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FIG. 1. Interactive online viewer. Screenshot of the Storywrangler site showing example Twitter n-gram time series for
the first half of 2020. The series reflect three global events: The assassination of Iranian general Qasem Soleimani by the United

States on 2020-01-03, the COVID-19 pandemic (the virus emoji and ‘coronavirus’), and the Black Lives Matter protests
following the murder of George Floyd by Minneapolis police (‘#BlackLivesMatter’). The n-gram Storywrangler dataset for
Twitter records the full ecology of text elements, including punctuation, hashtags, handles, and emojis. The default view is for
n-gram (Zipfian) rank at the day scale (Eastern Time), a logarithmic y-axis, and for retweets to be included. These settings
can be respectively switched to normalized frequency, linear scale, and organic tweets (OT) only. The displayed time range can
be adjusted with the selector at the bottom, and all data is downloadable.

entific advances generally show shock-like responses with
little anticipation or memory [36]. CRISPR is an excep-
tion for these few examples as through 2015, it moves to
a higher, enduring state of being referenced.

Fame is the state of being talked about and famous
individuals are well reflected on Twitter [37]. In Fig. 2E,
we show time series for the Portuguese football play-
er Cristiano Ronaldo, the 45th US president Donald

Trump, and Pope Francis (Papa Francesco in Italian).
All three show enduring fame, following sudden rises for
both Trump and Pope Francis. On November 9, 2016,
the day after the US election, ‘Donald Trump’ rose to
rank r = 6 among all English 2-grams.

In Fig. 2F, we show example major infectious disease
outbreaks over the last decade. Time series for pandemics
are shocks followed by long relaxations, resurging both

“Storywrangler: A massive exploratorium for sociolinguistic, cultural, socioeconomic, and political
timelines using Twitter”, Alshaabi et al., In Review, 2021.
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FIG. 2. Thematically connected n-gram time series. For each n-gram, we display daily rank in gray overlaid by a centered
monthly rolling average (colored lines), and highlight the n-gram’s overall highest rank with a solid disk. A. Anticipation and
memory of calendar years for all of Twitter. B. Annual and periodic events: Christmas in English (blue), Easter in Italian
(orange), election in Portuguese (green), and summer in Swedish (red). C. Attention around international sports in English:
Olympics (blue), FIFA world cup (orange), and Super Bowl (red). D. Major scientific discoveries and technological innovations
in English. E. Three famous individuals in relevant languages: Ronaldo (Portuguese), Trump (English), and Pope Francis
(Italian). F. Major infectious disease outbreaks. G. Conflicts: Gaza in Arabic (blue), Libya in French (orange), Syria in
Turkish (green), and Russia in Ukrainian (red). H. Protest and movements: Arab Spring (Arabic word for ‘revolution’, blue),
Occupy movement (English, orange), Brexit campaign (English, green), #MeToo movement (English, brown), and Black Lives
Matter protests (English, red).

“Storywrangler: A massive exploratorium for sociolinguistic, cultural, socioeconomic, and political
timelines using Twitter”, Alshaabi et al., In Review, 2021.
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“Storywrangler: A massive exploratorium for sociolinguistic, cultural, socioeconomic, and political
timelines using Twitter”, Alshaabi et al., In Review, 2021.
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FIG. 3. Case studies. We cross-
reference our English 2-grams cor-
pus with famous figures from the
Pantheon data set [10] in panels
(A–B). We show a monthly rolling
average of rank hri for the top-5
ranked Americans born through-
out the last century in each cat-
egory for a total of 960 individ-
uals found in the Pantheon data
set. We further demonstrate low-
est rank rmin achieved by 751 per-
sonalities in the film and theater
industry as a function of their
age—number of years since year
of birth. We depict a few exam-
ples portraying anticipation and
decay of movie titles (see (C)),
along with a di↵erent sociotech-
nical behavior of TV series on
Twitter (see (D)). In panels (E)
and (F), we show another case
study incorporating 636 movie
titles with gross revenue at or
above the 95th percentile released
between 2010/01 and 2017/07 [11].
Storywrangler can also be used to
predict political and financial tur-
moil as we demonstrate in panels
(G) and (H). Percent change in
the words “protests” and “crack-
down” in month m � 1 are sig-
nificantly associated with percent
change in a geopolitical risk index
in month m [12]. We display the
percent change time series in pan-
el (G) and distributions of coe�-
cients of a fit linear model in panel
(H). More details are in Sec. S1 G.

in the Twitter lexicology across languages. Although
both Fig. IIA and Fig. IIB display periodic time series,
they exhibit di↵erent story contagion drivers. The dialog
around the ‘Carnival of Madeira’ festival—held forty days
before Easter in Brazil—has transitioned to a socially
contagious state over several periods of time, while spring
continues to appear more organically in Finnish. Simi-
lar patterns of social amplification can be seen across all
languages. Celebrities are often mentioned in retweets,
yet settled di↵erences can be observed in their time
series (e.g., Figs. IIC). Some ngrams can go viral due
to a geopolitical event or a global outbreak (Figs. IIE–
F), while others may display a more consistent behavior
(Fig. S1 A).

B. Case studies

We investigate the conversation surrounding major
film releases by tracking n-grams that appear in titles for
636 movies with gross revenue above the 95th percentile
during the period ranging from 2010/01 to 2017/07 [11].
Peak conversation surrounding major movies tends to
occur a few days after the release date of the film. We find
a median value of 3 days post-release for peak frequen-
cy of usage for movie n-grams (Fig. IIF inset). Growth
of n-gram usage from 50% (f.5) to maximum frequency
(fmax) has a median value of 5 days across our titles.
The median value of time to return to f.5 from fmax is
6 days. Looking at Fig. IIE we see the median shape

“Storywrangler: A massive exploratorium for sociolinguistic, cultural, socioeconomic, and political
timelines using Twitter”, Alshaabi et al., In Review, 2021.
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Hahahahaha, Duuuuude, Yeeessss!: A two-parameter characterization of stretchable
words and the dynamics of mistypings and misspellings

Tyler J. Gray,1, ⇤ Christopher M. Danforth,1, † and Peter Sheridan Dodds1, ‡

1Vermont Complex Systems Center, Computational Story Lab,
Department of Mathematics & Statistics, The University of Vermont, Burlington, VT 05401.

(Dated: July 8, 2019)

Stretched words like ‘heellllp’ or ‘heyyyyy’ are a regular feature of spoken language, often used
to emphasize or exaggerate the underlying meaning of the root word. While stretched words are
rarely found in formal written language and dictionaries, they are prevalent within social media.
In this paper, we examine the frequency distributions of ‘stretchable words’ found in roughly 100
billion tweets authored over an 8 year period. We introduce two central parameters, ‘balance’ and
‘stretch’, that capture their main characteristics, and explore their dynamics by creating visual
tools we call ‘balance plots’ and ‘spelling trees’. We discuss how the tools and methods we develop
here could be used to study the statistical patterns of mistypings and misspellings, along with the
potential applications in augmenting dictionaries, improving language processing, and in any area
where sequence construction matters, such as genetics.

I. INTRODUCTION

Watch a soccer match, and you are likely to hear an
announcer shout ‘GOOOOOOOOOAAAAAAAAL!!!!!!’.
Stretched words, sometimes called elongated words [1],
are an integral part of spoken language, often used
to modify the meaning of the base word in some
way, such as to strengthen the meaning (e.g., ‘huuu-
uuge’), imply sarcasm (e.g., ‘suuuuure’), show excite-
ment (e.g., ‘yeeeessss’), or communicate danger (e.g.,
‘nooooooooooooo’). We will refer to words that are
amenable to such lengthening as ‘stretchable words’.

However, despite their being a fundamental part of
spoken language, stretched words are rarely found in lit-
erature and lexicons: There is no ‘hahahahahahaha’ in
the Oxford English Dictionary [2]. With the advent and
rise of social media, stretched words have finally found
their way into large-scale written text.

With the increased use of social media comes rich
datasets of a linguistic nature, granting science an
unprecedented opportunity to study the everyday linguis-
tic patterns of society. As such, in recent years there have
been a number of papers published that have used data
from social media platforms, such as Twitter, to study
di↵erent aspects of language [3–9].

In this paper, we use an extensive set of social media
messages collected from Twitter—tweets—to investigate
the characteristics of stretchable words used in this par-
ticular form of written language. The tools and approach
we introduce here have many potential applications,
including the possible use by dictionaries to formally
include this intrinsic part of language. The online dic-
tionary Wiktionary has already discussed the inclusion
of some stretched words and made a policy on what to

⇤ tyler.gray@uvm.edu
† chris.danforth@uvm.edu
‡ peter.dodds@uvm.edu

include [10, 11]. Other potential applications include the
use by natural language processing software and toolkits,
and by Twitter to build better spam filters.

We structure our paper as follows: In Sec. II, we
detail our dataset and our method of collecting stretch-
able words and distilling them down to their ‘kernels’.
In Sec. IIIA, we examine the frequency distributions for
lengths of stretchable words. We quantify two indepen-
dent properties of stretchable words: Their ‘balance’ in
Sec. III B and ‘stretch’ in Sec. III C. In Sec. IIID, we
develop an investigative tool, ‘spelling trees’, as a means
of visualizing stretchable words involving a two charac-
ter repeated element. We comment on mistypings and
misspellings in Sec. III E. Finally, in Sec. IV, we provide
concluding remarks.

II. DESCRIPTION OF THE DATASET AND
METHOD FOR EXTRACTING STRETCHED

WORDS

The Twitter dataset we use in this study comprises
a random sample of approximately 10% of all tweets
(the ‘gardenhose’ API) from 9 September 2008 to 31
December 2016. We limited our scope to tweets that
either were flagged as an English tweet or not flagged
for any language. All tweets in this time period have a
maximum length of 140 characters. To collect stretch-
able words, we begin by making all text lowercase and
collecting all tokens within our dataset from calendar
year 2016 that match the Python regular expression
r‘(\b\w*(\w)(\w)(?:\2|\3){28,}\w*\b)’. This pattern
will collect any token with at least 30 characters that
has a single character repeated at least 29 times consec-
utively, or two di↵erent characters that are repeated in
any order at least 28 times, for a total of at least 30 con-
secutive repeated occurrences of the two characters. The
choice of 28 in the regular expression is a threshold we
chose with the goal of limiting our collection to tokens of
words that really do get stretched in practice.

Typeset by REVTEX
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FIG. 3. Token count distribution for the kernel [g][o][a][l].
The horizontal axis represents the length (number of charac-
ters) of the token and the vertical axis gives the total number
of tokens of a given length that match this kernel. See Fig. 1
caption for details on the included statistics. The base version
of the word appears roughly 100 times more frequently than
the most common stretched version.

FIG. 4. Token count distribution for the kernel (ha). The
horizontal axis represents the length (number of characters)
of the token and the vertical axis gives the total number of
tokens of a given length that match this kernel. See Fig. 1
caption for details on the included statistics.

perfect alternating repetition of ‘h’ and ‘a’, hahaha. . . ,
to represent laughter. Under this assumption, the correct
versions will be even length. Then, any incorrect version
could be odd or even length depending on the number of
mistakes. We look at mistakes further in Sec. III E.

We note that there is also an initial rollover in this
distribution, showing that the four character token, with
dominant contributor ‘haha’, is the most common version
for this kernel. We also again see some elevated counts
near the tail, including for 140 characters, along with
some depressed counts just short of 140, which again sug-
gests that when users approach the character limit with
stretched versions of (ha), they will most likely fill the
remaining space. We did not perform a detailed analysis
of this area, but it is likely that the other elevated points
near the end are again due to the inclusion of a link or
user handle, etc. Similarly, the general flattening of the
distribution’s right tail is likely a result of random lengths
of short other text combined with a stretched word that
fills the remaining space.

Similar distributions for each kernel can be found
in Online Appendix B at http://compstorylab.org/
stretchablewords/.

B. Balance

For each kernel, we measure two quantities: 1. The
balance of the stretchiness across characters, and 2. the
overall stretchiness of the kernel. To measure balance,
we calculate the average stretch of each character in the
kernel across all the tokens within a bin of token lengths.
By average stretch of a character, we mean the average
number of times that character appears. Fig. 5 shows the
balance for the kernel [g][o][a][l] partitioned into bins of
logarithmically increasing sizes of length. The horizon-
tal dashed lines represent the bin edges. The distance
between the solid diagonal lines represents the average
stretch, or average number of times each character was
repeated, and are plotted in the same order that they
appear in the kernel. From this figure we see that ‘g’ is
not stretched much on average, ‘o’ is stretched the most,
and ‘a’ and ‘l’ are both stretched around 2/3 as much as
‘o’.

When part of the kernel is a two letter element of the
form (l1l2), we still count the number of occurrences of l1
and l2 corresponding to this element in the kernel sepa-
rately, even though the letters can be intermingled in the
stretched word. When we display the results, we display
it in the same order that the letters appear in the kernel.
So in Fig. 6, which shows the results for the kernel (ha),
the first space represents the average stretch for ‘h’ and
the second space is for ‘a’. From this figure, we can see
that the stretch is almost perfectly balanced between the
two letters on average.

Similar balance plots can be found for each ker-
nel in Online Appendix C at http://compstorylab.org/
stretchablewords/. In general, for these balance plots,
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FIG. 5. Balance plot for the kernel [g][o][a][l]. The vertical
axis represents the length (number of characters) of tokens,
and is broken into bins of lengths, with boundaries denoted by
horizontal dashed lines, which increase in size logarithmically.
For all the tokens that match the kernel and fall within a bin
of lengths, the average number of times each character was
stretched in those tokens was calculated, and is shown on the
plot as the distance between two solid lines in the same order
as in the kernel. Thus, for a given bin, the distance between
the vertical axis and the first solid line is the average stretch
for the letter ‘g’, the distance between that first line and the
second line is the average stretch for the letter ‘o’, and so
on. For example, the last bin contains tokens with lengths in
the interval [131, 140], with average length roughly 137. On
average, tokens falling in this most celebratory bin contain
roughly 3 ‘g’s, 57 ‘o’s, 41 ‘a’s, and 36 ‘l’s.

we stop plotting at the first bin with no tokens, even if
later bins may be nonempty.

For each kernel, we also calculate an overall measure
of balance. To do this, we begin by binning the tokens
by length. Then, for each bin (containing tokens longer
than the kernel) we calculate the average stretch for each
character across tokens within the bin as before. Then,
we subtract one from each of these values (removing the
contribution from each base character; counting just the
number of times each character was repeated) and nor-
malize the values so they sum to 1 and can be thought
of like probabilities. We then average the probabilities
across the bins, weighing each bin equally, and compute
the normalized entropy, H, of the averaged probabilities
as our overall measure of balance. This measure is such
that if each character stretches the same on average, the
normalized entropy is 1, and if only one character in the
kernel stretches, the normalized entropy is 0. Thus, high-
er entropy corresponds with more balanced words. (For
a comparison with an alternate entropy measure where

FIG. 6. Balance plot for the kernel (ha). See the Fig. 5 cap-
tion for plot details. For two letter elements, even though the
letters can alternate within a given token, we still count the
number of occurrences for each letter separately and display
the average number of total repetitions in the same order as
the letters appear in the kernel. Thus, for a given bin, the
distance between the vertical axis and the first line is the aver-
age number of times the letter ‘h’ occurred in the tokens, and
the distance between that first line and the second line is the
average number of times the letter ‘a’ occurred in the token.
This plot clearly shows that (ha) is well balanced across all
bins of token lengths.

tokens contribute equally rather than equally weighing
each length bin, and an explanation of the di↵erent cor-
responding views, see Appendix A.)

Fig. 7 shows two ‘jellyfish plots’ [13] for balance.
Fig. 7A is the version containing all words and for Fig. 7B
we remove the words that have a value of 0 for entropy.
The top of the left plot in Fig. 7 shows the frequen-
cy histogram of the normalized entropy for each kernel.
The spike containing value 0 comes largely from kernels
where only one character stretches, giving that kernel an
entropy of exactly 0. The main plot shows the normalized
entropy values as a function of word rank, where rank is
given, as before, by the sum of stretched token counts.
The ‘tentacles’ give rolling deciles. That is, for rolling
bands of 500 words by rank, the deciles 0.1, 0.2, . . . , 0.9
are calculated for the entropy values, and are represented
by the solid lines. These plots allow us to see how stable
the distribution is across word ranks.

We can see from Fig. 7A that the distribution large-
ly shifts towards smaller entropy values with increasing
rank, mostly drawn in that direction by the kernels with
only a single repeated letter and entropy exactly 0. For
Fig. 7B, we remove all kernels with entropy 0. Every-
thing else remains the same, including the rank of each

g ooo…ooo aa…aa llllll…lllll
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The ‘tentacles’ give rolling deciles. That is, for rolling
bands of 500 words by rank, the deciles 0.1, 0.2, . . . , 0.9
are calculated for the entropy values, and are represented
by the solid lines. These plots allow us to see how stable
the distribution is across word ranks.

We can see from Fig. 7A that the distribution large-
ly shifts towards smaller entropy values with increasing
rank, mostly drawn in that direction by the kernels with
only a single repeated letter and entropy exactly 0. For
Fig. 7B, we remove all kernels with entropy 0. Every-
thing else remains the same, including the rank of each

Tyler Gray et al. "Hahahahaha, Duuuuude, Yeeessss!: A two-parameter characterization of stretchable
words and the dynamics of mistypings and misspellings" 2019
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FIG. 10. Spelling tree for the kernel (ha). The root node represents ‘h’. From there, branching to the left (light gray edge) is
equivalent to appending an ‘h’. Branching to the right (dark gray edge) is equivalent to appending an ‘a’. The edge width is
logarithmically related to the number of tokens that pass along that edge when spelled out. A few example words are annotated,
and their corresponding nodes are denoted with a star. This tree was trimmed by only including words with a token count
of at least 10,000. The code used to create the figures for these spelling trees is largely based on the algorithm presented by
Wetherel and Shannon [14]. We note that Mill has written a more recent paper based largely on this earlier work specialized
for Python [15], and an implementation for it as well [16], but they both contain algorithmic bugs (detailed in Appendix C).

nel using the Gini coe�cient. Thus, this plot positions
each kernel in the two dimensional space of balance and
stretch. We see that the kernels spread out across this
space and that these two dimensions capture two inde-
pendent characteristics of each kernel.

We do note that there are some structures visible in
Fig. 9. There is some roughly vertical banding. In
particular, the vertical band at H = 0 is from kernels
that only allow one character to stretch and the vertical
band near H = 1 is from kernels where all characters
are allowed to stretch and do so roughly equally, which
especially occurs with kernels that are a single two letter
element. Fainter banding around H ⇡ .43, H ⇡ .5, and
H ⇡ .63 can also be seen. This largely comes from ker-
nels of length 5, 4, and 3, respectively, that allow exactly
two characters to stretch and those characters stretch
roughly equally. If the stretch was perfectly equal, then
the normalized entropy in each respective case would
be H = 1/ log2(5) ⇡ .43, H = 1/ log2(4) = .5, and
H = 1/ log2(3) ⇡ .63.

D. Spelling trees

So far we have considered frequency distributions for
kernels by token length, combining the token counts for
all the di↵erent words of the same length matching the
kernel. However, di↵erent tokens of the same length
may of course be di↵erent words—di↵erent stretched
versions—of the same kernel. For kernels that contain
only single letter elements, these di↵erent versions may
just have di↵erent amounts of the respective stretched
letters, but all the letters are in the same order. However,
for kernels that have two letter elements, the letters can
change order in myriad ways, and the possible number of
di↵erent stretched versions of the same length becomes
much larger and potentially more interesting.

In order to further investigate these intricacies, we
introduce ‘spelling trees’ to give us a visual method of
studying the ways in which kernels with two letter ele-
ments are generally expanded. Fig. 10 gives the spelling
tree for the kernel (ha). The root node is the first letter

Tyler Gray et al. "Hahahahaha, Duuuuude, Yeeessss!: A two-parameter characterization of stretchable
words and the dynamics of mistypings and misspellings" 2019
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FIG. 11. A collection of example spelling trees. From left to right, top to bottom, trees for the kernels (to), (ja), (aw), (do),
h(er), (fu), (mo), and (xo).

Tyler Gray et al. "Hahahahaha, Duuuuude, Yeeessss!: A two-parameter characterization of stretchable
words and the dynamics of mistypings and misspellings" 2019
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FIG. 8. Jellyfish plots for kernel stretch as measured by the
Gini coe�cient, G, of its token count distribution, where high-
er Gini coe�cient denotes increased stretch. The histogram
is given at the top of the plot (with logarithmic width bins).
Kernels are plotted vertically by their rank, r, and horizon-
tally (on a logarithmic scale) by their stretch. The deciles
0.1, 0.2, . . . , 0.9 are calculated for rolling bins of 500 kernels
and are plotted as the ‘tentacles’.

coe�cient will be closer to 1. Fig. 8 gives the jellyfish
plot for the Gini coe�cient for each kernel. The horizon-
tal axis has a logarithmic scale, and the histogram bins
have logarithmic widths. From this plot, we see that the
distribution for stretch is quite stable across word ranks,
except for perhaps a slight shift towards higher Gini coef-
ficient (more stretchiness) for the highest ranked kernels.

G Kernel Example token

1 0.66472 [k] kkkkkkkkkkkkkkk

2 0.63580 [w][v][w] wwwwwwwwwwvwwww

3 0.62843 [m][n][m] mmmmmmmmmmmmnm

4 0.53241 [o][c][o] oooooooooco

5 0.52577 wa(ki) wakikikikkkikikik

6 0.51706 (go)[l] goooooooooool

7 0.51273 [m][w][m] mmmmmwmmmmmmmmm

8 0.50301 galop[e]ir[a] galopeeeeira

9 0.50193 [k][j][k] kkkkkjjkkkkkkkkkk

10 0.49318 [i][e][i] iiiiiieeiiiiiii

TABLE IV. Top 10 kernels by Gini coe�cient, G.

Table IV shows the top 10 kernels ranked by Gini coef-
ficient and Table V shows the bottom 10. The top kernel
is [k], which represents laughter in Portuguese, similar
to (ha) in English (and other languages). Containing a
single letter, [k] is easier to repeat many times, and does

FIG. 9. Kernels plotted in Balance-Stretch parameter space.
Each kernel is plotted horizontally by the value of its balance
parameter, given by normalized entropy, H, and vertically
(on a logarithmic scale) by its stretch parameter, given by
the Gini coe�cient, G, of its token count distribution. Larg-
er entropy implies greater balance and larger Gini coe�cient
implies greater stretch.

G Kernel Example token

1 0.00001 am[p] amppppppppp

2 0.00002 m[a]kes maaaaaaaaakes

3 0.00002 fr[o]m frooooooooooom

4 0.00002 watch[i]ng watchiiiiiing

5 0.00003 w[i]th wiiiiiiiith

6 0.00004 pla[y]ed playyyyyyed

7 0.00004 s[i]nce siiiiiiiince

8 0.00006 eve[r]y everrrrrrrrrry

9 0.00006 manage[r] managerrrrr

10 0.00007 learnin[g] learninggggg

TABLE V. Bottom 10 kernels by Gini coe�cient, G.

not have an unstretched version that is a common word.
We also see (go)[l] on the list, where ‘gol’ is Spanish and
Portuguese for ‘goal’. Interestingly, (go)[l] has a much
higher Gini coe�cient (G = 0.5171) than [g][o][a][l] does
(G = 0.1080). The kernels with lowest Gini coe�cient
all represent regular words and all allow just one letter
to stretch, which does not get stretched much.

In Fig. 9, we show a scatter plot of each kernel where
the horizontal axis is given by the measure of balance
of the kernel using normalized entropy, and the vertical
coordinate is given by the measure of stretch for the ker-

ha

goal

fu
k

learningggg

taylorrrr

Tyler Gray et al. "Hahahahaha, Duuuuude, Yeeessss!: A two-parameter characterization of stretchable
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valence word valence std dev twitter g-books nyt lyrics
rank rank rank rank rank

1 laughter 8.50 0.93 3600 – – 1728
2 happiness 8.44 0.97 1853 2458 – 1230
3 love 8.42 1.11 25 317 328 23
4 happy 8.30 0.99 65 1372 1313 375
5 laughed 8.26 1.16 3334 3542 – 2332
6 laugh 8.22 1.37 1002 3998 4488 647
7 laughing 8.20 1.11 1579 – – 1122
8 excellent 8.18 1.10 1496 1756 3155 –
9 laughs 8.18 1.16 3554 – – 2856
10 joy 8.16 1.06 988 2336 2723 809
11 successful 8.16 1.08 2176 1198 1565 –
12 win 8.12 1.08 154 3031 776 694
13 rainbow 8.10 0.99 2726 – – 1723
14 smile 8.10 1.02 925 2666 2898 349
15 won 8.10 1.22 810 1167 439 1493
16 pleasure 8.08 0.97 1497 1526 4253 1398
17 smiled 8.08 1.07 – 3537 – 2248
18 rainbows 8.06 1.36 – – – 4216
19 winning 8.04 1.05 1876 – 1426 3646
20 celebration 8.02 1.53 3306 – 2762 4070
21 enjoyed 8.02 1.53 1530 2908 3502 –
22 healthy 8.02 1.06 1393 3200 3292 4619
23 music 8.02 1.12 132 875 167 374
24 celebrating 8.00 1.14 2550 – – –
25 congratulations 8.00 1.63 2246 – – –
26 weekend 8.00 1.29 317 – 833 2256
27 celebrate 7.98 1.15 1606 – 3574 2108
28 comedy 7.98 1.15 1444 – 2566 –
29 jokes 7.98 0.98 2812 – – 3808
30 rich 7.98 1.32 1625 1221 1469 890
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10193 violence 1.86 1.05 4299 1724 1238 2016
10194 cruel 1.84 1.15 2963 – – 1447
10195 cry 1.84 1.28 1028 3075 – 226
10196 failed 1.84 1.00 2645 1618 1276 2920
10197 sickness 1.84 1.18 4735 – – 3782
10198 abused 1.83 1.31 – – – 4589
10199 tortured 1.82 1.42 – – – 4693
10200 fatal 1.80 1.53 – 4089 – 3724
10201 killings 1.80 1.54 – – 4914 –
10202 murdered 1.80 1.63 – – – 4796
10203 war 1.80 1.41 468 175 291 462
10204 kills 1.78 1.23 2459 – – 2857
10205 jail 1.76 1.02 1642 – 2573 1619
10206 terror 1.76 1.00 4625 4117 4048 2370
10207 die 1.74 1.19 418 730 2605 143
10208 killing 1.70 1.36 1507 4428 1672 998
10209 arrested 1.64 1.01 2435 4474 1435 –
10210 deaths 1.64 1.14 – – 2974 –
10211 raped 1.64 1.43 – – – 4528
10212 torture 1.58 1.05 3175 – – 3126
10213 died 1.56 1.20 1223 866 208 826
10214 kill 1.56 1.05 798 2727 2572 430
10215 killed 1.56 1.23 1137 1603 814 1273
10216 cancer 1.54 1.07 946 1884 796 3802
10217 death 1.54 1.28 509 307 373 433
10218 murder 1.48 1.01 2762 3110 1541 1059
10219 terrorism 1.48 0.91 – – 3192 –
10220 rape 1.44 0.79 3133 – 4115 2977
10221 suicide 1.30 0.84 2124 4707 3319 2107
10222 terrorist 1.30 0.91 3576 – 3026 –
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2

Corpus (Abbreviation): Date range # Words # Texts Reference

Twitter (TW) 9/9/2008 to 3/3/2010 9.07×109 8.21×108 tweets [19, 20]
Google Books Project, English (GB) 1520 to 2008 3.61×1011 3.29×106 books [21, 22]
The New York Times (NYT) 1/1/1987 to 6/30/2007 1.02×109 1.8×106 articles [23]
Music lyrics (ML) 1960 to 2007 5.86×107 2.95×105 songs [24]

TABLE I: Details of the four corpora we examined for positivity bias.
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FIG. 1: Positivity bias in the English language: Normalized frequency distribution (solid black curves) of happiness scores
for the 5000 most frequently used words in four corpora. Average happiness ratings for 10,222 words were obtained using
Mechanical Turk with 50 evaluations per word for a total of 501,110 human evaluations (see main text). The yellow shade
indicates words with average happiness scores above the neutral value of 5, gray those below. The symbols show normalized
frequency distributions for subset word usage frequency ranges (see legend) demonstrating an internal scale-free consistency
of positivity (see Fig. 2 for results of Kolmogorov-Smirnov tests). Upper inset plots show percentile locations and the lower
inset plots show the number of words found when cumulating toward the positive and negative sides of the neutral score of 5.
The distributions as shown were formed using 35 equal-sized bins; the number of bins does not change the visual form of the
distributions appreciably, and an odd number ensures that the neutral score of 5 is a bin center. We employed binning only
for visual display, using the raw data for all statistical analysis.
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tional response with an overall positive bias. Positivity
reflects our social nature [? ], broaden and build [? ],
and ??? [? ].

Negative emotional responses help us avoid [? ] and
focus [? ]

One or two intro paragraphs.
On the increase in altruism

⇤ Add Pinker
The meaningful atoms of language encode a prosocial

...
⇤ It’s surprising; people think negativity will be there.

components
⇤ Add that tracking the change in both language usage
and perception of language
⇤ Value of negative states: [3]

To explore the positivity of human language, we con-
structed 24 corpora spread across 10 languages, detailed
in Tab. I. Our global coverage of linguistically and
culturally diverse languages includes English, Spanish,
Brazilian Portuguese, Korean, Simplified Chinese, Rus-
sian, Indonesian, and Arabic. The sources of our corpora
are similarly broad spanning Twitter, subtitles of movies
and television programs, Google Books [? ], Google Web
Crawl [? ], the New York Times [? ], and music lyrics.

We take word usage frequency as the primary organiz-
ing measure of a word’s importance. Such a data driv-
en approach is crucial for both understanding the struc-
ture of language and for creating linguistic instruments
for principled measurements [4? ]. Each of our corpo-
ra contains between 5,000–10,000 of the most frequently
used words, the exact numbers chosen so that we have
approximately 10,000 words for each language. By con-
trast, earlier studies focusing on meaning and emotion
have used ‘expert’ generated word lists, and these fail to
fit the shape of natural language [5? , 6].

For each language, we paid native speakers to rate how
they felt in response to individual words on a 1 to 9 scale,
with 1 corresponding to most negative or saddest, 5 neu-
tral, and 9 most positive or happiest (see Methods for
details). This semantic di↵erential scale functions as a
coupling of two standard Likert scales. Participants were
restricted to certain regions or countries, for example,
Portuguese was rated by residents of Brazil, and Spanish
by ⇤ spanish raters?. Overall, we collected 50 ratings per
word for a total of ⇠ 5 ⇥ 106 individual human assess-
ments.

In Fig. 1, we show

⇤ Add to table where languages were rated
⇤ Get all demographics from Appen-Butler Hill
⇤ Past studies have shown a strong consistency of hap-
piness evaluations for words, varying little with demo-
graphic and even after language translation [? ]

Track the evolution of language usage and ratings over
time.
⇤ Expand by both direct ratings which could be funded
by national governments and made public and central-
ized, as we have done here

1 2 3 4 5 6 7 8 9

h
avg

Chinese: Google Books

Korean: Movie subtitles

English: Music Lyrics

Russian: Google Books

Korean: Twitter

Indonesian: Twitter

Arabic: Movie and TV subtitles

Russian: Movie and TV subtitles

French: Twitter

German: Google Books

French: Google Books

Russian: Twitter

German: Twitter

Indonesian: Movie subtitles

English: Twitter

French: Google Web Crawl

German: Google Web Crawl

English: New York Times

English: Google Books

Portuguese: Twitter

Portuguese: Google Web Crawl

Spanish: Twitter

Spanish: Google Books

Spanish: Google Web Crawl

FIG. 1: Distributions of perceived average word happiness
havg for 24 corpora in 10 languages. The histograms repre-
sent the 5000 most commonly used words the corpora (see
Tab. I), and native speakers scored words on a 1 to 9 double-
Likert scale with 1 being extremely negative, 5 neutral, and 9
extremely positive. Yellow indicates positivity (havg > 5) and
grey negativity (havg < 5), and distributions are ordered by
increasing median (red vertical line). The background grey
lines connect deciles of adjacent distributions. Fig. S1 shows
the same distributions arranged according to increasing vari-
ance.
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havg for 24 corpora in 10 languages. The histograms repre-
sent the 5000 most commonly used words the corpora (see
Tab. I), and native speakers scored words on a 1 to 9 double-
Likert scale with 1 being extremely negative, 5 neutral, and 9
extremely positive. Yellow indicates positivity (havg > 5) and
grey negativity (havg < 5), and distributions are ordered by
increasing median (red vertical line). The background grey
lines connect deciles of adjacent distributions. Fig. S1 shows
the same distributions arranged according to increasing vari-
ance.

2

tional response with an overall positive bias. Positivity
reflects our social nature [? ], broaden and build [? ],
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One or two intro paragraphs.
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...
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components
⇤ Add that tracking the change in both language usage
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⇤ Value of negative states: [3]
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are similarly broad spanning Twitter, subtitles of movies
and television programs, Google Books [? ], Google Web
Crawl [? ], the New York Times [? ], and music lyrics.
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FIG. 5. A. The left panel shows happiness benefit by park size. The largest category of parks (greater than 100 acres) had
the highest happiness benefit. B. The middle panel shows happiness benefit by season, with summer and fall exhibiting the
highest mean happiness benefit values. C. The right panel shows happiness benefit by day of the week, with the weekend days
higher than other days of the week. In all three panels, the range is the full range of happiness benefits from 10 runs, sampling
80% of tweets. 1,000 random in-park tweets were pooled in each group from each city. Control tweets were selected as tweets
most temporally proximate to the in-park tweet from the same city.

than they do outside of parks. This e↵ect is strongest
for the largest parks by area - greater than 100 acres.
The e↵ect is present during all seasons and days of the
week, but is most prominent during the summer and on
weekend days.

Pooling tweets across cities, we find a mean happiness
benefit of 0.10. According to Hedonometer.org, which
tracks Twitter happiness as a whole using the labMT dic-
tionary, Twitter has fluctuated around a mean happiness
of 6.02 since 2008. New Year’s Day has historically had
an average happiness of 6.11, giving it an average happi-
ness benefit of .10. Christmas, historically the happiest
day of the year on Twitter, has had an average happiness
benefit of 0.24. The global COVID-19 Pandemic gained
rapid recognition in the US on March 12, 2020, which
resulted in the then unhappiest day in Twitter’s history
with a drop of 0.31 from its historical average. Follow-
ing the murder of George Floyd, the Black Lives Matter
protests led to a new all-time low, 0.39 below the his-
torical average ([20]). These are considered large swings,
and we assess that the happiness benefit of 0.10 across a
sample of 25,000 tweets is a strong signal.

Positive words such as beautiful, fun, and enjoying con-
tributed to the higher levels of happiness from our in-
park tweet group. These words may relate to the stim-
ulating aspects of urban greenspace. This is support-
ed by a recent study that analyzed tweets to investi-
gate which aspects of restoration were most prominent
in urban greenspace. They found that fascination, an
emotional state induced through inherently interesting
stimuli, was most salient ([21]). Fascination is one char-
acteristic of nature experiences described by Attention
Restoration Theory, which theorizes that time in nature
provides an opportunity to recover from the cognitive
fatigue induced by mentally taxing urban environments

([22, 23]).
We find high levels of variation across cities for the hap-

piness benefit between in-park and out-of-park tweets.
In Chicago, higher frequencies of words such as beautiful
drive higher in-park tweet happiness. Park tweets had
lower frequencies of negative words such as don’t, not,
and hate (Fig. 4). Psychological experiments treat posi-
tive and negative a↵ect as separate measures ([24]); the
heterogeneity of the words driving the happiness bene-
fit may be related to how these components of a↵ect are
being expressed via tweets.

B. Park Analysis

Park spending per capita and ParkScoreR� were not
correlated with mean happiness benefit by city. However,
prior work has demonstrated an association between park
investment and levels of self-rated health ([10]). Another
study found higher levels of physical activity and health
to be associated with a composite score of park quality in
59 cities ([25]). Other factors such as heterogeneous use
patterns of Twitter across cities may be more associat-
ed with happiness benefit than measures of park quality
and spending. We encourage further investigation of the
relationship between park quality and investment with
the mental health benefits of nature contact.

Tweets inside of all park size categories exhibited a
positive happiness benefit. The largest parks, greater
than 100 acres, had the highest mean happiness bene-
fit. One possible explanation is that larger parks provide
greater opportunities for mental restoration and separa-
tion from the taxing environment of the city. This find-
ing is consistent with results from our earlier study in
San Francisco, in which tweets in the larger and greener

4
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FIG. 1. Happiness benefit by city, full range of values from 10 bootstrap runs in which 80% of tweets were randomly selected.
The dark grey dots represent the mean value from bootstrap runs. For each city, the control group consists of non-park tweets
posted at roughly the same time as each in-park tweet. The solid line marks a happiness benefit of 0, and the dotted line is
average happiness benefit across all 25 cities. Emojis denote the happiness benefit typically observed on New Year’s Day and
Christmas for all English tweets.

city (or all of the tweets in that category if there were
less than 500). After combining the randomly selected
tweets from each city for each park category, we estimat-
ed the happiness benefit using the same bootstrapping
procedure described above.

D. Temporal Analysis

Next, we estimate the happiness benefit based on when
tweets were posted in three di↵erent ways. First, we
grouped tweets based on the month they were posted
in four seasonal groups (Winter: Dec, Jan, Feb; Spring:
Mar, Apr, May; Summer: Jun, Jul, Aug; Fall: Sep, Oct,
Nov). Second, we grouped tweets based on the day of
the week they were posted. Finally, we grouped tweets
based on the hour of the day they were posted in their
local timezone (See Appendix A1 E). To have roughly
equal representation from each city, we randomly select-
ed 1,000 tweets (along with their control tweet) in each
time category from each city (or all of the tweets in that

category if there were less than 1,000). After combining
the randomly selected tweets from each city, we estimat-
ed the happiness benefit using the same bootstrapping
procedure described above.

II. RESULTS

A. Sentiment Analysis

Across all cities, the mean happiness benefit was 0.10
(Bootstrap Range [.098, .103]). Across our 25 city sam-
ple, the mean happiness benefit ranged from 0.00 to
0.18. Indianapolis had the highest mean happiness ben-
efit, while Baltimore had the lowest (Fig. 1). Cities with
more in-park tweets to sample from had tighter happi-
ness benefit ranges, as exhibited by Denver, New York,
Los Angeles, and Philadelphia. The mean happiness ben-
efit was positive across all cities.

6

Fig. 1. San Francisco Recreation and Parks Facility Map.

104

105 We constructed a list of Twitter users who had visited at least one park during the study period 

106 and queried the Twitter API for their 3,200 most recent tweets. A month later, we updated user 

107 histories with any tweets posted since the park visit. We used several heuristics to remove 

108 automated bots and businesses from the user sample and additionally removed any individual 

109 who made their account private in the period following their park tweet. Our process resulted in 

110 5,065 user timelines.

111

112 2.2. Tweet Binning

Schwartz et al., "Exposure to urban parks improves affect and reduces negativity on Twitter." 2019.
Schwartz et al., "Gauging the happiness benefit of US urban parks through Twitter." . 2020.
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FIG. 1. English tweet happiness and volume (random 10% sample), 2020-2021. (Top panel) Relative frequency
of the 3-gram “Black Lives Matter”. (Middle panel) Average happiness (green) of English-language Twitter according to
http://hedonometer.org shown both by day and with a seven-day rolling average (bold). Sentiment drops corresponding to the
pandemic (March 2020) and the Capitol insurrection (January 2021) are both apparent. The period following George Floyd’s
death is the saddest in Twitter history. (Bottom panel) Daily counts for original tweets (OT, blue) and retweets (RT, orange)
reveal a spike period in late May and early June 2020 during which RT activity set all time records. The gray shaded areas
represent periods of time when “Black Lives Matter” is among the top 5000 most used 3-grams per day. The sudden decrease
in retweets in October 2020 is largely attributable to a platform design modification implemented by Twitter. Ahead of the
election, the company increased the number of steps required to retweet a message in an attempt to add friction and minimize
chances for contagion of election misinformation. Given the sampling mechanism, counts shown in the bottom panel should be
multiplied by 10 to approximate overall volume.

Twitter. Using a database of ⇤ 5198 names of Black
police violence victims, we find a resurgence in attention
toward previous victims during this spike period. Fol-
lowing this period, new incidents of fatal police violence
receive heightened initial attention compared to older
incidents.

The structure of the paper is as follows: In Sec. 2,
we describe our datasets. We also discuss the process of
merging the datasets for analysis. In Sec. 3, we present
our findings on the spike in tweet volume and correspond-
ing drop in happiness (Sec. 3A), the resurgence of past
names during this time (Sec. 3B), general characteristics
of attention toward names (Sec. 3C), and characteristics
of usage of “#LivesMatter hashtags (Sec. 3E). In the con-
clusion (Sec. 4), we discuss some of the limitations of our
work and o↵er directions for future research.

2. DATA AND METHODS

2A. Police violence victims

The dataset from which we draw the names of Black
victims of police-involved fatalities is the Fatal Encoun-
ters database, which is maintained by volunteers and
paid researchers through manual data entry and pub-
lic records requests. Because of the imprecise nature of
fatality reporting [22, 23], great care was taken to select
a database that would give an accurate measure of police
violence deaths. The fact that federal crime data lacks
the granularity to analyze incidents of police violence
explains the need for third-party databases. We exam-
ine two candidates for databases: the Washington Post
database on fatal police shootings since 2015 [24] and
the Fatal Encounters database containing police-involved
deaths since 2000 [25].

“Say Their Names: Collective Attention Toward Black Victims of Police Violence Following the Death of
George Floyd”. Wu et. al., In Preparation. 2021.
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The dataset from which we draw the names of Black
victims of police-involved fatalities is the Fatal Encoun-
ters database, which is maintained by volunteers and
paid researchers through manual data entry and pub-
lic records requests. Because of the imprecise nature of
fatality reporting [22, 23], great care was taken to select
a database that would give an accurate measure of police
violence deaths. The fact that federal crime data lacks
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explains the need for third-party databases. We exam-
ine two candidates for databases: the Washington Post
database on fatal police shootings since 2015 [24] and
the Fatal Encounters database containing police-involved
deaths since 2000 [25].

4

FIG. 2. Happiness word shift graph illustrating the words responsible for the saddest day in the history of
Twitter, namely May 31, 2020, according to http://hedonometer.org. Words appear on the left if they contribute
to May 31 being sadder than the prior week, and appear on the right if they go against this trend. For example, the relatively
negative words ‘terrorist’, ‘protest’, and ‘violence’ appear more frequently on May 31, and the relatively positive words ‘me’,
‘love’, and ‘happy’ appear less often that day. The relatively positive words ‘peaceful’ and ‘peace’ appear more often on May
31, and the relatively negative words ‘coronavirus’ and ‘died’ appear less.

The Fatal Encounters database o↵ers a number of
advantages, namely that it contains deaths by methods
other than shootings and covers a longer period of time.
Theoretically, the Washington Post database should be a
subset of the Fatal Encounters database. However, when
comparing the databases by matching parsed names and
dates of death (within 7 days), there are over 100 fatal-
ities of Black people in the Washington Post database
that are not recorded in the Fatal Encounters database.
This is mainly due to spelling di↵erences, race di↵erences,
and date entry errors. The Fatal Encounters database
also includes fatalities as wide-ranging as suicides that
occurred while police were present and vehicular crashes
during police chases. Such deaths are not usually protest-
ed by the Black Lives Matter movement. Regardless, we
use the Fatal Encounters Database for its comprehen-
siveness and for consistency with past studies [14, 18].

We also choose to initialize the data collection period on
January 1, 2009 to match the social media data made
available by Storywrangler [21].

The Fatal Encounters database ⇤ started with 5423
names. From there, 121 duplicate names, 117 anoma-
lies, and 2 other names were removed for a total of 5183
names. The final combined database added 15 manu-
ally imputed names, giving a total of 5198 names. See
Secs. 2B and 1A for more details on database curation.

2B. Social media data

Storywrangler is a recently proposed NLP framework
to extract sociotechnical time series from Twitter, mea-
suring n-gram usage ranks and frequencies from a ran-
dom collection of 10% of all tweets [21]. Using Storywran-

“Say Their Names: Collective Attention Toward Black Victims of Police Violence Following the Death of
George Floyd”. Wu et. al., In Preparation. 2021.
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FIG. 3. Heatmap of normalized attention toward the names of notable individuals. (Top panel) The normalized
frequency for “Black Lives Matter” and “#BlackLivesMatter”. (Main panel) We construct a heatmap displaying dp⌧,t over time
for the top 50 names in the combined database by minimum rank, sorted chronologically by date of death. Values in each row
are divided by their maximum observed frequency so that each name achieves a value of 1 (black) on the date of peak attention.
Darker colors indicate a higher normalized frequency (the closer the name is to its peak frequency). Dark bands around June
2020 are observed across all rows, indicating a resurgence in attention for many notable older names.

gler, we collect bigram time series for all names in the
Fatal Encounters dataset that are mentioned throughout
that period in English tweets. We combine these time
series with the date of injury resulting in death, pulled
from the database, to quantify the attention each name
received on Twitter following the death. For duplicate
2-grams, only the earliest date was considered.

If a name reached the top million in rank among 2-
grams at least once in the ten days before the injury
resulting in death, that name was removed. This allowed
us to remove some anomalies—such as names common-
ly used in other contexts—that could not be properly
included in our analysis (e.g. Robin Williams, George
Bush), but manual inspection of the remaining names
reveals that some anomalies were not detected. The
issue is that some of these names mentioned on Twitter
will inevitably be describing someone other the victim of
police violence; examples include the businessman John
McAfee and the American football player Kevin White.
A human can make the distinction between subjects, but
we did not implement an algorithm to detect the sub-
ject of each tweet. Future research could improve upon
the name disambiguation process by, for instance, look-

ing for names co-occurring with terms such as “murder,”
“death,” and “#BlackLivesMatter.” There were ⇤ 117
anomalous names removed.

We also manually removed two names that interfered
with the analysis but were not automatically detected.
Thomas Lane and Darren Wilson, who share the names
of police o�cers involved in the deaths of George Floyd
and Michael Brown, respectively, were removed because
their names are tied to the issue of police violence in a
manner that is di↵erent than the one we are measuring.

In addition to the timeseries from Storywrangler, we
also examine the sentiment of tweets using the Hedo-
nometer, an instrument designed to provide a macro-level
approximation of happiness of tweets for a dozen lan-
guages [20]. It also determines the words that contribute
most to the change in happiness on a day compared to
the previous seven days.

“Say Their Names: Collective Attention Toward Black Victims of Police Violence Following the Death of
George Floyd”. Wu et. al., In Preparation. 2021.
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1 0.5 0 0.5 1

FIG. S8. Allotaxonograph using rank-turbulence divergence for English word usage on 2021-01-06 compared
to 2020-01-06. The word ‘Capitol’ was the 22nd most common 1-gram on January 6, 2021, up from 15,345th most common
one year earlier. Similarly, ‘COVID’ was the 1,117th most popular word January 6, 2021, and did not make the top million on
January 6, 2020. See Dodds et al. [39] for further details on the allotaxonometric instrument.

fied on Twitter triggered by the Siege of the Hong Kong
Polytechnic University amid the nationwide protests in
Hong Kong.13 Moreover, we also see notable references to
the first impeachment of Trump that took place between
September 2019 and February 2020.

Appendix C: Pantheon case study

We examine the dialog around celebrities by cross-
referencing our English 2-grams corpus with names of
famous personalities from the Pantheon data set [40].
The data set has over 10 thousand biographies. We use
the place and date of birth to select Americans born in
the last century.

We searched through our English n-grams data set
and selected names that were found in the top million
ranked 2-grams for at least a day between 2010-01-01
and 2020-06-01. Our list contains 1010 individuals. We
show the average best rank r̄min, median best rank r̃min,
and best rank r⇤min for all individuals in each occupation

13 https://www.theguardian.com/world/2019/nov/18/
hong-kong-university-siege-a-visual-guide

in Tab. S4. In Figs. S11A and B, we display a monthly
rolling average (centered) of the average rank for the top
5 individuals for each category hrmin(5)i.

Occupation n r̄min r̃min r⇤min

Actors 674 40,632 9,255 2

Singers 162 59,713 3,479 4

Politicians 59 6,365 1,376 6

Film directors 57 75,783 10,580 13

Business-persons 26 35,737 4195 15

Soccer players 12 20,868 8,507 25

Social activists 10 20,302 1,781 841

Extremists 10 104,621 20,129 117

TABLE S4. Celebrities by occupation

Additionally, we select a total of 1162 celebrities that
were also found in the top million ranked 2-grams for at
least a day between 2010-01-01 and 2020-06-01 in a few
selected industries (see Tab. S5)

For each of these individuals, we track their age and
top daily rank of their names (first and last). In
Figs. S11A, B, C, and D, we display kernel density esti-
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Abstract
We propose and develop a Lexicocalorimeter: an online, interactive instrument for measur-

ing the “caloric content” of social media and other large-scale texts. We do so by construct-

ing extensive yet improvable tables of food and activity related phrases, and respectively

assigning them with sourced estimates of caloric intake and expenditure. We show that for

Twitter, our naive measures of “caloric input”, “caloric output”, and the ratio of these mea-

sures are all strong correlates with health and well-being measures for the contiguous

United States. Our caloric balance measure in many cases outperforms both its constituent

quantities; is tunable to specific health and well-being measures such as diabetes rates; has

the capability of providing a real-time signal reflecting a population’s health; and has the

potential to be used alongside traditional survey data in the development of public policy and

collective self-awareness. Because our Lexicocalorimeter is a linear superposition of princi-

pled phrase scores, we also show we can move beyond correlations to explore what people

talk about in collective detail, and assist in the understanding and explanation of how popu-

lation-scale conditions vary, a capacity unavailable to black-box type methods.

Introduction

Online instruments designed to measure social, psychological, and physical well-being at a
population level are becoming essential for public policy purposes and public health monitor-
ing [1, 2]. These data-centric gauges both empower the general public with information to
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Abstract
We propose and develop a Lexicocalorimeter: an online, interactive instrument for measur-

ing the “caloric content” of social media and other large-scale texts. We do so by construct-

ing extensive yet improvable tables of food and activity related phrases, and respectively

assigning them with sourced estimates of caloric intake and expenditure. We show that for

Twitter, our naive measures of “caloric input”, “caloric output”, and the ratio of these mea-

sures are all strong correlates with health and well-being measures for the contiguous

United States. Our caloric balance measure in many cases outperforms both its constituent

quantities; is tunable to specific health and well-being measures such as diabetes rates; has

the capability of providing a real-time signal reflecting a population’s health; and has the

potential to be used alongside traditional survey data in the development of public policy and

collective self-awareness. Because our Lexicocalorimeter is a linear superposition of princi-

pled phrase scores, we also show we can move beyond correlations to explore what people

talk about in collective detail, and assist in the understanding and explanation of how popu-

lation-scale conditions vary, a capacity unavailable to black-box type methods.

Introduction

Online instruments designed to measure social, psychological, and physical well-being at a
population level are becoming essential for public policy purposes and public health monitor-
ing [1, 2]. These data-centric gauges both empower the general public with information to
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Fig 1. Choropleth maps indicating (A) caloric input Cin and (B) caloric output Cout in the contiguous United States (including the District of
Columbia) based on 50 million geotagged tweets taken from 2011–2012. For both maps, darker means higher values as per the color bars on the
right. The histograms in Fig 5, S2 and S3 Figs show the specific rankings according to these two variables and also Crat (see Fig 3). The overlaid phrase
lemmas are the most dominant contributors to Cin and Cout—almost universally “pizza” and “watching tv or movie”.

doi:10.1371/journal.pone.0168893.g001
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Fig 2. The same choropleth maps for Cin and Cout presented Fig 1 but now with phrases whose increased usage contribute the most to a
population’s Cin and Cout differing from the overall averages of these measures. See the section on Phrase Shifts in Analysis and Results. For
example, tweets from Vermont, which was above average for both Cin and Cout for 2011–2012, disproportionately contain “bacon” and “skiing”. Michigan
was above average for Cin and below for Cout in 2011–2012, and the most distinguishing phrases are “chocolate candy” and “laying down”. See Fig 5, S2
and S3 Figs for ordered rankings.

doi:10.1371/journal.pone.0168893.g002
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How do I look in these tweets? Gauging well-being through "caloric
content" of tweets
Sharon E. Alajajian, Jake R. Williams, Andrew J. Reagan, Stephen C. Alajajian, Morgan R. Frank, Lewis Mitchell, Jacob Lahne,
Christopher M. Danforth, and Peter Sheridan Dodds
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1. bacon+↑
2. chocolate candy+↓

3. onion-↑
4. donuts+↓

5. chicken-↓
6. apples-↑

7. butter+↑
8. banana-↑

9. noodles-↓
10. cookie dough+↑

11. cake+↓
12. coconut oil+↑
13. cookies+↑

14. broccoli-↑
15. crab-↓
16. peanut butter+↑
17. beef-↓
18. shrimp-↓

19. beet-↑
20. cucumber-↑

21. strawberries-↓
22. walnuts+↑

23. chicken salad-↑
24. mashed potatoes-↑

25. pineapple-↓
26. olive oil+↓

27. catfish-↓
28. grits-↓

29. lettuce-↑
30. girl scout cookie+↑
31. grapes-↓

32. swiss chard-↑
33. roasted red pepper-↑

34. mushrooms-↑
35. spaghetti squash-↑

36. green pepper-↑
37. tortilla-↑

38. baked potato-↓
39. fried eggs-↑

40. tomato-↑
41. cake with frosting+↑

42. oysters-↑
43. sunflower seeds+↓

44. tangerines-↑
45. peanuts+↓

46. almond joy+↑
47. sweet potato-↑

48. pudding-↑
49. cheese+↑
50. pita chips+↑

51. salmon-↑
52. goat cheese+↑

53. yogurt-↑
54. cheddar cheese+↑

55. celery-↑
56. popcorn+↑

57. fortune cookie+↓
58. turkey-↓

59. peaches-↑
60. lobster-↓
61. king crab-↓
62. pastry+↑

63. tuna-↑
64. potato chips+↓

65. asparagus-↓
66. collards-↓
67. pasta-↓

68. hard candy+↓
69. scallops-↑

70. popeyes chicken+↓
71. avocado-↑

72. carrot-↑
73. applesauce-↑

74. pear-↑
75. mayonnaise+↓

76. oatmeal-↓
77. kale-↑

78. candy bar+↑
79. ribs-↑

80. mac and cheese-↓
81. watermelon-↓

∑+↑
∑-↓

∑

∑+↓
∑-↑
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Why Vermont consumes more calories on average:
Average US calories = 267.92
Vermont calories = 268.66 (Rank 29 out of 49)

1. skiing+↑
2. running+↑

3. snowboarding+↑
4. hiking+↑

5. dancing+↓
6. sledding+↑
7. eating-↓

8. watching tv or movie-↓
9. cooking+↓

10. cleaning+↓
11. using treadmill+↓

12. walking+↑
13. biking+↑
14. picking fruit+↑
15. rock climbing+↑
16. getting my hair done-↓
17. getting my nails done-↓

18. doing laundry+↓
19. talking on phone-↓

20. writing-↑
21. playing basketball+↓

22. shoveling+↑
23. playing football+↓

24. boxing+↓
25. square dancing+↑
26. ballet dancing+↑
27. jumping jacks+↑
28. cleaning or washing a vehicle+↑
29. laying down-↓
30. ice skating+↑
31. climbing stairs+↑
32. mountain biking+↑
33. roller skating+↑
34. paddleboarding+↑
35. jazzercise+↑

36. mowing grass+↓
37. attending church-↓

38. playing video or computer games-↑
39. boating-↑

40. fishing+↑
41. weight lifting+↓

42. reading-↓
43. doing my hair+↓

44. doing pushups+↓
45. playing dodgeball+↑
46. watching tv or movies laying down-↓
47. vacuuming+↑
48. doing power yoga+↑

49. pole dancing+↓
50. wrapping presents-↑

51. walking a pet+↑
52. hunting+↑

53. elliptical+↓
54. raking+↑

55. walking leisurely-↑
56. showering-↓

57. ultimate frisbee+↓
58. fly fishing+↑
59. bass fishing+↑
60. snowmobiling+↑
61. doing yoga+↑

62. skateboarding+↓
63. rowing+↑
64. packing+↑
65. mini golfing+↑

66. golfing+↓
67. doing situps+↓

68. walking briskly+↓
69. kayaking+↓

70. line dancing+↓
71. using stair master+↓

72. playing games-↑
73. doing yardwork+↓

74. running stairs+↓
75. doing my makeup+↑

76. jet skiing+↓
77. walking quickly+↓

78. playing frisbee+↑
79. crocheting-↑

80. bowling+↓
81. attending a family reunion-↑

∑+↑
∑-↓

∑

∑+↓
∑-↑
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Why Vermont expends more calories on average:
Average US caloric expenditure = 176.60
Vermont caloric expenditure = 203.22 (Rank 3 out of 49)
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FIG. 6: Screenshot of the interactive dashboard for our prototype Lexicocalorimeter site (taken 2015/07/03). An archived
development version can be found as part of our paper’s Online Appendices at http://compstorylab.org/share/papers/

alajajian2015a/maps.html, and a full dynamic implementation will be part of our Panometer project at http://panometer.
org/instruments/lexicocalorimeter.

ate the tweeted-about food (West et al. address a sim-
ilar issue in inferring food consumption from accessing
recipes online [18]).

We currently do not know at what point our met-
ric breaks down at smaller time scales (e.g., months or
weeks) or for smaller spatial regions (e.g., city or county)
level. Our preliminary research shows that the physical
activity metric on its own may be quite e↵ective at the
city level, but the food measure may not be accurate on
a smaller scale. We have also found the physical activi-
ty list to be robust to random partitioning [36], whereas
the food list was not. We believe that these preliminary
findings may be due to several factors: (a) the size of the
food list (just over 1400 phrases) is much smaller than
the physical activity phrase list (just over 13,400 phras-
es); (b) there are generally more tweets about physical
activities in our list than the foods in our food list; (c)
we have not tried using the metric on counties or Cen-
sus block or tract groups, and it may be that these are
more conducive to the metric; and (d) the amount of data
within a city may not be a large enough sample for any
food-based Twitter metric.

We propose to use crowdsourcing as a way to build a
more comprehensive food phrase list that includes com-
monly eaten foods with brand names as well as food slang
that we did not capture here. Ideally, we would arrive at
a phrase database similar in scale to that of our existing
physical activity phrase list. However we move forward,
we believe it is clear that the Lexicocalorimeter we have
designed and implemented is already of some potency
and may be improved substantively in the future.

IV. METHODS AND MATERIALS

In order to attempt to estimate the “caloric content”
of text-extracted phrases [36] relating to food (caloric
input) and physical activity (caloric output), we needed
comprehensive lists of foods and physical activities and
their respective caloric content and expenditure informa-
tion. Here, we explain in detail how we constructed these
phrase lists and assigned calories to each phrases.

We provide all data in the Supporting Infor-
mation and with the paper’s Online Appendices:

Alajajian et al.,
"The Lexicocalorimeter: Gauging public health through caloric input and output on social media"
PLoS ONE, 2017
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FIG. 5: Six demographic quantities compared with caloric balance Cbal for the 48 states of contiguous US and the District of
Columbia. The inset values are the Spearman correlation coe�cient ⇢̂s, and the Benjamini-Hochberg q-value. See Tab. I for a
full summary of the 37 demographic quantities studied here.

are housed at http://panometer.org/instruments/
lexicocalorimeter.

Overall, we find the lexical texture a↵orded by our
phrase shifts is generally convincing, but we expect future
improvements in our food and activity data sets will
iron out some oddities (we again use the example of ice
cream). We also note that phrase shifts are very sen-
sitive and that terms that seem to be being evaluated
incorrectly may easily be removed from the phrase set,
and that doing so will minimally change the overall score
for su�ciently large texts.

E. Correlations with other health and well-being
measures

We now turn to a suite of statistical comparisons
between our three measures caloric input, caloric output,
and caloric balance and standard demographic quanti-
ties.

We use Spearman’s correlation coe�cient ⇢̂s to exam-
ine relationships between Cin, Cout, and Cbal and 37
variables variously relating to food and physical activity,
“Big Five” personality traits, and health and well-being

rankings (a total of 111 comparisons). To correct for mul-
tiple comparisons, we calculate the q-value for each corre-
lation coe�cient using the Benjamini-Hochberg step-up
procedure [34]. We then consider correlations in reference
to the standard significance levels of 0.01 and 0.05.

We must first acknowledge that many of the variables
we test against our measures are highly correlated with
each other. The food and physical activity-related vari-
ables are in the areas of physical activity levels, produce
intake and availability rates (including trends in public
schools), chronic disease rates, and rates of unhealthy
habits. Many of these variables are well known to be
influenced by diet and physical activity (e.g., obesity
rates [25]), and others may be less directly related (e.g.,
percent of cropland in each state harvested for fruits and
vegetables [28]).

To give some grounding for the full set of comparisons,
we show in Fig. 5 how six demographic quantities vary
with caloric balance Cbal. We see strong correlations
with |⇢̂p| � 0.68, and the highest value for Benjamini-
Hochberg q-value is 5.7⇥10�7.

We present a summary of all results in Tab. I where
we have ordered and numbered demographic quantities
in terms of ascending Benjamini-Hochberg q-values for

Alajajian et al.,
"The Lexicocalorimeter: Gauging public health through caloric input and output on social media"
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present general practitioners’ unassisted diagnostic accuracy as reported in Mitchell, Vaze, and 
Rao (MVR) (24) .  6

 

Results 
Both All­data and Pre­diagnosis models were decisively superior to a null model
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dropped to 30% confidence, suggesting a null predictive value in the latter case.  

Increased hue, along with decreased brightness and saturation, predicted depression. This 
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posting frequency was also associated with depression. Depressed participants were more likely 
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represent cubic polynomial regression fits with 95% CI bands, points are aggregations of 14 day periods, 

with error bars indicating 95% CI on central tendency of daily values.  
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FIG. S2: Schematic (infographic) of the workflow for the entire paper.
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