
Leveraging Domain Knowledge in Deep
Learning Systems

A Dissertation Presented

by

Colin M. Van Oort

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Specializing in Complex Systems & Data Science

August, 2021

Defense Date: June 14th, 2021
Dissertation Examination Committee:

Safwan Wshah, Ph.D., Advisor
Jianing Li, Ph.D., Chairperson

Nicholas Cheney, Ph.D.
Christopher Danforth, Ph.D.

Brian Tivnan, Ph.D.
Cynthia J. Forehand, Ph.D., Dean of Graduate College

Abstract

Machine learning, and the sub-field of deep learning in particular, has experienced
an explosion in research interest and practical applications over the past few decades.
Deep learning approaches seem to have become the preferred approach in many do-
mains, outpacing the use of more traditional machine learning methods. This transi-
tion has also coincided with a shift away from feature engineering based on domain
knowledge. Instead, the common deep learning philosophy is to learn relevant features
through the combination of expressive models and large datasets.

Some have interpreted this paradigm shift as the death of domain knowledge. I
argue that domain knowledge is still broadly used in deep learning systems, and even
critically important, but where and how domain knowledge is used has evolved. To
support this argument I present three recent deep learning applications in disparate
domains that each heavily rely on domain knowledge. Based on these three appli-
cations I discuss strategies for where and how domain knowledge is being effectively
incorporated into newer deep learning systems.

Material for this dissertation has been published, or submitted for publication, in the
following forms:

Van Oort, Colin M., Xu, Duo, Offner, Stella S., & Gutermuth, Robert A.. (2019).
Casi: A convolutional neural network approach for shell identification. The Astro-
physical Journal, 880(2), 83.

Van Oort, Colin M., Ferrell, Jonathon B., Remington, Jacob M., Wshah, Safwan,
& Li, Jianing. (2021). AMPGAN v2: Machine Learning Guided Discovery of Anti-
Microbial Peptides. Journal of Chemical Information and Modeling, 61(5), 2198–
2207.

Van Oort, Colin M., Tivnan, Brian F., & Wshah, Safwan. (2021). Adaptive
Agents and Data Quality in Agent-Based Financial Markets. Imminent submission
to ACM Transactions on Intelligent Systems and Technology.

ii

Acknowledgements

It takes a village to complete a doctorate. There are many people who have supported

and guided me down the path to this dissertation, probably too many for me to

mention all of them here. First, I’d like to thank my family, Nancy, Randall, Zach,

Janine, and everyone else, for their support over the years. John, Dave, Thayer, thank

you for your friendship and collaboration. Chris, Peter, Brian, Safwan, thank you for

giving me a chance and all of your advice along the way. Robert Snapp, thank you

for sparking my interest in machine learning. To all the students and faculty of the

UVM Complex Systems Center, thank you for contributing to an amazing learning

and research environment.

iii

Table of Contents

Acknowledgements . iii

1 Introduction 1

2 CASI 6
2.1 Abstract . 6
2.2 Introduction . 7

2.2.1 Machine Learning for Image Tasks 11
2.2.2 Previous Applications to Astronomical Data Analysis 12

2.3 Method Overview . 15
2.3.1 Neural Network Architecture 15
2.3.2 Training . 17
2.3.3 Model Hyper-parameters . 21

2.4 Validation . 24
2.4.1 Simulation Training Set . 24
2.4.2 Gas Density Training Set . 25
2.4.3 Synthetic CO Emission Training Set 26
2.4.4 Performance Metrics . 27
2.4.5 Case Study 1: Gas Density . 32
2.4.6 Case Study 2: Synthetic Molecular Emission 35

2.5 Conclusions . 41
2.6 Acknowledgements . 43

Appendices 44
2.A Neural Network Operations . 44

2.A.1 Batch Normalization . 44
2.A.2 Convolution . 45
2.A.3 Max Pooling . 46
2.A.4 Nearest-Neighbor Interpolation 46
2.A.5 Activation: Exponential Linear Units 48
2.A.6 Residual Connections . 48

iv

3 AMPGAN 50
3.1 Abstract . 50
3.2 Introduction . 51
3.3 Methods and Models . 55

3.3.1 Training Data . 55
3.3.2 AMPGAN v2 Design and Training 58

3.4 Results and Discussion . 60
3.4.1 Training Stability . 60
3.4.2 Physio-chemical Similarity . 63
3.4.3 Sequence Diversity . 65
3.4.4 Estimated Antimicrobial Activity 67

3.5 Conclusion . 69
3.6 Acknowledgement . 71

Appendices 72
3.A Sequence Structure Profile . 72
3.B Conditioning Information Distributions 73
3.C Training Stability . 75
3.D Sequence Length Correlation . 76
3.E Amino Acid Distribution Comparisons 78
3.F Sequence Analysis Random Baselines 80
3.G Global Sequence Alignment Scores 82

4 ABMMS 85
4.1 Abstract . 85
4.2 Introduction . 86
4.3 Related Work . 88

4.3.1 Market Infrastructure in the National Market System 88
4.3.2 Market Infrastructure in Prior ABFMs 90
4.3.3 Adaptive Agents . 91
4.3.4 Model Examination . 94

4.4 Methods . 96
4.4.1 Market Infrastructure in ABMMS 96
4.4.2 Traders . 99
4.4.3 Stylized Facts . 100

4.5 Results . 101
4.6 Discussion and Conclusion . 105

Appendices 109
4.A ODD Protocol for ABMMS . 109

v

4.A.1 Purpose . 109
4.A.2 Patterns . 110
4.A.3 Entities . 112
4.A.4 State Variables . 117
4.A.5 Scales . 126
4.A.6 Process overview . 127
4.A.7 Scheduling . 134
4.A.8 Design Concepts . 135
4.A.9 Initialization . 144
4.A.10 Input Data . 147
4.A.11 Submodels . 148

5 Conclusion 150

vi

List of Figures

1.1 The development pipeline of a typical machine learning application,
split into six steps. 2

2.1 A flow-chart style depiction of our Residual U-Net architecture, which
maps a 4D stack of images with dimensions (number of images, height
of images, width of images, number of image channels) to a 4D stack
of images (number of images, height of images, width of images, num-
ber of output channels). In the context of astronomy data, the “im-
ages" in question may be slices of observational data volumes and the
height/width are literally the height and width of the observational
data (in pixels/voxels). In this work we only utilize a single input
image channel (gas density in a voxel, CO intensity in a voxel, etc.),
however, it is possible to supply the network with multiple varieties of
data using multiple input image channels. The first half of the net-
work uses down-sampling operations to compress input features and
construct higher-level representations, while the second half of the net-
work uses up-sampling operations to reconstitute the abstract represen-
tations. Cross connections allow information from the down-sampling
path to be utilized in the up-sampling path, leading to mappings that
benefit from the combination of coarse and fine grained features. The
ellipsis-within-oval graphics indicate that the depth of the architecture
is variable and may be modified by the user. 16

2.2 An example of the training and validation loss curves for a Residual
U-Net trained on the CO segmentation task using the Intersection over
Union loss function. The spikes that occur every 40 epochs are a feature
of the cyclic learning rate schedule. Note that by the 200th epoch, net-
work performance appears to have converged, with little improvement
in the validation loss for 50 to 75 epochs. 20

vii

2.3 Density segmentation predictions from a Residual U-Net on samples
randomly selected from the test set. Each frame contains a single slice
from a simulated density cube, which is shown in gray scale. Since
each slice is taken from a position-position-position cube, the x- and
y-axis of each frame represent spatial coordinates within the cube. The
tiles presented here have a side length of 5 pc that is inherited from
the simulation. In each frame, true positives are shown in blue, false
positives are shown in purple, false negatives are shown in green, and
true negatives are not displayed. As a pre-processing step the density
data was normalized so that it is now unit-less and falls approximately
in the range [-0.4, 190], where lower density regions correspond with
lighter colors and higher density regions correspond with darker colors.
The color scale for the density data is identical across all tiles, and a
logarithmic transformation is utilized in order to improve contrast. . 28

2.4 Example ROC curve for a Residual U-Net trained on the Density seg-
mentation task. The dashed blue line represents y = x, which corre-
sponds with the expected performance of a random binary classifier. A
true positive rate of 95.52% is obtainable with a false positive rate of
1%, suggesting that this method may perform well as a content filter. 34

2.5 A 2D histogram investigating the scaling of residuals with respect to the
input value for a Residual U-Net trained on the density regression task.
The color scale is logarithmic in order to increase contrast and rep-
resents the density of points associated with each residual value-input
value pair. Recall that the input values here are density values that
have been scaled to have zero mean and unit standard deviation, thus
the y-axis of this plot is unit-less. Due to the heavy-tailed nature of the
input values, this re-scaling results in the data that falls approximately
within the range [-0.4, 190]. 35

2.6 Example residuals from a Residual U-Net trained on the density regres-
sion task using the mean squared error loss function. Positive residuals,
shown in shades of red, correspond to over-estimation, while negative
residuals, shown in shades of blue, correspond to under-estimation. As
with Figure 2.3, the side length of each tile is 5 pc and the gray scale
components represent re-scaled density values. 36

2.7 12CO segmentation predictions from a Residual U-Net on samples ran-
domly selected from the test set. As with Figure 2.3, the side length of
each tile is 5 pc, the gray scale components represent re-scaled density
values, true positives are shown in blue, false positives are shown in
purple, false negatives are shown in green, and true negatives are not
displayed. 39

viii

2.8 Example ROC curve for a Residual U-Net trained on the 12CO segmen-
tation task. The dashed blue line represents y = x, which corresponds
with the expected performance of a random binary classifier. A true
positive rate of 91.45% is obtainable with a false positive rate of 1%,
supporting the proposal that this method may perform well as a content
filter. 40

2.A.1 Max pooling with a 2× 2 window, used to map a 4× 4 input to a 2× 2
output . 47

2.A.2 Nearest-neighbor interpolation with a 2×2 window, used to map a 2×2
input to a 4× 4 output. 47

2.A.3 Left: A basic residual block using 3 × 3 filters, the number of filters
used in each convolution is a free parameter that must be selected.
Common activation functions include ReLU, sigmoid, and tanh. Com-
mon merge operations include concatenation, element-wise addition,
and element-wise maximum [maxout, 89]. If addition is used as the
merging operation then a projection skip-connection, commonly im-
plemented using a 1 × 1 convolution, may be required in place of the
identity skip-connection in order to obtain the correct dimensions for
the merge operation. Right: A bottleneck residual block, which uses
1×1 convolutions in order to reduce the number of parameters required,
relative to the basic residual block. If the input volume has n channels,
it is common to use n/2 or n/4 filters in the first two convolutions fol-
lowed by n channels in the final convolution. This compresses the data
before the larger convolution is applied resulting in a reduced number
of parameters. 49

3.3.1 A visual summary of the contents and dimensions of a conditioning
vector. All elements are binary encoded. For the target microbes and
target mechanisms each element of the binary vector indicates activity
against a particular microbe class or cellular mechanism. A one-hot
encoding is used for the MIC 50 element, indicating membership in
single MIC 50 decile. The sequence length is encoded as a bit mask,
where 1 indicates the presence of a character and 0 indicates an empty
slot. 57

ix

3.3.2 A) AMPGAN v2 Macro-architecture. AMPGAN v2 is a BiCGAN
that consists of three networks: the generator, discriminator, and en-
coder. The discriminator predicts whether a sample is generated or not,
and is updated using the log loss. The generator synthesizes samples,
and is updated to maximize the loss of the discriminator. The encoder
maps sequences into the latent space of the generator, and is trained
using the mean squared error (MSE). B) Generator architecture
details. We use 6 convolution layers in the central stack, each with a
kernel size of 3 and an exponential dilation rate. All dense and convo-
lution layers are followed by a leaky ReLU activation, except the final
convolution layer, which has a hyperbolic tangent activation. The final
convolution has a kernel size of 1. C) Discriminator architecture
details. The convolutions use a filter size of 4 and a stride of 2. All
applications of Dropout and Spatial Dropout use a drop rate of 25%.
All dense and convolution layers are followed by a leaky ReLU activa-
tion, except the final dense layer, which has a sigmoid activation. The
condition vectors are tiled and concatenated with the sequences along
the features/channels dimension. The encoder uses the same architec-
ture with a different output dimension on the final layer corresponding
to the selected latent space dimension and a linear activation function. 59

3.4.1 Distributions of amino acids present in generated vs non-generated
AMP sequences. The distributions are layered in the left panel and
the difference is shown in the right panel, facilitating different compar-
ison perspectives. The generated distribution was created using 4855
sequences with conditioning vectors drawn at random from the training
set. 50% of the conditioning vectors were taken from AMP sequences
and 50% from non-AMP sequences. The model used to generate these
sequences was arbitrarily selected from the set of successfully trained
models. The non-generated distribution was created using a sample of
5120 sequences that were randomly drawn from the training set with a
50%/50% split between AMP and non-AMP sequences. In all compar-
isons K is the largest outlier, appearing 4–6% more often in generated
sequences than real sequences. 64

x

3.4.2 Shannon’s entropy divergence between the distributions of length 2
(left) and length 3 (right) sub-sequences of FASTA characters in AMPs
from the training set (real) or AMPs created by the generator (gener-
ated). Purple bars indicate a greater prevalence of a particular sub-
sequence in real AMPs, while gold bars indicate a greater prevalence
in generated AMPs. The two values in the title of each panel indi-
cate the average entropy of each group. For reference, the distribution
of sub-sequences drawn from uniformly random sequences results in
a maximum entropy of ∼8.64 for length 2 sub-sequences and ∼12.97
for length 3 sub-sequences. Both groups in both plots feature a lower
entropy than the maximum, thus we should expect to see meaningful
structures in each group. The CDF plot in the lower left corner of each
panel indicates that the top 50 contributors to the divergence only ac-
count for ∼50% (left) and ∼10% (right) of the total divergence, thus
both distributions are extremely flat. 66

3.4.3 Letter-value plots showing distributions of match scores obtained from
comparisons between different groups of sequences. The central hor-
izontal line in each column denotes the median value. Each box ex-
tending from the median line indicates a percentile that is a half step
between the starting percentile and the terminal percentile in that di-
rection. For example, starting from the median line, the first box above
is terminated at the 75th percentile, halfway between the 50th per-
centile and the 100th percentile. The diamonds in the tails indicate
outliers, which in this case are approximately 5 to 8 of the most ex-
treme values in each tail. The first distribution shows the match scores
obtained when comparing the set of training AMPs with itself. The
distribution of match scores for training AMPs has a median value that
is approximately double that of the distribution for generated AMPs.
This indicates that the set of generated AMPs is more diverse than the
set of training AMPs. If we compare the generated AMPs directly with
the training AMPs, which is shown in the final distribution, we find the
lowest median match score observed so far. A low median match score
here shows that the generated AMPs are novel relative to the training
AMPs. 68

3.B.1 Label frequency for the target microbe (Left) and target mechanism
(Right) conditioning variables. 73

3.B.2 The distribution of MIC50 values before discretization (Left) and pep-
tide sequence lengths (Right). 27 samples with MIC50 values greater
than 2000 were truncated to ease inspection of the rest of the distribu-
tion. 74

xi

3.C.1 Investigation of training stability, summarizing the results of 30 inde-
pendent trials. The left panel was constructed using the successful
trials (3/30) and the right panel was constructed with the failed tri-
als (27/30). From top to bottom the panels display the classification
accuracy of the discriminator, the discriminator loss (log loss), the en-
coder loss (MSE), the generator loss (log loss), the R2 score between
the length dictated by the conditioning vector and generated sequences,
and the average character-level entropy calculated over batches of gen-
erated sequences. This experiment highlights the relative instability of
AMPGAN v2, with a success rate of ∼10%. 75

3.D.1 Agreement between the sequence length dictated by the conditioning
vector and the length of sequences produced by the generator. This
figure was created using 4855 sequences that were generated using con-
ditioning vectors drawn at random from the training set. 50% of the
conditioning vectors were taken from AMP sequences and 50% from
non-AMP sequences. The model used to generate these sequences was
arbitrarily selected from the set of successfully trained models. The gen-
erator pays close attention to the sequence length conditioning variable,
resulting in an R2 score of 0.9798. 76

3.E.1 Distribution of amino acids used in generated vs non-generated se-
quences. Similar to Figure 3.4.1, but shows the distributions for all
sequences (top) and non-AMP sequences (bottom). K remains the
largest outlier, appearing 4–6% more often in generated sequences than
real sequences. 77

3.E.2 Amino acid usage frequency distributions for generated AMP and gen-
erated Non-AMP sequences (left) along with the difference between the
two distributions (right). Comparisons are made between real (top)
and generated (bottom) groups. 79

3.F.1 Amino acid frequency distribution comparison between two indepen-
dent groups of 5000 uniformly randomly constructed sequences with a
maximum length of 32. The distributions are flat, excluding a small
amount of sampling noise. Additionally, the deviation between the two
is extremely small, with the largest difference value being several orders
of magnitude smaller than the largest value present in Figures 3.4.1
or 3.E.2. 80

xii

3.F.2 Word shift plots comparing two independent groups of 5000 uniformly
randomly constructed sequences with a maximum length of 32. Similar
to the character level analysis shown in Figure 3.F.1, these word shifts
are extremely flat. However, since the number of distinct elements
grows exponentially with the sub-sequence length, sampling error may
have a larger impact here. The maximum entropy for length 2 sub-
sequences constructed from the 20 common amino acids is ∼8.64, which
is reliably obtained by a sample of this size. The maximum entropy for
length 3 sub-sequences is ∼12.97, but is not reached due to sampling
error. Approximately 1 to 5 length 3 sub-sequences are unobserved in
a sample of this size. There are 400 unique length 2 and 8000 unique
length 3 sub-sequences, thus a uniform distribution over those sets has
an element-wise probability of 0.0025 and 0.000125 respectively. . . . 81

3.G.1 Distributions of global match scores between a bag of FASTA sequences
and itself. The dark line indicates the mean match score, and the shaded
area indicates plus or minus one standard deviation. The horizontal
axis corresponds with a mixture parameter that controls the level of
diversity in the bag. For low values the bag of sequences is composed
entirely of unique sequences, resulting in low match scores on average.
The value of the mixture parameter increases as the level of diversity
in the bag decreases. When the mixture parameter reaches a value of
1.0 the bag contains an exact duplicate for every sequence, resulting in
match scores in the 30s. 84

4.3.1 The model development process, which includes ABFM development,
involves three entities (the conceptual model, implemented model, and
target system) connected by four processes (verification, validation, cal-
ibration, and replication). 96

4.4.1 A visual summary of the default configuration of ABMMS. The topol-
ogy and propagation delays are adopted from Tivnan et al. [234], with
four data centers distributed across northern New Jersey. The choice
of 16 exchanges and 2 SIPS is based on our understanding of the NMS
in early 2021. Traders are randomly distributed across the four data
centers unless otherwise noted. Every configuration of ABMMS has
an observer, located at the Carteret node, that exports data from the
simulation for analysis. 97

xiii

4.5.1 Box and whisker plots summarizing the number of stylized facts de-
tected for each experimental condition. The four experimental con-
ditions display similar capabilities for reproducing stylized facts, with
an average (standard deviation) of 4.26 (0.8), 4.1 (0.78), 4.03 (0.76),
and 3.75 (0.43) for the zip_no_arb_nms, zip_nms, zip_simple, and
rl_nms conditions respectively. The only significant difference, deter-
mined via two sided t-tests, was the lower mean for the rl_nms relative
to the other conditions. zip_nms was the only condition able to display
all six stylized facts simultaneously. 103

4.5.2 The detection rate for each stylized fact across all trials (top-center),
rl_nms trials (center-left), zip_no_arb_nms trials (center-right), zip_nms
trials (bottom-left), and zip_simple trials (bottom-right). rl_nms
and zip_simple conditions were unable to display fact #8, while
zip_nms and zip_no_arb_nms were able to display fact #8 exactly
once. rl_nms displayed fact #9 less than the other conditions, but
displayed fact #2 more frequently. 104

4.5.3 Basic trading day statistics for each experimental condition. The ar-
bitrage trader causes a noticeable drop in the mean number of shares
per trade (top-left). Market fragmentation leads to an order of magni-
tude increase in trades (top-right), quotes (bottom-left), and NBBOs
(bottom-right). The arbitrage trader leads to a sizeable increase in
trades, quotes, and NBBOs, but has a smaller impact than market
fragmentation. The rl_nms had a higher level of activity than the
other conditions, but featured smaller trades on average. 106

4.5.4 Summary statistics for dislocations by experimental condition. Frag-
mented configurations of ABMMS display roughly five times as many
dislocations when compared with zip_simple (top-left). The arbitrage
trader leads to an increase in the number of dislocations (top-left) and
an increase in the mean dislocation magnitude (top-right), but a de-
crease in the dislocation duration (bottom). RL trader lead to less
dislocations, smaller dislocations, and longer dislocations than the ar-
bitrage trader. 107

4.A.1 A graphical summary of the relationships between the message types
implemented in ABMMS. Message types that are higher up in the tree
share their state variables with message types that are lower in the tree,
if they are connected. 116

xiv

List of Tables

2.1 Descriptions of network Hyper-Parameters and their selected values. . 21
2.2 Model name, output time and the total stellar mass-loss rate. All mod-

els have L = 5pc, M = 3762M�, initial gas temperature Ti = 10K,
N∗ = 5. The calculations are first evolved without sources for two
Mach crossing times to allow initial cloud turbulence to develop. . . . 27

2.3 Confusion matrix statistics for a Residual U-Net trained on the den-
sity segmentation task, computed over a test set containing 154 sam-
ples. True positives, true negatives, false positives, and false negatives
are presented as a fraction of image pixels, thus assuming values be-
tween 0 and 100. The other three statistics, accuracy, F1-score, and
Matthew’s correlation coefficient, also assume values between 0 and 100,
with higher values indicating better model performance. The minimum
values observed in the F1-score and Matthew’s correlation coefficient
are caused by a few samples with no positively labeled pixels. 31

2.4 Segmentation task performance statistics collected by training and eval-
uating 60 randomly initialized networks on the same training, valida-
tion, and testing splits. The first column indicates a statistic that was
computed using the predictions of each trained network, while the sec-
ond column indicates a statistic that was applied to the results of the
column one statistic. The Receiver Operating Characteristic Area Un-
der Curve (ROC AUC) statistic is calculated by computing the integral
of the ROC curve, such as Figures 2.8 and 2.4. 34

xv

2.5 Regression task performance statistics collected by training and eval-
uating 60 randomly initialized networks on the same training, valida-
tion, and testing splits. The first column indicates a statistic that was
computed over the residuals of each trained network, while the second
column indicates a statistic that was applied to the results of the col-
umn one statistic. The fourth element of the first column, Score, refers
to the regression score defined in Section 2.4.4. CASI is able to reli-
ably obtain a residual distribution with a mean near zero and a small
standard deviation, indicating a tight residual distribution that is clus-
tered about the origin. For both tasks the mean and skew components
feature negative values, indicating that CASI tends to under-estimate
values more often than it over-estimates values. Additionally, the neg-
ative skew value indicates that the tail of the residual distribution is
longer in the negative direction, thus the largest errors tend to be under-
predictions. However, the fact that the residual distribution is tightly
grouped about the origin indicates that the relatively large skew value
is not concerning and due in part to the characteristics of the input data. 37

3.4.1 Investigation of the expected antimicrobial properties of samples gen-
erated by AMPGAN v1 and v2 using the machine learning models de-
veloped by Waghu et al. [248]. 5000 AMP candidates were drawn from
each generative model and each candidate was evaluated by four pre-
dictive models: a support vector machine, a random forest, an artificial
neural network, and discriminant analysis. The percentage of generated
samples that were predicted to have antimicrobial activity is presented,
along with a bootstrapped 95% confidence interval in parenthesis. . . 69

3.A.1 Percentage of each amino acid’s presence in the respective structure
type. A completely random ordering should result in a table of 5% for
all positions. 73

4.5.1 Summarized results from the calibration of stylized fact tests. Stylized
facts that were not confirmed in more than half of the stocks after
calibration were not considered for evaluating the ABFM. 102

4.A.1 State variables for the Simulation Driver entity. 117
4.A.2 State variables for the ECN entity. 118
4.A.3 State variables for the Agent entity. 119
4.A.4 State variables for the Exchange entity. 119
4.A.5 State variables for the Order Book entity. 120
4.A.6 State variables for the SIP entity. 120
4.A.7 State variables for the Limit Up-Limit Down (LULD) Queue entity. . 121

xvi

4.A.8 State variables for the Trader entity. 121
4.A.9 State variables for the Zero Intelligence (ZI) Trader and Minimum In-

telligence (MI) Trader entities. 122
4.A.10 State variables for the Zero Intelligence Plus (ZIP) Trader entity. . . 122
4.A.11 State variables for the Arbitrage Trader and Reinforcement Learning

Trader entities. 123
4.A.12 State variables for the Message Header entity. 123
4.A.13 State variables for the Add message entity. 124
4.A.14 State variables for the Modify (Mod) message entity. 124
4.A.15 State variables for the Trade message entity. 125
4.A.16 State variables for the Quote message entity. 125
4.A.17 State variables for the National Best Bid and Offer (NBBO) message

entity. 125
4.A.18 State variables for the Limit Up-Limit Down (LULD) band message

entity. 126
4.A.19 State variables for the Receipt message entity. 126
4.A.20 State variables for the Trigger message entity. 126
4.A.21 Training configuration for the Reinforcement Learning Trader under

the IMPALA algorithm. 139
4.A.22 Distributions used to initialize trading agent holdings. Initial holdings

for each trading symbol are drawn independently from the indicated
distributions. These initial holding distributions are arbitrary. Expo-
nential distributions are used based on the understanding that wealth
distributions tend to be heavy tailed. We chose not to use distributions
with unbounded mean and/or variance to improve the consistency of
ABMMS results. 146

xvii

Chapter 1

Introduction

Domain knowledge is knowledge associated with a specific problem, system, or topic.

The counterpart to domain knowledge is general knowledge, which is problem agnos-

tic, or at least applicable to multiple problems. In the context of machine learning

applications, domain knowledge comes from the application rather than from machine

learning literature.

Domain knowledge is useful for many machine learning applications since it can

be used to create strong biases before a model encounters data. Strong biases can

improve a model in many ways, including reducing the amount of data required to

reach desired performance. This improvement in data efficiency is extremely useful

for many applications, since collecting training data can be difficult and costly. Su-

pervised learning, one of the most common forms of machine learning, exacerbates

the need for data efficiency since it requires the construction of a set of labels to

accompany the training data. Human annotators are the most common source for

training labels, though some applications may be able to automatically create labels

using problem-specific metadata.

1

Figure 1.1: The development pipeline of a typical machine learning application, split into
six steps.

The development pipeline of a typical machine learning application consists of

roughly six steps: problem formulation, data collection, data preprocessing, model

selection, model fitting, result interpretation. During problem formulation, a problem

must be selected and formalized. After problem formulation, relevant training data

must be collected, and labels must be constructed if supervised learning is to be

used. Once training data has been collected, it needs to be processed so that it can

be fed to a machine learning model. When the data has been properly cleaned and

encoded, then an appropriate model needs to be selected. After a candidate model

has been selected, it is fit to the training data. Finally, evaluation procedures allow

the performance of the model, and any results produced during evaluation need to

be interpreted. Figure 1.1 summarizes this pipeline.

In traditional machine learning pipelines, domain knowledge is extremely impor-

2

tant during problem formulation, data collection, data pre-processing, model selec-

tion, and result interpretation [162, 5, 267]. Domain knowledge plays an important

role in problem formulation, where it influences which problems get investigated and

serves as an important filter for the machine learning community. Additionally, do-

main knowledge often shapes the problem formalisms that are considered, so that the

application can interface with existing tools and infrastructure if successful. Effective

data collection requires domain knowledge to identify the features that should be

gathered.

Problem formulation and data collection are critical since they provide the foun-

dation for any successful machine learning application, but the machine learning

research community has focussed more on the remaining steps of the pipeline in re-

cent years. In particular, the data pre-processing step has received much attention,

usually under the framing of feature engineering [141, 61, 270, 129].

Model selection can involve direct use of existing models, modification or extension

of existing models, or the development of completely new models. However, most

applications avoid creating new model types due to development costs and instead

opt for direct use or modification of existing state-of-the-art models.

Model fitting tends to be impacted less by domain knowledge since it is primarily

driven by mechanisms that are endogenous to the model. Result interpretation con-

sists almost entirely of model performance evaluation, with the goal of understanding

different aspects of performance such as generalization properties and failure modes.

Domain knowledge is particularly useful for providing a domain-specific framing for

performance evaluation, which makes it easier for domain experts to understand the

effectiveness of new applications [173]. Additionally, many applications are difficult to

3

evaluate using general performance metrics, thus domain-specific metrics can provide

relative and absolute frames of reference for model performance.

Newer applications built with deep learning tend to spend fewer resources on data

preprocessing, and instead use a combination of larger datasets and more expressive

models that can effectively learn how to extract salient features from the data [141,

117]. By learning to extract relevant features from relatively raw data, deep learning

approaches can be easier to apply to new datasets, as long as enough labeled training

examples are available. The field of deep learning has greatly expanded the effective-

ness and ease of transfer learning, which involves training a model on a large and

fairly general dataset, before fine-tuning on a smaller problem-specific dataset. This

has been made possible by the emphasis that the deep learning community has placed

on building models for classes of data (vectors, sequences, images, videos, etc.), rather

than specific datasets.

The reduced role of domain knowledge has been a cause of concern for some in the

machine learning community. The ability of deep learning to function largely without

domain knowledge has lead to a proliferation of studies that consist of “mindless

comparisons among the performance of algorithms that reveal little about the sources

of power, or the effects of domain characteristics” [133]. Reliance on deep learning

without domain knowledge can lead to poor performance on applications where costly

data collection results in small datasets, which may not have enough samples to train

effective feature extractors.

Despite the concerns of some, others have continued to investigate how best to

use domain knowledge in deep learning applications [246, 172, 207, 264, 265, 260]. It

seems that a consensus has been reached that the importance of domain knowledge

4

increases as the amount of available training data decreases. Domain knowledge is

also critical when applications involve new data sources or problem formalisms, in

which case it can reduce the amount of exploratory analysis needed to identify or

construct an effective initial feature set.

In the following chapters, I present three recent deep learning applications as a con-

text to examine these changes in the use of domain knowledge. The first application,

a Convolutional Approach to Shell Identification (CASI), comes from the domain of

astrophysics, where astronomers are interested in automatically detecting structures

of interest in vast quantities of imaging data captured by telescopes. The second ap-

plication, AntiMicrobial Peptide Generative Adversarial Network (AMPGAN), comes

from the domain of molecular biochemistry, where chemists are interested in devel-

oping peptides with specific properties. The third and final application, Agent-Based

Market Microstructure Simulation, comes from the domain of financial market mod-

eling, where modelers wish to develop Agent-Based Financial Markets that are better

able to inform policy and system design.

These applications come from disparate domains, but share at least two features:

the use of deep learning to solve challenging real-world problems and a reliance on

domain knowledge. By understanding how and where each of these applications

leverages domain knowledge, we gain a better understanding of effective strategies for

future applications. Though this coverage is far from complete, it provides evidence

that domain knowledge remains critical for problem formulation, data collection,

model selection, and result interpretation.

5

Chapter 2

CASI: A Convolutional Neural Net-

work Approach for Shell Identi-

fication

This Chapter is derived from Van Oort et al. [238].

2.1 Abstract

We utilize techniques from deep learning to identify signatures of stellar feedback in

simulated molecular clouds. Specifically, we implement a deep neural network with an

architecture similar to U-Net and apply it to the problem of identifying wind-driven

shells and bubbles using data from magneto-hydrodynamic simulations of turbulent

molecular clouds with embedded stellar sources. The network is applied to two tasks,

dense regression and segmentation, on two varieties of data, simulated density and

synthetic 12CO observations. Our Convolutional Approach for Shell Identification

6

(casi) is able to obtain a true positive rate greater than 90%, while maintaining a

false positive rate of 1%, on two segmentation tasks and also performs well on related

regression tasks. The source code for casi is available on GitLab.

2.2 Introduction

Forming stars influence their environment by injecting energy over a large dynamic

range with different sources contributing at different times and characteristic length

scales. Stellar feedback has been invoked to explain a host of phenomena including

the relation between dense cores and the stellar Initial Mass Function [IMF, 4, 182],

the longevity of turbulence within molecular clouds [46, 252, 185], the properties of

multiple star systems [183] and the global efficiency of star formation [128, 143, 70].

Nevertheless, the energetics and impact of feedback remains poorly constrained.

Identifying feedback signatures and quantitatively disentangling the interaction

with the environment are notoriously difficult. For decades, astronomers have stud-

ied the distribution of gas in the interstellar medium by making 2D dust emission

and absorption maps and 3D atomic and molecular spectral cubes. A variety of

algorithms have been developed to identify peaks in the data, namely cores and fil-

aments, including clumpfind, dendrograms and getfilaments [254, 90, 164].

However, simple structure identification algorithms like these fail to identify feedback

signatures, which exhibit a variety of complex morphologies. Statistical approaches,

such as principal component analysis and the spectral correlation function provide a

means to quantify the underlying impact of feedback on the turbulent cloud structure;

however, many statistics commonly applied to spectral line cubes are relatively insen-

7

https://gitlab.com/casi-project/casi-2d

sitive [22]. Consequently, the imprint of feedback is usually identified “by eye” [36,

8, 7, 144].

The human brain is a superb tool for parsing complex images [31], and a variety

of papers have used visual identification to study feedback in surveys of individual

regions [e.g., 127, 8, 7, 176, 144]. Features produced by stellar winds and outflows

resemble shells, bubbles or cones in intensity maps, which is one way they can be visu-

ally identified [36, 219, 184]. In spectral line data, such as CO observations, feedback

often appears connected over a range of velocities (frequencies), so astronomers often

identify feedback by searching for coherent three-dimensional structures [8, 7, 144].

Meanwhile, the explosion of data over the last decade and production of large sur-

veys, such as those covering the entire Galactic plane, have outstripped the analysis

capacity of professional astronomers. This has led to a variety of “citizen science”

efforts, in which interested members of the public visually inspect and characterize

the data. Galaxy Zoo, which has undergone a number of iterations, involved mil-

lions of people, and produced dozens of papers to date, is the highest-profile of these

initiatives [e.g., 148]. Recently, the Milky Way Project applied the power of citizen

science to the identification of stellar feedback in the Spitzer Galactic plane surveys

GLIMPSE and MIPSGAL. This effort yielded a catalog containing the locations and

sizes of thousands of new bubbles in the Milky Way [219].

However, human classification, while formidable, has several disadvantages. Al-

though numerous people devote significant time to data parsing, citizen hours are

finite and only certain problems can be formulated into simple pattern searches for

non-experts. Moreover, classifications are subjective and differ between people. This

can produce different catalogs and conclusions for the same data even between experts

8

(compare Narayanan, Snell, and Bemis [176] with Li et al. [144], for example).

The very nature of feedback ensures that human identification will be ambiguous.

Since stellar feedback acts on the interstellar medium, which by nature has a strongly

inhomogeneous density and velocity distribution, signatures are usually asymmetric

and often blend into the turbulent background [8, 7]. Voids, low density regions

that are produced by supersonic turbulence, may also mascaraed as feedback-driven

bubbles, causing false positives. Although stellar feedback can accelerate cloud gas to

velocities above the mean cloud turbulent velocity, the peak velocity of the feedback

is sensitive to the source orientation with respect to the line of sight and its location

relative to the cloud boundary, where gas changes phase from molecular to atomic [8,

184, 144]. These complications mean that even experts have trouble unambiguously

and accurately identifying feedback.

Algorithmic approaches to identifying bubbles have been utilized to reduce subjec-

tivity of bubble identification, while also relieving the burden of human identifiers [80].

However, more traditional algorithmic approaches tend to lack the flexibility required

for widespread application.

One alternative approach is machine learning, a sub-field of computer science in

which algorithms adapt to patterns and correlations in data. Machine learning is now

a mature field, and is commonly applied to pattern recognition problems, including

topics ranging from genome sequencing to face recognition to drug discovery [141].

Machine learning can automate the process of feature identification, scale efficiently

to large data sets, and produce repeatable catalogs. However, to date it has been

applied relatively sparsely to problems in astrophysics.

In this work we present CASI, a convolutional approach for shell identifica-

9

tion [240]1. CASI is a convolutional neural network, a variety of artificial neural

network (ANN) where the primary unit of computation is the convolution operation

rather than simple matrix multiplication. For an overview of convolution arithmetic

in the context of machine learning, see Appendix 2.A for a brief overview and Du-

moulin and Visin [66] for a more comprehensive guide2. ANNs are a computational

model that is loosely inspired by biological neural networks, where the fundamental

unit of computation is a single neuron that receives one or more stimuli and provides

one or more output signals. See section 3 in Lieu et al. [147] for a brief overview of

ANNs that targets the astronomy audience.

CASI is designed to identify feedback signatures in molecular clouds, with a

focus on wind-driven bubbles created by intermediate-mass stars. This is motivated

by the observation that such shells identified in nearby star-forming regions, like the

Perseus molecular cloud, have a huge impact on the cloud energetics and evolution [7].

Magneto-hydrodynamic (MHD) simulations with embedded sources are used to train

our method and investigate its efficacy.

In the remainder of §2.2, we summarize relevant machine learning applications in

the literature. We describe our method in §2.3 and present results in §2.4. Finally,

conclusions and discussion are provided in §2.5.
1The source code for CASI is available on GitLab: https://gitlab.com/casi-project/

casi-2d
2An associated GitHub page provides helpful animations: https://github.com/vdumoulin/

conv_arithmetic.

10

https://gitlab.com/casi-project/casi-2d
https://gitlab.com/casi-project/casi-2d
https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic

2.2.1 Machine Learning for Image Tasks

Hubel and Wiesel [113] identified specialized neurons in the visual cortices of cats and

monkeys that process small, partially overlapping regions of their visual field. This

pattern of local, overlapping connectivity inspired the design of the Neocognitron [76],

a neural network based approach to character and digit recognition. However, diffi-

culties encountered when training networks with more layers and a lack of sufficient

training data led to a decline in the popularity of ANNs, with alternative methods

such as support vector machines (SVMs) receiving more attention.

More than a decade later LeCun et al. [142] introduced LeNet-5, a Convolutional

Neural Network (CNN) that broke the record for character recognition performance

and became a baseline architecture for many applications of CNNs that followed,

contributing to a resurgence the popularity of ANNs. This resurgence ushered in a

wave of research and targeted hardware improvements that allowed ANNs to overtake

many competing machine learning algorithms and attain state-of-the-art results on a

variety of tasks, rivaling human performance in some cases [177].

In addition to character recognition, CNNs have been successful at image classifi-

cation, object detection, semantic segmentation, and image denoising/artifact removal

to name a few. For a broad overview of the techniques involved in CNNs and their

applications see Gu et al. [96].

11

2.2.2 Previous Applications to Astronomical Data

Analysis

Machine learning techniques have been applied to structure detection in astronomical

data several times with varying degrees of success.

Beaumont, Williams, and Goodman [15] used SVMs to segment 12CO data con-

taining a supernova remnant partially obscured by a molecular cloud, reaching >90%

accuracy when classifying hand-labeled pixels as belonging to the supernova remnant

or molecular cloud.

SVMs are a supervised learning method that classifies data by finding a decision

boundary that simultaneously minimizes classification error and maximizes the dis-

tance between the boundary and closest samples of any class. SVMs may also be

applied to regression problems. Such applications are often referred to as support

vector regression. Since SVMs attempt to maximize the margins about the decision

boundary they tend to generalize well and feature robustness to minor perturbations

of input data. Interested readers should refer to Bennett and Campbell [16] for an

overview of SVMs.

Beaumont et al. [14] developed Brut, a method that utilizes Random Forest

classifiers, to identify bubbles and similar structures in color-composite images from

the Spitzer Space Telescope. However, Brut is sensitive to the position of the bubble

in the image, making wide-field searches computationally expensive [261].

Deep learning is a relatively new and rapidly evolving sub-field of machine learning

that features ANNs with sophisticated architectures and greater numbers of layers.

Relatively few astrophysical applications utilize deep learning techniques, which may

12

be partly due to the age and the rapid research pace of the field. Daigle et al. [48]

utilized a Multi-Layer Perceptron (MLP), a simple neural network architecture that

features consecutive layers of densely connected artificial neurons, to identify expand-

ing shells in the Canadian Galactic Plane Survey, obtaining a 0.6% false positive rate.

Later Daigle, Joncas, and Parizeau [47] compared the performance of the MLP against

two alternative network architectures, the competitive network and the growing neu-

ral gas network, on similar data. There was no clear winner in this comparison, since

all three networks were able to correctly identify 10 out of the 11 bubbles considered

when evaluated using a leave-one-out cross-validation method.

Dieleman, Willett, and Dambre [59] applied a CNN to the morphological clas-

sification of annotated images from the Galaxy Zoo project, attaining an accuracy

> 99% for images where human annotators strongly agreed upon the classification

label. The authors suggest that a machine learning system could be used to classify

the “easy" images, leaving the more difficult cases for human annotators. Filtering

the images in this way could lead to a reduced workload for human annotators when

processing large surveys.

Lanusse et al. [134] trained a CNN to identify the existence of gravitational lensing

in simulated data that was constructed to resemble Large Synoptic Survey Telescope

(LSST) observations. This approach reached a true positive rate ≥ 80% while main-

taining a false positive rate of 1% on samples with varying signal-to-noise ratio.

The network employed in Lanusse et al. [134] utilizes residual connections, a net-

work architecture feature introduced by He et al. [102] where identity connections

combine the input and output data of a block of operations. Residual connections

effectively change the underlying model of a network, or network component, from

13

y = f(x) to y = f(x)+x, and encourage the network to learn iterative transformations

of the input rather than a direct mapping [118]. Networks and network components

that incorporate residual connections can easily learn the identity function, which al-

lows them to mitigate the effects of harmful or under-performing components during

learning. These properties allow architectures with residual connections to effectively

utilize a greater number of layers and a larger number of model weights than archi-

tectures that do not include residual connections. See Section 2.A.6 for more details

on residual architectures.

Primack et al. [194] utilized a simple CNN to classify images from the CANDELS

survey into one of three phases of galaxy evolution. The network is trained using sim-

ulated CANDELS-like observations and then applied to real data, reaching so-called

“Blue Nugget” phase galaxy identification accuracy of around 80%. This application

involves a relatively small data set, thus the authors implemented several measures

to keep the network from over-fitting, including data augmentation and dropout.

Lieu et al. [147] trained a CNN to classify solar system objects from other as-

tronomical sources in simulated data. The network is initialized with weights that

were trained on the ImageNet data set and then fine-tuned on 7512 simulated Eu-

clid images. Similar to Primack et al. [194], this work utilizes various techniques to

mitigate over-fitting, including batch normalization (see Appendix 2.A), dropout and

data augmentation. After testing several modern CNN architectures, Lieu et al. [147]

are able to reach an accuracy of 95.6% when distinguishing between four classes of

stellar objects.

Most recently, Diaz et al. [58] investigated the classification of simulated galaxies

into three classes. CNNs were applied to this task, using data generated from N-body

14

simulations as training data, and they were able to obtain an accuracy exceeding 99%.

The extent of previous work in this area, as well as the lack of a comprehensive

and automated solution, motivates further application of machine learning techniques

to structure identification in studies of star formation and the interstellar medium.

In this study we apply the U-Net architecture, which is described in the following

section, to several tasks derived from MHD simulation data.

2.3 Method Overview

2.3.1 Neural Network Architecture

In this work we employ a Residual U-Net, a variant of the U-Net architecture de-

veloped by Ronneberger, Fischer, and Brox [201] where the fundamental unit of

construction is a residual block [102], rather than a single convolution. A residual

block is simply a sequence of consecutively applied convolution operations that are

spanned by a residual connection. See Appendix 2.A.6 for more details.

The U-Net architecture and its derivatives have grown in popularity since their

introduction, and Residual U-Nets in particular have been applied to a wide va-

riety of problems including road segmentation [268], detection of pulmonary nod-

ules [132], segmentation of optic nerve tissue [55], and several other medical segmen-

tation tasks [272].

Figure 2.1 displays our Residual U-Net architecture and provides details on the

structure of each sub-component. Beyond the addition of residual connections, we

also make a few other small alterations to the original U-Net architecture.

15

Figure 2.1: A flow-chart style depiction of our Residual U-Net architecture, which maps a
4D stack of images with dimensions (number of images, height of images, width of images,
number of image channels) to a 4D stack of images (number of images, height of images,
width of images, number of output channels). In the context of astronomy data, the “images"
in question may be slices of observational data volumes and the height/width are literally the
height and width of the observational data (in pixels/voxels). In this work we only utilize a
single input image channel (gas density in a voxel, CO intensity in a voxel, etc.), however,
it is possible to supply the network with multiple varieties of data using multiple input image
channels. The first half of the network uses down-sampling operations to compress input
features and construct higher-level representations, while the second half of the network uses
up-sampling operations to reconstitute the abstract representations. Cross connections allow
information from the down-sampling path to be utilized in the up-sampling path, leading
to mappings that benefit from the combination of coarse and fine grained features. The
ellipsis-within-oval graphics indicate that the depth of the architecture is variable and may
be modified by the user.

16

In particular, we utilize padded convolutions3 in place of unpadded convolutions,

which results in feature maps with identical spatial dimensions at corresponding lev-

els of the down-sampling and up-sampling paths. This removes the need to apply

cropping to the cross connections and allows the depth of the network to be modified

more easily when a particular problem benefits from the use of higher-level features.

We make use of batch normalization prior to each activation function, which was not

used by Ronneberger, Fischer, and Brox [201], since it can stabilize training and act

as a light regularizer [116]. Note that batch normalization is not strictly necessary

and may have a negative effect on performance for some tasks, thus it may be useful

to re-evaluate its use when applying this architecture to new problem domains.

2.3.2 Training

We utilize stochastic gradient descent (SGD) with momentum to train our networks,

following results from Wilson et al. [255] that suggest SGD may provide better gen-

eralization properties than adaptive step size methods, such as ADAGRAD [63] and

ADAM [124]. Ruder [204] provides an excellent overview of gradient descent algo-

rithms, with a focus on variants used in deep learning research and applications.

SGD is an optimization algorithm where the parameters of a function, such as

the weights of a neural network, are adjusted using the gradient of a loss function

with respect to those parameters. The loss function provides a performance criterion,

and the gradient of the loss with respect to the model parameters indicates how the
3Padded convolutions augment the convolution operation by extending the spatial dimensions,

e.g. height and width, of the input with generated data. One common padding scheme is to
apply a band of zeros that is half as wide as the spatial dimensions of the convolution filter in
that direction. This scheme results in a convolution whose input volume and output volume have
identical dimensions when the convolution filters have odd spatial dimensions (e.g. 3, 5, 7, ...).

17

parameters should be adjusted in order to reduce the loss. The backpropagation

algorithm, an application of the chain rule from differential calculus, distributes the

gradients backwards through the network starting from the final layer.

The behavior of SGD can be controlled via the use of several parameters including

the learning rate, batch size, and momentum intensity. The learning rate scales the

magnitude of weight updates applied to the network in each step of SGD. Utilizing

learning rates that are too high can lead to divergence, where the loss increases after

each update and the network fails to learn, while learning rates that are too low may

lead to premature convergence and extended training times.

Batch size determines how many training samples will be used to calculate the

gradient at each step of SGD. Utilizing a batch size of one results in what is usually

referred to as online SGD, while a batch size equal to the size of the training set results

in batch SGD, and the use of batch sizes that fall between these two extremes results

in mini-batch SGD. The batch size parameter features a trade-off between calculation

speed and gradient accuracy when considering smaller vs. larger batch sizes. Nearly

all modern applications of ANNs use mini-batch SGD for training, since online SGD

can introduce too much noise into the training process and batch SGD tends to take

too long to converge, though there is not a strong consensus on the optimal batch size

setting. Masters and Luschi [159] indicate that smaller batch sizes, between 2 and 32,

tend to work well in many cases, on the other hand, Hoffer, Hubara, and Soudry [106]

suggest that larger batch sizes may also be effective, as long as the training duration

is extended accordingly.

Momentum is an extension to SGD where each weight update is a linear com-

bination of the current gradient and the previous weight update, which can reduce

18

oscillations in weight updates and speed up training convergence [85]. The momen-

tum intensity parameter usually falls in the range [0, 1) and controls the fraction of

each weight updated that comes from the previous update. For example, setting the

momentum intensity to 0.9 will result in each update consisting of the previous up-

date multiplied by 0.9 plus the current gradient multiplied by 0.1. Alternatively, the

momentum intensity may simply act as a learning rate applied to the previous weight

update, rather than also scaling the current update.

We train our networks for 200 epochs4 of SGD with the momentum parameter set

to 0.9 and a batch size of 8.

The networks are initialized with random weights using the Glorot initialization

scheme [82]. We utilize the uniform distribution variant of this scheme, which draws

samples from a uniform distribution over the interval [-x, x], where

x =
√

6/(fan_in+ fan_out),

fan_in is the number of input units for a weight tensor, and fan_out is the number

of output units. Note, fewer training iterations may be required if the models are

initialized with weights that have been previously trained on a similar data set and

task, a process that is usually referred to as transfer learning [188]. During training the

learning rate is adjusted using the cyclic learning rate schedule described in Huang et

al. [112], with a maximum learning rate of 0.2 and 5 cycles of 40 epochs. Additionally,

the training samples are shuffled at the end of each epoch, which effectively adds a

small amount of noise to the gradient updates and can reduce the chance of getting
4A single training epoch involves several gradient updates, such that the network is exposed to

each sample of the training set exactly once. In our case a single epoch consists of dNT /Be gradient
updates, where NT is the number of training samples and B is the batch size.

19

0 25 50 75 100 125 150 175
Epoch

0.2

0.4

0.6

0.8

('i
ou

_lo
ss

',)

Model Convergence
Training
Validation

Figure 2.2: An example of the training and validation loss curves for a Residual U-Net
trained on the CO segmentation task using the Intersection over Union loss function. The
spikes that occur every 40 epochs are a feature of the cyclic learning rate schedule. Note that
by the 200th epoch, network performance appears to have converged, with little improvement
in the validation loss for 50 to 75 epochs.

20

Name Definition Symbol Value
Batch Size Samples provided during each training iteration B 8
Depth Number of blocks used in network construction D 4
Filter Count Filters allotted for each convolution operation F 16
Noise Strength Std dev of the noise applied to network inputs σ 0.003

Table 2.1: Descriptions of network Hyper-Parameters and their selected values.

stuck in a local optimum. Finally, the model state is saved, via a check-pointing

utility, each time a new minimum error is observed on the validation set.

2.3.3 Model Hyper-parameters

This section provides a detailed description of relevant hyper-parameters and how

they influence performance of the model discussed in Section 2.3.1. Table 2.1 provides

a brief summary of these hyper-parameters and the values utilized in our experiments.

The batch size of the network, which controls how many images are provided to

the model simultaneously during training and inference, is determined by B. As men-

tioned in Section 2.3.2, there are trade-offs to be considered when selecting the batch

size parameter. Larger batch sizes allow samples to be processed in parallel and may

reduce training and inference times at the cost of additional memory overhead. Batch

sizes greater than one allow for the aggregation of gradients over several data samples,

providing more accurate gradient estimates and potentially reducing the number of

training iterations required for the loss function to converge. Small batch sizes have

been shown to have a beneficial regularizing effect on deep neural networks that may

improve generalization [122, 106, 159]. Though progress has been made towards im-

proving the effectiveness of networks trained with large batch sizes [106, 222], we

tended to use small batch sizes due to memory limitations of graphics processing

21

units (GPUs) used to accelerate training.

The depth parameter, D, determines the number of fundamental blocks that are

used in the construction of a particular network. For the Residual U-Net this is the

number of convolution blocks, e.g. pairs of convolutions and associated operations

such as batch normalization and residual connections, present in both the compressive

and decompressive paths.

Each block in the Residual U-Net contains a spatial resampling operation, max

pooling in the compressive path and nearest-neighbor upsampling in the decompres-

sive path. See Section 2.A.3 for a brief overview of the mechanics and benefits of max

pooling.

Thus, D governs the amount of dimension manipulation present in these architec-

tures as well as the ability of the network to interact with the data at different spatial

resolutions.

The depth parameter also contributes to the expressiveness of the network since

each fundamental block includes one or more convolution operations. The expres-

siveness of a particular network refers to its ability to accurately approximate various

functions. When considering two competing networks, X and Y , network X is more

expressive than network Y if the set of functions that X is able to accurately approx-

imate is a super-set of the set of functions that Y is able to accurately approximate.

With this in mind, increasing D, and thus the number of model parameters, tends to

improve the ability of the model to approximate functions and therefore increases its

expressiveness.

The number of filters, F , indicates how many filters are allotted for each convolu-

tion operation, see Section 2.A.2 for more information about how the filters are used

22

in the model. Each down-sampling operation increases the number of filters allot-

ted to down-stream convolution operations by a factor proportional to the dimension

reduction, and similarly, each up-sampling operation decreases the number of filters

provided for down-stream convolutions in proportion to the increase in spatial dimen-

sions.

Additive Gaussian noise may be applied to the network inputs during training in

order to avoid over-fitting, and the standard deviation of this noise is controlled by

the σ parameter. The application of random noise to training samples can improve

the robustness of the resulting method to small data perturbations and reduce the

chances of over-fitting to the training data.

ANNs often require a computationally expensive hyper-parameter search process

in order to reach desired performance levels. Some factors that contribute to the

computational cost of this search are the number of hyper-parameters to be opti-

mized, resources required to train the network, and complex non-linear relationships

between various hyper-parameters and final model performance. We did not utilize a

comprehensive hyper-parameter optimization method in this work, since hand-tuning

alone provided adequate performance to demonstrate the effectiveness and flexibility

of the method. Instead, we refer interested readers to relevant literature.

The simplest, and arguably least efficient, hyper-parameter optimization algo-

rithms are grid-search and random-search. Bergstra and Bengio [17] investigates the

relationship between these two methods and suggests that random-search may be a

better choice.

Bayesian methods may offer a more intelligent method for exploring the space of

network hyper-parameters, leading to a lower computational cost. Bayesian methods

23

are generally more complicated than random-search or grid search, thus there is a

trade-off between compute time spent on the optimization and human time spent

implementing more advance methods. Snoek, Larochelle, and Adams [223] provides

an overview of Bayesian parameter optimization in the context of machine learning.

Evolutionary algorithms have also been successfully applied to hyper-parameter

tuning. Examples include optimization of CNN hyper-parameters with a simple

population-based evolutionary algorithm [12], optimization of SVM hyper-parameters

with particle swarm optimization [97], and optimization of ANN hyper-parameters

with co-variance matrix adaptation evolution strategies [CMA-ES, 153].

2.4 Validation

2.4.1 Simulation Training Set

Our study uses outputs from the simulations presented in Offner and Arce [180] as

a training set. These calculations are performed with the orion2 adaptive mesh

refinement (AMR) code and follow the evolution of a 5 pc turbulent piece of a molec-

ular cloud with five randomly distributed embedded sources. The stellar sources are

represented by sink particles coupled to a sub-grid model for isotropic main-sequence

stellar winds. See Offner and Arce [180] for additional details.

As a training set, the simulations have one essential advantage over observational

data: they have complete information, including density, velocity, gas temperature

and magnetic field at every point in the 3D volume. Of particular importance orion2

has the capability to “tag" the gas launched in winds and follow its progress across

24

the domain [e.g., 181, 185]. The wind tracer field is a passive scalar, advected with

the gas density, which tracks the amount of wind material in each cell. This field

allows us to distinguish wind material from pristine cloud material and provides an

exact map of the shells and bubbles created by the feedback (see §2.4.2).

For our training sets, we adopt outputs at different times from simulations with

two different stellar distributions and two different initial magnetic field strengths as

listed in Table 2.2. For training, we use only the 2563 basegrid, thereby neglecting the

information at higher “adaptive" resolution. This corresponds to a spatial resolution

of ∼ 0.02 pc.

2.4.2 Gas Density Training Set

We train our method with two different types of data. The first training set is

constructed using the simulation gas density, ρ. We define the wind fraction as

ft = ρt/ρ, where ρt is the density of the wind material as tracked by the tracer field.

Pixels with values of ft > 0.02 are considered to be part of the feedback [e.g., 185].

These pixels define the target regions to be identified during training, testing and

validation.

Due to the high expansion velocity of the wind shells, v & 1 km s−1, little mixing

occurs outside the boundary of the swept-up material. Consequently, the feedback

signatures are roughly spherical but are modulated by local density and magnetic field

variations. Thus, in 2D image slices, the target training regions resemble irregular

bubbles.

25

2.4.3 Synthetic CO Emission Training Set

The second training set is constructed from a suite of synthetic molecular line ob-

servations. We post-process each simulation output using the radiative transfer code

radmc3d5 to obtain a spectral cube for the 12CO(1-0) emission line. Following Offner

and Arce [180], we adopt the Large Velocity Gradient (LVG) approximation, which

calculates the level populations by solving the equations for local radiative statis-

tical equilibrium. We use the gas densities and velocities on the 2563 basegrid as

inputs, where we convert from total mass density to molecular number density using

nH2 = ρ/(2.8mp) and 12CO/H2 = 10−4 [74]. Gas with temperatures exceeding 1000

K or with nH2 < 50 cm−3, where all of the CO is likely dissociated, are assigned a

CO abundance of 0. In addition, CO molecules freeze-out onto dust grains in cold

gas with densities nH2 > 104 cm−3,

and CO molecules are dissociated by strong shocks, e.g., where the gas veloc-

ity exceeds 10 km/s, so we also set the CO abundance to 0 in these regions. We

include turbulent line broadening below the grid resolution by adding a constant

micro-turbulence of 0.25 km s−1, which is consistent with the linewidth-size relation

on this scale [135]. The spectral cube resolution is ∆v = 0.156 km s−1.

The tracer field, which tracks the stellar winds, records the amount of wind mate-

rial in a given voxel (3D pixel). In order to use these data to define the positive and

negative detections, we combine it with the gas velocity information and construct a

spectral cube (position-position-velocity) that complements the synthetic CO emis-

sion. The approach we adopt is to map the tracer field to a density regime where

50 < nH2 < 104 cm−3. We then carry out the radiative post-processing described
5http://www.ita.uni-heidelberg.de/ dullemond/software/radmc-3d/

26

Model Properties
Model trun(Myr) Ṁtot(10−6M�yr−1) B(µG)
W1_T2_0 0.0 0 13.5
W1_T2_0.1 0.1 41.7 13.5
W1_T2_0.2 0.2 41.7 13.5
W2_T2_0.1 0.1 4.5 13.5
W2_T2_0.2 0.2 4.5 13.5
W2_T3_0.1 0.1 4.5 5.6

Table 2.2: Model name, output time and the total stellar mass-loss rate. All models have
L = 5pc, M = 3762M�, initial gas temperature Ti = 10K, N∗ = 5. The calculations are
first evolved without sources for two Mach crossing times to allow initial cloud turbulence
to develop.

above. The emitting regions in these cubes provide a map of the location of the

wind-driven shells.

To account for observational resolution, we place each cube at a distance of 250 and

500 pc and convolve it with a 46” beam, which is the resolution of the COMPLETE
12CO (1-0) survey of Perseus Ridge et al. [e.g., 199]. We also add random noise

assuming σrms = 0.15 K, which is comparable to the noise in the COMPLETE data.

2.4.4 Performance Metrics

The prediction of gas density and CO emission can be phrased in at least two ways,

regression and segmentation. In the regression phrasing, the network is expected to

output a floating point value corresponding with some measure of bubble material

present in each pixel (e.g., molecular line emission or a continuum map, depending

on the training data set). In the segmentation phrasing, the network is expected to

classify each pixel as containing a ‘low’ or ‘high’ amount of bubble material.

The regression phrasing may provide more detail about perceived structures, al-

27

Figure 2.3: Density segmentation predictions from a Residual U-Net on samples randomly
selected from the test set. Each frame contains a single slice from a simulated density cube,
which is shown in gray scale. Since each slice is taken from a position-position-position
cube, the x- and y-axis of each frame represent spatial coordinates within the cube. The
tiles presented here have a side length of 5 pc that is inherited from the simulation. In each
frame, true positives are shown in blue, false positives are shown in purple, false negatives
are shown in green, and true negatives are not displayed. As a pre-processing step the density
data was normalized so that it is now unit-less and falls approximately in the range [-0.4,
190], where lower density regions correspond with lighter colors and higher density regions
correspond with darker colors. The color scale for the density data is identical across all
tiles, and a logarithmic transformation is utilized in order to improve contrast.

28

lowing for certain kinds of analysis, such as the measurement of total bubble mass

independently from the non-bubble gas along the line of sight. However, regression

methods will need to handle heavy-tailed distributions of input and output values,

which could lead to poor performance. The segmentation phrasing removes the po-

tential difficulty of learning a heavy-tailed output distribution, but in doing so, loses

some of the detail provided by regression methods.

Segmentation

Segmentation masks provide less detail when compared with regressed values, but

they may be more useful for identifying interesting or important regions of the input

data. For example, the outputs of segmentation models can be used to augment

human efforts in processing large surveys by highlighting regions of interest or filtering

regions without structures of interest.

The segmentation phrasing is achieved by selecting a threshold value, which may

then be used to discretize the density and CO emission data. The threshold value

may be selected arbitrarily by the user or by using some sort of heuristic, such as

selecting a certain portion of the range of the data to constitute the negative and

positive classes (e.g., the lower 1% of the range is the negative class and the upper

99% of the range is the positive class). We utilize a 1% threshold since it closely

aligns with features that may be visually identified.

The loss function used in the segmentation phrasing is based on the Intersection

over Union (IoU) score, also known as the Jaccard Index, and is defined as

IoU (y, y′) = TP (y, y′)
TP (y, y′) + FP (y, y′) ,

29

where TP(y, y′) counts the number of true positives in prediction y′ using the training

label y and FP(y, y′) counts the number of false positives.

The IoU score traditionally operates on binary inputs and is non-differentiable. In

order to facilitate the training of neural networks via gradient descent, the following

differentiable approximation is used,

IoU (y, y′) =
∑N

i=1 y[i] · y′[i]∑N
i=1 y[i] + y′[i]−∑N

i=1 y[i] · y′[i]
,

where N is the number of pixels in y and y[i] is the ith element of y. The IoU loss is

simply 1− IoU(y, y′).

Trained models are evaluated using tools from binary classification, namely con-

fusion matrices and derived statistics, such as accuracy, F1 Score, and Matthew’s

Correlation Coefficient [192].

Given a confusion matrix with a number of true positives, TP, a number of true

negatives, TN, a number of false positives, FP, and a number of false negatives, FN,

accuracy is calculated as

Accuracy = TP + TN

TP + TN + FP + FN
,

the F1 Score is calculated as

F1 = 2× TP

2× TP + FP + FN
,

30

True True False False Accuracy F1-Score Matthews
Pos Neg Pos Neg Corr.

Mean 10.82 87.76 0.47 0.94 98.59 91.71 91.07
Std 7.04 7.75 0.34 0.82 1.08 10.83 10.42
Min 0.00 72.49 < 0.01 0.00 94.58 0.00 0.00
25% 5.43 80.00 0.02 0.36 97.98 90.99 90.18
50% 9.77 89.17 0.37 0.72 98.85 94.82 93.77
75% 17.09 93.13 0.69 1.22 99.37 96.11 95.45
Max 25.44 99.97 1.52 3.90 99.98 98.29 98.11

Table 2.3: Confusion matrix statistics for a Residual U-Net trained on the density segmen-
tation task, computed over a test set containing 154 samples. True positives, true negatives,
false positives, and false negatives are presented as a fraction of image pixels, thus assum-
ing values between 0 and 100. The other three statistics, accuracy, F1-score, and Matthew’s
correlation coefficient, also assume values between 0 and 100, with higher values indicating
better model performance. The minimum values observed in the F1-score and Matthew’s
correlation coefficient are caused by a few samples with no positively labeled pixels.

and Matthew’s Correlation Coefficient is calculated as

MCC = TP× TN− FP× FN√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

.

Receiver Operating Characteristic (ROC) curves are generated by plotting the

true positive rate against the false positive rate of a model at different prediction

threshold values and can provide more information about the predictive behavior of

a classifier than single number statistics.

Regression

In the regression phrasing, models are trained using target values that have not been

thresholded and the mean squared error (MSE) is used as the loss function.

Evaluation of regression models is traditionally dominated by the analysis of resid-

uals, with the assumption that models featuring residuals that are tightly and sym-

31

metrically distributed about zero are better. We utilize the following scoring function

in order quantitatively evaluate and compare models according to these assumptions,

f(R) = −|〈R〉| − std(R)− |skew(R)|,

where f denotes the fitness function and R denotes the computed residuals. Note

that the first term directly penalizes residual distributions whose mean value strays

from 0, the second penalizes residual distributions that feature a non-zero standard

deviation, and the final term penalizes residual distributions with non-zero skew.

Additional qualitative evaluation of the residuals can be obtained using histograms,

kernel density estimates (KDE), and scatter plots, each providing a slightly different

perspective on the distribution of residuals.

2.4.5 Case Study 1: Gas Density

In both problem phrasings the network is provided 2D slices of a 3D molecular gas

density cube as input, though the expected output differs. As noted in Sections 2.4.4

and 2.4.4, the expected output for the regression task is the fraction of gas density

associated with wind-swept bubbles and the expected output for the segmentation

task is a binary mask that identifies regions with “high” levels of gas density associated

with wind-swept bubbles.

We cut each 3D simulated density cube along its primary axes in order to form a

stack of 2D slices, which are then divided into training, validation, and testing sets.

We then normalize each set of 2D slices by subtracting the mean value and dividing

by the standard deviation, after which it is ready to be used in training.

32

Density Segmentation

In Figure 2.3, we display examples of Residual U-Net predictions on several samples

randomly selected from an unseen test set. In the figure, the gray scale components

depict re-scaled density values and and the colored components depict network pre-

dictions and errors. Qualitatively, the model appears to correctly segment all major

contiguous structures, though there may be some smaller structures that are missed.

Additionally, note that the majority of errors are located on or near the edge of iden-

tified structures and would have little effect on whether or not a particular structure

is identified. Finally, note that the upper left tile contains bubble structure that was

correctly identified by CASI but may be difficult for a human to identify due to a

lack of corresponding features in the density data.

In Figure 2.4 we present a ROC curve for the same model, which shows that

the model attains a true positive rate of 95.52% while maintaining a false positive

rate of only 1%. Supporting this, we summarize the distributions of several binary

classification statistics in Table 2.3, where the classification statistics are computed

across a test set of 154 samples. In particular, Table 2.3 clearly highlights the low

error rate obtained by our model, where the maximum fraction of false positives is

1.52% and the maximum fraction of false negatives if 3.9%.

In order to better grasp the effect of random initialization on final model per-

formance we trained 60 instances of the model using the same data and parameter

settings, recorded the Receiver Operating Characteristic Area Under Curve (ROC

AUC) statistic for each model, and then constructed confidence intervals for the

mean of the ROC AUC distribution. The results of this experiment are presented in

the first column of Table 2.4, which shows that CASI is able to consistently obtain

33

Figure 2.4: Example ROC curve for a Residual U-Net trained on the Density segmentation
task. The dashed blue line represents y = x, which corresponds with the expected perfor-
mance of a random binary classifier. A true positive rate of 95.52% is obtainable with a
false positive rate of 1%, suggesting that this method may perform well as a content filter.

Performance Stat Distribution Stat Density Segmentation 12CO Segmentation
ROC AUC Mean 0.9768 0.909

Std Error 0.0016 0.0018
85% Conf Int (0.9745, 0.9792) (0.9063, 0.9117)

Table 2.4: Segmentation task performance statistics collected by training and evaluating 60
randomly initialized networks on the same training, validation, and testing splits. The first
column indicates a statistic that was computed using the predictions of each trained network,
while the second column indicates a statistic that was applied to the results of the column one
statistic. The Receiver Operating Characteristic Area Under Curve (ROC AUC) statistic is
calculated by computing the integral of the ROC curve, such as Figures 2.8 and 2.4.

ROC AUC scores close to the maximum value of 1.0.

Density Regression

Applying a Residual U-Net to the density regression task leads to a tight distribution

of residuals that is not strongly correlated with the size of the input value, indicating

that the model has captured much of the relationship between the input and output.

Figure 2.5 displays a 2D histogram that shows the relationship between residuals and

34

Figure 2.5: A 2D histogram investigating the scaling of residuals with respect to the input
value for a Residual U-Net trained on the density regression task. The color scale is log-
arithmic in order to increase contrast and represents the density of points associated with
each residual value-input value pair. Recall that the input values here are density values
that have been scaled to have zero mean and unit standard deviation, thus the y-axis of this
plot is unit-less. Due to the heavy-tailed nature of the input values, this re-scaling results in
the data that falls approximately within the range [-0.4, 190].

input values.

Figure 2.6 displays the example prediction residuals for several samples from the

test set. Note that the larger residuals tend to be clustered together near the edges

of structures, similar to what was observed in the density segmentation setting.

2.4.6 Case Study 2: Synthetic Molecular Emis-

sion

The 12CO data features position-position-velocity coordinates, rather than the position-

position-position coordinates used for the density data. In both the segmentation and

regression tasks the input data is inspected along the velocity axis such that the net-

work is provided with position-position slices, those slices are divided into training,

35

Figure 2.6: Example residuals from a Residual U-Net trained on the density regression task
using the mean squared error loss function. Positive residuals, shown in shades of red,
correspond to over-estimation, while negative residuals, shown in shades of blue, correspond
to under-estimation. As with Figure 2.3, the side length of each tile is 5 pc and the gray
scale components represent re-scaled density values.

36

Performance Stat Distribution Stat Density Regression 12CO Regression
Mean Mean -0.0527 -0.019

Std Error 0.0009 0.0008
85% Conf Int (-0.054, -0.0513) (-0.0201, -0.0179)

Std Dev Mean 0.2012 0.3483
Std Error 0.0031 0.0011
85% Conf Int (0.1968, 0.2058) (0.3466, 0.3499)

Skew Mean -3.8254 -13.17
Std Error 0.0211 0.0854
85% Conf Int (-3.8562, -3.7946) (-13.2945, -13.0454)

Score Mean -4.0793 -13.5372
Std Error 0.01778 0.0854
85% Conf Int (-4.1053, -4.0534) (-13.6618, -13.4126)

Table 2.5: Regression task performance statistics collected by training and evaluating 60
randomly initialized networks on the same training, validation, and testing splits. The first
column indicates a statistic that was computed over the residuals of each trained network,
while the second column indicates a statistic that was applied to the results of the column
one statistic. The fourth element of the first column, Score, refers to the regression score
defined in Section 2.4.4. CASI is able to reliably obtain a residual distribution with a
mean near zero and a small standard deviation, indicating a tight residual distribution
that is clustered about the origin. For both tasks the mean and skew components feature
negative values, indicating that CASI tends to under-estimate values more often than it
over-estimates values. Additionally, the negative skew value indicates that the tail of the
residual distribution is longer in the negative direction, thus the largest errors tend to be
under-predictions. However, the fact that the residual distribution is tightly grouped about
the origin indicates that the relatively large skew value is not concerning and due in part to
the characteristics of the input data.

37

validation, and testing splits, then each data split is normalized by subtracting the

mean and dividing by the standard deviation.

CO Segmentation

The U-Net attains slightly lower performance in the 12CO tasks, when compared

with corresponding density tasks, even though the training set is more than a factor

of two larger. This indicates that the relationship between the 12CO observations and

the constructed tracer data may be more complex than the relationship between the

density data and corresponding tracer.

Figure 2.7 shows example predictions, which feature similar characteristics to the

density segmentation predictions. The major structures are all correctly identified,

with some smaller structures being missed, and errors clustered along the edges of

larger structures.

The ROC curve, provided in Figure 2.8, features a sharp curve that is pushed up

towards the upper-left corner of the plot, where the model reaches a true positive

rate of 91.45% while maintaining a false positive rate of 1%. This accuracy is slightly

lower than that achieved by the density segmentation task, however, the results still

constitute excellent performance.

An investigation of final model performance variation due to random initialization

is provided in column two of Table 2.4, which shows that CASI is robust to random

initialization on the CO segmentation task.

38

Figure 2.7: 12CO segmentation predictions from a Residual U-Net on samples randomly
selected from the test set. As with Figure 2.3, the side length of each tile is 5 pc, the gray
scale components represent re-scaled density values, true positives are shown in blue, false
positives are shown in purple, false negatives are shown in green, and true negatives are not
displayed.

39

Figure 2.8: Example ROC curve for a Residual U-Net trained on the 12CO segmentation
task. The dashed blue line represents y = x, which corresponds with the expected perfor-
mance of a random binary classifier. A true positive rate of 91.45% is obtainable with a
false positive rate of 1%, supporting the proposal that this method may perform well as a
content filter.

CO Regression

For the 12CO regression task an element-wise logarithm operation is applied prior to

the normalization operations in order to further reduce the dynamic range of the data.

Specifically we apply the following transformation, x′ = ln(1 + x − min(x)), where

x is one of the training, validation, or testing sets, and min(x) is the element-wise

minimum. Subtracting by the minimum value and adding 1 ensures that there are

no invalid output values and that all values fall within the compressive regime of the

logarithm.

We investigated the effect of random initialization on this task using the same

experiment structure seen for the other conditions. These results are reported in

column two of Table 2.5.

40

2.5 Conclusions

Our results indicate that methods from deep learning, namely the U-Net and its

variants, are a flexible and effective tool for learning relationships in simulated density

and 12CO data. Moreover, our algorithm is completely general and could be trained

to identify other astronomical signatures, such as protostellar outflows, filaments and

dense cores, given appropriate training sets.

Our models learn well under several different conditions and generalize to unseen

data from the same distribution with a minimal performance impact. Addition-

ally, CASI features a low false positive rate and a clustering of errors that makes it

well-suited to assisting astronomers by filtering large-scale survey data that is being

inspected by humans.

We also note that CASI is relatively quick to train, especially on smaller datasets,

taking approximately 2 seconds per epoch for the Density tasks (approximately 8

minutes for 200 epochs) and 7 seconds per epoch for the CO tasks (approximately 25

minutes for 200 epochs). After training, CASI can process more than 100 samples

per second, allowing for rapid application to new data. With fast training times and

even faster post-training predictions, CASI may be rapidly applied to new datasets

with minimal overhead.6

Despite the generally positive results presented, there are several important re-

search directions surrounding the application of deep learning techniques to facilitate

the analysis of astronomical image data that have not been addressed.

First, all results presented in this work focus upon learning from simulated data,
6The computer that was used to collect timing information was outfitted with an Intel i7-6700K

CPU and a Nvidia GTX 1080Ti GPU.

41

but in order to assist in the processing of survey data these models must operate

on true observations that may greatly differ from the simulated data that they were

trained upon. For example, we adopt a simple CO abundance model and do not

take into account chemistry. Boyden et al. [22] show that self-consistently comput-

ing abundances and temperatures can produce statistically different emission maps.

However, Xu and Offner [261] demonstrate that synthetic dust emission maps of the

simulations also utilized here can be used to successfully train a random forest al-

gorithm to correctly identify observed bubbles. This lends confidence that our CO

emission maps have, at minimum, similar underlying morphologies to observational

data. We extend our study to observational data in Xu et al. (in prep) and demon-

strate that training sets based on synthetic CO emission can indeed be applied to

observed CO data. Beyond assessing and improving the simulations that are used

to generate training data, a comprehensive investigation of regularization and data

augmentation techniques may lead to models that are better able to bridge the gap

between simulation and observations.

Second, our methods leverage the high fidelity information and annotations pro-

vided by the simulations to learn relationships in a supervised setting. However, there

exist considerable amounts of unlabeled survey and observational data that may be

utilized in semi-supervised or unsupervised approaches. Semi-supervised and unsu-

pervised approaches could reduce or remove the overhead involved with hand labeling

and curating large data sets, while still drawing insights from said data.

Finally, only 2D models were investigated in this work, which ignore the 3D struc-

ture present in density and 12CO cubes. We have found that 2D models seem to be

sufficient for solving certain problems in this domain, certainly the benchmarks in-

42

vestigated here are well solved by 2D models, but some problems may require models

with greater knowledge of 3D structure.

3D convolutional models have begun to find application in human action recogni-

tion [119], object detection in 3D point clouds [161], medical imaging [123], and other

domains [236]. These 3D models may also be well-suited to identifying structures in

stellar feedback, and we begin to explore such models, as well as their application to

observational data, in upcoming work (Xu et al. in prep).

2.6 Acknowledgements

CVO, DX, SSRO, and RAG were supported by NSF grant AST-1812747. SSRO also

acknowledges support from NSF Career grant AST-1650486.

43

Appendix

2.A Neural Network Operations

2.A.1 Batch Normalization

Batch normalization allows a network to re-normalize data at arbitrary points during

the forward pass using moving mean and standard deviation statistics calculated over

training batches. Following the description of batch normalization provided by Ioffe

and Szegedy [116], if B = {x1, x2, . . . , xn} represents a batch of training samples then

the mean and variance of the batch are calculated as

µB = 1
n

n∑
i=1

xi, σ2
B = 1

n

n∑
i=1

(xi − µ)2.

The data are then normalized using the batch mean and variance

x̂i = xi − µB√
σ2
B + ε

,

44

where ε is an arbitrary constant used for numerical stability. Finally, the output of

the batch normalization is calculated using

yi = γx̂i + β,

where γ and β are learned parameters that allow the network to reverse or modify

the batch normalization procedure when beneficial.

Batch normalization is applied slightly differently during training and inference,

though this is handled internally by most deep learning frameworks. Interested read-

ers should refer to Ioffe and Szegedy [116].

2.A.2 Convolution

A 2D convolution in this context involves an image with dimensions (image height,

image width, image channels), or (Hi, Wi, Ci), and a set of filters with dimensions

(filter count, image channels, filter height, filter width), or (F, Ci, Hf , Wf). The

convolution is computed by sliding each filter over the spatial dimensions of the image.

At each location an element-wise product between the filter and the corresponding

image pixels is computed, the results of which are summed and become a single

pixel in the output of the convolution. The sliding behavior of the convolution is

controlled by horizontal and vertical stride parameters, sh and sv, which indicate

how far the filter should move in each direction after each calculation. The output of

the convolution described above would have the dimensions
(

Hi−Hf +1
sv

,
Wi−Wf +1

sh
, F

)
.

It is common to pad the image with zeros in order to force the dimensions of the

output into desired values. Notably, if the spatial dimensions of the filter are odd

45

and the image is padded by bHf/2c on the top/bottom and bWf/2c on the left/right

then the the output of the convolution will have the dimensions (Hi, Wi, F). This

is referred to as the “same” padding scheme, since the output has identical spatial

dimensions to the input. In practice, this operation is usually applied to a batch of

several images in parallel.

2.A.3 Max Pooling

The max pooling operation is designed to reduce the spatial dimensions of an image

while keeping the most important data intact. It does this by inspecting small sub-

regions of the image, commonly 2× 2 windows, and filtering out the maximum value

in that sub-region. The max pooling operation, like the convolution described above,

has stride parameters which adjust the spatial relationship between the sub-regions.

It is common to have strides that are equal to the size of the sub-regions, resulting

in disjoint sub-regions which fully cover the input image.

Note that max pooling is applied to each channel independently, and thus the

result of applying a max pooling operation with a 2x2 window and a stride of 2 to a

(64, 64, 3) image would be a (32, 32, 3) image.

2.A.4 Nearest-Neighbor Interpolation

Nearest-neighbor interpolation is an extremely simple up-sampling operation that

increases the spatial dimensions of an image by an integer factor, n, by expanding

each pixel into an n× n block with identical values. This may be used to reverse the

effects of a max pooling operation, though some detail is lost.

46

Figure 2.A.1: Max pooling with a 2× 2 window, used to map a 4× 4 input to a 2× 2 output

Figure 2.A.2: Nearest-neighbor interpolation with a 2×2 window, used to map a 2×2 input
to a 4× 4 output.

47

2.A.5 Activation: Exponential Linear Units

Introduced by Clevert, Unterthiner, and Hochreiter [37], the exponential linear acti-

vation function is defined as:

ELU(x) =

x if x ≥ 0

α(ex − 1) if x < 0,

where α controls the negative saturation value of the function. Use of exponential

linear units (ELU) has been shown empirically to allow faster and more robust training

of deep neural networks when compared to rectified linear units (ReLU) and other

common activation functions.

Scaled Exponential Linear Units (SELU), defined as

SELU(x) = λ

x if x ≥ 0

α(ex − 1) if x < 0,
λ > 1,

exhibit similar properties to ELUs but with the added benefit of having a normalizing

effect on network activations, similar to batch normalization. See Klambauer et al.

[126] for more details.

2.A.6 Residual Connections

Sometimes referred to as skip connections, this architecture component can improve

performance [102], reduce training instability in deeper networks [102], and encourage

iterative inference [118].

48

Figure 2.A.3: Left: A basic residual block using 3 × 3 filters, the number of filters used
in each convolution is a free parameter that must be selected. Common activation func-
tions include ReLU, sigmoid, and tanh. Common merge operations include concatenation,
element-wise addition, and element-wise maximum [maxout, 89]. If addition is used as the
merging operation then a projection skip-connection, commonly implemented using a 1× 1
convolution, may be required in place of the identity skip-connection in order to obtain the
correct dimensions for the merge operation. Right: A bottleneck residual block, which uses
1×1 convolutions in order to reduce the number of parameters required, relative to the basic
residual block. If the input volume has n channels, it is common to use n/2 or n/4 filters in
the first two convolutions followed by n channels in the final convolution. This compresses
the data before the larger convolution is applied resulting in a reduced number of parameters.

49

Chapter 3

AMPGAN v2: Machine Learning

Guided Design of Antimicrobial Pep-

tides

This chapter is derived from Van Oort et al. [243].

3.1 Abstract

Antibiotic resistance is a critical public health problem. Each year ∼2.8 million

resistant infections lead to more than 35,000 deaths in the U.S. alone. Antimicrobial

peptides (AMPs) show promise in treating resistant infections. However, applications

of known AMPs have encountered issues in development, production, and shelf-life.

To drive the development of AMP-based treatments it is necessary to create design

approaches with higher precision and selectivity towards resistant targets.

Previously we developed AMPGAN and obtained proof-of-concept evidence for

50

the generative approach to design AMPs with experimental validation. Building

on the success of AMPGAN, we present AMPGAN v2 a bidirectional conditional

generative adversarial network (BiCGAN) based approach for rational AMP design.

AMPGAN v2 uses generator-discriminator dynamics to learn data driven priors and

controls generation using conditioning variables. The bidirectional component, im-

plemented using a learned encoder to map data samples into the latent space of the

generator, aids iterative manipulation of candidate peptides. These elements allow

AMPGAN v2 to generate of candidates that are novel, diverse, and tailored for spe-

cific applications—making it an efficient AMP design tool.

3.2 Introduction

AMPs contribute to the natural immune response in all classes of life and are active

against a broad spectrum of microbes [198, 2]. Some AMPs are less likely to induce

bacterial resistance, relative to traditional small molecule antibiotics [137, 226]. Addi-

tionally, AMPs can have synergistic effects when used in combination with traditional

antibiotics [108, 203, 269] or other AMPs [262, 266].

Over 15,000 antimicrobial peptides (AMPs) have been identified [190], but few

have been advanced to clinical trials despite their promise as treatments for antibi-

otic resistant pathogens. Many known AMPs have limitations that have prevented

effective therapeutic application, such as relatively low half-lives [160, 86], undesir-

able or unknown toxicity to human cells [23, 157], and high production costs relative

to traditional antibiotics [23, 104, 155].

Designing AMP candidates that mitigate these shortcomings is a difficult problem.

51

AMPs are made of amino acids arranged in a chain of arbitrary length, and feature a

massive chemical search space. There are approximately 4.5 × 1041 unique peptides

with 32 or fewer residues, if we consider only the 20 standard proteinogenic amino

acids. Since the number of confirmed AMPs is low in comparison, it seems that the

density of AMPs in the space of all peptides is also low [30]. Efficient methods are

required to effectively develop AMP-based therapeutics.

Machine learning has aided in the discovery and development of AMPs, with many

recent approaches relying on predictive models [130, 73, 233, 170, 169, 168, 259,

3, 13, 256]. Such approaches are usually labelled as quantitative structure-activity

relationship (QSAR) models. The basic QSAR recipe is to select a property of interest

(e.g., antimicrobial activity), train a machine learning model to predict that property

using relatively easily obtained features (e.g., primary peptide structure), then apply

the trained model to unlabelled samples to estimate the property of interest. After

training, QSAR models can be used to identify properties of peptides present in a

database that have yet to be experimentally validated.

The predictive approach can be extended to a generative one by adding an unin-

formed candidate generator (e.g., select a random peptide with length no more than

32). The randomly generated candidates can then be sorted and selected based on

the property predicted by the QSAR model. This approach often suffers from exces-

sive sampling requirements that inhibit discovery and design applications, due to the

sparsity of AMPs in the peptide space. Additionally, reliance on engineered features

constructed with domain expertise can further restrict the ability of these models to

generate candidates that are qualitatively distinct from known AMPs. For example

a commonly used feature is structure-based, however, at the time of writing only

52

approximately 2.5% of known AMPs have structures, severely hindering the use of

structure as an AMP predicting metric. In fact analyzing the presence of amino acids

for structures with either alpha or beta characteristics (e.g., table 3.A.1) demonstrates

that half the amino acids show up with less prevalence than chance, and those that

do appear more frequently do not share equal probabilities, implying utility beyond

structure. Even if the statistical rules were stronger, it is quite possible that some

AMPs simply have no well-defined structure [136].

Explicitly generative models that are better informed by data can reduce the

amount of sampling required to identify promising candidates. Proving this point,

several studies have successfully applied recurrent neural networks (RNNs) [171, 174]

and variational autoencoders (VAEs) [125] to AMP design and discovery [51, 50, 217,

101, 34]. If we expand our scope to the more general case of molecular design, we

find several more applications of VAEs [87, 120], some of adversarial autoencoders

(AAEs) [121, 18], and even the use of a generative adversarial network (GAN) [6].

Despite fairly broad adoption of machine learning techniques in this domain and

growing interest in generative models, there is relatively little work investigating the

use of generative adversarial networks (GANs) for AMP design and discovery [237].

GANs are generative models that learn to produce samples from arbitrary data dis-

tributions by pitting a pair of artificial neural networks, dubbed the generator and

discriminator, against each other in a zero-sum game [210, 211, 88]. This family

of models has seen great success in learning to generate images following an explo-

sion of research interest in 2014 [88, 167, 150, 35, 205, 25]. GANs can also generate

text [111, 71, 33], a task that is qualitatively similar to AMP sequence generation

and may indicate the potential for a new application.

53

Recently, we provided a proof-of-concept for such an application with AMPGAN

and tested its ability to design antibacterial peptides [72]. For 12 generated peptides

that are cationic and likely helical, we assessed the membrane binding propensity

via extensive molecular simulations. The top six peptides were promoted for synthe-

sis, chemical characterizations, and antibacterial assays. Three of the six candidate

peptides were validated with broad-spectrum antibacterial activity.

GANs have served as core components in several creative image manipulation

tools [26, 271, 189], allowing for the generation of realistic looking images that sat-

isfy user imposed constraints. Inspired by the iterative and controllable development

process afforded by these creative image manipulation tools, we seek to apply similar

models to AMP design. In particular, bidirectional conditional GANs (BiCGANs) [65,

60] are ideal for the AMP design task, since they provide a data driven generative

process, designer control over some features of generated samples, and iterative de-

velopment.

The data driven priors are learned via the zero-sum game between the generator

and discriminator. In this game, the generator maps samples from a latent distribu-

tion (e.g., a multi-variate normal distribution) to samples that appear to be drawn

from the real data distribution, while the discriminator (or critic) is given samples

and must identify if they were drawn from an authentic data distribution or produced

by the generator. During training the discriminator minimizes a classification error,

while the generator maximizes the error of the discriminator.

GANs can create realistic looking samples, but each sample will contain arbi-

trary features. In BiCGANs the control that we seek is created through the use of

conditioning variables [167], where the generator and discriminator are provided an

54

additional input that contains meta-data for the current sample. By allowing the

discriminator to learn associations between features and conditioning variables, the

generator is encouraged to account for the same associations, which then allows a

designer to control the output of the generator. The conditioning variables are often

constructed as binary vectors that indicate the presence or absence of the features of

interest. For example, in an image generation context, a conditioning vector could

indicate whether the generated image should contain certain objects.

The iterative development process that we want to enable is made possible by the

bidirectional component of the BiCGAN. The bidirectional component is driven by

a third network, the encoder, which maps data samples (e.g., AMP sequences) into

the latent space of the generator. This allows real data samples to be projected into

the latent space, which can be used to create landmarks in the latent space, facilitate

latent space interpolations, and incrementally manipulate a particular sample.

In the following sections we discuss our training data, data pre-processing, and

details of AMPGAN v2—our BiCGAN-based model for AMP design. We show that

AMPGAN v2 can generate novel AMP candidates with similar physio-chemical prop-

erties to the training data, while also incorporating designer constraints.

3.3 Methods and Models

3.3.1 Training Data

We constructed our training set by combining the Database of Antimicrobial Ac-

tivity and Structure of Peptides (DBAASP [84, 190]), Antiviral Peptide database

55

(AVPdb [195]), and UniProt [43] databases. We extracted the FASTA formatted

sequence information, microbe targets (e.g., Gram-positive bacteria, Gram-negative

bacteria, viruses), mechanism targets (e.g., cell membrane, cytoplasmic protein, cell

replication), and activity measures (primarily MIC50 measured in µg/ml) from each

database as available. Sequences containing non-FASTA symbols (e.g., tail modifica-

tions, lower case characters, etc.) or more than 32 amino acid residues were filtered.

We chose MIC50 as our primary activity measure since it was one of the most preva-

lent measurements present in DBAASP. We did not consider other activity measures,

such as MBC, due to difficulty in correctly combining such measurements with MIC50.

After removing duplicated sequences between DBAASP and AVPdb, as well as

“false negative” sequences from UniProt that also appear in DBAASP or AVPdb,

we obtained 6238 sequences from DBAASP, 312 sequences from AVPdb, and 490341

sequences from UniProt. If a particular sequence has measured effectiveness against

multiple microbe targets or mechanism targets, then we considered the superset of

these. For sequences that have multiple activity measurements against one or more

microbes, all measurements with compatible units are converted to µg/ml and the

arithmetic mean was used to represent the general antimicrobial activity of the se-

quence.

Conditioning Data

We constructed conditioning vectors for our model using indicators for the target

microbes, target mechanisms, MIC50 level, and sequence length (Figure 3.3.1). The

target microbe classes are cancer, fungus, Gram-positive bacteria, Gram-negative

bacteria, insect, mammalian, mollicute, nematode, parasite, protista, and virus. The

56

Figure 3.3.1: A visual summary of the contents and dimensions of a conditioning vector. All
elements are binary encoded. For the target microbes and target mechanisms each element of
the binary vector indicates activity against a particular microbe class or cellular mechanism.
A one-hot encoding is used for the MIC 50 element, indicating membership in single MIC
50 decile. The sequence length is encoded as a bit mask, where 1 indicates the presence of
a character and 0 indicates an empty slot.

target mechanisms are lipid bilayer, replication, virus entry, DNA/RNA, cytoplasmic

protein, assembly, virucidal, membrane protein, surface glycoprotein, release, and

unknown.

The conditioning vector is then constructed as a 64 bit binary vector. The target

microbes are encoded with 11 bits indicating activity, or lack thereof, against each

microbe group. Likewise, the target mechanisms are encoded with 11 bits indicating

interaction with a particular cell process or element. The MIC50 values are discretized

into deciles using the following bin edges: 3.7×10−6, 5.7557×100, 1.1×101, 1.79869×

101, 2.7× 101, 3.88498× 101, 5.75996× 101, 8.53173× 101, 1.28× 102, 2.324687× 102,

and 1.1240 × 104 µg/ml. Finally, the length of the sequence is represented using 32

digits, each indicating the presence or absence of a FASTA character.

We assumed that the sequences from UniProt did not have antimicrobial activ-

ity, since arbitrary peptides are unlikely to feature antimicrobial properties, and we

already removed known AMPs. Thus, when we constructed conditioning vectors for

these sequences the only non-zero elements were the length component, which was

57

set appropriately, and the MIC50 component, which was set to the highest bin (the

lowest activity).

Figures 3.B.1 and 3.B.2 show the distributions of values across the condition-

ing vector elements (i.e. target microbes, target mechanisms, MIC50, and sequence

length).

3.3.2 AMPGAN v2 Design and Training

AMPGAN v2 is a BiCGAN constructed with three neural networks: the generator,

discriminator, and encoder (Figure 3.3.2A).

The generator is composed of a dense layer that mixes the latent representation

and conditioning vector, followed by a stack of exponentially dilated convolutions,

and terminated by a single convolution that combines the multi-scale features ex-

tracted by the prior convolution stack (Figure 3.3.2B). Global position information is

added to the features as they enter the convolution stack to improve global sequence

structure [149].

The discriminator architecture contains a stack of strided convolutions, followed by

several dense layers (Figure 3.3.2C). We apply spatial dropout before each convolution

and dropout before each dense layer, excluding the output layer. Strided convolutions

are used to quickly downsample the feature maps, while dropout increases the variance

of the signal provided by the discriminator and can stabilize training [25].

The AMPGAN v2 encoder shares the same architecture as the discriminator, with

the only difference being a larger final layer with a linear activation function.

We trained AMPGAN v2 for 2000 epochs, where AMPGAN v2 was shown all

6550 AMP sequences along with a random sample of the 490341 Non-AMP sequences

58

Figure 3.3.2: A) AMPGAN v2 Macro-architecture. AMPGAN v2 is a BiCGAN that
consists of three networks: the generator, discriminator, and encoder. The discriminator
predicts whether a sample is generated or not, and is updated using the log loss. The
generator synthesizes samples, and is updated to maximize the loss of the discriminator.
The encoder maps sequences into the latent space of the generator, and is trained using the
mean squared error (MSE). B) Generator architecture details. We use 6 convolution
layers in the central stack, each with a kernel size of 3 and an exponential dilation rate.
All dense and convolution layers are followed by a leaky ReLU activation, except the final
convolution layer, which has a hyperbolic tangent activation. The final convolution has a
kernel size of 1. C) Discriminator architecture details. The convolutions use a filter
size of 4 and a stride of 2. All applications of Dropout and Spatial Dropout use a drop rate
of 25%. All dense and convolution layers are followed by a leaky ReLU activation, except
the final dense layer, which has a sigmoid activation. The condition vectors are tiled and
concatenated with the sequences along the features/channels dimension. The encoder uses
the same architecture with a different output dimension on the final layer corresponding to
the selected latent space dimension and a linear activation function.

59

in each epoch. Training proceeded with a batch size of 128 samples, where half were

drawn from the AMP set and half from the Non-AMP set. The training signal for

the generator and discriminator is provided by the binary crossentropy loss, while

the mean squared error is used for the encoder. The discriminator is regularized

using a gradient penalty, which has been shown to improve training stability and

generalization [202, 165]. In this configuration it takes roughly 30 seconds per epoch,

adding up to 16 GPU hours for 2000 epochs using a Nvidia Tesla V100.

AMPGAN v2 builds on our previous experience with AMPGAN v1 [72], though

there are several differences in the implementation and evaluation procedure that

make direct comparison of the two difficult. Full implementation details for AMPGAN

v2 can be found in our GitLab repository [242].

3.4 Results and Discussion

3.4.1 Training Stability

GANs can be difficult to train depending on properties of their architecture and

training data. Poor training stability can involve generator mode collapse [208, 32,

227], cyclic generator-discriminator dynamics [208, 202, 165], and vanishing gradients

caused by discriminator failures [10, 175].

To investigate the training stability of AMPGAN v2 we trained 30 replicates from

scratch using different random initializations. We used a heuristic criteria with two

conditions to determine if a trial is successful. First, the model must generate se-

quences with a character-level entropy that falls between 2 and 4. This removes

60

models that tend to generate sequences with unrealistically low or high FASTA char-

acter diversity. For reference, the average character-level entropy across our training

AMPs, non-AMPs, and their combination was ∼2.6, ∼3.43, and ∼3.42 respectively.

Second, the model must generate sequences whose length closely matches the value

dictated by the conditioning vector. We quantified this by computing the R2 score

over batches of generated sequences, and consider values greater than 0.5 to be suc-

cessful.

These conditions were selected after observing two common failure modes in the

training of AMPGAN v1. The first type were models that correctly handled the

dictated sequence length, but only generated sequences composed of one or two amino

acids. This resulted in a low character-level entropy, usually close to zero, and these

models were clearly ineffective for generating true AMP candidates. The second

failure mode resulted in models that produced sequences with more realistic character-

level entropy, but completely failed to respond to the dictated sequence length. By

not correctly responding to the elements of the conditioning vector, this type of model

no longer provides human domain experts with a reliable method for directing the

generative process, thus losing one of the primary benefits of the BiCGAN architecture

that we have chosen.

We observed three successful trials that led to models with realistic sequence

entropy and high correlation between the dictated sequence length and the length

of the generated sequence. The other 27 trials failed to produce acceptable models,

resulting in a ∼10% training success rate. Figure 3.C.1 summarizes the variance

observed during this experiment across several training metrics.

Our training success criterion requires that a successful generator account for the

61

sequence length provided in the conditioning vector, but there is room for variation

between the requirement of R2 = 0.5 and the ideal value of R2 = 1.0. Despite the

allowed variance, all three successful trials resulted in models with high R2 scores–

specifically 0.9852, 0.9986, and 0.9975. Qualitatively, this means that almost all the

generated sequences have a sequence length that is within ±3 of the dictated sequence

length, which is visualized in Figure 3.D.1.

The observed ∼10% training success rate increases the amount of resources re-

quired to train new iterations of AMPGAN, relative to a more stable model. Based

on the estimate provided in the Design and Training section it will take an average

of 160 GPU hours, a little less than a week, to obtain a quality model. However, this

can be naively parallelized to reduce the wall clock time to only the 16 hours that it

takes to train a single model.

Though it is inconvenient, the low training stability is not a dire issue, since an

arbitrary number of AMP candidates can be generated once a quality model has

been obtained. Also, It is likely that the training duration can be shortened from

2000 epochs to 1000 epochs, since Figure 3.C.1 indicates that all successful models

had passed the criteria by that point.

We briefly investigated the training stability of our model on MNIST, an alterna-

tive dataset composed of handwritten digits. The digits were presented as a sequence

of pixels, and the conditioning vectors were constructed using the classification la-

bels. Under these conditions we found that our model trains quickly and reliably.

This indicates that qualities of the training dataset may be the primary cause, rather

than elements of the GAN architecture. We hypothesize that the lower quantity of

labelled data and larger conditioning space of our training set (relative to MNIST)

62

may contribute to the training instability.

3.4.2 Physio-chemical Similarity

To be applicable to AMP design and discovery, we need to evaluate the quality of the

generator and the properties of the generated candidates. However, it is prohibitively

expensive to experimentally validate the ability of the generator to create sequences

that follow the target microbe, target mechanism, and MIC50 values provided in the

conditioning vector—so instead we focus on comparisons between easily measurable

physio-chemical properties of generated and authentic peptide sequences.

We observe a high similarity between the amino acid distribution of the training

and generated AMP sequences, which differ by less than 1% for most of the 20 natural

amino acids (Figure 3.F.1). The most significant discrepancies come from Arginine

(R) and Lysine (K), which are more prevalent in the generated sequences by 6.3% and

2.2% respectively. In contrast, three non-polar amino acids, Alanine (A) and Leucine

(L) are 1.1% and 1.3% more common in the real AMP sequences respectively. Gen-

erally, these small differences suggest a consistency between the generated peptides

and known AMPs. Figures 3.E.1 and 3.E.2 show additional amino acid distribution

comparisons between various groups of peptides.

Figures 3.4.1 only investigates the appearance frequency of single amino acids, but

there is a large body of research [24, 152, 79, 253, 197] that suggests peptides feature

complex grammatical structure. We investigated this higher-order organization using

generalized word shifts [77], which extend the simple analysis done at the character

level to sub-sequences of arbitrary length. Word shifts measure the contributions of

distinct sub-sequences to a divergence measure between two groups of sequences and

63

Figure 3.4.1: Distributions of amino acids present in generated vs non-generated AMP
sequences. The distributions are layered in the left panel and the difference is shown in the
right panel, facilitating different comparison perspectives. The generated distribution was
created using 4855 sequences with conditioning vectors drawn at random from the training
set. 50% of the conditioning vectors were taken from AMP sequences and 50% from non-
AMP sequences. The model used to generate these sequences was arbitrarily selected from
the set of successfully trained models. The non-generated distribution was created using a
sample of 5120 sequences that were randomly drawn from the training set with a 50%/50%
split between AMP and non-AMP sequences. In all comparisons K is the largest outlier,
appearing 4–6% more often in generated sequences than real sequences.

highlight the largest contributors.

In Figure 3.4.2, we provide word shifts between generated AMPs and real AMPs

for sub-sequences of length 2 and 3. The sub-sequences that were more common in

generated peptides mostly involve one or more instances of K or R. Likewise, the sub-

sequences that were more common in real peptides tended to involve A or L. These

two observations reinforce the results of the character level analysis. Many of the

sub-sequences present in both plots feature positive charge or are hydrophobic, which

corresponds well with known properties of alpha-helical AMPs. In the length 2 sub-

sequence shift, the GP and PG motifs are of particular interest since they are often

part of hinge-like structures near bends or kinks in proteins. Figures 3.F.1 and 3.F.2

provide baseline analysis that compares two uniformly randomly constructed samples

of sequences using the same tools, which gives additional context for interpreting

64

Figures 3.4.1 and 3.4.2 respectively.

3.4.3 Sequence Diversity

When proposing candidate AMPs it is important that the generated candidates are

diverse as a population and novel relative to known AMPs. If the generator produces

sequences with low diversity, it can run into the same sampling problems as the

extended predictive models discussed earlier. A generative model will be less useful

for discovering new AMPs if it does not produce sequences that are novel relative to

known AMPs. We applied the Gotoh global alignment algorithm [91, 41] to quantify

the relative similarity of two bags of sequences. The distribution of alignment scores

obtained between a pair of bags indicates the relative similarity of the bags, with

more similar bags receiving higher scores.

Figure 3.4.3 contains letter-value plots [107] that summarize the scores obtained by

comparing the training AMPs, generated sequences, generated AMPs, and generated

non-AMPs to themselves (i.e. a measure of diversity). Additionally, the final letter-

value plot shows the distribution of global scores obtained by comparing the generated

and training AMP sequences.

The training AMP score distribution features much higher median and upper

percentile scores than any other distribution under consideration, indicating that

there is relatively low sequence diversity in the training AMP set. The median score

of 16.55 and mean score of 16.49 indicate a low diversity, especially relative to the

generated AMP sequences that feature a median score of 7.83 and a mean score

of 7.95. The generated non-AMP sequences feature a similar level of diversity to

the AMP sequences, reaching a median score of 7.8 and a mean score of 7.92. The

65

Figure 3.4.2: Shannon’s entropy divergence between the distributions of length 2 (left) and
length 3 (right) sub-sequences of FASTA characters in AMPs from the training set (real)
or AMPs created by the generator (generated). Purple bars indicate a greater prevalence
of a particular sub-sequence in real AMPs, while gold bars indicate a greater prevalence in
generated AMPs. The two values in the title of each panel indicate the average entropy of
each group. For reference, the distribution of sub-sequences drawn from uniformly random
sequences results in a maximum entropy of ∼8.64 for length 2 sub-sequences and ∼12.97 for
length 3 sub-sequences. Both groups in both plots feature a lower entropy than the maximum,
thus we should expect to see meaningful structures in each group. The CDF plot in the
lower left corner of each panel indicates that the top 50 contributors to the divergence only
account for ∼50% (left) and ∼10% (right) of the total divergence, thus both distributions
are extremely flat.

66

combined set of generated sequences obtains slightly higher scores than either the

AMPs or non-AMPs separately, with a median of 8.0 and a mean of 8.17, which may

indicate a slight chemical overlap between the two groups or may be due to chance.

Comparing the generated AMPs with the training AMPs results in the lowest scores

observed, with a median of 5.24 and a mean of 5.54, indicating that the generated

AMPs are novel relative to the training AMPs. Figure 3.G.1 provides additional

context for interpreting the global alignment scores shown in Figure 3.4.3.

3.4.4 Estimated Antimicrobial Activity

We applied the predictive models developed by Waghu et al. [248] to estimate the

probability that sequences generated by AMPGAN will feature antimicrobial activity.

This allows us to evaluate the quality of AMPGAN v2 in an absolute sense, ideally all

AMP candidates generated by AMPGAN v2 would feature antimicrobial properties,

and in a relative sense, by comparing it with AMPGAN v1.

We generated 5000 AMP candidates from AMPGAN v1 and 5000 from AMPGAN

v2, then evaluated them using each of the four predictive machine learning models

available on the CAMPR3 web page. From these predictions we calculated the per-

centage of sequences that were predicted to have antimicrobial properties, relative to

the total number of sequences. Additionally, we estimated a 95% confidence interval

for each percentage using bootstrapping. The results of this evaluation are summa-

rized in Table 3.4.1, which shows that AMPGAN v2 strongly outperforms AMPGAN

v1 which successfully predicted experimentally validated AMPs.

67

Figure 3.4.3: Letter-value plots showing distributions of match scores obtained from com-
parisons between different groups of sequences. The central horizontal line in each column
denotes the median value. Each box extending from the median line indicates a percentile
that is a half step between the starting percentile and the terminal percentile in that direc-
tion. For example, starting from the median line, the first box above is terminated at the
75th percentile, halfway between the 50th percentile and the 100th percentile. The diamonds
in the tails indicate outliers, which in this case are approximately 5 to 8 of the most extreme
values in each tail. The first distribution shows the match scores obtained when comparing
the set of training AMPs with itself. The distribution of match scores for training AMPs has
a median value that is approximately double that of the distribution for generated AMPs.
This indicates that the set of generated AMPs is more diverse than the set of training AMPs.
If we compare the generated AMPs directly with the training AMPs, which is shown in the
final distribution, we find the lowest median match score observed so far. A low median
match score here shows that the generated AMPs are novel relative to the training AMPs.

68

AMPGAN v1 AMPGAN v2
Support Vector Machine 5.24% (4.44%, 6.08%) 79.85% (78.27%, 81.39%)
Random Forest 7.66% (6.68%, 8.72%) 88.36% (87.06%, 89.62%)
Artificial Neural Network 4.22% (3.52%, 5.00%) 88.24% (86.94%, 89.46%)
Discriminant Analysis 7.76% (6.76%, 8.72%) 83.71% (82.23%, 85.18%)

Table 3.4.1: Investigation of the expected antimicrobial properties of samples generated
by AMPGAN v1 and v2 using the machine learning models developed by Waghu et al.
[248]. 5000 AMP candidates were drawn from each generative model and each candidate
was evaluated by four predictive models: a support vector machine, a random forest, an
artificial neural network, and discriminant analysis. The percentage of generated samples
that were predicted to have antimicrobial activity is presented, along with a bootstrapped
95% confidence interval in parenthesis.

3.5 Conclusion

In this work, we introduced AMPGAN v2, a BiCGAN that allows for the controlled

generation of peptides with varying degrees of antimicrobial properties. We demon-

strate that AMPGAN v2 can be trained successfully using a combination of AMP and

non-AMP data. Notably, our data, from extensive comparison between known AMPs

and generated peptides, indicates the capacity of AMPGAN v2 to generate sequences

that are diverse and novel relative to the training data, but still maintain key AMP

features. Additionally, AMPGAN v2 is responsive to changes in the conditioning

vector, allowing for effective control of the generative process.

Based on the experimental validation of AMPGAN v1 [72] and the conditional

VAE presented by Das et al. [50], we expect the true success rate of AMPGAN v2

to be between 10% and 50%. If that proves to be the case, then AMPGAN v2

represents a fair improvement over the less than 1% success rate of more traditional

design methods [54]. Supporting this estimate, sequences generated by AMPGAN v2

were much more likely to be labeled as having antimicrobial properties than sequences

69

generated by AMPGAN v1, when evaluated by a suite of predictive machine learning

models.

AMPGAN v2 has many valuable features, though there are limitations that should

be addressed in future work. Specifically, the low training stability of the current sys-

tem should be improved to reduce training costs. Furthermore, additional validation

is needed to ensure that AMPGAN v2 is responsive to manipulations of the target

microbe and target mechanism conditioning elements. Greater responsiveness to ma-

nipulation of conditioning variables in combination with better training stability will

improve designer confidence when developing new AMPs. Finally, additional quan-

titative methods for evaluating the quality of generative AMP models are needed to

aid in development and performance comparisons. We believe that an extension of

Fréchet Inception Distance [103] to this domain and the use of Adversarial Accu-

racy [263] are promising directions to investigate. Along with these faster evaluation

methods, we plan to experimentally validate the antimicrobial properties of several

AMPGAN v2 designed peptides.

AMPGAN v2 contributes a GAN-based model to an area where non-generative

models or VAEs are more prevalent. Additionally, we open source AMPGAN v2 [242],

allowing the community to interact with and deploy our tool to design and discover

AMPs.

Supporting Information Available: Distributions of conditioning variables,

summary of training stability experiment, sequence length correlation figure, addi-

tional comparisons of amino acid frequency distributions, sequence analysis baselines,

and global alignment score baseline.

Data & Software Availability: All source code for the methods, experiments,

70

and visualizations presented in this work are available under the MIT license via the

project GitLab repository (https://gitlab.com/vail-uvm/amp-gan). All data

required to train AMPGAN v2 is present in the GitLab repository, and can be

obtained using the Git Large File Storage extension (https://git-lfs.github.

com/).

3.6 Acknowledgement

We thank Thayer Alshaabi, Lapo Frati, Gabriel Meyer-Lee, and Ollin Demian Langle

Chimal for their helpful discussion and suggestions. Computations were performed on

the Vermont Advanced Computing Core, supported in part by NSF award No. OAC-

1827314. JMR and JL were partially supported by an NIH R01 award (R01GM129431

to JL) and JBF was supported by an NSF award (CHE-1945394 to JL).

71

https://gitlab.com/vail-uvm/amp-gan
https://git-lfs.github.com/
https://git-lfs.github.com/

Appendix

3.A Sequence Structure Profile

Amino Acid Helix Sheet

A 9.29 3.60

R 5.44 9.86

N 2.87 4.10

D 3.00 2.69

C 2.34 13.5

E 3.16 2.39

Q 2.65 2.59

G 10.0 10.8

H 2.38 1.54

I 7.13 4.59

L 10.9 4.69

K 12.8 5.87

M 1.42 0.88

72

F 4.98 3.70

P 3.14 4.16

S 5.41 6.42

T 3.39 5.41

W 1.87 2.00

Y 1.71 5.18

V 6.18 6.03

Table 3.A.1: Percentage of each amino acid’s presence in the respective structure type. A
completely random ordering should result in a table of 5% for all positions.

3.B Conditioning Information Distribu-

tions

Figure 3.B.1: Label frequency for the target microbe (Left) and target mechanism (Right)
conditioning variables.

73

Figure 3.B.2: The distribution of MIC50 values before discretization (Left) and peptide
sequence lengths (Right). 27 samples with MIC50 values greater than 2000 were truncated
to ease inspection of the rest of the distribution.

74

3.C Training Stability

Figure 3.C.1: Investigation of training stability, summarizing the results of 30 independent
trials. The left panel was constructed using the successful trials (3/30) and the right panel
was constructed with the failed trials (27/30). From top to bottom the panels display the
classification accuracy of the discriminator, the discriminator loss (log loss), the encoder
loss (MSE), the generator loss (log loss), the R2 score between the length dictated by the
conditioning vector and generated sequences, and the average character-level entropy calcu-
lated over batches of generated sequences. This experiment highlights the relative instability
of AMPGAN v2, with a success rate of ∼10%.

75

3.D Sequence Length Correlation

Figure 3.D.1: Agreement between the sequence length dictated by the conditioning vector
and the length of sequences produced by the generator. This figure was created using 4855
sequences that were generated using conditioning vectors drawn at random from the training
set. 50% of the conditioning vectors were taken from AMP sequences and 50% from non-
AMP sequences. The model used to generate these sequences was arbitrarily selected from
the set of successfully trained models. The generator pays close attention to the sequence
length conditioning variable, resulting in an R2 score of 0.9798.

76

Figure 3.E.1: Distribution of amino acids used in generated vs non-generated sequences.
Similar to Figure 3.4.1, but shows the distributions for all sequences (top) and non-AMP
sequences (bottom). K remains the largest outlier, appearing 4–6% more often in generated
sequences than real sequences.

77

3.E Amino Acid Distribution Comparisons

Figures 3.4.1 and 3.E.1 only compare real and generated distributions, however, the

relationship between AMPs and non-AMPs within each group is also important. The

generator may create AMP sequences that are similar to real AMP sequences and non-

AMP sequences that are similar to real non-AMP sequences, but fail to adequately

capture the relationship between AMP and non-AMP sequences. To investigate this

we create two additional comparisons between AMP and non-AMP sequences in both

real and generated groups (Figure 3.E.2). Though there are some slight deviations

present in the individual distributions in the panels on the left, which were already

identified in Figure 3.4.1, the differences shown in the panels on the right are nearly

identical. This indicates that the generator has learned the relative relationship be-

tween AMP and non-AMP sequences, despite some slight biases in its understanding

of those distributions individually. Additionally, the lower right panel of Figure 3.E.2

is directly comparable to Figure 3 from Das et al. [51], which agrees with the signs of

the relative changes shown here for all amino acids except F and G. This qualitative

agreement may indicate that both models have accurately captured the qualities of

the training data distribution, or at least that both models acquired a similar bias

profile.

78

Figure 3.E.2: Amino acid usage frequency distributions for generated AMP and generated
Non-AMP sequences (left) along with the difference between the two distributions (right).
Comparisons are made between real (top) and generated (bottom) groups.

79

3.F Sequence Analysis Random Baselines

Figure 3.F.1: Amino acid frequency distribution comparison between two independent groups
of 5000 uniformly randomly constructed sequences with a maximum length of 32. The dis-
tributions are flat, excluding a small amount of sampling noise. Additionally, the deviation
between the two is extremely small, with the largest difference value being several orders of
magnitude smaller than the largest value present in Figures 3.4.1 or 3.E.2.

80

Figure 3.F.2: Word shift plots comparing two independent groups of 5000 uniformly ran-
domly constructed sequences with a maximum length of 32. Similar to the character level
analysis shown in Figure 3.F.1, these word shifts are extremely flat. However, since the
number of distinct elements grows exponentially with the sub-sequence length, sampling er-
ror may have a larger impact here. The maximum entropy for length 2 sub-sequences con-
structed from the 20 common amino acids is ∼8.64, which is reliably obtained by a sample
of this size. The maximum entropy for length 3 sub-sequences is ∼12.97, but is not reached
due to sampling error. Approximately 1 to 5 length 3 sub-sequences are unobserved in a
sample of this size. There are 400 unique length 2 and 8000 unique length 3 sub-sequences,
thus a uniform distribution over those sets has an element-wise probability of 0.0025 and
0.000125 respectively.

81

3.G Global Sequence Alignment Scores

To investigate the similarity of two bags of sequences we applied the Gotoh global

alignment algorithm [91]. We use the implementation provided by Biopython’s PairwiseAligner

object [41], configured with the BLOSUM62 substitution matrix, an open gap score of

-10, and an extend gap score of -1.

Interpreting global alignment scores can be difficult, so we performed a Monte

Carlo experiment to uncover information about the distribution of scores in particular

circumstances. Specifically, we construct two bags of random sequences, called S1 and

S2, containing N and N/2 sequences respectively. These sequences have a uniformly

random length selected from 1 to 32, and the elements of each sequence are uniformly

randomly selected from the 20 common amino acids. Next, we construct a new bag,

S3, by combining S2 with a duplicate. Thus, S1 and S3 both contain N sequences,

where all sequences in S1 are likely to be unique and S3 contains two copies of every

unique sequence in S2. Next, we construct S4 by randomly mixing the sequences

of S1 and S3 using a control parameter m ∈ [0, 1]. This mixing is implemented

by iterating pairwise over the sequences of S1 and S3, then iterating pairwise over

the FASTA characters of those sequences. The characters from S1 are selected with

probability 1−m, and the characters from S3 are selected with probability m. From

this construction, the mixing parameter directly controls the diversity of S4, providing

a stochastic interpolation between relatively high and low diversity bags of sequences.

Finally, pairwise scoring is computed between S4 and itself using the system described

above.

The full experiment then involved sampling the mixture parameter at 50 evenly

82

spaced points that span the interval [0, 1] and executing 30 replicates of the scoring

procedure at each. All replicates use N = 1000. Figure 3.G.1 summarizes this experi-

ment, where the orange line indicates the mean match score across the replicates, and

the shaded area covers plus or minus one standard deviation. Percentile information

is shown by the blue lines, and extreme values are shown with grey markers. This

indicates a roughly exponential scaling in the expected match score as the mixing

parameter varies from 0 to 1, ranging from ∼2.5 to ∼20. The standard deviation

indicates the existence of heteroscedasticity, where the tails of the score distribution

spread out as the mixture parameter increases in value.

83

Figure 3.G.1: Distributions of global match scores between a bag of FASTA sequences and
itself. The dark line indicates the mean match score, and the shaded area indicates plus or
minus one standard deviation. The horizontal axis corresponds with a mixture parameter
that controls the level of diversity in the bag. For low values the bag of sequences is composed
entirely of unique sequences, resulting in low match scores on average. The value of the
mixture parameter increases as the level of diversity in the bag decreases. When the mixture
parameter reaches a value of 1.0 the bag contains an exact duplicate for every sequence,
resulting in match scores in the 30s.

84

Chapter 4

Adaptive Agents and Data Qual-

ity in Agent-Based Financial Mar-

kets

This Chapter is derived from Van Oort, Tivnan, and Wshah [244].

4.1 Abstract

We present our Agent-Based Market Microstructure Simulation (ABMMS), an Agent-

Based Financial Market (ABFM) that captures much of the complexity present in the

US National Market System for equities (NMS). Agent-Based models are a natural

choice for understanding financial markets. Financial markets feature a constrained

space of agent interactions that should simplify model creation, produce a wealth of

data that should aid model development, and a successful ABFM could improve the

evaluation of design and policy decisions. Despite these advantages, ABFMs have

85

largely remained an academic novelty. We hypothesize that two factors limit the use-

fulness of ABFMs. First, many ABFMs fail to capture relevant microstructure mech-

anisms, leading to differences in the mechanics of trading. Second, the simple agents

that commonly populate ABFMs do not display the breadth of behaviors observed in

human traders or the trading systems that they create. We investigate these issues

through the development of ABMMS, which features a fragmented market structure,

communication infrastructure with propagation delays, realistic auction mechanisms,

and more. As a baseline, we populate ABMMS with simple trading agents and

investigate properties of the generated data. We then compare the baseline with ex-

perimental conditions that explore the impacts of a simplified market topology or a

meta-reinforcement learning agent. The combination of detailed market mechanisms

and adaptive agents leads to models whose generated data more accurately reproduce

stylized facts observed in actual markets. These improvements increase the utility of

ABFMs as tools to inform design and policy decisions.

4.2 Introduction

Decades of market microstructure research have shown that the mechanics of trading

meaningfully impact price formation processes [179, 154, 100]. Price formation pro-

cesses generated by agent-based financial markets (ABFMs) are similarly impacted

by their market architecture. Thus, ABFMs that fail to capture major market mi-

crostructure mechanisms present in their target systems may observe divergences in

behaviors and outcomes.

The ecology of agents that populate an ABFM is just as important as the market

86

infrastructure that mediates their interactions [138]. Zero intelligence (ZI) agents [83],

and other simple agents, have been heavily used in market microstructure research to

understand baseline characteristics of markets [221, 69, 139, 45, 92]. However, simple

agents do not exhibit the heterogeneity of strategies observed in real markets or the

adaptability of real market participants.

In real markets, it is common for short-term trading strategies to lose effectiveness

over time, a phenomenon that is referred to as alpha decay [57]. By some estimates,

short-term strategies take 3 to 7 months to develop and remain effective for 3 to 4

months [209]. Since the average development duration is longer than the average

strategy lifetime, we might expect the population of short-term strategies to have a

high turnover rate. This high turnover rate may be a driving mechanism behind the

non-stationarity of trading dynamics. It also indicates that strategy adaptation is a

critical attribute of successful market participants and that static strategies may be

poorly suited for realistic ABFMs.

The use of adaptive strategies in ABFMs can promote agent specialization, leading

to emergent heterogeneity. Since agent heterogeneity contributes to financial market

resilience [19], this emergent heterogeneity developed by adaptive agents could im-

prove the resilience of ABFMs. Additionally, agent adaptability is critical to realize

economic rationality in non-trivial ABFMs [245, 99, 158]. Economically rational

agents avoid using trading strategies that lead to financial ruin. Thus, when agents

with generally fixed strategies encounter unfavorable market conditions they may be

forced to exit the market if they are unable to adapt their strategy sufficiently. This

in turn can lead to complete failure of a simulated marketplace. Observed devia-

tions from the Efficient Markets Hypothesis [156, 27] and the rise of the Adaptive

87

Markets Hypothesis [151] indicate a growing realization of the importance of agent

adaptability in financial markets.

In this paper, we present our Agent-Based Market Microstructure Simulation (AB-

MMS), an ABFM with detailed market mechanisms and agent adaptability as core

design principles. We evaluate ABMMS under different configurations to determine

the impacts of market fragmentation and adaptive agents on the quality of generated

data. Our evaluation procedure is built using stylized facts and analytical meth-

ods developed by the econometrics, market microstructure, and ABFM communities.

ABMMS can reproduce several stylized facts of asset prices, along with other features

of realistic market data, and thus may be more suitable to inform system design or

policy than simpler ABFMs.

4.3 Related Work

4.3.1 Market Infrastructure in the National Mar-

ket System

ABMMS targets the US National Market System for equities (NMS), and many design

decisions were based on this choice of target system. To provide the appropriate

context for understanding our model, we summarize the market infrastructure present

in the NMS and indicate references with additional details.

Trading in the NMS occurs in a fragmented market that consists of 16 securities

exchanges, which manage a set of continuous double auctions (CDAs) to support

trading for a corresponding set of stocks. A CDA allows traders to submit orders to

88

buy (bid) or sell (offer) at any time and processes them upon receipt. Orders that

cannot be fulfilled immediately are collected in a Limit Order Book (LOB). Almost

all CDAs prioritize order execution based on price and time, though some may use

additional attributes. For additional details regarding CDAs or LOBs, see one or

more of Smith et al. [221], Gould et al. [92], and Abergel et al. [1], and Friedman

[75].

The 16 exchanges that form the NMS are housed within at least four data centers

in northern New Jersey [234]. These data centers are connected by an Electronic

Communication Network (ECN) that is implemented with a combination of fiber

optic technology and wireless alternatives [178].

The use of continuous trading mechanisms causes a race to react any time new

public information is released. The speed of light guarantees the existence of prop-

agation delays on each leg of an ECN, an average of 100 microseconds based on the

current configuration of the NMS [234]. Optimized trading algorithms on special-

ized hardware may only take between tens of nanoseconds to a few microseconds to

react to incoming messages. The combination of these three properties means that

the propagation delays imposed by the topology and geometry of the ECN can have

an immense impact on trading outcomes. See Section 3 of Tivnan et al. [234] for

additional details regarding the organization of the NMS.

Beyond the mechanical details mentioned above, the regulatory environment that

surrounds the NMS plays an important role in shaping the market infrastructure and

agent behaviors. Readers interested in understanding key NMS regulations should

refer to Appendix 3 from Tivnan et al. [234] for an overview, or the regulation itself

for details [216].

89

4.3.2 Market Infrastructure in Prior ABFMs

Many ABFMs implement a simple infrastructure that allows clear emphasis to be

placed on specific elements, while also reducing computational costs and allowing

for rapid experimentation. For example, Wah, Wright, and Wellman [250] study a

population of heterogeneous agents trading a single asset in a single continuous double

auction (CDA). The simplicity of the infrastructure emphasizes the heterogeneous

agents, the quality of their interactions, and differences in their outcomes.

It is possible to model financial markets without agents or an explicit market

microstructure. Equation-Based Models (EBMs) boil down all activity to a set of

mathematical equations, commonly differential equations, that describe macro-level

quantities, such as asset prices [206]. However, abstracting away these details can

restrict or eliminate the possibility of emergent phenomena, greatly reducing the

expressiveness of a model.

Early modeling efforts focused on simpler market architectures, such as Walrasian

auctions and dealer markets [179, 100]. But most modern equity markets feature a

fragmented CDA with trading activity distributed across multiple locations.

Some have used ABFMs to investigate the impacts of market fragmentation, usu-

ally focusing on the simplest case involving two auctions [249, 64, 11]. To simulate

fragmented markets these ABFMs must account for communication latency, other-

wise, the fragmentation would not have a material impact on trading activity. When

modeling fragmented markets, it is common to implement one or more securities in-

formation processors (SIPs) [235]. SIPs serve as data aggregators that disseminate

important signals to keep prices synchronized in a fragmented market, such as the

90

National Best Bid and Offer (NBBO), an indicator of market-wide best price.

In addition to market fragmentation, which occurs at the level of financial ex-

changes, some have explored ABFMs that capture the interactions that occur in

multi-level markets containing many interconnected financial systems, such as equity

markets, options markets, brokerages, and banks [20].

Speed can be a deciding factor in the competition of trading strategies, especially

in market systems with continuous auction mechanisms. An often underappreciated

element of this competition is response delays, the time it takes a trading strategy

to ingest an incoming market message and issue an appropriate response. These

response delays are often so small that they are assumed to have minimal impact on

trading outcomes, and thus are not implemented in many ABFMs. However, since

many aspects of the race for speed have been commoditized (e.g., colocation, wireless

communication channels, specialized computing hardware, etc.) the microseconds

that can be shaved via software optimization can have serious impacts [200].

There are an endless number of market infrastructure details that can impact

trading processes, and should be captured in detailed models. However, in this work,

we focus exclusively on a stock market with detailed implementations of market frag-

mentation, communication infrastructure, auction mechanisms, and adaptive agents.

4.3.3 Adaptive Agents

Mechanisms for adaptive agents can be classified as active or passive [140]. Active

learning is driven by the intentional change of an agent’s strategy, while passive learn-

ing occurs via the accumulation of wealth by more effective strategies over time. We

focus on active learning due to recent advances in the field of machine learning, as well

91

as the potential relationship between active learning and economic rationality [245].

Active adaptive agents can feature two types of strategies, fixed or free form. Fixed

strategies cover a single qualitative class of behaviors and tune a set of parameters

to optimize profits or adapt to changing market conditions. Despite their ability

to modify certain aspects of their behavior, such as interaction frequency or pricing

beliefs, fixed strategies cannot spontaneously adopt qualitatively distinct strategies.

On the other hand, free form strategies can implement two or more classes of behavior,

and perhaps even develop new strategies on the fly. Since the behavior of fixed

strategies is more constrained than free form strategies, they tend to be simpler to

develop and understand.

Fixed Strategy Agents

The ZI agents introduced by Gode and Sunder [83] are simple and broadly applicable,

which lead to a proliferation of applications and sparked a vein of research that has

been developed for decades. ZI Plus (ZIP) agents, like the ZI agents that inspired

them, take stochastic actions using minimal information but develop pricing beliefs

over time, based on bid and offer prices lead to trades [40, 38, 193, 39]. The agents

created by Gjerstad and Dickhaut [81] (GD) have a similar structure to ZIP agents,

they develop price belief functions based on quotes and trades. However, GD agents

take actions that greedily maximize surplus, whereas ZIP agents do not directly opti-

mize profits. By covering some pathological edge cases in the GD algorithm, Modified

GD (MGD) agents [232] avoid excessive volatility and outperform their predecessor.

The GDX strategy [231] also builds on the pricing belief functions seen in GD agents

but accounts for future rewards via dynamic programming. This forward-looking op-

92

timization promotes longer-term strategies with more interesting behavior. Adaptive

Aggressiveness (AA) agents [247] combine price belief functions with an aggression

function that allows them to strategically account for their “desire to trade”. Tak-

ing a slightly different approach, Assignment Adaptive (ASAD) agents [228] use a

relatively simple strategy that is less adaptive in some ways than ZIP agents but ex-

plicitly accounts for the information contained in an agent’s submitted orders. ASAD

agents can generate interesting dynamics, especially when reacting to exogenous price

shocks in a homogeneous strategy space, but are generally outclassed by ZIP agents

when in direct competition.

This line of research has created several relatively simple agents that combine

domain knowledge with basic machine learning and optimization techniques, result-

ing in adaptive, but fairly restricted strategies. Through the use of more advanced

machine learning techniques, removing imposed strategy structure, and allowing for

greater strategy complexity, we can create agents that develop qualitatively distinct

strategies.

Free Form Strategy Agents

Free form strategies are constructed around a behavior adaptation mechanism, com-

monly implemented using machine learning, that allows the agent to respond appro-

priately to changing market conditions.

Supervised learning techniques, in the form of imitation learning, can replicate ob-

served patterns in order flow data [29, 220, 257]. However, agents built with imitation

learning tend to regurgitate observed behaviors, and thus have little ability to respond

to market conditions that were not observed during training or to generate new strate-

93

gies. Generative Adversarial Networks (GANs) can create realistic streams of order

flow in a similar manner to imitation learning based methods. GANs may be better

than imitation learning at generating novel content, due to the adversarial learning

mechanism, but still lack a mechanism necessary for effective generalization [145].

One of the most obvious learning signals present in financial markets is profit.

Profit motive is relied on as one of the fundamental forces in financial markets, and it

makes intuitive sense to train trading strategies with it. Two classes of algorithms are

particularly effective at deriving appropriate behavior from arbitrary reward signals:

meta-heuristic search and reinforcement learning. Both meta-heuristic search [229,

110] and reinforcement learning [212, 53] have been applied repeatedly, and with

varying degrees of success, to the learning of trading strategies.

Many traditional applications of meta-heuristic search and reinforcement learning

focused on narrowly defined problems and did not emphasize the ability to adapt to

dynamic environments. The rise of meta-learning, commonly described as learning to

learn, has greatly improved the ability of machine learning models to learn from, and

adapt to, more broadly defined problems [109]. Trading agents developed using meta-

learning techniques, such a hierarchical reinforcement learning [230] or meta-learned

evolutionary strategies [225], can learn more quickly, display higher peak performance,

and handle new market conditions more gracefully than agents developed without

meta-learning.

4.3.4 Model Examination

For an ABFM to be a useful tool for informing policy or system design, it must sat-

isfy three properties. First, the model must align with the system that it is intended

94

to influence. Second, the model must provide useful insights into that target sys-

tem. Third, the model must garner a certain amount of trust from policymakers and

designers that control the target system.

Figure 4.3.1 summarizes the model development pipeline, including ABFM de-

velopment, which is driven by three processes that ensure quality and consistency:

verification, validation, and replication [258, 196, 9]. During verification, an imple-

mented model is compared and contrasted with a conceptual model. Good software

testing and debugging are core verification tasks, though visual inspection of model

outputs and other similar actions also play a role. Validation compares an imple-

mented model with the target system via iterative calibration, which involves tuning

free model parameters so that data generated by the model resembles data from

the target system. Comprehensive validation and verification, along with clear com-

munication, establish a baseline level of trust in a model. Replication, which is a

collection of tasks ranging from running code provided by the creators of a model

to complete re-implementation, can further bolster the reputation of a model. The

primary goal of replication is to ensure that the outputs of the model display the

advertised properties, and are not the result of spurious factors.

Model validation can be driven by data collected from the target system, stylized

facts that have been developed based on quantitative observation of the target system,

or other forms of distilled knowledge. In most cases, this decision is based on data

availability. For example, it is prohibitively costly to obtain high frequency data from

all of the exchanges in the NMS. Like many who have come before us [78, 19, 163],

we validate our model using stylized facts of asset price time series [44], order book

metrics [186], and dislocations [234], instead of depth-of-book data.

95

Figure 4.3.1: The model development process, which includes ABFM development, involves
three entities (the conceptual model, implemented model, and target system) connected by
four processes (verification, validation, calibration, and replication).

4.4 Methods

4.4.1 Market Infrastructure in ABMMS

We developed ABMMS, a highly configurable ABFM that targets the US National

Market System for equities (NMS), to investigate the impacts of market microstruc-

ture and adaptive agents. ABMMS emphasizes the explicit representation of many

market microstructure elements, starting with a realistic electronic communication

network (ECN). The ECN consists of a queue of in-flight messages and a topology

that those messages travel over. The topology is an undirected graph with weighted

edges, where nodes are data centers, edges are communication channels, and edge

weights are deterministic propagation delays. Messages are routed based on the short-

est weighted path, identified via Dijkstra’s algorithm. Exponential noise with a mean

of 5 microseconds is added to the propagation delay to simulate latency jitter and

other stochastic delays.

Figure 4.4.1 shows the default configuration for ABMMS, which is derived from

96

Figure 4.4.1: A visual summary of the default configuration of ABMMS. The topology and
propagation delays are adopted from Tivnan et al. [234], with four data centers distributed
across northern New Jersey. The choice of 16 exchanges and 2 SIPS is based on our
understanding of the NMS in early 2021. Traders are randomly distributed across the four
data centers unless otherwise noted. Every configuration of ABMMS has an observer, located
at the Carteret node, that exports data from the simulation for analysis.

97

the state of the NMS in early 2021 and adopts the propagation delays presented by

Tivnan et al. [234]. ABMMS uses a discrete-event scheduler to process messages

passed between agents via the ECN, capturing the temporal heterogeneity of market

events and agent response times. Messages are processed sequentially based on the

time they should arrive at their recipient, resulting in a dynamic step size for the

simulation clock. Exchanges are distributed across the nodes of the ECN, where

each exchange manages a CDA for each actively traded stock. All CDAs in ABMMS

prioritize the execution of orders based on price, visibility, and time, with ties broken

randomly. Each Exchange implements a fee schedule that includes market access

fees, also known as maker-taker fees, which incentivize liquidity demand or supply

depending on the configuration. The default configuration of ABMMS includes a pair

of SIPs that construct and disseminate NBBOs, LULD bands, and TAQ feeds. See

Appendix 4.A for an in depth description of ABMMS following the Overview, Design

concepts, Details (ODD) protocol [93, 94, 95].

When compared with previous ABFMs, ABMMS implements several market el-

ements that are usually abstracted away, and have never been investigated simulta-

neously in a single model. Specifically, CDAs to facilitate trading, multiple assets

traded simultaneously, market fragmentation beyond two exchanges, SIPs that issue

NBBOs as well as LULD bands, trade-through protection, common order modifiers

(hidden, immediate-or-cancel, all-or-nothing, inter-market sweep), and market access

fees. There is an expectation of emergent phenomena in ABFMs, thus the inclusion of

these additional details may have non-trivial impacts on market dynamics, especially

if leveraged strategically by a learning agent.

98

4.4.2 Traders

We developed our adaptive trading agent using meta-reinforcement learning [62, 251].

Meta-reinforcement learning is better able to adapt to dynamic environments than

traditional reinforcement learning, and financial markets are extraordinarily dynamic.

One mechanism that causes meta-reinforcement learning to foster adaptability is the

use of effective experimentation processes. Meta-reinforcement learning agents can

actively investigate the state of their environment and incorporate that information

into their decision process [52].

Given the importance of agent adaptability and heterogeneity discussed earlier,

one approach to developing reinforcement learning traders might populate a simu-

lation entirely with such reinforcement learning traders to develop a population of

co-adapted strategies. However, multi-agent reinforcement learning is unstable [28].

With each agent adapting in real-time, the optimal strategy for all agents becomes a

moving goal that is difficult to approach. Instead, we focus on the impact of a single

reinforcement learning agent in simulations otherwise populated with simple agents.

For this purpose, we select ZIP agents, since they have a long history of effective

applications in ABFMs and have not been bested by another simple strategy [200].

We develop our ZIP traders based on the reference implementation provided

by Cliff [39], with one minor deviation. The original implementation of ZIP traders

uses an exogenous stream of limit prices as a basis for the pricing beliefs of each agent.

We replace this exogenous input with random limit prices drawn from a truncated

normal distribution that is centered at the Limit Up-Limit Down (LULD) reference

price, covers the LULD interval, and is updated each time a new LULD band is issued.

99

For more details, see Appendix 4.A.11.

4.4.3 Stylized Facts

The econometrics community has been developing stylized facts that capture various

features of data generated by financial markets since the mid-’90s, if not earlier [187,

44, 21, 191, 218]. Stylized facts are statistical properties that are observed across a

broad range of assets, markets, and periods. Stylized facts are qualitative and trade

precision in favor of generality, thus there can be exceptions. However, through the

combination of many stylized facts, it becomes possible to identify data that has been

generated by authentic trading processes.

We focus on the eleven stylized facts outlined by Cont [44] since they are relatively

simple to test for with moderate amounts of data. However, three facts (#1: Absence

of Linear Auto-correlation, #4: Aggregational Gaussianity, and #11: Asymmetry in

Time Scales) require longer periods of coarser-grained data, which are costly to gener-

ate with a model that operates at high frequencies. We eschew the three problematic

facts and rely on the remaining eight to validate ABMMS.

The stylized facts described by Cont [44] are exclusively concerned with properties

of asset price time series. However, ABMMS produces much more information than

asset price time series. In particular, we have access to a complete depth-of-book

feed, thus metrics that investigate limit order book properties [21, 191, 218, 186] can

help to quantify the impacts of our meta-reinforcement learning trader.

100

4.5 Results

To ensure that our tests for stylized facts are effective, we calibrate them on easily

accessible historical price data. Specifically, we use minute resolution data obtained

from Alpha Vantage [114] for 30 US stocks: AAPL, AXP, BA, CAT, CSCO, CVX,

DD, DIS, GE, GS, HD, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT,

NKE, PFE, PG, RTX, TRV, UNH, V, VZ, WMT, and XOM. The data for most

symbols covers two years of trading, roughly from April 2019 through February 2021.

RTX was formed as the result of a merger in 2020, so we only have data from April

2020 through May 2021 (roughly 14 months worth of trading data). The Alpha

Vantage data is built using SIP feeds and aggregated at the minute level, with open,

high, low, close, and volume features. The data is adjusted to account for splits and

dividends. See the Alpha Vantage API documentation for more details [115].

Using this data, we calibrate our stylized fact tests by optimizing free parameters

to improve the detection rate. This calibration process assumes that the selected

stylized facts should be expected in these stocks and during this time period, but

stylized facts are not without exceptions and market dynamics may have qualitatively

changed since the early 2000’s. Table 4.5.1 summarizes the stylize fact calibration,

with the main result being that facts #3 and #10 were difficult to reliably detect.

Due to this lack of consistency, we rely on the remaining six stylized facts (#2 and

#5 through #9) when validating ABMMS.

To provide the appropriate context for interpreting the impact of a learning agent,

we select three control configurations. In zip_simple, we use a single exchange, a

single SIP, and 30 ZIP traders, all of which are located at the Carteret node of the

101

Table 4.5.1: Summarized results from the calibration of stylized fact tests. Stylized facts
that were not confirmed in more than half of the stocks after calibration were not considered
for evaluating the ABFM.

Stylized Fact Free Parameters Best Parameter Values Pass Rate
#2: Heavy Tailed Re-
turns

Window Size max(len(returns) // 1000, 30) 29 / 30

#3: Asymmetry of Re-
turns

Window Size max(len(returns) // 1000, 390) 10 / 30

#5: Intermittency of
Returns

Window Size max(len(returns) // 60, 100) 29 / 30

#6: Volatility Cluster-
ing

Lag Count 5000 30 / 30

#7: Heavy Tailed Con-
ditional Returns

Window Size max(len(returns) // 1000, 30) 29 / 30

#8: Slow Decay of Re-
turn Autocorrelation

Lag Count 100 or 10000 21 / 30

#9: Leverage Effect R Value Threshold,
P Value Threshold

None, None 25 / 30

#10: Volume / Volatil-
ity Correlation

R Value Threshold,
P Value Threshold

None, None 12 / 30

ECN. The zip_nms configuration features a relatively complete representation of the

NMS, with 16 exchanges distributed across the four nodes of the ECN, a SIP located

in Mahwah, and a SIP located in Carteret. This condition is populated with 29 ZIP

traders that are randomly distributed and one Arbitrage trader located at Secaucus.

The final condition, zip_no_arb_nms, is identical to zip_nms except that it replaces

the Arbitrage trader with a ZIP trader. Between these three configurations we can

isolate the impacts of market infrastructure differences and understand some of the

effects of market fragmentation. The experimental condition is identical to zip_nms,

but replaces the Arbitrage trader with a Reinforcement Learning trader.

We collect data from 30 independent trials for each condition, where a single trial

covers five trading days. Figure 4.5.1 shows the ability of data generated by each

condition to display the six stylized facts that were selected based on the calibration

discussed above. Each of the selected configurations display roughly four of the

102

Figure 4.5.1: Box and whisker plots summarizing the number of stylized facts detected for
each experimental condition. The four experimental conditions display similar capabilities
for reproducing stylized facts, with an average (standard deviation) of 4.26 (0.8), 4.1 (0.78),
4.03 (0.76), and 3.75 (0.43) for the zip_no_arb_nms, zip_nms, zip_simple, and rl_nms
conditions respectively. The only significant difference, determined via two sided t-tests,
was the lower mean for the rl_nms relative to the other conditions. zip_nms was the only
condition able to display all six stylized facts simultaneously.

six stylized facts. Two of the conditions with NMS-inspired market infrastructure,

zip_nms and zip_no_arb_nms, had a slight advantage over zip_simple, but that

difference was not statistically significant.

Figure 4.5.2 displays the detection rate of each stylized fact, across all trials and

by experimental condition. Facts #5 and #6 had a perfect detection rate, facts #2,

#7, and #9 were detected in more than 50% of trials, and fact #8 was detected in

less than 10% of trials. The two conditions with NMS-inspired infrastructure were

more likely to display fact #2 and less likely to display fact #9 than the condition

with simple infrastructure. Additionally, the condition with simple infrastructure was

unable to produce a single trial that displayed fact #8, whereas the NMS-inspired

conditions both produced a single trial that did.

The stylized facts developed by Cont [44] are exclusively concerned with proper-

103

Figure 4.5.2: The detection rate for each stylized fact across all trials (top-center), rl_nms
trials (center-left), zip_no_arb_nms trials (center-right), zip_nms trials (bottom-left), and
zip_simple trials (bottom-right). rl_nms and zip_simple conditions were unable to dis-
play fact #8, while zip_nms and zip_no_arb_nms were able to display fact #8 exactly
once. rl_nms displayed fact #9 less than the other conditions, but displayed fact #2 more
frequently.

104

ties of asset price time series. However, there is a wealth of additional information

that is produced by real markets, and by ABMMS. Figure 4.5.3 investigates differ-

ences between the experimental conditions using daily occurrences of trades, quotes,

and NBBOs. Market fragmentation and the arbitrage trader both have non-trivial

impacts on all of these statistics, but market fragmentation has a much larger effect.

Figure 4.5.4 summarizes the occurrence of dislocations, as discussed in Tivnan et al.

[234], in ABMMS. The zip_simple condition generates roughly an order of magni-

tude less dislocations than the conditions with NMS-inspired infrastructure, but those

dislocations tend to be longer. The arbitrage trader appears to cause an increase in

the mean dislocation magnitude, but also a large decrease in dislocation duration.

4.6 Discussion and Conclusion

There are three major directions that this work could be extended. First, we investi-

gated the impacts of a single learning agent to avoid development difficulties that can

be encountered when multiple learning agents interact, however, future work should

tackle these issues and develop populations of heterogeneous learning agents. Sec-

ond, we captured many important mechanisms in our implementation of ABMMS,

but the NMS is an extremely complicated system and there are bound to be details

that we have abstracted away. Enumerating and implementing these additional mech-

anisms will improve the accuracy of future models, and open additional strategies for

learning agents to explore. Third, we chose to exclusively implement an equities mar-

ket. However, real equity markets are linked with several financial systems, including

lending systems and options markets. Extending ABMMS to account for any of these

105

Figure 4.5.3: Basic trading day statistics for each experimental condition. The arbitrage
trader causes a noticeable drop in the mean number of shares per trade (top-left). Market
fragmentation leads to an order of magnitude increase in trades (top-right), quotes (bottom-
left), and NBBOs (bottom-right). The arbitrage trader leads to a sizeable increase in trades,
quotes, and NBBOs, but has a smaller impact than market fragmentation. The rl_nms had
a higher level of activity than the other conditions, but featured smaller trades on average.

106

Figure 4.5.4: Summary statistics for dislocations by experimental condition. Fragmented
configurations of ABMMS display roughly five times as many dislocations when compared
with zip_simple (top-left). The arbitrage trader leads to an increase in the number of
dislocations (top-left) and an increase in the mean dislocation magnitude (top-right), but a
decrease in the dislocation duration (bottom). RL trader lead to less dislocations, smaller
dislocations, and longer dislocations than the arbitrage trader.

107

additional financial systems could enrich the produced results. Beyond these direct

extensions, our implementation and calibration of tests for stylized facts indicates a

need to revisit some common stylized facts, which may be more difficult to identify,

or may not be displayed in the same ways as previously observed.

Financial market policy has been shaped largely by public comments [214], re-

cent events [213], and live pilots [215]. However, each of these influences can be

problematic. Public comments can be subjective or self-serving, recent events only

help retrospectively, and live pilots impose implementation costs on exchanges [166].

There have been a few successful applications of ABFMs to policy evaluation [224,

49, 98, 131, 19, 42, 20], but additional efforts could increase the amount of policy in-

formed by ABFMs and avoid the noted issues associated with other policy influencing

mechanisms.

We provide the full source code for our agents, models, and analysis (pending

acceptance) [241].

Acknowledgements

We thank Thayer Alshaabi, Matthew Koehler, John Ring for their insightful dis-

cussion and suggestions. Computations were performed on the Vermont Advanced

Computing Core, supported in part by NSF award No. OAC-1827314.

108

Appendix

4.A ODD Protocol for ABMMS

Below we describe ABMMS following the Overview, Design concepts, Details (ODD)

protocol [93, 94, 95].

4.A.1 Purpose

The purpose of ABMMS is to evaluate the impact of market mechanism implementa-

tion details in combination with adaptive agents on the quality of data generated by

an agent-based financial market (ABFM). Phrased more explicitly, “Does the combi-

nation of detailed market mechanisms and adaptive learning agents create synergistic

effects that improve the level of realism of data generated by an ABFM?” A higher-

level goal of ABMMS is to develop an ABFM that can better evaluate the impacts

of policy and design decisions in the US National Market System for equities (NMS).

ABMMS primarily targets the NMS, but is designed to simulate arbitrary market

configurations, allowing for the investigation of design and policy perturbations.

109

4.A.2 Patterns

We evaluate ABMMS by its ability to reproduce the following patterns.

Stylized Facts of Asset Prices

ABMMS should produce asset price time series that satisfy stylized facts proposed

by Cont and others. Replicating all of the 11 stylized facts proposed by Cont

is extremely difficult, especially considering the volume of data that is required to

evaluate facts #1, #4, and #11, so we aim to replicate at least 4. Additionally, we

found that facts #3 and #10 were difficult to detect when calibrating our stylized

fact tests on real data. Therefore, replicating four stylized facts should be considered

acceptable, and six desirable.

Profits of Learning Agents

Simple agents may have positive or negative profits depending on the market condi-

tions that they experience and random chance. However, learning agents should have

positive expected profits, otherwise, economic rationality would demand that they

cease participation. An agent need not have positive profit in any particular period,

or even over the entirety of a simulation run, only in the long run and on average.

Daily Trading Activity

Financial markets tend to feature a smile-shaped activity density curve at the trading

day time scale. The start of the trading day features a burst of trading activity, which

decays as the day goes on, as well as a ramp-up of activity as the day reaches its close.

110

There is no mechanism to generate such an activity curve when an ABFM is popu-

lated entirely with ZI or ZIP agents, beyond engineering such activity patterns into

their trading behavior. However, when learning agents are introduced, one possible

mechanism for generating this activity distribution comes with them, and that is the

opportunity cost associated with the market closure between trading days. To test

for this pattern we can construct activity histograms for each trading day, with bins

covering 10-second intervals, then test if the bins in the first and last 5 minutes of

the trading day feature significantly more activity than other bins.

Dislocations

Tivnan et al. [234] describe the occurrence of quote dislocations in the NMS. Since

ABMMS is intended to model the NMS, we expect to observe similar quote disloca-

tions in the data generated by it. The quote dislocations observed in ABMMS should

have similar distributions of attributes to what was observed in the NMS. On average,

stocks in the NMS can exhibit daily dislocation counts that fall anywhere between

roughly 3000 and 16000, for thinly traded members of the Russell 3000 and members

of the Dow 30 respectively [56]. When accounting for time of day, the occurrence

distribution should have a smile-like shape, where more dislocations occur near the

open and close of a trading day. Additionally, the duration distribution should be

heavy-tailed, with a tail reaching towards a longer duration, and a mean between

10−4 and 10−2 µs. The distribution of dislocation magnitudes should be heavy-tailed,

possibly a power law, with a greater frequency of small magnitude dislocations and

an exceptionally long tail [239].

111

4.A.3 Entities

ABMMS features the following:

• Simulation Driver: Orchestrates the execution of the simulation and manages

global variables.

• Electronic Communication Network (ECN): Mediates interactions between agents.

• Agent: An actor in the simulation. Agent classes can have heterogeneous roles

and incentives. All agents share a set of common state variables that cover

general information.

– Exchange: Manage auctions that facilitate stock trading.

– Securities Information Processor (SIP): Provides a signal to synchronize

prices across a fragmented marketplace.

∗ Limit Up-Limit Down Queue: Tracks historical trades in a time win-

dow to aid in calculating LULD bands.

– Trader: Buys and sells financial instruments.

∗ Zero Intelligence (ZI): Based on the agents developed by Gode and

Sunder, all trading decisions are selected randomly. One deviation is

that we do not implement separate buyer and seller agents. Instead,

each time a ZI agent is able to trade it randomly selects whether to

act as a buyer or seller.

∗ Minimum Intelligence (MI): Similar to ZI agents, but the width of the

random price distribution is based on the spread of the NBBO, and

112

orders are always sent to an exchange that holds one or both sides of

the NBBO.

∗ ZI Plus (ZIP): Based on the agents developed by Cliff and Bruten.

Takes trading actions that are nearly as random as ZI agents, except

that prices are determined by a belief function that is updated based

on orders that result in trades.

∗ Arbitrage: Attempts to profit by uncrossing distributed markets that

are crossed.

∗ Reinforcement Learning (RL): Learns a trading strategy via meta-

reinforcement learning, leading to a more adaptive and free form strat-

egy.

– Observer: An aggregator that constructs consolidated data products.

• Message: Information sent from one agent to another. All messages feature the

same header information, while the body content varies based on the message

type.

– Add: A bid (buy interest) or offer (sell interest) has been added to an

order book.

– Modify (Mod): Shares have been removed from an order book without

execution.

– Trade: Shares have been removed from an order book due to execution.

– Quote: The best bid or best offer at an exchange have updated.

– National Best Bid and Offer (NBBO): The best bid or best offer across all

exchanges in a market system have updated.

113

– Limit Up-Limit Down (LULD) Bands: Range of valid trading prices for

an asset.

– Request: Traders may submit an add or mod request to an exchange.

Requests may be rejected if they are malformed.

– Receipt: Exchanges indicate the status of a request via a receipt that is

sent exclusively to the sender of the request.

– Trigger: Schedules the occurrence of a discrete event, such as a trade or an

auction. Usually sent from an agent to itself, though this is not explicitly

enforced.

– SIP Message: Trade and Quote messages that pass through a SIP.

An ECN represents the communication infrastructure through which all other

agents interact. The core of an ECN is the topology of the communication infras-

tructure, which is represented as an undirected graph. The nodes of the topology

represent physical locations, and edges represent communication pathways between

locations. Edges are weighted to represent a deterministic propagation delay asso-

ciated with sending a message across that edge. An exponential random variable is

added to the deterministic propagation delay, simulating other aspects of electronic

communication systems, such as queuing delays or packet loss. All messages sent

via the ECN are subjected to a minimum delay, which primarily impacts messages

sent between agents located at the same node. The state variables for ECNs are

summarized in Table 4.A.2.

Exchanges facilitate the trade of assets by matching buyers and sellers via an

auction mechanism. The auction mechanism is implemented by the combination of an

114

order book, which accumulates market state, and a matching engine, which matches

incoming orders against those resting in the order book. Trading in multiple assets can

be supported through the use of multiple independent order books. Exchanges may

use transaction fees, also called market access fees or maker-taker fees, to monetize

their activity. The state variables for exchanges are summarized in Table 4.A.4.

SIPs act as a synchronization mechanism by aggregating information across a frag-

mented market system and disseminating indicators. A SIP constructs several signals,

including the national best bid and offer (NBBO), limit up-limit down (LULD) band

indicators, as well as a trade and quote (TAQ) for each asset it is responsible for. The

state variables for SIPs are summarized in Table 4.A.6. Each SIP tracks historical

trades over a small time window to implement the Limit Up-Limit Down (LULD)

mechanism. These trades are stored in a LULD Queue, which aids in the calculation

of LULD bands. The state variables for LULD Queues are summarized in Table 4.A.7.

Traders buy, sell, and hold financial instruments by interacting with other traders

via an exchange. Each trader tracks the state of its holdings, the amount of each

traded asset, plus cash, that it possesses. Additionally, each trader implements a

strategy for placing bids and offers. The state variables for Traders are summarized

in Tables 4.A.8–4.A.11.

ABMMS implements a variety of message types, whose relationships are summa-

rized in Figure 4.A.1. The state variables for each message type are summarized in

Tables 4.A.12–4.A.20.

115

Figure 4.A.1: A graphical summary of the relationships between the message types imple-
mented in ABMMS. Message types that are higher up in the tree share their state variables
with message types that are lower in the tree, if they are connected.

116

4.A.4 State Variables

Table 4.A.1: State variables for the Simulation Driver entity.

Variable Name Variable Type and Units Meaning

Global Clock Timestamp, dynamic; µs Time keeper for the simula-

tion.

Simulation Start Timestamp, static; µs The Global Clock is set to this

at the start of the simulation.

Simulation End Time Timestamp, static; µs The simulation is terminated

if the Global Clock reaches or

passes this.

Electronic Communication Network ECN, static Communication infrastructure

that mediates agent interac-

tions. See Table 4.A.2 for more

details.

Agents List[Agent], static Agents that populate this sim-

ulation. See Table 4.A.3 and

related Tables for more details.

Trading Symbols List[String], static Identifiers for the stocks that

will be traded in this simula-

tion.

117

Table 4.A.2: State variables for the ECN entity.

Variable Name Variable Type and Units Meaning

Topology Undirected Graph, static Nodes represent physical locations that other

agents might inhabit. Edges represent commu-

nication channels between locations. Weights

on edges indicate the magnitude of deterministic

propagation delays associated with communica-

tion along each edge.

Minimum Delay Integer, static; µs The minimum delay imposed on all communi-

cations. Primarily impacts messages passed be-

tween agents located at the same node in the

ECN.

Mean Delay Noise Float, static; µs Scale parameter for an exponential random vari-

able that is used to create stochastic communi-

cation delays.

Message Queue Sorted Queue, dynamic Contains the messages that have been sent into

the ECN, but not yet arrived. Always sorted

such that the first element of the queue is the

next message that will arrive at its destination.

118

Table 4.A.3: State variables for the Agent entity.

Variable Name Variable Type and Units Meaning

Identifier String, static A unique identifier, or name, that is used to refer

to this agent.

Location Categorical, static A node in the ECN where this agent is located.

Clock Timestamp, dynamic; µs A local clock. A copy of the global simulation

clock by default.

Trading Symbols List[String], static Identifiers of stocks that this agent may interact

with.

Subscribers List[Agent], dynamic Agents subscribed to the broadcast feed of this

agent.

Table 4.A.4: State variables for the Exchange entity.

Variable Name Variable Type and Units Meaning

Agent State Variables N/A See Table 4.A.3 for more details.

Order Books Dict[String, Order Book], static Mapping from Trading Symbols to

their associated Order books (Ta-

ble 4.A.5).

Matching Engine Matching Engine, static Strategy for matching incoming or-

ders with resting orders.

119

Table 4.A.5: State variables for the Order Book entity.

Variable Name Variable Type and Units Meaning

Trading Symbol String, static Orders are managed for this trading symbol.

Bid Priority Ordering Function, static Defines an ordering for the execution priority of

bids.

Bids List[Add Request], dynamic List of Bid Requests that have been accepted,

but not executed. Sorted according to Bid Pri-

ority.

Offer Priority Ordering Function, static Defines an ordering for the execution priority of

offers.

Offers List[Add Request], dynamic List of Offer Requests that have been accepted,

but not executed. Sorted according to Offer

Priority.

Table 4.A.6: State variables for the SIP entity.

Variable Name Variable Type and Units Meaning

Agent State Variables N/A See Table 4.A.3 for more details.

LULD Queues Dict[String, LULD Queue], static Map from trading symbols to LULD

Queues. One LULD Queue for each

trading symbol that this SIP is re-

sponsible for. See Table 4.A.7 for

more details.

Round Lot Size Integer, static; shares of stock How many shares must be associ-

ated with a quote for it to be con-

sidered a round lot, and thus eligible

for inclusion in the NBBO.

120

Table 4.A.7: State variables for the Limit Up-Limit Down (LULD) Queue entity.

Variable Name Variable Type and Units Meaning

Trading Symbol String, static LULD bands are managed for this trading

symbol.

LULD Reference Price Integer, static Initial reference price for the LULD bands.

LULD Window Timedelta, static; µs Length of the time window used to select

recent trades.

LULD Percentage Float, static; percent Half the width of the LULD bands as a frac-

tion of the reference price.

Table 4.A.8: State variables for the Trader entity.

Variable Name Variable Type and Units Meaning

Agent State Variables N/A See Table 4.A.3 for more details.

Holdings Dict[String, Integer or Float], dy-

namic; Shares of stock or $0.0001

Mapping from asset identifiers to

possessed asset quantities.

Pending Orders Dict[Integer, Message], dynamic Mapping from order identifiers to

orders that have been submitted to

an exchange and have an unknown

status.

Active Orders Dict[Integer, Message], dynamic Mapping from order identifiers to

orders that have been placed into

an order book on an exchange.

NBBOs Dict[String, NBBO], dynamic Mapping from trading symbols to

the current NBBO for that trading

symbol.

121

Table 4.A.9: State variables for the Zero Intelligence (ZI) Trader and Minimum Intelligence
(MI) Trader entities.

Variable Name Variable Type and Units Meaning

Trader State Variables N/A See Table 4.A.8 for more de-

tails.

Maximum Limit Prices Dict[String, Integer], dynamic; $0.01 Maximum prices for submitted

limit orders, one for each traded

stock.

Minimum Limit Prices Dict[String, Integer], dynamic; $0.01 Minimum prices for submitted

limit orders, one for each traded

stock.

Table 4.A.10: State variables for the Zero Intelligence Plus (ZIP) Trader entity.

Variable Name Variable Type and Units Meaning

Trader State Variables N/A See Table 4.A.8 for more details.

Profit Margins Dict[String, List[Float]], dynamic Mapping from trading symbols to

pairs of profit margins, one for

bids and one for offers.

Limit Prices Dict[String, Integer], dynamic Mapping from trading symbols to

the worst price that the agent is

willing to transact at.

Target Prices Dict[String, List[Integer]], dynamic Mapping from trading symbols to

target prices used to update the

profit margins.

Momentum Values Dict[String, Float], dynamic Mapping from trading symbols to

current momentum values.

122

Table 4.A.11: State variables for the Arbitrage Trader and Reinforcement Learning Trader
entities.

Variable Name Variable Type and Units Meaning

Trader State Variables N/A See Table 4.A.8 for more details.

DBBOs Dict[String, DBBO], dynamic Mapping from Trading Symbols to

their current Direct Best Bid and Offer

(DBBO).

Table 4.A.12: State variables for the Message Header entity.

Variable Name Variable Type and Units Meaning

Message ID Integer, static Identifier associated with this message.

Related ID Integer, static Optional identifier of a related message.

Sender ID String, static Identifier of the agent that sent the message.

Recipient ID String, static Identifier of the intended recipient.

Send Time Timestamp, static; µs When the message was sent.

Receive Time Timestamp, static; µs When the message will be received.

Trading Symbol String, static Indicates what Trading Symbol this message is as-

sociated with.

Random Float, static Value drawn from a U [0, 1) distribution.

123

Table 4.A.13: State variables for the Add message entity.

Variable Name Variable Type and Units Meaning

Message Header N/A See Table 4.A.12 for details.

Sequence Number Integer, static Identifier applied by an exchange to indicate the

processing order of requests.

Order Type Categorical, static Limit, market, or midpoint order.

Side Categorical, static Bid or offer.

Shares Integer, static Quantity of shares to be bought or sold.

Limit Price Integer, static; $0.01 Highest acceptable bid price, or lowest accept-

able offer price.

All or Nothing Boolean, static Indicates that this order should execute in its

entirety, or not at all.

Hidden Boolean, static Indicates that this order should not be displayed

if placed in an order book.

ISO Boolean, static Indicates that this order is part of an inter-

market sweep, and that standard execution price

protections are waived.

Time in Force Duration, static; µs Amount of time that this order should rest in

a limit order book before it is cancelled by the

exchange.

Table 4.A.14: State variables for the Modify (Mod) message entity.

Variable Name Variable Type and Units Meaning

Message Header N/A See Table 4.A.12 for details.

Sequence Number Integer, static The Sequence Number of a resting order.

Side Categorical, static The Side (bid or offer) of the resting order.

Shares to Remove Integer, static Quantity of shares to be removed from the rest-

ing order.

124

Table 4.A.15: State variables for the Trade message entity.

Variable Name Variable Type and Units Meaning

Message Header N/A See Table 4.A.12 for details.

Price Integer, static; $0.01 Execution price of the trade.

Shares Integer, static Quantity of shares traded.

Triggering Side Categorical, static Side of the order that triggered the trade.

ISO Boolean, static ISO status of the order that triggered the trade.

Table 4.A.16: State variables for the Quote message entity.

Variable Name Variable Type and Units Meaning

Message Header N/A See Table 4.A.12 for details.

Bid Price Integer, static; $0.01 Highest price among bids in an order book.

Bid Shares Integer, static Quantity of shares associated with the highest

priced bid.

Offer Price Integer, static; $0.01 Lowest price among offers in an order book.

Offer Shares Integer, static Quantity of shares associated with the lowest

priced offer.

Table 4.A.17: State variables for the National Best Bid and Offer (NBBO) message entity.

Variable Name Variable Type and Units Meaning

Quote N/A See Table 4.A.16 for details.

Bid Exchange String, static Identifier of the exchange that holds the National

Best Bid.

Offer Exchange String, static Identifier of the exchange that holds the National

Best Offer.

125

Table 4.A.18: State variables for the Limit Up-Limit Down (LULD) band message entity.

Variable Name Variable Type and Units Meaning

Message Header N/A See Table 4.A.12 for details.

Upper Band Integer, static Highest eligible trade price.

Lower Band Integer, static Lowest eligible trade price.

Table 4.A.19: State variables for the Receipt message entity.

Variable Name Variable Type and Units Meaning

Message Header N/A See Table 4.A.12 for details.

Success Boolean, static Indicates whether a request was successful or not.

Reason String, static Optional error message indicating why a request

failed.

Table 4.A.20: State variables for the Trigger message entity.

Variable Name Variable Type and Units Meaning

Message Header N/A See Table 4.A.12 for details.

Trigger Event Categorical, static What event should be triggered, Auction or Trade.

4.A.5 Scales

The minimum observable time increment of ABMMS is 1 microsecond, though the

“step size” is variable and based on scheduled events. The model is usually run in

segments of 1 trading day (6.5 trading hours), 5 trading days (1 trading week), or 20

trading days (1 trading month). Spatial relationships are not explicitly represented,

though they appear implicitly in the ECN, where propagation delays are estimated

based on properties of fiber optic communication technology and geographic locations

126

of real world data centers [234]. The round lot size is 100 shares, and is used to filter

quotes when constructing an NBBO, but odd lots are not restricted. The minimum

tick size for prices of quotes is $0.01, trades can occur in $0.001 increments, and

maker-taker fees are in increments of $0.0001.

All scales present in ABMMS are selected with the intent to model the NMS as

closely as possible. The round lot size and minimum price increments are directly

taken from regulation and documentation of NMS participants. The most subjective

choice is the minimum time increment of 1 microsecond, which allows for accurate

modeling of most trading processes. However, if agent response times were to be

accurately modeled, a smaller minimum increment (i.e. 1 nanosecond) may be needed,

since exchanges and some high frequency trading strategies may have faster response

times than 1 microsecond.

4.A.6 Process overview

ABMMS is event-driven, with discrete events occurring in fine-grained, but discrete

time. To initiate a simulation, a start method is called for each agent, allowing

it to perform setup actions at run time and schedule initial trading actions. The

results of these start methods form the seed of the event-driven simulation, where

messages are processed in increasing order of time of receipt. Each agent has its own

strategies for how it reacts to particular message types, but generally all state variables

are updated asynchronously. The only variable that is updated synchronously is

the global clock, which is shared by all agents in a simulation. The existence of a

single global clock removes the possibility of clock synchronization issues, which is

a prevalent and difficult problem in distributed high frequency systems. Events are

127

processed sequentially until there are no remaining events to process, or the simulation

termination time is reached.

All agents in ABMMS respond to messages, which either convey information about

state changes elsewhere in the system or that a scheduled discrete event should occur.

Agent behaviors fall into one of two classes: planned and reactive. Planned be-

haviors are triggered by a message sent from the agent to itself, with the intent of

performing a certain action at a specific time. For example, an agent may decide

that it would like to submit an order to an exchange in five minute, and schedule this

planned action using a trigger message.

Reactive behaviors are triggered by messages sent to the agent from elsewhere in

the system. For example, suppose an arbitrage trader receives a new quote from an

exchange that indicates a crossed market state. The arbitrage trader then reacts by

sending orders to the two exchanges involved in the cross, intending to be the counter

party to the bid at one exchange and the offer at another.

ECN Processes

Message routing is determined based on the shortest weighted path identified by

Dijkstra’s algorithm. The total weight of that path is a deterministic propagation

delay, which is then combined with a small exponential random variable to simulate

queuing, latency jitter, and other stochastic delays. All messages are subjected to a

minimum propagation delay, which mainly impacts messages passed between agents

at the same node in the ECN.

128

Exchange Processes

Exchanges implement a trading day schedule such that trading occurs between 9am

and 4pm on week days (Monday through Friday), excluding U.S. federal holidays.

This is enforced by opening and closing processes, outside of which any submitted

requests will be rejected.

The opening and closing procedures for exchanges in ABMMS are relatively simple

compared to what is seen in the NMS. Orders are not accepted prior to market open,

and continuous trading begins immediately at market open without the occurrence

of an opening batch auction. Similarly, the closing process in ABMMS is simply the

termination of continuous trading, unlike the NMS where it is common to execute a

closing batch auction. As part of the closing process, all orders that use the default

time in force value or have a time in force value less than 17.5 hours (the duration

between the close and next open) are cancelled by the exchange.

During open trading hours, Exchanges will validate any incoming requests to

ensure that they are well formed. Valid messages are passed to the Matching Engine,

while ill formed messages result in receipts returned to their senders indicating issues.

Beyond these processes, Exchanges track the current NBBO and LULD bands for

each trading symbol, and construct a Direct Best Bid and Offer (DBBO) using quotes

observed directly from other exchanges.

Matching Engine Processes

Add Requests that are validated by an exchange are handed off to a Matching Engine,

which determines if that order will immediately lead to trades or if it will fall to rest

in a Order Book. An incoming bid immediately matches against the highest priority

129

offer in the Order Book if the limit price of the bid is greater than or equal to the

limit price of the offer. A similar, but inverted, relationship holds for an incoming

offer matching against resting bids. A single incoming request may result in multiple

trades, depending on the quantity of shares desired by the incoming order and the

quantity provided by resting orders. If there are not enough resting shares to complete

an incoming request, then that request will fall to rest in the order book and await

further counter parties.

If simulation is configured with multiple exchanges and a trade would occur at a

price that is worse than what is displayed by the current NBBO, then the Matching

Engine will defer execution of that order and route it to the Exchange that holds the

appropriate side of the NBBO (assuming that the Matching Engine is not managed

by the indicated Exchange). In addition to forwarding the remainder of the order

to the NBBO holder, the routing exchange will also send a receipt to the sender of

the request indicating that routing has occurred. This process is referred to as trade

through protection, and the mechanism that implements trade through protection is

mandatory routing.

The results of each trade are emitted in a Trade message via the feed of the

Exchange that manages a Matching Engine. In addition, the pair of agents involved

in a trade each receive a receipt that indicates their involvement.

Till this point we have mainly considered the case of Limit Orders, but, Exchanges

in ABMMS also support Market Orders and Midpoint Orders, which function slightly

differently. Limit Orders guarantee price, but not execution, using the limit price

specified by the trader. On the other hand, Market Orders guarantee execution, but

not price. This is implemented in ABMMS as a Limit Order whose limit price is set

130

to the appropriate side of the current LULD band (maximum price for Market bids,

minimum price for Market offers). Midpoint Orders are Limit Orders whose limit

price is set to the midpoint of the current NBBO, e.g. Best Bid Price + Best Offer

Price / 2. The limit price of Midpoint Orders is updated by the Exchange each time a

new NBBO is received, and this limit price adjustment does not impact other aspects

of the order (i.e. submission time).

Beyond these order types, all Add Requests have a set of modifiers that can be

applied to shape how they are executed. The “Time in Force” attribute of an order

indicates how long it should be considered valid for once the exchange has received it.

By default, orders are considered valid for a single trading day, and will be cancelled

as part of the closing process. Orders with a “Time in Force” of 0 microseconds are

either executed or cancelled immediately. The “All or Nothing” flag indicates that a

request should be executed completely or not at all. In the current implementation,

use of the "All or Nothing" flag implicitly causes the order to have a “Time in Force”

of 0 microseconds. The “Intermarket Sweep Order” (ISO) flag disables trade through

protections for the order, ensuring that it is not routed to another Exchange. Orders

can be marked as “Hidden”, which inhibits the issuance of any Add or Quote messages

based on the entry of the order.

Order Book Processes

Order Books store Add Requests that have been accepted by an Exchange, but have

not yet been fulfilled. These Add Requests are stored in a pair of sorted queues,

one for bids and one for offers, where the sort ordering is based on price, visibility,

submission time, and a random tie-breaker. For bids, higher prices result in higher

131

priority, while for offers the opposite is true. Lower visibility, e.g. the use of the

hidden modifier, always results in a lower priority. Older orders have priority over

more recently submitted orders.

Every Add Request that falls to rest in the Order Book causes an Add Receipt to

be issued to the request sender and and Add message to be issued on the feed of the

controlling Exchange.

Mod Requests that have been validated by the Exchange are executed by the

Order Book, resulting in a Mod Receipt response to the request sender and a Mod

message issued on the feed of the controlling exchange.

Any Request that replaces or modifies the Best Bid or Best Offer results in the

construction and issuance of a new Quote message. Note that hidden orders are not

considered when constructing a new Quote.

Additionally, the Order Book implements the price updates for any resting Mid-

point Orders on behalf of the Exchange any time the NBBO is updated.

SIP Processes

Each SIP provides a suite of services for a set of trading symbols. For each trading

symbol in this set, the SIP will construct and disseminate a Trade and Quote (TAQ)

feed, a National Best Bid and Offer (NBBO), and Limit Up-Limit Down (LULD)

bands.

The TAQ feed is nearly a forwarding service, but the SIP appends an additional

timestamp to each message indicating the time that it was received by the SIP.

A NBBO is constructed by aggregating quotes from multiple exchanges that are

simultaneously trading the same symbol. The bid with the highest limit price across

132

Exchanges is selected for the National Best Bid, and the offer with the lowest limit

price is selected for the National Best Bid. In order for a bid or offer to be considered

during the construction of an NBBO it must be at least as large as a round lot, where

the default round lot size is 100 shares.

LULD bands are constructed using a rolling window of trades, which covers the

past 5 minutes by default. A reference price is constructed using the simple mean of

the trade prices. The band values are then calculated as a percentage deviation from

the reference price. We use a default value of 5% for the LULD band spread, though

the real world implementation contains multiple classes of securities with varying

band sizes. Additionally, the LULD band width doubles during the last 25 minutes

of trading on regular trading days.

One element of the LULD system that ABMMS does not implement is trading

halts. In a complete implementation, a trading halt would be triggered if trading

occurred outside of the LULD bands, and did not return within 15 seconds. Full

details of the LULD system can be found at https://www.luldplan.com/.

Trader Processes

Here we discuss general processes that are shared by all traders, namely a budget

constraint and request tracking. Details related to trading decisions are covered in

Section 4.A.8.

All traders are subject to a budget constraint that restricts their actions when they

do not have enough resources. Specifically, each trader estimates a portfolio value

that includes cash and shares of stock. The value for the shares of stock are estimated

based on the prices displayed by the NBBO and the quantity of shares held by the

133

https://www.luldplan.com/

agent. If the agent owns a positive quantity of shares, then they must sell those shares

to convert them into cash, thus the National Best Bid price is used. Alternatively, if

the agent owns a negative quantity of shares (shorting), then they must buy shares to

close out the position, thus the National Best Offer price is used. In either case, the

estimated value is the number of shares multiplied by the estimated execution price.

This estimate is extremely coarse and simplified, but can be computed quickly, which

is necessary since traders operate at relatively fine grained time scales.

to implement the budget constraint, all traders must track their assets. The only

messages that lead to a change in assets are Trade Receipts, which convert between

shares and cash.

All traders also perform basic request tracking. Requests created by a trader

can have two states, pending or active. Pending requests have been created by the

trader and sent to an exchange, but have yet to be accepted by the exchange. Active

requests have been accepted by the exchange. Mod Requests have an immediate

impact if accepted, and thus can be disregarded by the trader once their impact has

been noted. On the other hand, Add Requests can land in an order book, waiting

there until a counter party is found. Resting Add Requests are the primary reason for

Active Request tracking. Since Exchanges cancel all orders with insufficient time in

force values at the end of a trading day, all traders similarly clear any tracked orders

with insufficient time in force values at the end of a trading day.

4.A.7 Scheduling

Each time an agent receives a message, it may create and send any number of messages

to arbitrary recipients. The receipt time of a new message is based on the time it

134

was sent, along with the shortest path (in terms of total propagation delays) between

the location of the sender and the location of the intended recipient. Messages are

processed in order of increasing receipt time.

4.A.8 Design Concepts

Basic Principles

ABMMS is designed to emulate the NMS, with the assumption that more detailed

modeling of mechanics of a target system will improve the ability of an ABFM to

evaluate the impacts of system perturbations. Additionally, ABMMS aims to inves-

tigate the impact of more realistic agent behavior in a similar lens. Human traders

are flexible, adaptive, and heterogeneous in ways that are not captured by the rela-

tively simple agents that commonly populate ABFMs. Both of these principles likely

have non-trivial impacts on their own, but we hypothesize that their combination will

create synergistic effects.

Detailed market mechanics are captured at the system level, with the ECN ac-

counting for the details of communication and the fragmented market that is dis-

tributed across that ECN, as well as at the agent level, with the implementation of

realistic exchanges, matching engines, and order books.

Simple agents, particularly ZI [83] and ZIP [38], provide a foundation upon which

we can develop learning agents. We use meta-reinforcement learning [251, 62] to

incentivize our learning agents to develop adaptive strategies. Additionally, we hope

that the learning agents will make full use of system elements that are largely unused

by the simple traders, such as market orders, midpoint orders, time in force attributes,

135

and mod requests.

ABMMS aims to output data that is nearly identical to data products produced

by participants of the NMS. In particular, the primary output of ABMMS is a

comprehensive depth of book data feed, which should allow for any kind of market

data analysis commonly applied to authentic data products of similar scope. The only

analyses not supported by this output are those that require attribution data, which

is also true of all commercial data products. The only entities in the real system that

have access to data with attribution are exchanges, regulators, and entities similar to

them.

Emergence

We designed ABMMS to minimize the amount of imposed or prescribed behaviors,

with the intent that almost all results collected from ABMMS would be emergent. The

primary output of ABMMS is a full depth-of-book data feed, which is created entirely

through mediated agent interactions. Since a minimal amount agent behaviors are

prescribed or imposed, this generated data feed is a completely emergent result.

Adaptation

The main adaptive behaviors displayed in ABMMS are the strategies implemented

by traders.

ZI traders make trading decisions almost completely randomly. Add Requests

are scheduled to avoid request submissions outside of normal trading hours, and are

otherwise based on a uniform delay distribution (details in Section 4.A.11). When

submitting an Add Request the ZI trader first selects a trading symbol to target,

136

then a side of the market (bid or offer). The limit price is randomly selected from

a uniform distribution that ranges from $99.75 to $100.25 initially, then is updated

based on the NBBO. To create some separation between the price distributions of

bids and offers, the limit price distribution for bids is shifted downwards by 25% of

the NBBO spread and the limit price distribution for offers is shifted upwards by

the same amount. Add Request volume is determined by a log normal distribution

(details in Section 4.A.11). Finally, the exchange that an Add Request routed to

is selected at random. ZI traders only use limit orders, do not use any execution

modifiers, and do not submit mod requests.

MI traders are identical to ZI traders, except that they send their Add Requests to

the Exchange that holds the appropriate side of the NBBO (details in Section 4.A.11).

ZIP traders very similar to ZI traders, but they develop pricing beliefs based on

what prices lead to trades. The limit price used for a particular order, referred to

as the shout price by Cliff and Bruten, is constructed based on an internal limit

price and a multiplicative profit margin then clipped to remain inside of the current

LULD bands. The internal limit price is drawn from a truncated normal distribution

(details in Section 4.A.11). The profit margins are randomly initialized, and evolves

following the Widrow-Hoff “delta rule” as discussed in Cliff and Bruten.

We verify our ZIP trader implementation by comparison with the implementa-

tion provided by Cliff. The only notable deviation is the endogenously defined and

updated limit prices.

Arbitrage traders construct a synthetic NBBO using direct feeds from each ex-

change, resulting in a Direct Best Bid and Offer (DBBO). Each time the Arbitrage

trader observes a crossed DBBO, i.e. where the best bid price is higher than the best

137

offer price, it emits a pair Add Requests to arbitrage away the cross. An offer is sent

to the Exchange that holds the best bid, and a bid is sent to the Exchange that holds

the best offer. The limit price of the emitted Add Requests is set using the limit price

of the order that it is targeting. Both Add Requests are flagged as ISOs and use a

time in force attribute of 0 microseconds (i.e. immediate or cancel).

The Reinforcement Learning Trader is trained using the IMPortance weighted Ac-

tor Learner Architecture (IMPALA) algorithm [68], as implemented by RLLib [146].

The IMPALA configuration is summarized in Table 4.A.21. The Reinforcement

Learning Trader is configured following the Meta-Reinforcement Learning paradigm [62,

251], where the policy is memory augmented (using a LSTM [105]), the inputs are

augmented with the previous action and reward, and the agent is presented with a

distribution of tasks during training (many independent instances of ABMMS with

different initializations).

During training the agent learns how to adapt to different market conditions by

accounting for the temporal relationships between observations, actions, and rewards.

This adaptation mechanism can be thought of as an inner reinforcement learning

algorithm that is implemented by the LSTM. During evaluation, the agent is no

longer updated following the IMPALA training algorithm, but the adaptation strategy

learned by the LSTM remains active.

Objectives

The Reinforcement Learning Trader optimizes the log returns of its estimated total

portfolio value over episodes consisting of 2000 interactions.

ZIP traders minimize the distance between their shout prices and target prices

138

Table 4.A.21: Training configuration for the Reinforcement Learning Trader under the
IMPALA algorithm.

Label Value
env ABMMS
num_gpus 1
rollout_fragment_length 1000
train_batch_size 5000
horizon 2000
soft_horizon True
lr 1e-6
num_workers 7
framework tfe
replay_proportion 0.5
replay_buffer_num_slots 200
entropy_coeff_schedule [[0, 1e-10], [12000000, 0.0]]
model: use_lstm True
model: max_seq_len 64
model: lstm_use_prev_reward True
model: lstm_use_prev_action True
model: lstm_cell_size 512
model: fcnet_hiddens [256, 256]
model: fcnet_activation swish
model: vf_share_layers False
tune.run: run_or_experiment IMPALA
tune.run: time_budget_s 24 hours
tune.run: checkpoint_freq 10
tune.run: checkpoint_at_end True
tune.run: keep_checkpoints_num 10
tune.run: checkpoint_score_attr episode_reward_mean
tune.run: reuse_actors True

139

using a Widrow-Hoff “delta rule” update, but do not directly optimize for profits.

Learning

As mentioned in Sections 4.A.8 and 4.A.8, the Reinforcement Learning Trader uses

meta-reinforcement learning, implemented via the IMPALA algorithm, to optimize its

portfolio log returns. This reinforcement learning policy reacts to incoming messages,

and thus learns a direct behavior mapping from observations to actions. This policy

is represented by an artificial neural network constructed with dense layers and an

LSTM layer.

The primary goal for the use of learning in the Reinforcement Learning Trader

is to develop a free form strategy that is able to adapt to changes in market con-

ditions on the fly, even if those conditions were not observed during training. This

kind of generalization is difficult to achieve with traditional reinforcement learning

techniques, which is why we opted to use meta-reinforcement learning.

Prediction

The IMPALA algorithm used to train our RL Trader features implicit prediction

through the use of the policy gradient, and explicit prediction through the use of a

policy critic that predicts the rewards associated with a sequence of actions.

No other elements of ABMMS explicitly perform prediction as a part of their

function.

140

Sensing

Agents in ABMMS only have direct access to, and full knowledge of, their own state

variables. Messages sent via the ECN can communicate the value of internal state

variables to other agents, however, due to propagation delays the actual value of a

state variable may have already changed by the time other agents receive such a

message.

Each time a ZI trader is activated to trade, the following information is available:

• Current values for the traders limit price distribution (based of the current

NBBO).

• Current holdings (used for budget constraint only)

MI traders use the same information as ZI traders, but additionally use the current

NBBO to determine where to route their Add Request.

Each time a ZIP trader is activated to trade, the following information is available:

• Current limit prices

• Current profit margins

• Current LULD bands (used to clip shout prices)

• Current holdings (used for budget constraint only)

Each time the RL trader receives a message it produces a response based on the

following:

• Incoming message

141

• Current holdings (may influence strategy, used for budget constraint)

• NBBO for the trading symbol associated with the incoming message

• The last response emitted

• The last reward received

• A state vector that can contain information from any of the above elements at

previous time steps

• The set of active Add Requests issued by the RL trader

Interaction

All interactions in ABMMS are mediated by the ECN, which controls the propagation

delay for messages sent by any agent.

Traders send messages to, and receive messages from, Exchanges. SIPs receive

messages from Exchanges, then send messages to Exchanges and Traders. Exchanges

may send messages to other exchanges. Traders do not send messages to other traders,

though this is a convention, and not explicitly enforced.

Stochasticity

Stochasticity is used heavily in the initialization of ABMMS, with many of the details

discussed below in Section 4.A.9. The primary goal of stochastic initialization in

ABMMS is to aid in exploring a neighborhood of similar markets, since any particular

initialization is unlikely to match a historical state of the NMS. In the context of

evaluating the impacts of policy and design perturbations, it is important to know if

the impacts of a particular policy are sensitive to initial conditions.

142

In the ECN, exponentially distributed noise is added to deterministic propagation

delays, simulating stochastic elements of electronic communication technology, like

queuing delays and packet loss.

Trading decisions made by ZI, MI, and ZIP agents are largely stochastic. This is

important to provide a spark that starts trading in ABMMS. Many classes of hand

coded trading strategies are purely reactive, the see a particular market state occur

and emit orders to take advantage of that market state. For example, the Arbitrage

Trader waits for a crossed market state and then attempts to profit from uncrossing

it. However, if all traders were purely reactive, then a deadlock would occur at the

start of the simulation, with each agent waiting for something to happen, and no

trading would occur. The stochastic actions of ZI, MI, and ZIP agents ensure that

this deadlock does not occur, and allows reactive strategies to function in ABMMS.

Collectives

ABMMS does not explicitly represent any collectives, though herding behavior may

emerge.

Observation

The data collected from ABMMS is designed to mimic the features that might be

found in a consolidated data product. That means comprehensive coverage of data

feeds from all exchanges and SIPs, full depth of book information, and no attribution

data. A single observer, located at the Carteret node of the ECN, is used consistently

across all simulation runs to promote comparison. Selection of the Carteret node is

arbitrary, and any of the other ECN nodes would serve equally well as the location

143

for the observer, as long as the same location was used across all simulations. An

argument could be made for Secaucus as the location for the observer, since it has

the shortest average propagation delay. However, we chose Carteret to create a more

direct comparison with the dislocations observed in Tivnan et al.

4.A.9 Initialization

The first step of initialization creates the ECN that will mediate all agent communica-

tion. An ECN is composed of a network topology, a minimum propagation delay, and

a delay jitter distribution. The network topology is a weighted and undirected graph

that defines the places where agents can be located as well as deterministic propaga-

tion delays between those locations. The minimum propagation delay ensures that

all inter-agent communication experiences some amount of delay, avoiding unrealistic

scenarios that could occur if some kinds of communication experienced no delays.

The delay jitter distribution adds a stochastic element to the otherwise deterministic

communication delays, and is intended to model queuing delays and other stochastic

delays present in electronic communication systems.

The default topology closely mimics our understanding of the current communica-

tion infrastructure in the NMS, featuring four locations, with Mahwah, Carteret, and

Secaucus connected in a triangle, and Weehawken connected to Secaucus. The default

minimum propagation delay is 5 microseconds, and is based on our understanding of

intra-data center communication latency. The default delay jitter distribution is an

exponential distribution with a mean of 5 microseconds, and was chosen arbitrarily.

Next, the active trading symbols for the simulation must be defined. This is

deterministic by default, and the specific names used are arbitrary since there are no

144

fundamental value signal or other aspects of real world companies associated with the

trading symbols in ABMMS. We use two trading symbols in the default configuration

of ABMMS, so that each of the two SIPs present in the default agent configuration

manage a single trading symbol.

After the trading symbols are determined, then the various agent groups, Ex-

changes, SIPs, Traders, and observers, are initialized. ABMMS currently implements

two exchange configurations, one based on the NMS in early 2021 and a simplified

system that features a single exchange. The primary configuration parameters for

exchanges, beyond an identifier and location, are a maker fee and a taker fee. The

maker fee and taker fee define a simplified access fee schedule, and allows for the im-

plementation of a traditional maker-taker system as well as an inverted taker-maker

system.

In the NMS exchange configuration there are two SIPs, one located in Mahwah

and one located in Carteret. By convention the trading symbols are separated into

three groups, Tape A, Tape B, and Tape C. Trading symbols on Tape A and B are

managed by the SIP in Mahwah, while the trading symbols on Tape C are managed

by the SIP in Carteret. In the simplified exchange configuration, there is a single SIP

that is colocated with the single exchange and handles all of the trading symbols.

For the configuration of trading agents, the first concern is the ecology of agent

types. ABMMS implements 5 trader types: Zero Intelligence, Minimum Intelligence,

Zero Intelligence Plus, Arbitrage, and Reinforcement Learning. After the ecology of

agents has been determined, they must be placed at a node in the ECN. ZI, MI,

and ZIP traders are usually placed randomly. In the currently implemented agent

configurations, either no arbitrage traders are included, or a single arbitrage trader

145

Table 4.A.22: Distributions used to initialize trading agent holdings. Initial holdings for
each trading symbol are drawn independently from the indicated distributions. These initial
holding distributions are arbitrary. Exponential distributions are used based on the under-
standing that wealth distributions tend to be heavy tailed. We chose not to use distributions
with unbounded mean and/or variance to improve the consistency of ABMMS results.

Agent Type Cash Initialization Stock Initializa-
tion

RL Trader Exponential with a mean of $100 million 0 shares
Arbitrage Trader Exponential with a mean of $100 million 0 shares
ZIP Trader Exponential with a mean of $100 thousand Exponential with

a mean of 10000
shares

MI Trader Exponential with a mean of $10 thousand Exponential with
a mean of 10000
shares

ZI Trader Exponential with a mean of $10 thousand Exponential with
a mean of 1000
shares

Exchange $0 0 Shares
Default Exponential with a mean of $1 thousand Exponential with

a mean of 100
shares

is placed at Secaucus. Similarly, most configurations do not feature any RL agents,

but our primary experimental configuration features a single RL agent located at

Secaucus. Each trader is randomly assigned an initial allocation of cash and shares

of stock, see Table 4.A.22 for details.

The last agents to be initialized are the observers. The main initialization concern

with observers is their number and location. In all configurations we use a single

observer located at the Carteret node.

Once the ECN and agents have been initialized, they must be wired together before

trading can begin. All agents subscribe to data feeds provided by agents that they

plan to interact with. The default configuration is that SIPs subscribe to Exchanges,

146

while Exchanges, Traders, and Observers subscribe to Exchanges and SIPs. Next,

all agents are registered with the ECN based on their location within the network

topology.

To provide a common starting point for trader price beliefs, each SIP issues LULD

bands for the trading symbols that it is responsible for. Since ABMMS does not

currently implement opening auctions, the LULD bands issued at the open are based

on the closing from the “previous day”, which is drawn from a uniform distribution

ranging from $90.00 to $110.00. Individual agents may initialize their price beliefs

based on these LULD bands, or use their own initialization schemes.

ZI and MI traders do not have any parameters beyond their minimum and maxi-

mum limit prices that need to be initialized. Arbitrage traders also do not have any

additional parameters that require initialization.

For the parameters of ZIP agents, we follow the same initialization process as

Cliff. Specifically, the learning rate for each agent is drawn uniformly from 0.1 to

0.5, the momentum parameter is drawn uniformly from 0.0 to 0.1, and the profit

margins are drawn uniformly from 0.05 to 0.35 (values are positive for offer profits

and negative for bid profits). For the target price perturbation functions, absolute

shifts are drawn uniformly from $0.00 to $0.05 and relative shifts are also uniformly

random with a maximum change of plus or minus 5%.

4.A.10 Input Data

ABMMS does not use exogenous input data to represent time-varying processes.

147

4.A.11 Submodels

Trader Wait Intervals

ZI, MI, and ZIP traders schedule their trading actions based on a uniform distribution

with a minimum wait time of 0.5 seconds and a maximum wait time of 1.5 seconds.

Trader Order Volume

ZI, MI, and ZIP traders determine the amount of shares associated with Add Requests

based on a log normal distribution with µ = 2.6051702, σ = 1.40943376. These

parameters were selected so that the mode of the distribution was close to 100 (the

round lot size), and the mean of the distribution was close to 270 (Average Order Size

displayed by https://iextrading.com/stats/ on 2021/04/05).

Trader Order Routing

ZI and ZIP traders uniformly randomly select the target exchange for each request.

MI traders send their orders to the exchange that holds the appropriate side of

the NBBO. If that side of the NBBO is currently undefined, then MI traders will fall

back to random selection.

ZIP Trader Limit Price

Traditionally, ZIP traders develop shout prices, the price applied to Add Requests,

using an exogenous limit price and a multiplicative profit margin. To avoid provid-

ing exogenous limit prices, our ZIP trader implementation instead selects random

limit prices following a truncated normal distribution with parameters µ = Mid, σ =

148

https://iextrading.com/stats/

Range/12.0, where Mid is the midpoint of the current LULD band and Range is the

difference between the upper and lower values of the current LULD band. The values

drawn from this normal distribution are truncated to remain within the current LULD

band. These limit prices are resampled each time a new LULD band is issued. The

denominator used to construct σ is arbitrary, and is intended to keep the majority of

limit prices centrally located.

149

Chapter 5

Conclusion

Chapters 2, 3, and 4 describe three recent machine learning applications, CASI, AMP-

GAN, and ABMMS respectively. These applications serve as concrete examples of

how deep learning systems can leverage domain knowledge to solve challenging prob-

lems.

In the first application, CASI, domain knowledge informed the problem formula-

tion, data collection, data pre-processing, and model selection steps. Star formation

theory [67] drove the desire to detect shells in telescope images. The massive amount

of data collected by telescopes, and the lack of an automated solution, motivated a

deep learning application. All the data and labels used to train CASI were generated

by a simulation, which served as a mechanism to encode domain knowledge from

human experts into a form that was appropriate for the deep learning model. During

data pre-processing we cut the volumes of simulated data into 2D slices, increasing

the number of training samples available and maintaining most of the important spa-

tial relationships. Building on that decision we selected a 2D convolutional neural

network model to explicitly account for those spatial relationships.

150

Result interpretation usually requires domain knowledge to provide an adequate

frame of reference for understanding model performance. However, since we formal-

ized shell detection as semantic segmentation during problem formulation, we were

able to evaluate CASI using general segmentation metrics. The use of general metrics

removed the need for domain-specific evaluation metrics.

In the second application, AMPGAN, domain knowledge informed all steps except

model fitting. The rise of drug resistance, the slowing of development of traditional

antibiotics, and rising interest in AMPs all contributed to the desire to accelerate

AMP design. We used data that was collected almost exclusively through scientific

experiments executed by chemists. The problem formulation required our use of

peptide sequences as a feature, but domain knowledge directed the remainder of

feature selection. Regarding model selection, the peptide sequences drove the selection

of a 1D CNN-based model, the development/design objective led to the selection of

a GAN, the desire for interactivity and human intervention influenced the decision

to use a conditional model. Finally, for the result interpretation step, AMPGAN was

evaluated using global peptide similarity scores, existing models, and cell membrane

simulations, all of which directly encode domain knowledge.

In the third application, ABMMS, domain knowledge informed problem formula-

tion, data collection, model selection, and result interpretation. The costs of live pilot

programs and a desire to understand complex financial systems drove the need for

models that can better evaluate counterfactuals. ABMMS, an ABFM, provided an

environment to train meta-reinforcement learning agents, evaluate those agents, and

generate simulated data from a variety of market configurations. Data pre-processing,

in the form of feature selection and feature encoding for the learning agent, was pri-

151

marily driven by domain knowledge. We chose to develop intelligent agents with

meta-reinforcement learning due to its ability to explicitly handle temporal dynamics

and evolving market conditions. Economists developed stylized facts using quanti-

tative observations of real markets, and we applied those facts to evaluate the data

generated by ABMMS.

By synthesizing common patterns that appeared in multiple of the presented ap-

plications we can identify effective strategies for leveraging domain knowledge in deep

learning systems. One of the most prominent patterns was learning from simulation.

Simulations provide a convenient mechanism for encoding domain knowledge, and

can easily support multiple learning paradigms, such as supervised or reinforcement

learning (as exemplified by CASI and ABMMS respectively). Semi-supervised and

unsupervised learning can make use of unlabeled data, which is much easier to col-

lect than the labeled data required by supervised learning. Domain knowledge-driven

evaluation techniques are a crucial element of many applications, including AMP-

GAN and ABMMS. Post-hoc model interpretation techniques are particularly useful

since they can construct absolute and relative frames of reference that allow us to

understand model performance in context [173].

Though the role of domain knowledge in data preprocessing and model fitting has

gradually shrunk in most deep learning applications, it remains critical for problem

formulation, data collection, model selection, and result interpretation. Machine

learning applications formulated without domain knowledge are likely to be solutions

in search of problems. Data collected without domain knowledge are likely to miss

relevant features that may be necessary to reach acceptable performance. Models

selected without domain knowledge often ignore known relationships in the data,

152

leading to lower performance. Result interpretation without domain knowledge is

nearly impossible for many applications, especially if the problem formalism for that

application diverges from the common archetypes explored by the machine learning

community.

In this dissertation, I presented three deep learning applications that target chal-

lenging real-world problems. These applications were successful due, in part, to ap-

propriate leverage of domain knowledge at key steps of development. By combining

the strengths of domain knowledge and deep learning, the machine learning commu-

nity is now able to tackle a broader range of applications than ever before. Based on

the success of the presented applications, future work should continue to investigate

simulation-driven learning, supervised learning alternatives, and post-hoc evaluation

methods.

153

Bibliography

[1] Frédéric Abergel, Marouane Anane, Anirban Chakraborti, Aymen Jedidi, and
Ioane Muni Toke. Limit order books. Cambridge University Press, 2016.

[2] JM Ageitos, A Sánchez-Pérez, P Calo-Mata, and TG Villa. “Antimicrobial
peptides (AMPs): Ancient compounds that represent novel weapons in the
fight against bacteria”. In: Biochemical Pharmacology 133 (2017), pp. 117–
138.

[3] Piyush Agrawal and Gajendra PS Raghava. “Prediction of antimicrobial poten-
tial of a chemically modified peptide from its tertiary structure”. In: Frontiers
in Microbiology 9 (2018), p. 2551.

[4] J. Alves, M. Lombardi, and C. J. Lada. “The mass function of dense molecular
cores and the origin of the IMF”. In: Astronomy and Astrophysics 462 (Jan.
2007), pp. L17–L21. doi: 10.1051/0004-6361:20066389. eprint: arXiv:
astro-ph/0612126.

[5] Sarabjot S Anand, David A Bell, and John G Hughes. “The role of domain
knowledge in data mining”. In: Proceedings of the fourth international confer-
ence on Information and knowledge management. 1995, pp. 37–43.

[6] James Zou Anvita Gupta. “Feedback GAN for DNA optimizes protein func-
tions”. In: Nature Machine Intelligence 1.2 (2019), pp. 105–111.

[7] H. G. Arce, M. A. Borkin, A. A. Goodman, J. E. Pineda, and C. N. Beaumont.
“A Bubbling Nearby Molecular Cloud: COMPLETE Shells in Perseus”. In:
The Astrophysical Journal 742, 105 (Dec. 2011), p. 105. doi: 10.1088/0004-
637X/742/2/105. eprint: 1109.3368.

[8] H. G. Arce, M. A. Borkin, A. A. Goodman, J. E. Pineda, and M. W. Halle.
“The COMPLETE Survey of Outflows in Perseus”. In: The Astrophysical Jour-
nal 715 (June 2010), pp. 1170–1190. doi: 10.1088/0004-637X/715/2/1170.
eprint: 1005.1714.

154

https://doi.org/10.1051/0004-6361:20066389
arXiv:astro-ph/0612126
arXiv:astro-ph/0612126
https://doi.org/10.1088/0004-637X/742/2/105
https://doi.org/10.1088/0004-637X/742/2/105
1109.3368
https://doi.org/10.1088/0004-637X/715/2/1170
1005.1714

[9] SM Niaz Arifin and Gregory R Madey. “Verification, Validation, and Repli-
cation Methods for Agent-Based Modeling and Simulation: Lessons Learned
the Hard Way!” In: Concepts and Methodologies for Modeling and Simulation.
Springer, 2015, pp. 217–242.

[10] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein generative
adversarial networks”. In: International conference on machine learning. 2017,
pp. 214–223.

[11] Markus Baldauf and Joshua Mollner. “Trading in fragmented markets”. In:
Journal of Financial and Quantitative Analysis 56.1 (Feb. 2021), pp. 93–121.

[12] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michele Sebag. “Collabora-
tive hyperparameter tuning”. In: International conference on machine learn-
ing. 2013, pp. 199–207.

[13] Rainier Barrett, Shaoyi Jiang, and Andrew D White. “Classifying antimicro-
bial and multifunctional peptides with Bayesian network models”. In: Peptide
Science 110.4 (2018), e24079.

[14] Christopher N Beaumont, Alyssa A Goodman, Sarah Kendrew, Jonathan P
Williams, and Robert Simpson. “The Milky Way Project: leveraging citizen
science and machine learning to detect interstellar bubbles”. In: The Astro-
physical Journal Supplement Series 214.1 (2014), p. 3.

[15] Christopher N Beaumont, Jonathan P Williams, and Alyssa A Goodman.
“Classifying Structures in the Interstellar Medium with Support Vector Ma-
chines: The G16. 05-0.57 Supernova Remnant”. In: The Astrophysical Journal
741.1 (2011), p. 14.

[16] Kristin P Bennett and Colin Campbell. “Support vector machines: hype or
hallelujah?” In: Acm Sigkdd Explorations Newsletter 2.2 (2000), pp. 1–13.

[17] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter op-
timization”. In: Journal of Machine Learning Research 13.Feb (2012), pp. 281–
305.

[18] Thomas Blaschke, Marcus Olivecrona, Ola Engkvist, Jürgen Bajorath, and
Hongming Chen. “Application of generative autoencoder in de novo molecular
design”. In: Molecular Informatics 37.1-2 (2018), p. 1700123.

[19] Richard Bookstaber, Michael D Foley, and Brian F Tivnan. “Toward an un-
derstanding of market resilience: market liquidity and heterogeneity in the in-
vestor decision cycle”. In: Journal of Economic Interaction and Coordination
11.2 (2016), pp. 205–227.

155

[20] Richard Bookstaber, Mark Paddrik, and Brian Tivnan. “An agent-based model
for financial vulnerability”. In: Journal of Economic Interaction and Coordi-
nation 13.2 (2018), pp. 433–466.

[21] Jean-Philippe Bouchaud, Marc Mézard, and Marc Potters. “Statistical prop-
erties of stock order books: empirical results and models”. In: Quantitative
finance 2 (2002), pp. 251–256.

[22] R. D. Boyden, S. S. R. Offner, E. W. Koch, and E. W. Rosolowsky. “Assessing
the Impact of Astrochemistry on Molecular Cloud Turbulence Statistics”. In:
The Astrophysical Journal 860, 157 (June 2018), p. 157. doi: 10.3847/1538-
4357/aac76d. eprint: 1805.09775.

[23] Jeremy P Bradshaw. “Cationic antimicrobial peptides”. In: BioDrugs 17.4
(2003), pp. 233–240.

[24] Volker Brendel and HG Busse. “Genome structure described by formal lan-
guages”. In: Nucleic Acids Research 12.5 (1984), pp. 2561–2568.

[25] Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large scale gan training
for high fidelity natural image synthesis”. In: arXiv preprint arXiv:1809.11096
(2018).

[26] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. “Neu-
ral photo editing with introspective adversarial networks”. In: arXiv preprint
arXiv:1609.07093 (2016).

[27] Stephen J Brown. “The efficient markets hypothesis: The demise of the demon
of chance?” In: Accounting & Finance 51.1 (2011), pp. 79–95.

[28] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. “Multi-agent rein-
forcement learning: An overview”. In: Innovations in multi-agent systems and
applications-1 (2010), pp. 183–221.

[29] Arthur le Calvez and Dave Cliff. “Deep learning can replicate adaptive traders
in a limit-order-book financial market”. In: 2018 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, 2018, pp. 1876–1883.

[30] Alice Capecchi and Jean-Louis Reymond. “Peptides in chemical space”. In:
Medicine in Drug Discovery 9 (2021), p. 100081.

[31] Zhengyou Zhang Cha Zhang. A Survey of Recent Advances in Face Detec-
tion. Tech. rep. June 2010. url: https://www.microsoft.com/en-us/
research/publication/a-survey-of-recent-advances-in-face-
detection/.

[32] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. “Mode
regularized generative adversarial networks”. In: arXiv preprint arXiv:1612.02136
(2016).

156

https://doi.org/10.3847/1538-4357/aac76d
https://doi.org/10.3847/1538-4357/aac76d
1805.09775
https://www.microsoft.com/en-us/research/publication/a-survey-of-recent-advances-in-face-detection/
https://www.microsoft.com/en-us/research/publication/a-survey-of-recent-advances-in-face-detection/
https://www.microsoft.com/en-us/research/publication/a-survey-of-recent-advances-in-face-detection/

[33] Jinyin Chen, Yangyang Wu, Chengyu Jia, Haibin Zheng, and Guohan Huang.
“Customizable Text Generation via Conditional Text Generative Adversarial
Network”. In: Neurocomputing (2019).

[34] Shuan Chen and Hyun Uk Kim. “Designing Novel Functional Peptides by Ma-
nipulating a Temperature in the Softmax Function Coupled with Variational
Autoencoder”. In: IEEE. 2019, pp. 6010–6012.

[35] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and
Pieter Abbeel. “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets”. In: Advances in neural information
processing systems. 2016, pp. 2172–2180.

[36] E. et al. Churchwell. “The Bubbling Galactic Disk”. In: The Astrophysical
Journal 649 (Oct. 2006), pp. 759–778. doi: 10.1086/507015.

[37] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and ac-
curate deep network learning by exponential linear units (elus)”. In: arXiv
preprint arXiv:1511.07289 (2015).

[38] Dave Cliff. “Minimal-intelligence agents for bargaining behaviors in market-
based environments”. In: Hewlett-Packard Labs Technical Reports (1997).

[39] Dave Cliff. “BSE: A Minimal Simulation of a Limit-Order-Book Stock Ex-
change”. In: Proceedings of the 30th European Modeling and Simulation Sym-
posium (EMSS 2018) (2018), pp. 194–203.

[40] Dave Cliff and Janet Bruten. “Zero is Not Enough: On The Lower Limit
of Agent Intelligence For Continuous Double Auction Markets”. In: Hewlett-
Packard Labs Technical Reports (1997).

[41] Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chapman, Cymon J
Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek
Wilczynski, and Michiel J. L. de Hoon. “Biopython: freely available Python
tools for computational molecular biology and bioinformatics”. In: Bioinfor-
matics 25.11 (2009), pp. 1422–1423.

[42] Charles D. Collver Jr. An application of agent-based modeling to market struc-
ture policy: the case of the U.S. Tick Size Pilot Program and market maker
profitability. 2017. url: https://www.sec.gov/marketstructure/research/
increasing-the-mpi-combined.pdf.

[43] UniProt Consortium. “UniProt: a worldwide hub of protein knowledge”. In:
Nucleic Acids Research 47.D1 (2019), pp. D506–D515.

[44] Rama Cont. “Empirical properties of asset returns: stylized facts and statistical
issues”. In: Quantitative Finance 1.1 (2001), pp. 223–236.

157

https://doi.org/10.1086/507015
https://www.sec.gov/marketstructure/research/increasing-the-mpi-combined.pdf
https://www.sec.gov/marketstructure/research/increasing-the-mpi-combined.pdf

[45] Rama Cont, Sasha Stoikov, and Rishi Talreja. “A stochastic model for order
book dynamics”. In: Operations research 58.3 (2010), pp. 549–563.

[46] A. J. Cunningham, A. Frank, A. C. Quillen, and E. G. Blackman. “Outflow-
driven Cavities: Numerical Simulations of Intermediaries of Protostellar Tur-
bulence”. In: The Astrophysical Journal 653 (Dec. 2006), pp. 416–424. doi:
10.1086/508762. eprint: astro-ph/0603014.

[47] Anik Daigle, Gilles Joncas, and Marc Parizeau. “Automatic detection of ex-
panding HI shells in the Canadian galactic plane survey data”. In: The Astro-
physical Journal 661.1 (2007), p. 285.

[48] Anik Daigle, Gilles Joncas, Marc Parizeau, and Marc-Antoine Miville-Deschênes.
“Automatic Detection of Expanding H i Shells Using Artificial Neural Net-
works”. In: Publications of the Astronomical Society of the Pacific 115.808
(2003), p. 662.

[49] Vincent Darley. A NASDAQ market simulation: insights on a major market
from the science of complex adaptive systems. Vol. 1. World Scientific, 2007.

[50] Payel Das, Tom Sercu, Kahini Wadhawan, Inkit Padhi, Sebastian Gehrmann,
Flaviu Cipcigan, Vijil Chenthamarakshan, Hendrik Strobelt, Cicero dos San-
tos, Pin-Yu Chen, Yi Yan Yang, Jeremy Tan, James Hedrick, Jason Crain,
and Aleksandra Mojsilovic. “Accelerating Antimicrobial Discovery with Con-
trollable Deep Generative Models and Molecular Dynamics”. In: arXiv preprint
arXiv:2005.11248 (2020).

[51] Payel Das, Kahini Wadhawan, Oscar Chang, Tom Sercu, Cicero Dos Santos,
Matthew Riemer, Vijil Chenthamarakshan, Inkit Padhi, and Aleksandra Mo-
jsilovic. “Pepcvae: Semi-supervised targeted design of antimicrobial peptide
sequences”. In: arXiv preprint arXiv:1810.07743 (2018).

[52] Ishita Dasgupta, Jane Wang, Silvia Chiappa, Jovana Mitrovic, Pedro Ortega,
David Raposo, Edward Hughes, Peter Battaglia, Matthew Botvinick, and Zeb
Kurth-Nelson. “Causal reasoning from meta-reinforcement learning”. In: arXiv
preprint arXiv:1901.08162 (2019).

[53] Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai. “Deep
direct reinforcement learning for financial signal representation and trading”.
In: IEEE transactions on neural networks and learning systems 28.3 (2016),
pp. 653–664.

[54] Mathilde R Desselle, Ruth Neale, Karl A Hansford, Johannes Zuegg, Alysha
G Elliott, Matthew A Cooper, and Mark AT Blaskovich. Institutional profile:
community for open antimicrobial drug discovery–crowdsourcing new antibi-
otics and antifungals. 2017.

158

https://doi.org/10.1086/508762
astro-ph/0603014

[55] Sripad Krishna Devalla, Prajwal K Renukanand, Bharathwaj K Sreedhar,
Giridhar Subramanian, Liang Zhang, Shamira Perera, Jean-Martial Mari, Khai
Sing Chin, Tin A Tun, Nicholas G Strouthidis, et al. “DRUNET: a dilated-
residual U-Net deep learning network to segment optic nerve head tissues
in optical coherence tomography images”. In: Biomedical optics express 9.7
(2018), pp. 3244–3265.

[56] David Rushing Dewhurst, Colin M Van Oort, John H Ring IV, Tyler J Gray,
Christopher M Danforth, and Brian F Tivnan. “Scaling of inefficiencies in the
US equity markets: Evidence from three market indices and more than 2900
securities”. In: arXiv preprint arXiv:1902.04691 (2019).

[57] Rick Di Mascio, Anton Lines, and Narayan Y Naik. “Alpha decay”. In: SFS
Finance Cavalcade (2016).

[58] JD Diaz, Kenji Bekki, Duncan A Forbes, Warrick J Couch, Michael J Drinkwa-
ter, and Simon Deeley. “Classifying the formation processes of S0 galaxies using
Convolutional Neural Networks”. In: Monthly Notices of the Royal Astronom-
ical Society (2019).

[59] Sander Dieleman, Kyle W Willett, and Joni Dambre. “Rotation-invariant con-
volutional neural networks for galaxy morphology prediction”. In: Monthly
notices of the royal astronomical society 450.2 (2015), pp. 1441–1459.

[60] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. “Adversarial feature
learning”. In: arXiv preprint arXiv:1605.09782 (2016).

[61] Guozhu Dong and Huan Liu. Feature engineering for machine learning and
data analytics. CRC Press, 2018.

[62] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and
Pieter Abbeel. “Rl 2: Fast reinforcement learning via slow reinforcement learn-
ing”. In: arXiv preprint arXiv:1611.02779 (2016).

[63] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient meth-
ods for online learning and stochastic optimization”. In: Journal of Machine
Learning Research 12.Jul (2011), pp. 2121–2159.

[64] Matthew Duffin and John Cartlidge. “Agent-based model exploration of la-
tency arbitrage in fragmented financial markets”. In: 2018 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, 2018, pp. 2312–2320.

[65] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex
Lamb, Martin Arjovsky, and Aaron Courville. “Adversarially learned infer-
ence”. In: arXiv preprint arXiv:1606.00704 (2016).

[66] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic
for deep learning”. In: ArXiv e-prints (Mar. 2016). eprint: 1603.07285.

159

1603.07285

[67] Soňa Ehlerová and Jan Palouš. “Triggered star formation in expanding shells”.
In: Monthly Notices of the Royal Astronomical Society 330.4 (2002), pp. 1022–
1026.

[68] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih,
Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. “Im-
pala: Scalable distributed deep-rl with importance weighted actor-learner ar-
chitectures”. In: International Conference on Machine Learning. ICML, 2018,
pp. 1407–1416.

[69] J Doyne Farmer, Paolo Patelli, and Ilija I Zovko. “The predictive power of zero
intelligence in financial markets”. In: Proceedings of the National Academy of
Sciences 102.6 (2005), pp. 2254–2259.

[70] C. Federrath. “Inefficient star formation through turbulence, magnetic fields
and feedback”. In:Monthly Notices of the Royal Astronomical Society 450 (July
2015), pp. 4035–4042. doi: 10.1093/mnras/stv941. eprint: 1504.03690.

[71] William Fedus, Ian Goodfellow, and Andrew M Dai. “MaskGAN: better text
generation via filling in the_”. In: arXiv preprint arXiv:1801.07736 (2018).

[72] Jonathon B Ferrell, Jacob M Remington, Colin M Van Oort, Mona Sharafi,
Reem Aboushousha, Yvonne Janssen-Heininger, Severin T Schneebeli, Matthew
J Wargo, Safwan Wshah, and Jianing Li. “A Generative Approach toward Pre-
cision Antimicrobial Peptide Design”. In: BioRxiv (2020).

[73] Christopher D Fjell, Robert EW Hancock, and Artem Cherkasov. “AMPer:
a database and an automated discovery tool for antimicrobial peptides”. In:
Bioinformatics 23.9 (2007), pp. 1148–1155.

[74] M. A. Frerking, W. D. Langer, and R. W. Wilson. “The relationship between
carbon monoxide abundance and visual extinction in interstellar clouds”. In:
The Astrophysical Journal 262 (Nov. 1982), pp. 590–605. doi: 10 . 1086 /
160451.

[75] Daniel Friedman. “The double auction market institution: A survey”. In: The
Double Auction Market Institutions, Theories, and Evidence. Routledge, 2018,
pp. 3–26.

[76] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition”. In: Competition
and cooperation in neural nets. Springer, 1982, pp. 267–285.

[77] Ryan J Gallagher, Morgan R Frank, Lewis Mitchell, Aaron J Schwartz, An-
drew J Reagan, Christopher M Danforth, and Peter Sheridan Dodds. “Gen-
eralized word shift graphs: a method for visualizing and explaining pairwise
comparisons between texts”. In: EPJ Data Science 10.1 (2021), p. 4.

160

https://doi.org/10.1093/mnras/stv941
1504.03690
https://doi.org/10.1086/160451
https://doi.org/10.1086/160451

[78] Francois Ghoulmie, Rama Cont, and Jean-Pierre Nadal. “Heterogeneity and
feedback in an agent-based market model”. In: Journal of Physics: condensed
matter 17.14 (2005), S1259.

[79] Mario Gimona. “Protein linguistics—a grammar for modular protein assem-
bly?” In: Nature Reviews Molecular Cell Biology 7.1 (2006), pp. 68–73.

[80] Sambit K Giri, Garrelt Mellema, Keri L Dixon, and Ilian T Iliev. “Bubble size
statistics during reionization from 21-cm tomography”. In: Monthly Notices of
the Royal Astronomical Society 473.3 (2017), pp. 2949–2964.

[81] Steven Gjerstad and John Dickhaut. “Price formation in double auctions”. In:
Games and economic behavior 22.1 (1998), pp. 1–29.

[82] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics. 2010, pp. 249–256.

[83] Dhananjay K Gode and Shyam Sunder. “Allocative efficiency of markets with
zero-intelligence traders: Market as a partial substitute for individual rational-
ity”. In: Journal of political economy 101.1 (1993), pp. 119–137.

[84] Giorgi Gogoladze, Maia Grigolava, Boris Vishnepolsky, Mindia Chubinidze,
Patrice Duroux, Marie-Paule Lefranc, and Malak Pirtskhalava. “DBAASP:
database of antimicrobial activity and structure of peptides”. In: FEMS mi-
crobiology letters 357.1 (2014), pp. 63–68.

[85] Gabriel Goh. “Why Momentum Really Works”. In: Distill (2017). http://
distill.pub/2017/momentum. doi: 10.23915/distill.00006.

[86] Bárbara Gomes, Marcelo T Augusto, Mário R Felício, Axel Hollmann, Octávio
L Franco, Sónia Gonçalves, and Nuno C Santos. “Designing improved active
peptides for therapeutic approaches against infectious diseases”. In: Biotech-
nology Advances 36.2 (2018), pp. 415–429.

[87] Rafael Gómez-Bombarelli, Jennifer NWei, David Duvenaud, José Miguel Hernández-
Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre,
Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. “Automatic chem-
ical design using a data-driven continuous representation of molecules”. In:
ACS Central Science 4.2 (2018), pp. 268–276.

[88] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative ad-
versarial nets”. In: Advances in neural information processing systems. 2014,
pp. 2672–2680.

[89] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and
Yoshua Bengio. “Maxout networks”. In: arXiv preprint arXiv:1302.4389 (2013).

161

http://distill.pub/2017/momentum
http://distill.pub/2017/momentum
https://doi.org/10.23915/distill.00006

[90] A. A. Goodman, E. W. Rosolowsky, M. A. Borkin, J. B. Foster, M. Halle, J.
Kauffmann, and J. E. Pineda. “A role for self-gravity at multiple length scales
in the process of star formation”. In: Nature 457 (Jan. 2009), pp. 63–66. doi:
10.1038/nature07609.

[91] Osamu Gotoh. “An improved algorithm for matching biological sequences”.
In: Journal of molecular biology 162.3 (1982), pp. 705–708.

[92] Martin D Gould, Mason A Porter, Stacy Williams, Mark McDonald, Daniel
J Fenn, and Sam D Howison. “Limit order books”. In: Quantitative Finance
13.11 (2013), pp. 1709–1742.

[93] Volker Grimm, Uta Berger, Finn Bastiansen, Sigrunn Eliassen, Vincent Ginot,
Jarl Giske, John Goss-Custard, Tamara Grand, Simone K Heinz, Geir Huse,
et al. “A standard protocol for describing individual-based and agent-based
models”. In: Ecological modelling 198.1-2 (2006), pp. 115–126.

[94] Volker Grimm, Uta Berger, Donald L DeAngelis, J Gary Polhill, Jarl Giske,
and Steven F Railsback. “The ODD protocol: a review and first update”. In:
Ecological modelling 221.23 (2010), pp. 2760–2768.

[95] Volker Grimm, Steven F Railsback, Christian E Vincenot, Uta Berger, Cara
Gallagher, Donald L DeAngelis, Bruce Edmonds, Jiaqi Ge, Jarl Giske, Juergen
Groeneveld, et al. “The ODD protocol for describing agent-based and other
simulation models: A second update to improve clarity, replication, and struc-
tural realism”. In: Journal of Artificial Societies and Social Simulation 23.2
(2020).

[96] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy,
Bing Shuai, Ting Liu, Xingxing Wang, and Gang Wang. “Recent advances in
convolutional neural networks”. In: arXiv preprint arXiv:1512.07108 (2015).

[97] XC Guo, JH Yang, CG Wu, CY Wang, and YC Liang. “A novel LS-SVMs
hyper-parameter selection based on particle swarm optimization”. In: Neuro-
computing 71.16-18 (2008), pp. 3211–3215.

[98] Andrew G Haldane and Robert MMay. “Systemic risk in banking ecosystems”.
In: Nature 469.7330 (2011), pp. 351–355.

[99] Peter J Hammond. “Rationality in economics”. In: Rivista internazionale di
scienze sociali 105.3 (1997), pp. 247–288.

[100] Joel Hasbrouck. Empirical market microstructure: The institutions, economics,
and econometrics of securities trading. Oxford University Press, 2007.

[101] Alex Hawkins-Hooker, Florence Depardieu, Sebastien Baur, Guillaume Coua-
iron, Arthur Chen, and David Bikard. “Generating functional protein variants
with variational autoencoders”. In: BioRxiv (2020).

162

https://doi.org/10.1038/nature07609

[102] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778.

[103] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. “Gans trained by a two time-scale update rule converge to a
local nash equilibrium”. In: arXiv preprint arXiv:1706.08500 (2017).

[104] Kai Hilpert, Rudolf Volkmer-Engert, Tess Walter, and Robert EW Hancock.
“High-throughput generation of small antibacterial peptides with improved
activity”. In: Nature Biotechnology 23.8 (2005), pp. 1008–1012.

[105] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[106] Elad Hoffer, Itay Hubara, and Daniel Soudry. “Train longer, generalize better:
closing the generalization gap in large batch training of neural networks”. In:
Advances in Neural Information Processing Systems. 2017, pp. 1731–1741.

[107] Heike Hofmann, Karen Kafadar, and Hadley Wickham. “Letter-value plots:
Boxplots for large data”. In: The American Statistican (2011).

[108] Axel Hollmann, Melina Martinez, Patricia Maturana, Liliana C Semorile, and
Paulo C Maffia. “Antimicrobial peptides: interaction with model and biological
membranes and synergism with chemical antibiotics”. In: Frontiers in chem-
istry 6 (2018), p. 204.

[109] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey.
“Meta-learning in neural networks: A survey”. In: arXiv preprint arXiv:2004.05439
(2020).

[110] Yong Hu, Kang Liu, Xiangzhou Zhang, Lijun Su, EWT Ngai, and Mei Liu.
“Application of evolutionary computation for rule discovery in stock algo-
rithmic trading: A literature review”. In: Applied Soft Computing 36 (2015),
pp. 534–551.

[111] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P
Xing. “Toward controlled generation of text”. In: JMLR. org. 2017, pp. 1587–
1596.

[112] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian
QWeinberger. “Snapshot ensembles: Train 1, get M for free”. In: arXiv preprint
arXiv:1704.00109 (2017).

[113] David H Hubel and Torsten N Wiesel. “Receptive fields and functional archi-
tecture of monkey striate cortex”. In: The Journal of physiology 195.1 (1968),
pp. 215–243.

163

[114] Alpha Vantage Inc. Alpha Vantage. 2021. url: https://www.alphavantage.
co/.

[115] Alpha Vantage Inc. Alpha Vantage API Documentation: Intraday (Extended
History). 2021. url: https://www.alphavantage.co/documentation/
#intraday.

[116] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International con-
ference on machine learning. 2015, pp. 448–456.

[117] Christian Janiesch, Patrick Zschech, and Kai Heinrich. “Machine learning and
deep learning”. In: Electronic Markets (2021), pp. 1–11.

[118] Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che,
and Yoshua Bengio. “Residual Connections Encourage Iterative Inference”. In:
arXiv preprint arXiv:1710.04773 (2017).

[119] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. “3D convolutional neural net-
works for human action recognition”. In: IEEE transactions on pattern analysis
and machine intelligence 35.1 (2013), pp. 221–231.

[120] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. “Junction tree variational
autoencoder for molecular graph generation”. In: arXiv preprint arXiv:1802.04364
(2018).

[121] Artur Kadurin, Sergey Nikolenko, Kuzma Khrabrov, Alex Aliper, and Alex
Zhavoronkov. “druGAN: an advanced generative adversarial autoencoder model
for de novo generation of new molecules with desired molecular properties in
silico”. In: Molecular pharmaceutics 14.9 (2017), pp. 3098–3104.

[122] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. “On large-batch training for deep learning:
Generalization gap and sharp minima”. In: arXiv preprint arXiv:1609.04836
(2016).

[123] Meenakshi Khosla, Keith Jamison, Amy Kuceyeski, and Mert Sabuncu. “3D
Convolutional Neural Networks for Classification of Functional Connectomes”.
In: arXiv preprint arXiv:1806.04209 (2018).

[124] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[125] Diederik P Kingma and Max Welling. “Auto-encoding variational Bayes”. In:
arXiv preprint arXiv:1312.6114 (2013).

[126] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochre-
iter. “Self-normalizing neural networks”. In: Advances in Neural Information
Processing Systems. 2017, pp. 972–981.

164

https://www.alphavantage.co/
https://www.alphavantage.co/
https://www.alphavantage.co/documentation/#intraday
https://www.alphavantage.co/documentation/#intraday

[127] V. Könyves, C. Kiss, A. Moór, Z. T. Kiss, and L. V. Tóth. “Catalogue of
far-infrared loops in the Galaxy”. In: Astronomy and Astrophysics 463 (Mar.
2007), pp. 1227–1234. doi: 10.1051/0004-6361:20065438. eprint: astro-
ph/0610465.

[128] M. R. Krumholz, R. I. Klein, and C. F. McKee. “Radiation-Hydrodynamic
Simulations of Collapse and Fragmentation in Massive Protostellar Cores”.
In: The Astrophysical Journal 656 (Feb. 2007), pp. 959–979. doi: 10.1086/
510664. eprint: arXiv:astro-ph/0609798.

[129] Max Kuhn and Kjell Johnson. Feature engineering and selection: A practical
approach for predictive models. CRC Press, 2019.

[130] Manish Kumar, Ruchi Verma, and Gajendra PS Raghava. “Prediction of mito-
chondrial proteins using support vector machine and hidden Markov model”.
In: Journal of Biological Chemistry 281.9 (2006), pp. 5357–5363.

[131] Tatu Laine. “Quantitative analysis of financial market infrastructures: further
perspectives on financial stability”. In: (2015).

[132] Tian Lan, Yuanyuan Li, Jonah Kimani Murugi, Yi Ding, and Zhiguang Qin.
“RUN: Residual U-Net for Computer-Aided Detection of Pulmonary Nodules
without Candidate Selection”. In: arXiv preprint arXiv:1805.11856 (2018).

[133] Pat Langley. The changing science of machine learning. 2011.
[134] Francois Lanusse, Quanbin Ma, Nan Li, Thomas E Collett, Chun-Liang Li, Sia-

mak Ravanbakhsh, Rachel Mandelbaum, and Barnabas Poczos. “CMUDeepLens:
Deep Learning For Automatic Image-based Galaxy-Galaxy Strong Lens Find-
ing”. In: arXiv preprint arXiv:1703.02642 (2017).

[135] R. B. Larson. “Turbulence and star formation in molecular clouds.” In:Monthly
Notices of the Royal Astronomical Society 194 (Mar. 1981), pp. 809–826. doi:
10.1093/mnras/194.4.809.

[136] Ties Latendorf, Ulrich Gerstel, ZhihongWu, Joachim Bartels, Alexander Becker,
Andreas Tholey, and Jens-Michael Schröder. “Cationic intrinsically disordered
antimicrobial peptides (CIDAMPs) represent a new paradigm of innate defense
with a potential for novel anti-infectives”. In: Scientific reports 9.1 (2019),
pp. 1–25.

[137] Viktória Lázár, Ana Martins, Réka Spohn, Lejla Daruka, Gábor Grézal, Gergely
Fekete, Mónika Számel, Pramod K Jangir, Bálint Kintses, Bálint Csörgő,
Ákos Nyerges, Ádám Györkei, András Kincses, András Dér, Fruzsina R Wal-
ter, Mária A Deli, Edit Urbán, Zsófia Hegedűs, Gábor Olajos, Orsolya Méhi,
Balázs Bálint, István Nagy, Tamás A Martinek, Balázs Papp, and Csaba Pál.

165

https://doi.org/10.1051/0004-6361:20065438
astro-ph/0610465
astro-ph/0610465
https://doi.org/10.1086/510664
https://doi.org/10.1086/510664
arXiv:astro-ph/0609798
https://doi.org/10.1093/mnras/194.4.809

“Antibiotic-resistant bacteria show widespread collateral sensitivity to antimi-
crobial peptides”. In: Nature Microbiology 3.6 (2018), p. 718.

[138] Blake LeBaron. “A builder’s guide to agent-based financial markets”. In: Quan-
titative finance 1 (2001), pp. 254–261.

[139] Blake LeBaron. “Agent-based computational finance”. In: Handbook of com-
putational economics 2 (2006), pp. 1187–1233.

[140] Blake LeBaron. “Active and passive learning in agent-based financial markets”.
In: Eastern Economic Journal 37.1 (2011), pp. 35–43.

[141] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), pp. 436–444.

[142] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
based learning applied to document recognition”. In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324.

[143] E. J. Lee, P. Chang, and N. Murray. “Time-varying Dynamical Star Formation
Rate”. In: The Astrophysical Journal 800, 49 (Feb. 2015), p. 49. doi: 10.1088/
0004-637X/800/1/49. eprint: 1406.4148.

[144] H. Li, D. Li, L. Qian, D. Xu, P. F. Goldsmith, A. Noriega-Crespo, Y. Wu, Y.
Song, and R. Nan. “Outflows and Bubbles in Taurus: Star-formation Feedback
Sufficient to Maintain Turbulence”. In: The Astrophysical Journal Supplement
Seriess 219, 20 (Aug. 2015), p. 20. doi: 10.1088/0067-0049/219/2/20.
eprint: 1507.06512.

[145] Junyi Li, Xintong Wang, Yaoyang Lin, Arunesh Sinha, and Michael Wellman.
“Generating realistic stock market order streams”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. AAAI, 2020, pp. 727–734.

[146] Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken
Goldberg, Joseph E Gonzalez, Michael I Jordan, and Ion Stoica. “RLlib: Ab-
stractions for Distributed Reinforcement Learning”. In: arXiv preprint arXiv:1712.09381
(2017).

[147] Maggie Lieu, Luca Conversi, Bruno Altieri, and Benoît Carry. “Detecting solar
system objects with convolutional neural networks”. In: Monthly Notices of the
Royal Astronomical Society 485.4 (2019), pp. 5831–5842.

[148] Chris J. Lintott, Kevin Schawinski, Anže Slosar, Kate Land, Steven Bam-
ford, Daniel Thomas, M. Jordan Raddick, Robert C. Nichol, Alex Szalay, Dan
Andreescu, Phil Murray, and Jan Vandenberg. “Galaxy Zoo: morphologies de-
rived from visual inspection of galaxies from the Sloan Digital Sky Survey”. In:
Monthly Notices of the Royal Astronomical Society 389 (Sept. 2008), pp. 1179–
1189. doi: 10.1111/j.1365-2966.2008.13689.x. eprint: 0804.4483.

166

https://doi.org/10.1088/0004-637X/800/1/49
https://doi.org/10.1088/0004-637X/800/1/49
1406.4148
https://doi.org/10.1088/0067-0049/219/2/20
1507.06512
https://doi.org/10.1111/j.1365-2966.2008.13689.x
0804.4483

[149] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank,
Alex Sergeev, and Jason Yosinski. “An intriguing failing of convolutional neural
networks and the coordconv solution”. In: Advances in Neural Information
Processing Systems. 2018, pp. 9605–9616.

[150] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep Learning Face
Attributes in the Wild”. In: Dec. 2015.

[151] Andrew W Lo. “The adaptive markets hypothesis”. In: The Journal of Port-
folio Management 30.5 (2004), pp. 15–29.

[152] Christopher Loose, Kyle Jensen, Isidore Rigoutsos, and Gregory Stephanopou-
los. “A linguistic model for the rational design of antimicrobial peptides”. In:
Nature 443.7113 (2006), pp. 867–869.

[153] Ilya Loshchilov and Frank Hutter. “CMA-ES for hyperparameter optimization
of deep neural networks”. In: arXiv preprint arXiv:1604.07269 (2016).

[154] Ananth Madhavan. “Market microstructure: A survey”. In: Journal of financial
markets 3.3 (2000), pp. 205–258.

[155] Margit Mahlapuu, Joakim Håkansson, Lovisa Ringstad, and Camilla Björn.
“Antimicrobial peptides: an emerging category of therapeutic agents”. In:
Frontiers in cellular and infection microbiology 6 (2016), p. 194.

[156] Burton G Malkiel and Eugene F Fama. “Efficient capital markets: A review of
theory and empirical work”. In: The journal of Finance 25.2 (1970), pp. 383–
417.

[157] Alexandra K Marr, William J Gooderham, and Robert EW Hancock. “An-
tibacterial peptides for therapeutic use: obstacles and realistic outlook”. In:
Current Opinion in Pharmacology 6.5 (2006), pp. 468–472.

[158] Tshilidzi Marwala. “Rational Choice and Artificial Intelligence”. In: arXiv
preprint arXiv:1703.10098 (2017).

[159] Dominic Masters and Carlo Luschi. “Revisiting Small Batch Training for Deep
Neural Networks”. In: arXiv preprint arXiv:1804.07612 (2018).

[160] Deepika Mathur, Sandeep Singh, Ayesha Mehta, Piyush Agrawal, and Gajen-
dra PS Raghava. “In silico approaches for predicting the half-life of natural
and modified peptides in blood”. In: PLOS ONE 13.6 (2018), e0196829.

[161] Daniel Maturana and Sebastian Scherer. “VoxNet: A 3D Convolutional Neu-
ral Network for Real-Time Object Recognition”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. Sept. 2015, pp. 922–928.

[162] John McDermott. “Domain knowledge and the design process”. In: 18th Design
Automation Conference. IEEE. 1981, pp. 580–588.

167

[163] Frank McGroarty, Ash Booth, Enrico Gerding, and VL Raju Chinthalapati.
“High frequency trading strategies, market fragility and price spikes: an agent
based model perspective”. In: Annals of Operations Research 282.1 (2019),
pp. 217–244.

[164] A. Men’shchikov. “A multi-scale filament extraction method: getfilaments”. In:
Astronomy and Astrophysics 560, A63 (Dec. 2013), A63. doi: 10.1051/0004-
6361/201321885. eprint: 1309.2170.

[165] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. “Which training
methods for GANs do actually converge?” In: arXiv preprint arXiv:1801.04406
(2018).

[166] Dave Michaels and Alexander Osipovich. Appeals Court Rules for Stock Ex-
changes in Fee Fight With SEC. June 16, 2020. url: https://www.wsj.
com/articles/appeals-court-rules-for-stock-exchanges-in-fee-
fight-with-sec-11592322391.

[167] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”.
In: arXiv preprint arXiv:1411.1784 (2014).

[168] Catherine Mooney, Niall J Haslam, Thérèse A Holton, Gianluca Pollastri, and
Denis C Shields. “PeptideLocator: prediction of bioactive peptides in protein
sequences”. In: Bioinformatics 29.9 (2013), pp. 1120–1126.

[169] Catherine Mooney, Niall J Haslam, Gianluca Pollastri, and Denis C Shields.
“Towards the improved discovery and design of functional peptides: common
features of diverse classes permit generalized prediction of bioactivity”. In:
PLOS ONE 7.10 (2012), e45012.

[170] Catherine Mooney, Yong- Hong Wang, and Gianluca Pollastri. “SCLpred: pro-
tein subcellular localization prediction by N-to-1 neural networks”. In: Bioin-
formatics 27.20 (2011), pp. 2812–2819.

[171] Alex T Müller, Gisela Gabernet, Jan A Hiss, and Gisbert Schneider. “mod-
lAMP: Python for antimicrobial peptides”. In: Bioinformatics 33.17 (2017),
pp. 2753–2755.

[172] Nikhil Muralidhar, Mohammad Raihanul Islam, Manish Marwah, Anuj Karpatne,
and Naren Ramakrishnan. “Incorporating prior domain knowledge into deep
neural networks”. In: 2018 IEEE International Conference on Big Data (Big
Data). IEEE. 2018, pp. 36–45.

[173] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin
Yu. “Interpretable machine learning: definitions, methods, and applications”.
In: arXiv preprint arXiv:1901.04592 (2019).

168

https://doi.org/10.1051/0004-6361/201321885
https://doi.org/10.1051/0004-6361/201321885
1309.2170
https://www.wsj.com/articles/appeals-court-rules-for-stock-exchanges-in-fee-fight-with-sec-11592322391
https://www.wsj.com/articles/appeals-court-rules-for-stock-exchanges-in-fee-fight-with-sec-11592322391
https://www.wsj.com/articles/appeals-court-rules-for-stock-exchanges-in-fee-fight-with-sec-11592322391

[174] Deepesh Nagarajan, Tushar Nagarajan, Natasha Roy, Omkar Kulkarni, Sathyabaarathi
Ravichandran, Madhulika Mishra, Dipshikha Chakravortty, and Nagasuma
Chandra. “Computational antimicrobial peptide design and evaluation against
multidrug-resistant clinical isolates of bacteria”. In: Journal of Biological Chem-
istry 293.10 (2018), pp. 3492–3509. issn: 0021-9258. doi: https://doi.org/
10.1074/jbc.M117.805499.

[175] Vaishnavh Nagarajan and J Zico Kolter. “Gradient descent GAN optimization
is locally stable”. In: Advances in neural information processing systems. 2017,
pp. 5585–5595.

[176] G. Narayanan, R. Snell, and A. Bemis. “Molecular outflows identified in the
FCRAO CO survey of the Taurus Molecular Cloud”. In:Monthly Notices of the
Royal Astronomical Society 425 (Oct. 2012), pp. 2641–2667. doi: 10.1111/
j.1365-2966.2012.21579.x. eprint: 1206.5708.

[177] Yomna Nasser, Peter Eckersley, Yann Bayle, Owain Evans, Gennie Gebhart,
and Dustin Schwenk. Measuring the Progress of AI Research. https://www.
eff.org/ai/metrics. 2017.

[178] Anova Financial Networks. Low Latency Financial Connectivity. 2021. url:
https://anovanetworks.com.

[179] Maureen O’hara. Market microstructure theory. Wiley, 1997.
[180] S. S. R. Offner and H. G. Arce. “Impact of Winds from Intermediate-mass

Stars on Molecular Cloud Structure and Turbulence”. In: The Astrophysical
Journal 811, 146 (Oct. 2015), p. 146. doi: 10.1088/0004-637X/811/2/146.
eprint: 1508.07008.

[181] S. S. R. Offner and J. Chaban. “Impact of Protostellar Outflows on Turbulence
and Star Formation Efficiency in Magnetized Dense Cores”. In: The Astrophys-
ical Journal 847, 104 (Oct. 2017), p. 104. doi: 10.3847/1538-4357/aa8996.
eprint: 1709.01086.

[182] S. S. R. Offner, P. C. Clark, P. Hennebelle, N. Bastian, M. R. Bate, P. F.
Hopkins, E. Moraux, and A. P. Whitworth. “The Origin and Universality
of the Stellar Initial Mass Function”. In: Protostars and Planets VI (2014),
pp. 53–75. doi: 10.2458/azu_uapress_9780816531240-ch003. eprint:
1312.5326.

[183] S. S. R. Offner, M. M. Dunham, K. I. Lee, H. G. Arce, and D. B. Fielding.
“The Turbulent Origin of Outflow and Spin Misalignment in Multiple Star
Systems”. In: The Astrophysical Journal Letters 827, L11 (Aug. 2016), p. L11.
doi: 10.3847/2041-8205/827/1/L11. eprint: 1606.08445.

169

https://doi.org/https://doi.org/10.1074/jbc.M117.805499
https://doi.org/https://doi.org/10.1074/jbc.M117.805499
https://doi.org/10.1111/j.1365-2966.2012.21579.x
https://doi.org/10.1111/j.1365-2966.2012.21579.x
1206.5708
https://www.eff.org/ai/metrics
https://www.eff.org/ai/metrics
https://anovanetworks.com
https://doi.org/10.1088/0004-637X/811/2/146
1508.07008
https://doi.org/10.3847/1538-4357/aa8996
1709.01086
https://doi.org/10.2458/azu_uapress_9780816531240-ch003
1312.5326
https://doi.org/10.3847/2041-8205/827/1/L11
1606.08445

[184] S. S. R. Offner, E. J. Lee, A. A. Goodman, and H. Arce. “Radiation-hydrodynamic
Simulations of Protostellar Outflows: Synthetic Observations and Data Com-
parisons”. In: The Astrophysical Journal 743, 91 (Dec. 2011), p. 91. doi: 10.
1088/0004-637X/743/1/91. eprint: 1110.5640.

[185] S. S. R. Offner and Y. Liu. “Turbulent action at a distance due to stellar
feedback in magnetized clouds”. In: Nature Astronomy 2 (Sept. 2018), pp. 896–
900. doi: 10.1038/s41550-018-0566-1. eprint: 1809.03513.

[186] Mark Paddrik, Roy Hayes, William Scherer, and Peter Beling. “Effects of limit
order book information level on market stability metrics”. In: Journal of Eco-
nomic Interaction and Coordination 12.2 (2017), pp. 221–247.

[187] Adrian Pagan. “The econometrics of financial markets”. In: Journal of empir-
ical finance 3.1 (1996), pp. 15–102.

[188] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE
Transactions on knowledge and data engineering 22.10 (2010), pp. 1345–1359.

[189] Guim Perarnau, Joost Van De Weijer, Bogdan Raducanu, and Jose M Álvarez.
“Invertible conditional gans for image editing”. In: arXiv preprint arXiv:1611.06355
(2016).

[190] Malak Pirtskhalava, Andrei Gabrielian, Phillip Cruz, Hannah L Griggs, R
Burke Squires, Darrell E Hurt, Maia Grigolava, Mindia Chubinidze, George
Gogoladze, Boris Vishnepolsky, Vsevolod Alekseev, Alex Rosenthal, and Michael
Tartakovsky. “DBAASP v. 2: an enhanced database of structure and antimi-
crobial/cytotoxic activity of natural and synthetic peptides”. In: Nucleic Acids
Research 44.D1 (2016), pp. D1104–D1112.

[191] Marc Potters and Jean-Philippe Bouchaud. “More statistical properties of or-
der books and price impact”. In: Physica A: Statistical Mechanics and its
Applications 324.1-2 (2003), pp. 133–140.

[192] David Martin Powers. “Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation”. In: (2011).

[193] Chris Preist and Maarten van Tol. “Adaptive agents in a persistent shout
double auction”. In: Proceedings of the first international conference on Infor-
mation and computation economies. ACM, 1998, pp. 11–18.

[194] JR Primack, A Dekel, DC Koo, S Lapiner, D Ceverino, RC Simons, GF Snyder,
M Bernardi, Z Chen, H Domínguez-Sànchez, et al. “Deep learning identifies
high-z galaxies in a central blue nugget phase in a characteristic mass range”.
In: The Astrophysical Journal 858.2 (2018), p. 114.

170

https://doi.org/10.1088/0004-637X/743/1/91
https://doi.org/10.1088/0004-637X/743/1/91
1110.5640
https://doi.org/10.1038/s41550-018-0566-1
1809.03513

[195] Abid Qureshi, Nishant Thakur, Himani Tandon, and Manoj Kumar. “AVPdb:
a database of experimentally validated antiviral peptides targeting medically
important viruses”. In: Nucleic Acids Research 42.D1 (2014), pp. D1147–
D1153.

[196] William Rand and Uri Wilensky. “Verification and validation through repli-
cation: A case study using Axelrod and Hammond’s ethnocentrism model”.
In: North American Association for Computational Social and Organization
Sciences (NAACSOS) (2006), pp. 1–6.

[197] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen,
John Canny, Pieter Abbeel, and Yun Song. “Evaluating protein transfer learn-
ing with TAPE”. In: Advances in Neural Information Processing Systems.
2019, pp. 9689–9701.

[198] KVR Reddy, RD Yedery, and C Aranha. “Antimicrobial peptides: premises
and promises”. In: International Journal of Antimicrobial Agents 24.6 (2004),
pp. 536–547.

[199] N. A. Ridge, J. Di Francesco, H. Kirk, D. Li, A. A. Goodman, J. F. Alves,
H. G. Arce, M. A. Borkin, P. Caselli, J. B. Foster, M. H. Heyer, D. Johnstone,
D. A. Kosslyn, M. Lombardi, J. E. Pineda, S. L. Schnee, and M. Tafalla.
“The COMPLETE Survey of Star-Forming Regions: Phase I Data”. In: The
Astronomical Journal 131 (June 2006), pp. 2921–2933. doi: 10.1086/503704.
eprint: arXiv:astro-ph/0602542.

[200] Michael Rollins and Dave Cliff. “Which Trading Agent is Best? Using a Threaded
Parallel Simulation of a Financial Market Changes the Pecking-Order”. In:
arXiv preprint arXiv:2009.06905 (2020).

[201] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation”. In: International Conference on
Medical image computing and computer-assisted intervention. Springer. 2015,
pp. 234–241.

[202] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. “Sta-
bilizing training of generative adversarial networks through regularization”. In:
Advances in neural information processing systems. 2017, pp. 2018–2028.

[203] Serge Ruden, Annika Rieder, Thomas Schwartz, Ralf Mikut, Kai Hilpert,
and Irina Chis Ster. “Synergy pattern of short cationic antimicrobial pep-
tides against multidrug-resistant Pseudomonas aeruginosa”. In: Frontiers in
Microbiology 10 (2019), p. 2740.

[204] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.
In: arXiv preprint arXiv:1609.04747 (2016).

171

https://doi.org/10.1086/503704
arXiv:astro-ph/0602542

[205] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. “ImageNet Large Scale Visual Recog-
nition Challenge”. In: International Journal of Computer Vision (IJCV) 115.3
(2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[206] Hossein Sabzian, Mohammad Ali Shafia, Ali Maleki, Seyeed Mostapha Seyeed
Hashemi, Ali Baghaei, and Hossein Gharib. “Theories and practice of agent
based modeling: Some practical implications for economic planners”. In: arXiv
preprint arXiv:1901.08932 (2019).

[207] Mrinmaya Sachan, Kumar Avinava Dubey, Tom M Mitchell, Dan Roth, and
Eric P Xing. “Learning pipelines with limited data and domain knowledge:
A study in parsing physics problems”. In: Advances in Neural Information
Processing Systems 31 (2018), pp. 140–151.

[208] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. “Improved techniques for training gans”. In: Advances in
neural information processing systems. 2016, pp. 2234–2242.

[209] Ivy Schmerken. Quants Demand More Efficient Alpha Generation Technology
Platform. Accessed 2021-03-16. July 10, 2008. url: https://web.archive.
org / web / 20110718225953 / http : / / www . wallstreetandtech . com /
asset-management/showArticle.jhtml?articleID=208808533.

[210] J Schmidhuber. “Making the world differentiable: On using fully recurrent
self-supervised neural networks for dynamic reinforcement learning and plan-
ning in non-stationary environments”. In: Institut für Informatik, Technische
Universität München. Technical Report FKI-126 90 (1990).

[211] Jürgen Schmidhuber. “A possibility for implementing curiosity and boredom
in model-building neural controllers”. In: 1991, pp. 222–227.

[212] L Julian Schvartzman and Michael P Wellman. “Stronger CDA strategies
through empirical game-theoretic analysis and reinforcement learning”. In:
Proceedings of The 8th International Conference on Autonomous Agents and
Multiagent Systems-Volume 1. International Foundation for Autonomous Agents
and Multiagent Systems, 2009, pp. 249–256.

[213] U.S. Securities and Exchanges Commission. Findings Regarding The Mar-
ket Events of May 6, 2010. 2010. url: https://www.sec.gov/files/
marketevents-report.pdf.

[214] U.S. Securities and Exchanges Commission. How to Submit Comments. 2021.
url: https://www.sec.gov/rules/submitcomments.htm.

172

https://doi.org/10.1007/s11263-015-0816-y
https://web.archive.org/web/20110718225953/http://www.wallstreetandtech.com/asset-management/showArticle.jhtml?articleID=208808533
https://web.archive.org/web/20110718225953/http://www.wallstreetandtech.com/asset-management/showArticle.jhtml?articleID=208808533
https://web.archive.org/web/20110718225953/http://www.wallstreetandtech.com/asset-management/showArticle.jhtml?articleID=208808533
https://www.sec.gov/files/marketevents-report.pdf
https://www.sec.gov/files/marketevents-report.pdf
https://www.sec.gov/rules/submitcomments.htm

[215] U.S. Securities and Exchanges Commission. Tick Size Pilot Program. 2021.
url: https://www.sec.gov/ticksizepilot.

[216] US Securities and Exchanges Commission. “Regulation National Market Sys-
tem”. In: (2005).

[217] Tom Sercu, Sebastian Gehrmann, Hendrik Strobelt, Payel Das, Inkit Padhi,
Cicero Dos Santos, Kahini Wadhawan, and Vijil Chenthamarakshan. “Inter-
active Visual Exploration of Latent Space (IVELS) for peptide auto-encoder
model selection”. In: (2019).

[218] Martin Sewell. “Characterization of financial time series”. In: Rn 11.01 (2011),
p. 01.

[219] R. J. Simpson, M. S. Povich, S. Kendrew, C. J. Lintott, E. Bressert, K. Arvids-
son, C. Cyganowski, S. Maddison, K. Schawinski, R. Sherman, A. M. Smith,
and G. Wolf-Chase. “The Milky Way Project First Data Release: a bubblier
Galactic disc”. In: Monthly Notices of the Royal Astronomical Society 424
(Aug. 2012), pp. 2442–2460. doi: 10.1111/j.1365-2966.2012.20770.x.
eprint: 1201.6357.

[220] Justin Sirignano and Rama Cont. “Universal features of price formation in
financial markets: perspectives from deep learning”. In: Quantitative Finance
19.9 (2019), pp. 1449–1459.

[221] Eric Smith, J Doyne Farmer, László Gillemot, and Supriya Krishnamurthy.
“Statistical theory of the continuous double auction”. In: Quantitative finance
3 (2003), pp. 481–514.

[222] Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. “Don’t Decay the
Learning Rate, Increase the Batch Size”. In: arXiv preprint arXiv:1711.00489
(2017).

[223] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian opti-
mization of machine learning algorithms”. In: Advances in neural information
processing systems. 2012, pp. 2951–2959.

[224] Kimmo Soramäki, Morten L Bech, Jeffrey Arnold, Robert J Glass, and Walter
E Beyeler. “The Topology of Interbank Payment Flows”. In: Federal Reserve
Bank of New York: Staff Reports (2006).

[225] Erik Sorensen, Ryan Ozzello, Rachael Rogan, Ethan Baker, Nate Parks, and
Wei Hu. “Meta-Learning of Evolutionary Strategy for Stock Trading”. In:
Journal of Data Analysis and Information Processing 8.2 (2020), pp. 86–98.

173

https://www.sec.gov/ticksizepilot
https://doi.org/10.1111/j.1365-2966.2012.20770.x
1201.6357

[226] Réka Spohn, Lejla Daruka, Viktória Lázár, Ana Martins, Fanni Vidovics, Gá-
bor Grézal, Orsolya Méhi, Bálint Kintses, Mónika Számel, Pramod K Jangir,
Bálint Csörgő, Ádám Györkei, Zoltán Bódi, Anikó Faragó, László Bodai, Imre
Földesi, Diána Kata, Gergely Maróti, Bernadett Pap, Roland Wirth, Papp
Balázs, and Csaba Pál. “Integrated evolutionary analysis reveals antimicrobial
peptides with limited resistance”. In: Nature Communications 10.1 (2019),
pp. 1–13.

[227] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and
Charles Sutton. “Veegan: Reducing mode collapse in gans using implicit varia-
tional learning”. In: Advances in Neural Information Processing Systems. 2017,
pp. 3308–3318.

[228] Steve Stotter, John Cartlidge, and Dave Cliff. “Behavioural investigations of
financial trading agents using Exchange Portal (ExPo)”. In: Transactions on
Computational Collective Intelligence XVII. Springer, 2014, pp. 22–45.

[229] Harish Subramanian, Subramanian Ramamoorthy, Peter Stone, and Benjamin
J Kuipers. “Designing safe, profitable automated stock trading agents using
evolutionary algorithms”. In: Proceedings of the 8th annual conference on Ge-
netic and evolutionary computation. ACM, 2006, pp. 1777–1784.

[230] Rodrigue Talla Kuate. “Hierarchical reinforcement learning for trading agents”.
PhD thesis. 2016.

[231] Gerald Tesauro and Jonathan L Bredin. “Strategic sequential bidding in auc-
tions using dynamic programming”. In: Proceedings of the first international
joint conference on Autonomous agents and multiagent systems: part 2. Inter-
national Foundation for Autonomous Agents and Multiagent Systems, 2002,
pp. 591–598.

[232] Gerald Tesauro and Rajarshi Das. “High-performance bidding agents for the
continuous double auction”. In: Proceedings of the 3rd ACM Conference on
Electronic Commerce. ACM, 2001, pp. 206–209.

[233] Shaini Thomas, Shreyas Karnik, Ram Shankar Barai, Vaidyanathan K Ja-
yaraman, and Susan Idicula-Thomas. “CAMP: a useful resource for research
on antimicrobial peptides”. In: Nucleic Acids Research 38.suppl_1 (2009),
pp. D774–D780.

[234] Brian F Tivnan, David Rushing Dewhurst, Colin M Van Oort, John H Ring IV,
Tyler J Gray, Brendan F Tivnan, Matthew TK Koehler, Matthew T McMa-
hon, David M Slater, Jason G Veneman, et al. “Fragmentation and inefficien-
cies in US equity markets: Evidence from the Dow 30”. In: PloS one 15.1
(2020), e0226968.

174

[235] Brian F Tivnan, Matthew TK Koehler, David Slater, Jason Veneman, and
Brendan F Tivnan. “Towards a model of the US stock market: How important
is the securities information processor?” In: 2017 Winter Simulation Confer-
ence (WSC). IEEE. 2017, pp. 1181–1192.

[236] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. “Learning spatiotemporal features with 3d convolutional networks”.
In: Proceedings of the IEEE international conference on computer vision. 2015,
pp. 4489–4497.

[237] Andrejs Tucs, Duy Phuoc Tran, Akiko Yumoto, Yoshihiro Ito, Takanori Uzawa,
and Koji Tsuda. “Generating Ampicillin-Level Antimicrobial Peptides with
Activity-Aware Generative Adversarial Networks”. In: ACS Omega 5.36 (2020),
pp. 22847–22851. doi: 10.1021/acsomega.0c02088. eprint: https://doi.
org/10.1021/acsomega.0c02088.

[238] Colin M Van Oort, Duo Xu, Stella SR Offner, and Robert A Gutermuth.
“Casi: A convolutional neural network approach for shell identification”. In:
The Astrophysical Journal 880.2 (2019), p. 83.

[239] Colin M. Van Oort. “Market Efficiency in US Stock Markets: A Study of
the Dow 30 and the S&P 30”. In: Graduate College Dissertations and Theses
(2018).

[240] Colin M. Van Oort. CASI-2D. https : / / doi . org / 10 . 5281 / zenodo .
2695533. Feb. 2019. doi: 10.5281/zenodo.2695533.

[241] Colin M. Van Oort. Agent Based Market Microstructure Simulation. Accessed
2021/04/20. 2021. url: https://gitlab.com/computational-finance-
lab/abmms.

[242] Colin M. Van Oort. AMP-GAN. https://gitlab.com/vail-uvm/amp-gan,
Accessed 2020/08/30.

[243] Colin M. Van Oort, Jonathon B. Ferrell, Jacob M. Remington, Safwan Wshah,
and Jianing Li. “AMPGAN v2: Machine Learning-Guided Design of Antimi-
crobial Peptides”. In: Journal of Chemical Information and Modeling 61.5
(2021). PMID: 33787250, pp. 2198–2207. doi: 10.1021/acs.jcim.0c01441.
eprint: https://doi.org/10.1021/acs.jcim.0c01441.

[244] Colin M. Van Oort, Brian F. Tivnan, and Safwan Wshah. “Adaptive Agents
and Data Quality in Agent-Based Financial Markets”. In: ACM Transactions
on Intelligent Systems and Technology (TIST) (2021). Under review, Submit-
ted 2021/06/11.

[245] Xavier Vives. “How fast do rational agents learn?” In: The Review of Economic
Studies 60.2 (1993), pp. 329–347.

175

https://doi.org/10.1021/acsomega.0c02088
https://doi.org/10.1021/acsomega.0c02088
https://doi.org/10.1021/acsomega.0c02088
https://doi.org/10.5281/zenodo.2695533
https://doi.org/10.5281/zenodo.2695533
https://doi.org/10.5281/zenodo.2695533
https://gitlab.com/computational-finance-lab/abmms
https://gitlab.com/computational-finance-lab/abmms
https://gitlab.com/vail-uvm/amp-gan
https://doi.org/10.1021/acs.jcim.0c01441
https://doi.org/10.1021/acs.jcim.0c01441

[246] Khuong Vo, Dang Pham, Mao Nguyen, Trung Mai, and Tho Quan. “Com-
bination of domain knowledge and deep learning for sentiment analysis”. In:
International Workshop on Multi-disciplinary Trends in Artificial Intelligence.
Springer. 2017, pp. 162–173.

[247] Perukrishnen Vytelingum, Dave Cliff, and Nicholas R Jennings. “Strategic bid-
ding in continuous double auctions”. In: Artificial Intelligence 172.14 (2008),
pp. 1700–1729.

[248] Faiza Hanif Waghu, Ram Shankar Barai, Pratima Gurung, and Susan Idicula-
Thomas. “CAMPR3: a database on sequences, structures and signatures of
antimicrobial peptides”. In: Nucleic acids research 44.D1 (2016), pp. D1094–
D1097.

[249] Elaine Wah and Michael P Wellman. “Latency arbitrage in fragmented mar-
kets: A strategic agent-based analysis”. In: Algorithmic Finance 5.3-4 (2016),
pp. 69–93.

[250] Elaine Wah, MasonWright, and Michael PWellman. “Welfare effects of market
making in continuous double auctions”. In: Journal of Artificial Intelligence
Research 59 (2017), pp. 613–650.

[251] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z
Leibo, Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick.
“Learning to reinforcement learn”. In: arXiv preprint arXiv:1611.05763 (2016).

[252] P. Wang, Z.-Y. Li, T. Abel, and F. Nakamura. “Outflow Feedback Regulated
Massive Star Formation in Parsec-Scale Cluster-Forming Clumps”. In: The
Astrophysical Journal 709 (Jan. 2010), pp. 27–41. doi: 10.1088/0004-637X/
709/1/27. eprint: 0908.4129.

[253] Yanbin Wang, Zhu-Hong You, Shan Yang, Xiao Li, Tong-Hai Jiang, and Xi
Zhou. “A high efficient biological language model for predicting protein–protein
interactions”. In: Cells 8.2 (2019), p. 122.

[254] J. P. Williams, E. J. de Geus, and L. Blitz. “Determining structure in molecular
clouds”. In: The Astrophysical Journal 428 (June 1994), pp. 693–712. doi:
10.1086/174279.

[255] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin
Recht. “The marginal value of adaptive gradient methods in machine learning”.
In: Advances in Neural Information Processing Systems. 2017, pp. 4148–4158.

[256] Jacob Witten and Zack Witten. “Deep learning regression model for antimi-
crobial peptide design”. In: BioRxiv (2019), p. 692681.

176

https://doi.org/10.1088/0004-637X/709/1/27
https://doi.org/10.1088/0004-637X/709/1/27
0908.4129
https://doi.org/10.1086/174279

[257] Aaron Wray, Matthew Meades, and Dave Cliff. “Automated Creation of a
High-Performing Algorithmic Trader via Deep Learning on Level-2 Limit Or-
der Book Data”. In: 2020 IEEE Symposium Series on Computational Intelli-
gence (SSCI). IEEE, 2020, pp. 1067–1074.

[258] Xiaorong Xiang, Ryan Kennedy, Gregory Madey, and Steve Cabaniss. “Veri-
fication and validation of agent-based scientific simulation models”. In: Agent-
directed simulation conference. Vol. 47. The European Modeling and Simula-
tion Symposium, 2005, p. 55.

[259] Xuan Xiao, Pu Wang, Wei-Zhong Lin, Jian-Hua Jia, and Kuo-Chen Chou.
“iAMP-2L: a two-level multi-label classifier for identifying antimicrobial pep-
tides and their functional types”. In: Analytical Biochemistry 436.2 (2013),
pp. 168–177.

[260] Xiaozheng Xie, Jianwei Niu, Xuefeng Liu, Zhengsu Chen, Shaojie Tang, and
Shui Yu. “A Survey on Incorporating Domain Knowledge into Deep Learning
for Medical Image Analysis”. In: Medical Image Analysis (2021), p. 101985.

[261] D. Xu and S. S. R. Offner. “Assessing the Performance of a Machine Learning
Algorithm in Identifying Bubbles in Dust Emission”. In: The Astrophysical
Journal 851, 149 (Dec. 2017), p. 149. doi: 10.3847/1538-4357/aa9a42.
eprint: 1711.03480.

[262] Hong Yan and Robert EW Hancock. “Synergistic interactions between mam-
malian antimicrobial defense peptides”. In:Antimicrobial Agents and Chemother-
apy 45.5 (2001), pp. 1558–1560.

[263] Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi Parikh. “Lr-gan: Lay-
ered recursive generative adversarial networks for image generation”. In: arXiv
preprint arXiv:1703.01560 (2017).

[264] Zijiang Yang, Reda Al-Bahrani, Andrew CE Reid, Stefanos Papanikolaou,
Surya R Kalidindi, Wei-keng Liao, Alok Choudhary, and Ankit Agrawal. “Deep
learning based domain knowledge integration for small datasets: Illustrative
applications in materials informatics”. In: 2019 International Joint Confer-
ence on Neural Networks (IJCNN). IEEE. 2019, pp. 1–8.

[265] Changchang Yin, Rongjian Zhao, Buyue Qian, Xin Lv, and Ping Zhang. “Do-
main Knowledge guided deep learning with electronic health records”. In: 2019
IEEE International Conference on Data Mining (ICDM). IEEE. 2019, pp. 738–
747.

[266] Guozhi Yu, Desiree Y Baeder, Roland R Regoes, and Jens Rolff. “Combination
effects of antimicrobial peptides”. In: Antimicrobial Agents and Chemotherapy
60.3 (2016), pp. 1717–1724.

177

https://doi.org/10.3847/1538-4357/aa9a42
1711.03480

[267] Ting Yu, Tony Jan, Simeon Simoff, and John Debenham. “Incorporating prior
domain knowledge into inductive machine learning”. In: Unpublished doctoral
dissertation Computer Sciences (2007), pp. 30–44.

[268] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. “Road extraction by deep
residual u-net”. In: IEEE Geoscience and Remote Sensing Letters (2018).

[269] Maria S Zharkova, Dmitriy S Orlov, Olga Yu Golubeva, Oleg B Chakchir, Igor
E Eliseev, Tatiana M Grinchuk, and Olga V Shamova. “Application of antimi-
crobial peptides of the innate immune system in combination with conven-
tional antibiotics–a novel way to combat antibiotic resistance?” In: Frontiers
in Cellular and Infection Microbiology 9 (2019), p. 128.

[270] Alice Zheng and Amanda Casari. Feature engineering for machine learning:
principles and techniques for data scientists. "O’Reilly Media, Inc.", 2018.

[271] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. “Gen-
erative visual manipulation on the natural image manifold”. In: Springer. 2016,
pp. 597–613.

[272] Wentao Zhu, Yufang Huang, Hui Tang, Zhen Qian, Nan Du, Wei Fan, and Xi-
aohui Xie. “AnatomyNet: Deep 3D Squeeze-and-excitation U-Nets for fast and
fully automated whole-volume anatomical segmentation”. In: arXiv preprint
arXiv:1808.05238 (2018).

178

	Acknowledgements
	Introduction
	CASI
	Abstract
	Introduction
	Machine Learning for Image Tasks
	Previous Applications to Astronomical Data Analysis

	Method Overview
	Neural Network Architecture
	Training
	Model Hyper-parameters

	Validation
	Simulation Training Set
	Gas Density Training Set
	Synthetic CO Emission Training Set
	Performance Metrics
	Case Study 1: Gas Density
	Case Study 2: Synthetic Molecular Emission

	Conclusions
	Acknowledgements

	Appendices
	Neural Network Operations
	Batch Normalization
	Convolution
	Max Pooling
	Nearest-Neighbor Interpolation
	Activation: Exponential Linear Units
	Residual Connections

	AMPGAN
	Abstract
	Introduction
	Methods and Models
	Training Data
	AMPGAN v2 Design and Training

	Results and Discussion
	Training Stability
	Physio-chemical Similarity
	Sequence Diversity
	Estimated Antimicrobial Activity

	Conclusion
	Acknowledgement

	Appendices
	Sequence Structure Profile
	Conditioning Information Distributions
	Training Stability
	Sequence Length Correlation
	Amino Acid Distribution Comparisons
	Sequence Analysis Random Baselines
	Global Sequence Alignment Scores

	ABMMS
	Abstract
	Introduction
	Related Work
	Market Infrastructure in the National Market System
	Market Infrastructure in Prior ABFMs
	Adaptive Agents
	Model Examination

	Methods
	Market Infrastructure in ABMMS
	Traders
	Stylized Facts

	Results
	Discussion and Conclusion

	Appendices
	ODD Protocol for ABMMS
	Purpose
	Patterns
	Entities
	State Variables
	Scales
	Process overview
	Scheduling
	Design Concepts
	Initialization
	Input Data
	Submodels

	Conclusion

