz and Emanuel 1998) and there are 13 positive
Lyapunov exponents.

We use Eqs. (27) and (28) to generate a time series xa

of “true” values of the slow variables. We then set h !
0 in Eq. (27) and add a bias term with weight * to
obtain the model

dxi

dt
! xi"1#xi$1 " xi"2% " xi $ F $ " sin!2#i

I ", #29%

which fails to resolve any of the small-amplitude be-
havior. The sinusoidal bias term, weighted by * ! 1, is
included as an additional source of model error with
respect to model (27), meant to represent a longitudi-
nally dependent misrepresentation of the dissipation or
forcing. Forecasts x f

+t generated by this model exhibit
model error with respect to xa that is sinusoidally de-
pendent on the grid point, but independent of the state.
Training data is then compiled by generating 107 short
forecasts (+t ! 0.1 time units , 12 h) of model (29) and
comparing these forecasts to xa. Throughout the experi-
ment, a fourth-order Runge–Kutta integration scheme
is used with a time step of 0.001. The model bias is then
given by the time average of the difference between xa

and x f
12, namely, -.xa

12/ [see (2)]. The anomalous errors
and forecasts are used to generate Leith’s correction
operator L (15), and the corresponding modes (17) for
SVD correction.

We then experiment with empirical correction of (29)
using the improved model

dxi

dt
! xi"1#xi$1 " xi"2% " xi $ F $ " sin!2#i

I " $ D#x%,

#30%

where the term D(x) attempts to correct the sinusoidal
bias and represent the behavior unresolved by (29),
namely, the coupling to the small-amplitude variables
described by (28).

b. Empirical correction experiments

Five different versions of model (30) are used to fore-
cast a set of 10 000 uncorrelated initial states chosen
from the true time series xa. These initial states are
distinct from those used for training, and consecutive
initial states are separated by 50 time units (250 days).
Methods are distinguished by the explicit form of the
empirical correction term D(x) in (30), which is meant
to represent the small-amplitude behavior and reduce
the bias, as indicated below:

D#1%#x% ! 0 D#2%#x% ! -$x12
a / D#3%#x% ! -$x12

a / $ Lx!

D#4%#x% ! -$x12
a / $ &

k!1

K

zk#T% D#5%#x% ! "" sin!2#i
I " "

hc
b &

j!J#i"1%$1

iJ

yj ! perfect model.
#31%
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Term D(1)(x) represents the original model (29); fore-
casts made with no empirical correction will be used to
gauge the success of other methods. Term D(2)(x) is the
time average residual observed in forecasts made by
model (29) and represents a state-independent correc-
tion (see Fig. 1). Term D(3)(x) represents Leith’s em-
pirical correction operator (8), and term D(4)(x) repre-
sents the SVD correction described by (25). Term
D(5)(x) represents forecasts made by system (27), (28)
with observational noise (see next subsection), but with
no model error. Skill scores are made for the ensemble
mean using anomaly correlation and rms error and veri-
fying against the time series xa.

c. Ensemble initialization

Our numerical experiments are initialized in a man-
ner inspired by Wilks (2005); each ensemble forecast is
initialized by choosing random perturbations from a
distribution that approximates the shape of the attrac-
tor local to the initial state. The distribution corre-
sponding to xa(T), for example, is found by gathering
analogs from long integrations of (27), (28). Analogs
are defined to be states within an I-dimensional hyper-
cube (with side i having length equal to 5% of the cli-
matological span of xi) centered on xa(T). As in Wilks
(2005), the analog integrations were performed until
each of the 10 000 cubes contained a minimum of 100
states. The I ! I covariance matrix for the analogs of
the state xa(T) is denoted C (T). The distribution from
which the initial ensemble for the forecast of xa(T) is
chosen is given by

Cinit"T# $
0.052 !clim

2

"
C"T#, "32#

where % is the average eigenvalue of C(T) and &clim is
the climatological standard deviation of xa. The covari-
ance Cinit(T) has the same eigenvectors and correla-
tions as C(T), but is scaled so that the average standard
deviation is 5% of the climatology of the true time
series xa (Wilks 2005). Control states for each ensemble
forecast are generated by adding appropriately shaped
random noise to each of the 10 000 true states,

x0
f "1, k# $ xa"k# ' (Cinit"k#y"1, k#

k $ 1, 2, . . . , 10 000, "33#

where y(1, k) is an I-dimensional vector whose entries
are independent random numbers chosen from a
Gaussian distribution. The square root of Cinit is com-
puted offline for each initial state using the Cholesky
decomposition (Golub and Van Loan 1996). Ensemble
members are then generated from a multivariate
Gaussian distribution by performing the same opera-
tion on x f

0(1, k), namely,

x0
f " j, k# $ x0

f "1, k# ' (Cinit"k#y" j, k#

j $ 2, 3, . . . , Ne, "34#

where y is different for each of the 10 000 initial states
and Ne $ 20 ensemble members.

d. Results

The bias in model (29), relative to (27), results from
the unresolved behavior of the small-amplitude vari-
ables yi and the additional state-independent error term

FIG. 1. The empirically generated bias )*x a
12+ (time-average residual) in model (29) relative to (27) slightly

underestimates and shifts the true bias )q+. The true bias is a combination of the sinusoidal state-independent error
and the bulk effect of ignoring the small-amplitude modes. It is described by Eq. (35). The Lorenz ’96 model with
forcing F $ 18 exhibits a slightly larger bias due to the effect the large-amplitude variables (with increased energy)
have on the small-amplitude variables.
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! sin!2"i
I ".

The time-average effect of these model errors, namely
!q", is given by

!qi" #
1

Na
$
t#1

Na #%
hc
b $

j#J&i%1'(1

iJ

yj&t'$% ! sin!2"i
I "

for i # 1, 2, . . . , I. &35'

The time-average residual !)xa
12" (3) is an empirical es-

timate of !q". Figure 1 shows the true bias !q", and !)xa
12"

weighted by a factor of %12%1, representing the fact
that it is a correction applied every hour but was cal-
culated by averaging 12-h errors. The trained empirical
correction term D(2)(x) # !)xa

12" slightly underestimates
and shifts the true bias of model (29).

Coupled signals between normalized, anomalous re-
siduals and forecasts—namely, )x a

12* and x f
12* respec-

tively—are identified and ranked by singular value de-
composition (17). The left and right singular vectors uk

and vk are shown in Fig. 2 for forecasts made with
model (29); they are superimposed on a shifted scale for
visual simplicity. Unit vectors u1 and v1 suggest that
states of model (29) of the shape u1 are typically mis-
represented. Because each of the coupled signal pairs
for the Lorenz ’96 model with forcings F # 14 and F #
18 roughly satisfies uk + %vk, the state anomalies will
be damped by the SVD empirical correction. The SVD

method is also capable of suggesting amplification of
anomalies if uk + vk, as seen for F # 8 mode 3 and as
demonstrated by Danforth et al. (2007).

The explained variance (21) for the spectrum of sin-
gular values of the cross-covariance matrix C#x 12

a x 12
f is

shown in Fig. 3. It indicates that the most of the em-
pirically estimated state-dependent model error can
be captured with the first few modes for F # 8, but not
for F # 18. The additional computational expense of
including the few modes required to reach 95% is
negligible for this model, where the number of de-
grees of freedom that one can attempt to correct is a
maximum of K # I # 8. For an operational weather
model, the spectrum is likely to be significantly flat-
ter than that observed for F # 8. As a result, we may
be forced to correct many forecast patterns (large K)
to see improvement. Fortunately, the SVD tech-
nique that we are describing is very cheap, even for
large K.

A sample of 107 short forecasts was used to train the
operators in order to predict a maximum of I # 8 de-
grees of freedom. In practice, such a large sample size is
unavailable for training. In the case of a small training
set, the singular value spectrum may be steep, not due
to the importance of the leading modes but due to the
smaller sample size (Hamill et al. 2001). The larger the
sample size, the more likely the operator will represent
the true covariance and, hopefully, the greater the num-
ber of forecast patterns that can be corrected.

Typical 10-day, 20-member ensemble forecasts of x1

using model (30) and F # 14, with empirical correction

FIG. 2. Coupled signals between normalized, anomalous residuals and forecasts—namely, )x a
12* and x f

12*, respec-
tively—are identified and ranked by singular value decomposition (17). The left and right singular vectors uk (solid)
and vk (dashed) are shown for forecasts made with model (29); they are superimposed for visual simplicity. For
example, unit vectors u1 and v1 represent the most dominant coupled signal between errors and forecasts, respec-
tively. Qualitative similarities are seen between the modes found for the F # 14 and F # 18 Lorenz ’96 model.
Mode 3 for F # 8 suggests a strengthening of anomalies of the shape v3, while mode 3 for both F # 14 and F #
18 suggests a weakening of anomalies of the shape v3.

APRIL 2008 D A N F O R T H A N D K A L N A Y 1473



terms described by (31), are shown in Fig. 4. Forecasts
empirically corrected by the observed bias of model
(29), D(2), perform slightly better than forecasts not
corrected at all, D(1). Ensemble divergence is typically
significant by day 5 for both D(1) and D(2). State-depen-
dent empirical correction significantly improves fore-
casts. Ensemble spread is weak for both Leith’s empiri-

cal correction D(3) and the SVD correction D(4) with
mode truncation K ! 5. However, small spread is seen
for perfect model forecasts D(5), and the effect is less
evident for F ! 8 and F ! 18. Since the ensemble
spread represents the uncertainty in the forecast and
since the forecast skill is clearly improved by the Leith
and SVD empirical corrections, this result should be
expected.

Figure 5 shows the average anomaly correlation and
rms error (RMSE) of the ensemble mean of 10 000
independent 20-member ensemble forecasts. The state-
independent correction adds approximately 1 time unit
(5 days) to the usefulness of F ! 8 forecasts, and 0.1
time units (12 h) to the usefulness of F ! 14 and F ! 18
forecasts. For F ! 14, Leith’s operator improves fore-
casts by 710% (27.2 days), and the SVD correction re-
sults in an improvement of 1176% (45 days). The SVD
correction term D(4)(x) is chosen to have K ! 7, 5, and
2 modes for forcings F ! 18, 14, and 8, respectively; the
truncation was chosen to explain 95% of the variance in
the cross-covariance matrix C!x 12

a x 12
f (see Fig. 3). Table

1 summarizes the improvement in AC scores. While we
present results for Ne ! 20, AC scores for Ne ! 1 and
Ne ! 50 are qualitatively similar, indicating that the
performance of the SVD method is insensitive to en-
semble size.

Wilks (2005) used differences between the tenden-
cies of the resolved variables in model (29), with " ! 0,
F ! 18, and the actual tendencies of system (27), (28),
to approximate model error. The collection of tendency

FIG. 3. The explained variance (21) for the spectrum of singular
values of the cross-covariance matrix C!x 12

a x 12
f shows how much of

the empirically estimated state-dependent model error can be
captured with the leading modes. To explain 95% of the variance
K ! 7, 5, and 2 modes are required for the Lorenz ’96 model with
forcings F ! 18, 14, and 8, respectively. Steep spectrums, like that
seen for F ! 8, indicate that the SVD representation is likely to be
able to capture the relevant model error information with very
few degrees of freedom.

FIG. 4. Typical 10-day ensemble forecasts of x1 using model (30), F ! 14, with empirical correction terms
described by (31). The dashed curve is a true solution of system (27), (28). The solid curves are a 20-member
ensemble forecast of model (30), initialized according to Eq. (34). Forecasts empirically corrected by the observed
bias of model (29)—namely, D(2)—perform slightly better than forecasts not corrected at all, D(1). Ensemble
divergence is typically significant by day 5 for both D(1) and D(2). Ensemble spread is weak for both Leith’s
empirical correction D(3) and the SVD correction D(4) with mode truncation K ! 5. However, small spread is seen
for perfect model forecasts D(5), and the effect is less evident for F ! 8 and F ! 18.
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errors for each resolved variable xi were then fit with a
degree four polynomial

D!6"!xi" # !0 $ !1xi $ !2xi
2 $ !3xi

3 $ !4xi
4 $ ei, !36"

where the term ei was a stochastic component and %0

corresponds to &'xa
(t) from (3). For ei # 0, Wilks found

that, on average, 20-member ensemble forecasts
crossed the 0.6 anomaly correlation line at a time of 4
days. This improvement is illustrated by the * in the

bottom left window of Fig. 5. Wilks demonstrated a
particular choice for the stochastic term ei to increase
the crossing time of 20-member ensemble forecasts by
180% of the crossing time for single integrations with a
deterministic parameterization of model error. En-
semble spread was also shown to improve as a result of
the stochastic parameterization, with deterministic pa-
rameterizations resulting in smaller spread. Figure 5
demonstrates Leith’s state-dependent linear correction
to improve on the crossing time of 20-member en-

FIG. 5. Average anomaly correlation and RMSE the ensemble mean of 10 000 independent 20-member
ensemble forecasts. The state-independent correction D(2) adds approximately 1 time unit (5 days) to the
usefulness of forecasts with no correction (D(1)) for F # 8, and 0.1 time units (12 h) to the usefulness of
F # 14 and F # 18 forecasts. With a parameterization of model error in F # 18 forecasts, Wilks (2005)
improved forecasts by a similar length of time (see the * in the lower left hand window). For F # 14, Leith’s
operator D(3) improves forecasts by an average of 710%, and the SVD correction D(4) results in an average
improvement of 1176%. The SVD correction is chosen to have K # 7, 5, and 2 modes for forcings F # 18,
14, and 8, respectively; the truncation was chosen to explain 95% of the variance in the cross-covariance
matrix C"x 12

a x 12
f (see Fig. 3). The only source of error in forecasts made with the perfect model D(5) is

observational noise. See Table 1 for a complete list of improvements.
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semble forecasts by 292% for F ! 18 and the SVD
correction to improve on the same measure by 338%.
For F ! 8 and F ! 14, the SVD method outperforms
Leith’s method by a much larger margin (see Table 1).

Figure 6 shows the average ensemble spread versus
time and versus RMSE. The ensemble dispersion is
good for the SVD correction D(4) for F ! 8, but for
both F ! 14 and F ! 18 there is essentially no spread.
We believe that this is related to the number of degrees
of freedom used to correct the model as shown in
Fig. 3. Only K ! 2 modes are used for SVD correction
of F ! 8, while K ! 5 and K ! 7 modes are used for
F ! 14 and F ! 18 respectively. As a result, for F ! 8
there are enough degrees of freedom to allow for un-
stable modes in the SVD-corrected model (Fig. 2), and
the ensemble spread is quite good (Fig. 6). By contrast,
for F ! 14 and F ! 18, all of the modes used to correct
forecasts result in damping of anomalies (Fig. 2), and
consequently in damping the ensemble spread as well.
In a more realistic model, the number of SVD modes
needed for the empirical correction should be much
smaller than the number of degrees of freedom of the
model, and the reduction in spread may not be as se-
vere as observed in this model. It should be noted that
both SVD and the Leith empirical correction methods
essentially find the maximum likelihood estimate of the
probability distribution of corrections observed during
the training period, given the current state. It may be
possible to derive within the SVD scheme a low-order
method for estimating the uncertainty associated with
each correction. In that case the improvement of the
ensemble spread could be obtained by adding random
corrections drawn from this distribution to each en-
semble member, as suggested by an anonymous re-
viewer.

5. Discussion

Leith’s method consistently improves forecasts for
short lead times, outperforming the SVD method for
the first 10 days of F ! 14 and F ! 18 forecasts. After
10 days, the ensemble spread of forecasts made using
Leith’s method grows rapidly, while the spread in
SVD method forecasts remains small. The F ! 14
and F ! 18 forecasts made with the SVD correction
deteriorate rapidly the first few days after which time
they degrade at essentially the same rate as forecasts
made with a perfect model. This second dynamic
behavior is an indication that after the first few days,
the SVD method is an excellent parameterization of
the behavior of the small-amplitude variables. In fact,
the SVD method performs as well or better than the
perfect model for the first 10 days of F ! 8 forecasts.
However, we see in Fig. 3 that as F increases, the SVD
method requires a greater number of modes to repre-
sent the cross-correlation matrix utilized by Leith’s
method. As a result, in the SVD method, F ! 18 fore-
casts are corrected by modes whose coupling is less
statistically significant than F ! 8 and F ! 14. This
is demonstrated by mode k ! 8 in Fig. 2, which sig-
nificantly harms SVD-corrected forecasts [see final
D(4)(x) row in Table 1] relative to truncation at mode
K ! 7.

Clearly, these results are overoptimistic in that the
model error in (29) relative to system (27) is highly
state-dependent. However, Fig. 5 indicates that both
Leith’s empirical correction operator and the SVD ap-
proximation do an excellent job representing the state-
dependent component of the unresolved small-ampli-
tude behavior. In fact, the SVD method isolates and
ranks the most relevant spatial correlations described

TABLE 1. Improvement in crossing time of anomaly correlation scores with 0.6 for different empirical correction schemes relative to
D(1)(x) ! 0. For the anomaly correlations, see Fig. 5 where D(4)(x) is truncated at mode K ! 2, 5, and 7 for the Lorenz ’96 model with
forcings F ! 8, 14, and 18, respectively. These improvements are shown in bold in the chart. The truncation was chosen to explain 95%
of the variance in the cross-covariance matrix C!x 12

a x 12
f ; see Fig. 3.

Lorenz ’96 forcing F ! 8 F ! 14 F ! 18

D(1)(x) ! 0 0% (0 days) 0% (0 days) 0% (0 days)
D(2)(x) ! "#x a

12$ 156% (5.3 days) 22% (0.8 days) 2% (0.1 days)
D(3)(x) ! "#x a

12$ % Lx! 181% (6.1 days) 710% (27.2 days) 292% (10.5 days)
D(4)(x) ! "#x a

12$ % &1
k!1zk(T ) 509% (17.3 days) '26% ('1.0 days) '6% ('0.2 days)

D(4)(x) ! "#x a
12$ % &2

k!1zk(T ) 375% (12.7 days) 53% (2.0 days) '2% ('0.1 days)
D(4)(x) ! "#x a

12$ % &3
k!1zk(T ) 309% (10.5 days) 215% (8.2 days) 57% (2.0 days)

D(4)(x) ! "#x a
12$ % &4

k!1zk(T ) 285% (9.7 days) 471% (18.0 days) 120% (4.3 days)
D(4)(x) ! "#x a

12$ % &5
k!1zk(T ) 270% (9.2 days) 1176% (45.0 days) 213% (7.6 days)

D(4)(x) ! "#x a
12$ % &6

k!1zk(T ) 276% (9.4 days) 1288% (49.3 days) 294% (10.6 days)
D(4)(x) ! "#x a

12$ % &7
k!1zk(T ) 280% (9.5 days) 1325% (50.7 days) 338% (12.1 days)

D(4)(x) ! "#x a
12$ % &8

k!1zk(T) 280% (9.5 days) 384% (14.7 days) 139% (5.0 days)
D(5)(x) ! perfect model 1528% (51.8 days) 3026% (115.6 days) 479% (17.2 days)
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by Leith’s operator. As a result, truncation can actually
improve performance. This was verified by using K !
I ! 8 modes for term D(4)(x); forecasts were slightly
worse than those made using Leith’s operator for forc-
ings F ! 14 and F ! 18.

The methods presented here have relied on an exact
characterization of the true state for a very long train-
ing period in order to understand the best possible im-
pact of empirical correction. While the analysis incre-
ments for an operational weather model are typically
available from preimplementation testing, they are
computed as the difference between an analysis that
suffers from deficiencies in the model used to create it,
and are only available for short training periods. Future

studies will examine the effectiveness of model error
parameterization by SVD using less accurate estimates
of the true state and shorter training periods.

6. Conclusions

A new method of state-dependent error correction
was introduced, based on singular value decomposition
of coupled residual and forecast state anomalies. The
cross-covariance is the same as that which appears in
Leith’s formulation, but it would be prohibitive to com-
pute for the grid density required by operational
weather models. The new method uses the SVD modes
as a basis for linear regression and results in significant

FIG. 6. Average ensemble spread is shown vs time and vs RMSE for 10 000 independent 20-member
ensemble forecasts. Terms D(1) and D(2) have been removed for visual clarity. Weak ensemble dispersion
is seen for D(4) for F ! 14 and F ! 18. Since K ! 2 modes were used for SVD correction of F ! 8, the
ensemble spread is quite good. As more modes are used to correct the forecast, the empirical correction
appears to overpower the model dynamics.
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forecast improvement. The new method is also many
orders of magnitude faster than Leith’s empirical cor-
rection. The method can be applied at a rather low cost,
both in the training and in the correction phases, and
yields significant forecast improvements, at least for the
Lorenz ’96 model and the simple but realistic global
QG and SPEEDY models (Danforth et al. 2007). It
could be applied with low computational cost and mini-
mal sampling problems to data assimilation and en-
semble numerical weather prediction, applications
where accounting for model errors has been found to
be important. The method may be particularly useful
for forecasting of severe weather events where a pos-
teriori bias correction will typically weaken anomalies.
Furthermore, the patterns identified by SVD could also
be used to identify sources of model deficiencies and
thereby guide future model improvements. Further de-
velopment of the SVD method will include a low-order
method for estimating the uncertainty in the correction
terms.
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