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Abstract

Complex networks underlie a variety of social, biological, physical, and virtual systems.
Understanding the topology of networks, the manner in which agents interact and evolu-
tionary dynamics of the system can be challenging, both computationally and theoretically.
In many settings, network data is incomplete; it is impossible to observe all nodes and
all network interactions due to sampling constraints in large datasets or covert interactions
between agents.

As both a test of our general methods and as a problem of scientific interest in itself,
we focus our attention on over 100 million tweets from the microblogging service Twitter
authored between September 2008 and February 2009. This dataset accounts for approxi-
mately 30% of all tweets authored in this timespan. The goals of our analysis are threefold:
to develop a construction of social networks from replies and reciprocated replies, predict
future links in a way that ellucidates evolutionary dynamics, and to scale global statistics
of sampled network data to account for incomplete and missing observations.

We begin by defining Twitter reciprocal reply networks and examine the revealed social
network structure and dynamics over the time scales of days, weeks, and months. At the
level of user behavior, we employ our hedonometric analysis methods to investigate pat-
terns of sentiment expression. We find users average happiness scores to be positively and
significantly correlated with those of users one, two, and three links away. We strengthen
our analysis by proposing and using a null model to test the effect of network topology on
the assortativity of happiness. We also find evidence that more well connected users write
happier status updates, with a transition occurring around Dunbar’s number. Second, we
use an evolutionary algorithm to optimize weights which are used in a linear combination
of sixteen neighborhood and node similarity indices to predict future links. Our method
exhibits fast convergence and high levels of precision for the top twenty predicted links.
Based on our findings, we suggest possible factors which may be driving the evolution of
Twitter reciprocal reply networks.

Lastly, we acknowledge that our dataset is incomplete and explore how global network
statistics scale with missing data in a variety of sampling regimes. We propose scaling
methods to predict true network parameters from only partial knowledge of nodes, links,
or weighted interactions. We validate our analytical results with four classes of simulated
networks (Erdös-Rényi, Scale-free, Small World, and Range dependent) and six empirical
data sets. To overcome limitations due to sampling tweets, we apply our developed methods
to Twitter reply networks and suggest a characterization of the Twitter interactome for this
time period.
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Chapter 1

Introduction

Complex networks underlie a variety of social, biological, physical, and virtual systems.

Problematically, empirically gathered network data is often incomplete in that not all in-

teractions or entities are observed in sampling. In our work, we develop several tools for

describing a large, time-varying social network from only partial knowledge of network in-

teractions. Additionally, we explore predictive tools for network densification and suggest

possible mechanisms which may be driving network evolution. Although our efforts largely

focus on a particular network of study, our methods are transferable to networks across mul-

tiple domains. The remainder of this section introduces our dataset and overviews the aims

of our work.

1.1 Twitter as a living laboratory

Twitter is an online, interactive social media platform in which users post tweets, micro-

blogs with a 140 character limit. Since its inception in 2006, Twitter has reached global

scale, with over 215 million monthly active users as of October 2013 (Twitter, 2013).

Tweets are open online by default, and are also broadcast directly to a user’s followers.

Users may express interest in a tweet by retweeting the message to their followers. Alter-

natively, followers may reply directly to the author.

1



CHAPTER 1. INTRODUCTION

With the abundance of publicly available data and the surge in the number of new

accounts, Twitter has come to serve as a living laboratory for studying dynamic social

networks (Bakshy et al., 2011; Bollen, Mao & Zeng, 2011; Cha et al., 2010; Dodds et

al., 2011; Fischer & Reuber, 2011; Frank et al., 2013; Golder & Yardi, 2010; Gonçalves,

Perra, & Vespignanai, 2011; Gruzd, Doiron, & Mai, 2011; Huberman, Romero, & Wu,

2008; Hutto, Yardi & Gilbert, 2013; Java et al., 2009; Kim et al., 2009; Kloumann et al.,

2012; Kwak et al., 2010; Mitchell et al., 2013; Morstatter et al., 2013; Romero, Meeder,

& Kleinberg, 2011; Romero & Kleinberg, 2010; Romero, Tan, & Ugander, 2013; Rowe,

Stankovic, & Alani, 2012; Thelwall, Buckley, & Paltoglou, 2011; Weng et al., 2010).

In our work, we focus our attention on over 100 million tweets from Twitter authored

between September 2008 and February 2009. This dataset accounts for varying proportions

of all tweets authored in this timespan, as detailed in the subsequent chapters. Our goals in

this project are threefold: to describe the construction of social networks from reply mes-

sages, predict future links that will occur in a way that elucidates evolutionary dynamics,

and to scale global network statistics of sampled network data to account for incomplete

data. We now overview each of these goals and note that more detail, including a literature

review of related work, is provided in Chapters 2, 3 and 4 respectively.

1.2 Twitter reciprocal reply networks

Social network analysis, a subfield of network science that focuses on social interactions

between entities, has a long history in both theoretical and applied settings (Wasseerman

& Faust, 1994). Driven by the increased availability of real-time, in-situ data reflecting

people’s social interactions and choices, there has been an explosion of research activity

characterizing large-scale online social networks, such as blogs, Facebook, LinkedIn, and
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Twitter (Adamic & Glance, 2005; Bakshy et al. 2011, Bollen, Mao, & Zeng, 2011; Bollen

et al., 2011; Cha et al., 2010; Dodds & Danforth, 2010; Dodds et al., 2011; Gjoka et

al., 2010; Guo et al., 2009; Huberman, Romero, & Wu, 2008; Java et al., 2009; Kim et

al., 2009; Kwak et al., 2010; Papacharissi, 2009; Tan et al., 2011; Thelwall et al., 2011;

Ugander et al., 2012; Viswanath et al., 2009; Weng et al., 2010). In this study, we examine

the patterns of interactions between individuals using the microblogging service Twitter.

Our interest is both as a case of scientific interest, as Twitter has come to serve as peristent

and pervasive media, and as a testbed for more general methods which apply more generally

to networks in various domains.

The majority of previous studies have examined the topology of and information cas-

cades on the Twitter follower network (Bakshy et al., 2011; Cha et al., 2010; Kwak et al.,

2010), as well as on networks derived from mutual following (Bollen, et al., 2011). How-

ever, the follower network is not the only representation of Twitter’s social network, and

its structure can be misleading (Gonçalves, Perra, & Vespignani, 2011). Kwak and others

(2010) found very few individuals who followed their followers and questioned the extent

to which Twitter exhibits social network characteristics, if at all.

Additional concerns relate to determining how long a link between two users in the

network should persist. Including stale user-user interactions in the network mistakenly

creates an inaccurate portrayal of the current state of the system; this is typically referred

to as the “unfriending problem” (Noel, Galuba, & Nyhan, 2011). Not only will network

statistics such as the number of nodes, average degree, maximum degree and proportion

of nodes in the giant component be artificially inflated due to superfluous, no-longer-active

links (Grannis, 2010; Noel, Galuba, & Nyhan, 2011), but the degree distribution will also

be distorted. Kwak et al. (2010) found that the degree distribution for a Twitter follower
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network deviated from a power law distribution due to an overabundance of high degree

nodes resulting from an accumulation of “dead-weight” in the network.

In Chapter 2, we develop the concept of Twitter reply and reciprocal reply networks

and define their construction. Recognizing that, due to practical limitations, accumulation

of network data must occur on some scale, we analyze users in day, week, and month

reciprocal reply networks. By examining networks constructed from reciprocated commu-

nication and at smaller time scales, we aim to take a more dynamic view of the interactions

occurring in this network.

Characterizing how ideas and emotions spread through social networks, as well as how

individuals self-organize in these settings, can impact society by aiding our understanding

of how social media reflects and facilitates social change. Several studies have explored

the assortativity of happiness (Bollen et al., 2011; Fowler & Christakis, 2008), obesity

(Christakis & Fowler, 2007), smoking (Christakis & Fowler, 2008), alcohol consumption

(Rosenquist et al., 2010), and loneliness (Cacioppo, Fowler & Christakis, 2009) in social

networks. Some have even gone so far as to assert that these phenomena are contagious

(Christakis & Fowler, 2013; Hill et al., 2010), however this work has been critiqued due to

the failure to account for homophily and additional complications of incomplete network

data (Noel, Galuba, & Nyhan, 2011; Lyons, 2011; Shalizi & Thomas, 2011). The observa-

tion that social networks exhibit assortativity with respect to these traits evidently requires

further study.

In addition to defining reciprocal reply networks and advocating for their use, we also

seek to describe how happiness is distributed in the reciprocal reply networks of Twitter.

Previous work by others (Bollen et al., 2011; Christakis & Fowler, 2011) suggests that

happiness is assortative in social networks and hedonometric work with Twitter data has
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revealed cyclical fluctuations in average happiness at the level of days and weeks, as well

as spikes and troughs over a time scale of years corresponding to major holidays, political

events and catastrophes (Bollen, Mao & Zeng, 2011; Dodds et al., 2011; Golder & Macy,

2011; Kim et al., 2009; Miller, 2011; Thelwell, Buckley, & Paltoglou, 2011). Chapter 2

describes the application of our recently developed hedonometric analysis (Dodds et al.,

2011) to compare individuals’ sentiment expression and with that of their neighbors one,

two and three links away.

1.3 Link prediction

Time varying social networks track dynamics as they change over time. Individuals, rep-

resented by nodes, may enter or exit the network, while interactions, represented by links,

may strengthen or weaken. While network growth models focus on global properties, the

link prediction problem aims to identify new links which will form in the next timestep,

given a snapshot of a network at the current time (Liben-Nowell & Kleinberg, 2007). In

recent years, there has been a surge of interest in link prediction, with applications rang-

ing to issues of national security, organizational studies (predicting potential collaborators),

and online social networking sites (people you may know). In addition to these goals, the

identification of predictors for future link formation may prove fruitful for revealing drivers

of network densification and evolution.

Previous link prediction efforts related to Twitter have largely focused on predicting

follower relationships (Golder & Yardi, 2010; Hutto, Yardi & Gilbert, 2013; Romero &

Kleinberg, 2010; Rowe, Stankovic, & Alani, 2012; Yin, Hong & Davison, 2011). In Chap-

ter 3, we detail these efforts and overview link prediction strategies that have been applied

in other domains. As noted by Lu et al. (2010), maximum likelihood algorithms and prob-
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abilistic models can be prohibitively time consuming for large networks. Given our interest

in large, sparse networks with N & 106, we instead focus primarily on topological-based

and node attribute (Table 3.1).

In Chapter 3, we describe several topological and node attribute similarity indices

(Adamic & Adar, 2003; Barabási et al. 2002; Katz, 1953; Lichtenwalter, Lussier, &

Chawla, 2010; Lin, 1998; Lü & Zhou, 2011; Lu et al., 2010; Newman, 2001b; Ravasz,

2002; Salton & McGill, 1986; Sorensen, 1948; Wang & Rong, 2013; Yang et al., 2012;

Zhou, Lü, & Zhang, 2009). Depending on the network under analysis, various measures

have shown to be particularly promising (Backstrom & Leskovec, 2011; Esslimani, Brun,

& Boyer, 2011; Liben-Nowell & Kleinberg, 2007; Leroy, Cambazoglu, & Bonchi 2010;

Wang et al., 2011; Yin, Hong, Davison, 2011; Zhou, Lü, & Zhang, 2009).

Several researchers have used supervised learning algorithms to combine features, such

as similarity indices,for link prediction efforts (Backstrom & Leskovec, 2011; Al Hasan,

2006; lichtenwalter, Lussier, & Chawla, 2010; Wang et al., 2011). Of particular interest,

Wang et al. (2011) study a network of individuals constructed from mobile phone call

data. They compare similarity indices used in isolation to a link predictor combining sev-

eral indices (binary decision tree determined from supervised learning). These researchers

found that the combination of node-specific and topological similarity indices outperform

topological indices in isolation. While their results are promising, they acknowledge that

the cost comes from looking at only a subset of the large potential set of user-user pairs

two-links away.

Motivated by the above, we aim to provide a link predictor encompassing both topolog-

ical and node-specific information exhibiting fast convergence and which reveals possible

mechanisms driving network evolution. To this end, we assume a linear combination of
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similarity indices and optimize coefficients using the Covariance Matrix Adaptation Evolu-

tion Strategy developed by Hansen and Ostermeier (Hansen & Ostermeier, 2001). Chapter

3 describes the advantages and limitations of this work in greater detail.

1.4 Incomplete network data

In practice, data collected about networks is often incomplete due to covert interactions or

constraints in sampling. Particular individuals may wish to remain hidden, such as mem-

bers of organized crime, and individuals who are otherwise overt may have some interac-

tions that they wish to remain hidden because those interactions are of a sensitive nature

(e.g., sexual contacts). In other instances, sampling constraints for extremely large net-

works necessitate an understanding of how network statistics scale under various sampling

regimes (Leskovec & Faloutsos, 2006; Morstatter, 2013). Recognizing that we obtain only

a fraction of tweets from Twitter’s gardenhose API, we seek to develop scaling methods

characterizing Twitter reply networks from this incomplete dataset.

When members of a population are drawn at random, each with equal selection prob-

ability, the sample parameter being studied is often a good estimate of the population pa-

rameter. Problematically, global statistics of subnetwork data are often not good charac-

terizations of the true network because subsamples can be biased in that some individuals

or interactions may be more likely to be selected in a subsample ((Costenbader & Valente,

2003; Frantz, Cataldo, & Carley, 2009; Han et al., 2005; Kossinets, 2006; Lee, Kim, &

Jeong, 2006; Stumpf, Wiuf, & May, 2005, Stumpf et al., 2008; Wiuf & Stumpf, 2006). For

example, nodes of large degree are more likely to be included in a subnetwork generated

by randomly sampled links, as compared to nodes of small degree.
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This bias in sampling has been an obstacle, particularly with regard to incomplete net-

work data derived from sampled links or weighted interactions (Kolaczyk, 2009). The

obstacle in predicting the number of nodes in a network from only knowledge of a subnet-

work generated from sampled links or interactions has been centered around difficulties in

predicting the true degree distribution from samplinged network data. Chapter 4 overviews

work by others in this area (Frank, 1980, Stumpf et al., 2005), as well as our methods which

overcome this obstacle and allow us to characterize the Twitter interactome.

Our work concludes with a description of Twitter reply networks. We find evidence of

an upper limit for the number of links an individual can actively engage in communica-

tion, providing further support for Dunbar’s hypothesis in Twitter reply networks (Dunbar,

1995). We hypothesize that Twitter reply networks evolve with constraints whereby new

links form in accordance with limits to time and attention (e.g. Resource Allocation).

8



Chapter 2

Twitter reciprocal reply networks exhibit assor-

tativity with respect to happiness

The advent of social media has provided an extraordinary, if imperfect,

big data window into the form and evolution of social networks. Based on

nearly 40 million message pairs posted to Twitter between September 2008

and February 2009, we construct and examine the revealed social network

structure and dynamics over the time scales of days, weeks, and months. At

the level of user behavior, we employ our recently developed hedonometric

analysis methods to investigate patterns of sentiment expression. We find

users average happiness scores to be positively and significantly correlated

with those of users one, two, and three links away. We strengthen our analysis

by proposing and using a null model to test the effect of network topology on

the assortativity of happiness. We also find evidence that more well connected

users write happier status updates, with a transition occurring around Dunbar’s

number. More generally, our work provides evidence of a social sub-network

structure within Twitter and raises several methodological points of interest

with regard to social network reconstructions.
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2.1 Introduction
Social network analysis has a long history in both theoretical and applied settings [1].

During the last 15 years, and driven by the increased availability of real-time, in-situ data

reflecting people’s social interactions and choices, there has been an explosion of research

activity around social phenomena, and many new techniques for characterizing large-scale

social networks have emerged. Numerous studies have examined the structure of online

social networks in particular, such as blogs, Facebook, and Twitter [2–19].

In a series of analyses of the Framingham Heart Study data and the National Longitudi-

nal Study of Adolescent Health, Christakis, Fowler, and others have examined how qualities

such as happiness, obesity, disease, and habits (e.g., smoking) are correlated within social

network neighborhoods [20–25]. The authors’ additional assertion of contagion, however,

has been criticized primarily on the basis of the difficulties to be found in distinguishing

these phenomena from homophily [26–28]. The observation that social networks exhibit

assortativity with respect to these traits evidently requires further study and leads us to

explore potential mechanisms. Advances would naturally provide further insight into the

nature of how social groups influence individual behavior and vice versa.

Our focus in the present work is the social network of Twitter users. With the abun-

dance of available data, Twitter serves as a living laboratory for studying contagion and

homophily [29]. As a requisite step towards these goals, we first define sub-networks of

Twitter users suitable to such study and, second, examine whether assortativity is observed

in these sub-networks. Before describing our methods, we provide a brief overview of

Twitter, related work, and the challenges associated with social network analysis in this

arena.
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Twitter is an online, interactive social media platform in which users post tweets, micro-

blogs with a 140 character limit. Since its inception in 2006, Twitter has grown to encom-

pass over 200 million accounts, with over 100 million of these accounts currently active

as of October 2011, and with some users having garnered over 10 million followers [30].

Tweets are open online by default, and are also broadcast directly to a user’s followers.

Users may express interest in a tweet by retweeting the message to their followers. Alter-

natively, followers may reply directly to the author.

Understanding the topology of the Twitter network, the manner in which users interact

and the diffusion of information through this media is challenging, both computationally

and theoretically. One of the central issues in characterizing the topology of any network

representation of Twitter lies in defining the criteria for establishing a link between two

users. The majority of previous studies have examined the topology of and information

cascades on the Twitter follower network [7, 10, 15], as well as on networks derived from

mutual following [8]. However, the follower network is not the only representation of Twit-

ter’s social network, and its structure can be misleading [31]. For example, in a study of

over 6 million users, Cha et al. [10] found that users with the highest follower counts were

not the users whose messages were most frequently retweeted. This suggests that such

popular users (as measured by follower count) may not be the most influential in terms of

spreading information, and this calls into question the extent to which users are influenced

by those that they follow [32]. Of further concern is the finding of low reciprocity within

follower networks. Kwak et al. found very few individuals who followed their follow-

ers [15]. As a result, trying to infer meaningful influence and contagion in such a network

is difficult.
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(a) Followers

vi 

vl vj 
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(b) Interaction

Figure 2.1: Depiction of follower networks and reciprocal reply networks. (a) Follower
network: The follower network is generated by declared following choices, absent any
messages being sent. If user vi broadcasts tweets to followers vj, vk and v` (represented by
the dashed, blue arrow) vi would be connected to each of vj, vk and v` by a directed link
in a follower network. (b) Reciprocal-reply network: Directed replies are represented by a
solid black arrow. When considering the interaction between users, a reply (i.e., v` replies
to vi) provides evidence of a directional interaction between nodes. We mandate a stronger
condition for interaction, namely reciprocal replies (i.e., vj replies to vi and vice versa)
over a given time period. Thus vi and vj are connected in the reciprocal reply network that
we construct.
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While popular users and their many followers clearly exhibit an affiliation, they do not

necessarily interact, as there are different relationships implicated by broadcasting (tweet-

ing), sending a message (@someone), and replying to a message. As an example, we

consider a user represented by node vi which has three followers, represented by vj, vk,

and v` as shown in Fig. 2.1a. When a user broadcasts tweets to their many followers, as

represented by the directed arrow in Fig. 2.1a, this does not imply that followers read or

respond to these tweets. Followers vj, vk, and v` receive all tweets broadcast by node vi,

but this provides no guarantee of interaction. Suppose, though, that we observe that v`

replies to vi as shown in Figure 2.1b. This provides evidence (but not proof) that the user

represented by v` has indeed received a tweet from vi and is sufficiently motivated to create

a response to vi. Although a directional network based on these replies can be created,

such a directional interaction, however, does not suggest reciprocity between the nodes. In

this example, we have no evidence that vi has, in any way, considered or even read such a

response from his/her follower.

We conclude that following and unreciprocated replies are not sufficient for interaction

and present an alternative means by which to derive a social network from Twitter mes-

sages, via reciprocal replies. In our reciprocal-reply network, two nodes, vi and vj , are

connected if vi has replied to vj and vj has replied to vi at least once within a given time

period of consideration. In Figure 2.1b, the nodes vi and vj meet this criterion.

Another challenge in characterizing the topology of any network representation of Twit-

ter concerns determining how long a link between two users in the network should persist.

Including stale user-user interactions in the network mistakenly creates an inaccurate por-

trayal of the current state of the system; this is typically referred to as the “unfriending

problem” [26]. Not only will network statistics such as the number of nodes, average
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degree, maximum degree and proportion of nodes in the giant component be artificially

inflated due to superfluous, no-longer-active links [26, 33], but the degree distribution will

also be distorted. Kwak et al. [15] found that the degree distribution for a Twitter follower

network deviated from a power law distribution due to an overabundance of high degree

nodes resulting from an accumulation of “dead-weight” in the network.

Additional problems are encountered if one uses accumulated network data to measure

assortativity with respect to a trait (e.g., happiness). As an example, consider a network in

which two users are connected because they interacted during the last week of a year-long

study. Including this user-user pair in the list of pairs to compute assortativity for the entire

network blurs the relationship between more consistent and repeated interactions that oc-

curred throughout the timespan of the study. Further complications arise when averaging

a user’s trait over a large time scale (i.e., averaging happiness over a 6 month or 12 month

timespan). Detecting changes in users’ traits over time and how these may (or may not)

be correlated with nearest neighbors’ traits is of fundamental importance; accumulated net-

work data occludes exactly the interactions we are looking to understand. Recognizing that,

due to practical limitations, accumulation of network data must occur on some scale, we

analyze users in day, week, and month reciprocal reply networks. By examining networks

constructed at smaller time scales and calculating users’ happiness scores based on tweets

made only during that time period, we aim to take a more dynamic view of the network.

In addition to defining reciprocal reply networks and advocating for their use, we also

seek to describe how happiness is distributed in the reciprocal reply networks of Twitter.

Previous hedonometric work with Twitter data has revealed cyclical fluctuations in average

happiness at the level of days and weeks, as well as spikes and troughs over a time scale

of years corresponding to events such as U.S. Presidential Elections, the Japanese tsunami
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and major holidays [11, 34, 35]. Other studies have examined changes in valence of tweets

associated with the death of Michael Jackson [14], changes in the U.S. Stock Market [9],

the Chilean Earthquake of 2010, and the Oscars [16]. In the present work, we seek to

understand localized patterns of happiness in the Twitter users’ social network.

Understanding how emotions are distributed through social networks, as well as how

they may spread, provides insight into the role of the social environment on individual emo-

tional states of being, a fundamental characteristic of any sociotechnical system. Bollen et

al. [8] examine a reciprocal-follower network using Twitter and suggest that Subjective

Well-Being (SWB), a proxy for happiness, is assortative. Building on their work, we ad-

dress whether happiness is assortative in reciprocal-reply networks. We also test the hy-

pothesis of Christakis and Fowler [25] who find evidence that the assortativity of happiness

may be detected up to three links away. In doing so, we raise an additional point which

is not specific to Twitter networks, but rather relates to empirical measures of assortativity

in general. Relatively few studies have employed a null model for calculating the pair-

wise correlations (e.g., happiness-happiness). We devise a null model which maintains the

topology of the network and randomly permutes happiness scores attached to each node.

By randomly permuting users’ happiness scores, we can detect what effect, if any, network

structure has on the pairwise correlation coefficient.

We organize our paper as follows: In Section 2, we describe our data set, the algorithm

for constructing reciprocal-reply networks, network statistics used for characterizing the

networks, and our measure for happiness. We propose an alternative means by which to

detect social structure and argue that our method detects a large social sub-network on

Twitter. In Section 3, we describe the structure of this network, the extent to which it is
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assortative with respect to happiness and the results of testing assortativity against a null

model. In Section 4, we discuss these findings and propose further investigations of interest.

2.2 Methods

2.2.1 Data

From September 2008 to February 2009, we retrieved over 100 million tweets from the

Twitter streaming API service.1 While the volume of our feed from the Twitter API in-

creased during this study period, the total number of tweets grew at a faster rate (Fig. 2.2).

During this time period, we estimate that we collected roughly 38% of all tweets.2 The

number of messages and percent of which were replies are reported in Table 2.A4. For the

remainder of this paper, we restrict our attention to the nearly 40 million message-reply

pairs within this data set and the users who authored these tweets.

The data received from the Twitter API service for each tweet contained separate fields

for the identification number of the message (message id), the identification number of the

user who authored the tweet (user id), the 140 character tweet, and several other geo-spatial

and user-specific metadata. If the tweet was made using Twitter’s built-in reply function,3

the identification number of the message being replied to (original message id) and the

identification of the user being replied to (original user id) were also reported.

1Data was received in XML format.
2We calculated the total number of messages as the difference between the last message id and the first

message id that we observe for a given week. This provides a reasonable estimate of the number of tweets
made per week, as message ids were assigned (by Twitter) sequentially during the time period of this study.

3Twitter has a built-in reply function with which users reply to specific messages from other users. Tweets
constructed using Twitter’s reply function begin with ‘@username’, where ‘username’ is the Twitter handle
of the user being replied to; the user and message ids of the tweet being replied to are included in the reply
message’s metadata from the Twitter API. Users often informally reply to or direct messages to other users
by including said users’ Twitter handles in their tweets. In such cases, however, no identification information
about the “mentioned” user is included in the API parameters for these tweets (only their Twitter handle is)
and we exclude such exchanges when building the reciprocal reply network.
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Figure 2.2: Tweet counts for the weeks between September 2008 and February 2009. The
three curves represent the total, those that we observed and the number of the observed
tweets that constituted replies.
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We acknowledge two sources of missing data. First, the Twitter API did not allow us

access to all tweets posted during the 6 month period under consideration. Thus, there are

replies that we have not observed. As a result, some users may remain unconnected or

connected by a path of longer length due to missing intermediary links in our reciprocal-

reply network (Fig. 2.3). Secondly, we acknowledge that users may be interacting with

each other and not using the built-in reply function. We discuss this further in the next

section.

vi

vl

vj

vk

1-link 
pairs

2-link 
pairs

3-link 
pairs

Observed (vi,vj)
(vj,vk)
(vk,vl)

(vi,vj)
(vj,vl)

(vi,vl)

True (vi,vj)
(vj,vk)
(vk,vl)
(vj,vl)

(vi,vj)
(vi,vl)

None

Figure 2.3: Effect of missing links in the reciprocal reply network. The effect of missing
data in the reciprocal reply network is depicted where observed links are shown as a solid
line and an unobserved link is shown as a dashed line. The effect of unobserved links is
twofold: (1) some connections between nodes are missed (e.g., vj and v` are not connected
in the observed reciprocal reply network); and (2) some path lengths between nodes are
artificially inflated (e.g., the distance from vi to v` is 3 in the observed reciprocal-reply
network, however in reality the path length is 2).

2.2.2 Reciprocal-reply network

In keeping with terminology used in the field of complex networks, the terms nodes and

links will be used henceforth to describe users and their connections. Define G = (V,E)

to be a simple graph which contains, N = |V | nodes and M = |E| links. We construct
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the reciprocal-reply networks in which users are represented by nodes, vi ∈ V , and links

connecting two nodes, eij ∈ E, indicate that vi and vj have made replies to each other

during the period of time under analysis (Fig. 2.1). For each network, we remove self-loops

(i.e., users who responded to themselves). We characterize the reciprocal-reply network for

each week by the calculation of network statistics such as N (the number of nodes), 〈k〉

(average degree), kmax (maximum degree), the number of connected components and S

(proportion of nodes in the giant component). We calculate clustering, CG, according to

Newman’s global clustering coefficient [36]:

CG =
3× (number of triangles on a graph)

number of connected triples of nodes
.

Assortativity refers to the extent to which similar nodes are connected in a network.

Often, degree assortativity is quantified by computing the Pearson correlation coefficient

of the degrees at each end of links in the network [37]. Since we are interested in quan-

tifying the extent to which the highest degree nodes are connected to other high degree

nodes, as defined by the rank of their degrees, we instead measure degree assortativity by

the Spearman correlation coefficient.4 Thus for each link that connects nodes vi and vj ,

we examine the ranks of kvi and kvj . The Spearman correlation coefficient, which is the

Pearson correlation coefficient applied to the ranks of the degrees at each end of links in

the network, is a non-parametric test that does not rely on normally distributed data and is

much less sensitive to outliers.5

4We present both the Spearman and Pearson correlation coefficient in the Appendix, Figure A2. Pearson’s
correlation coefficient is more sensitive to extreme values and thus obscures the trend in the data, namely that
the network is assortative with respect to the rank (i.e., ordering) of nodes’ degrees.

5Our degree distribution is not Gaussian, as can be seen from Figure 2.7.
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In addition, we also investigate user pairs which are connected by a minimal path length

of two (or three) in the reciprocal reply networks. We define d(vi, vj) to be the path length

(i.e., number of links) between nodes vi and vj such that no shorter path exists. As a

consequence of missing messages, we recognize that some users will appear to remain

unconnected or connected by a path of longer length. Figure 2.3 depicts the effect of

missing links on inferred path lengths between nodes in the network. Nodes vj and v` are

adjacent in the network, however, due to the missing link represented by the dashed line,

these nodes are inferred to be two links apart.
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Figure 2.4: The happiness scores of words plotted as a function of their rank. The stop
words (words within ±∆h = 1 of havg = 5) are depicted in light grey [38]. These
words were excluded from the happiness score computation. The frequency of words and
their rank (1=most frequent, 9956=least frequent) are plotted (solid curve). Not all 10,222
labMT words were observed during the time period from September 2008-February 2009.
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Figure 2.5: Visualization of the components of a reciprocal reply network for one week. A
visualization of the 162,445 nodes in the reciprocal reply network for the week beginning
December 9, 2008 (Week 14) is shown. Node colors represent connected components, a
total of 15342, with the giant component (shown in blue) comprising 76 % of all nodes.
The size of each node is proportional to its degree. The visualization was made using
Gephi [39].
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Figure 2.6: Network statistics for the reciprocal-reply networks. (A.) The number of users
(N ) engaged in reciprocal exchanges when viewed at the level of days (green), weeks
(blue), and months (red) increases over the study period. (B.) The average degree (〈k〉)
remains fairly constant throughout the study period, with higher values detected for larger
interaction time periods. (C.) The maximum degree (kmax) shows variability throughout
the study period. (D.) Clustering decreases quite likely resulting from the inability of the
networks’ closed triangles to keep up with the growing number of nodes. (E.) Degree
assortativity remains fairly constant throughout the study period, and shows little sensitivity
to the time period over which the networks represent interactions. (E.) The proportion of
nodes in the giant component (S) remains fairly constant for week and month networks,
however, shows some variability during the first month of the study for day networks.
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2.2.3 Measuring happiness

To quantify happiness for Twitter users, we apply the real-time hedonometer methodol-

ogy for measuring sentiment in large-scale text developed in Dodds et al. [11]. In this

study, the 5000 most frequently used words from Twitter, Google Books (English), mu-

sic lyrics (1960 to 2007) and the New York Times (1987 to 2007) were compiled and

merged into one list of 10,222 unique words.6 This word list was chosen solely on the

basis of frequency of usage and is independent of any other presupposed significance of

individual words. Human subjects scored these 10,222 words on an integer scale from

1 to 9 (1 representing sad and 9 representing happy) using Mechanical Turk. We com-

pute the average happiness score (havg) to be the average score from 50 independent

evaluations. Examples of such words and their happiness scores are: havg(love)=8.42,

havg(special)=7.20, havg(house)=6.34, havg(work)=5.24, havg(sigh)=4.16, havg(never)=3.34,

havg(sad)=2.38, havg(die)=1.74. Words that lie within ±∆havg = 1 of havg=5 were defined

as “stop words” and excluded to sharpen the hedonometer’s resolution.7 The result is a

list of 3,686 words, hereafter referred to as the Language Assessment by Mechanical Turk

(labMT) word list [11]. See Tables A1 and A2 for additional example word happiness

scores.

Figure 2.4 presents word happiness as a function of usage rank for the roughly 10,000

words in the labMT data set. This figure reveals a frequency independent bias towards the

usage of positive words (see [37] for further discussion of this positivity bias). Proceeding

with the labMT word list, a pattern-matching script evaluated each tweet for the frequency

6We provide a brief summary of this methodology here and refer the interested reader to the original
paper for a full discussion. The supplementary information contains the full word list, along with happiness
averages and standard deviations for these words [11].

7For notational convenience, we henceforth use ∆h in lieu of ∆havg.
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wi havg(wi) labMT? fi pi

Vacation 7.92 yes 1 1
2

starts 5.96 yes n/a n/a
today 6.22 yes 1 1

2

yeahhhhh n/a no n/a n/a

Table 2.1: Computation of happiness scores. Happiness scores are computed as a weighted
average of words’ havg scores. Since “starts” is a stop word, it is not included in the cal-
culation of havg(T ) = 7.07. This example serves is included as a means to illustrate the
methodology; in practice, the average is calculated over a much larger word set.

of words. We compute the happiness of each user by applying the hedonometer to the

collection of words from all tweets authored by the user during the given time period.

Note that each users’ collection of words likely reflects messages that were not replies.

The happiness of this collection of words is taken to be the frequency weighted average

of happiness scores for each labMT word as havg(T ) =
∑N
i=1 havg(wi)fi∑N

i=1 fi
=
∑N

i=1 havg(wi)pi,

where havg(wi) is the average happiness of the ith word appearing with frequency fi and

where pi is the normalized frequency (pi = fi∑N
j=1 fj

). As a simple example example, we

consider the phrase: Vacation starts today, yeahhhhh! in Table 1. In practice, though, the

hedonometer is applied to a much larger word set and is not applied to single sentences.

Having found happiness scores for each node (user), we then form happiness-happiness

pairs (hvi , hvj), where hvi and hvj denote the happiness of nodes vi and vj connected by an

edge. The Spearman correlation coefficient of these happiness-happiness pairs measures

how similar individuals’ average happiness is to that of their nearest neighbors’. Lastly,

we investigate the strength of the correlation between users’ average happiness scores and

those of other users in the two and three link neighborhoods.
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2.3 Results

2.3.1 Reciprocal-reply network statistics

Visualizations of day and week networks were created using the software package

Gephi [39]. Figures 2.5 and 2.A6 show a sample week and day network, respectively.

All layouts were produced using the Force Atlas 2 algorithm, which is a spring based algo-

rithm that plots nodes together if they are highly connected (see [40] for more details). The

sizes of the nodes are proportional to the degrees.

Network statistics, such as the number of nodes (N), the average degree 〈k〉, the maxi-

mum degree (kmax), global clustering CG, degree assortativity (Assort), and the proportion

of nodes in the giant component (S) are summarized in Figure 2.6. Several trends are ap-

parent.

Throughout the course of the study, the number of users in the observed reciprocal-reply

network shows an increase, whereas the average degree, degree assortativity, and propor-

tion of nodes in the giant component remain fairly constant. The fluctuations in maximum

degree are the result of celebrities or companies having bursts of high volume reply ex-

changes with their fans during a particular week, for example Bob Bryar, Drummer for the

band My Chemical Romance (kmax = 1244, Week 12), Namecheap domain registration

company (kmax = 1245, Week 13), Twitter’s own Shorty Awards (kmax = 1456, Week 14),

and Stephen Fry, actor and mega-blogger (kmax = 1718, Week 22). This observation high-

lights the importance of examining network data on the appropriate time scale, otherwise

information about these kinds of dynamics would be be lost. The clustering coefficient

shows a slight decrease over the course of this period. This is most likely due to an in-
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Figure 2.7: Degree distribution for a sample week. Log-log plot of the complementary
cumulative distribution function (CCDF) of the degree distribution for a sample week
(week of January 27, 2009) network is shown (blue), along with the best fitting power
law model (α = 3.50 and kmin = 34) using the procedure of Clauset, Shalizi, and New-
man [41]. We test whether the empirical distribution is distinguishable from a power
law using the Kolmogorov-Smirnov test and find no evidence against the null hypothesis
(D = 2.28× 10−2, p = 0.095, n = 203852).
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creasing number of nodes, which results in a smaller proportion of closed triangles in the

network.

The degree distribution, Pk, for a sample week (week beginning January 27, 2009) is

presented in Figure 2.7. Using the approach outlined by Clauset, Shalizi, and Newman [41],

we find a lower bound for the scaling region to be kmin ≈ 34 and a very steep scaling

exponent of α = 3.5. This suggests a constrained variance and mean. We test whether the

empirical distribution is distinguishable from a power law using the Kolmogorov-Smirnov

test and find no evidence against the null hypothesis for the week (D = 2.28 × 10−2, p =

0.095, n = 203852). We find the same exponent and statistically stronger evidence of a

power law for a sample month (see the Appendix, Fig. 2.A1). This suggests that these

distributions’ tails may be fit by a power law.

2.3.2 Measuring happiness

The application of the hedonometer gives reasonable results when applied to a large body

of text, but can be misleading when applied to smaller units of language [11]. To provide

a sense of how sensitive this measure is to the number of labMT words posted by users,

we sampled happiness-happiness pairs, (hvi , hvj) whose respective users, vi and vj , had

posted at least α total labMT words during a sample week (week beginning January 27,

2009). For these users, we compute happiness assortativity and show the variation with

α in Figure 2.8. For ∆h = 0, there is less variation due to the numerous words centered

around the mean happiness score regardless of the threshold, α. Tuning both parameters

too high results in few sampled words and corrupts the interpretation of the results.

Figures 2.9 and 2.10 reveal a weakening happiness-happiness correlation for users in

the week networks as the path length between nodes increases. All correlations, for each
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Figure 2.8: Nearest neighbor happiness assortativity. Happiness assortativity as a function
of the number of labMT words required per user is displayed for a sample week reciprocal-
reply network. Notice that when ∆h = 0, there is less variation due to the numerous
words centered around the mean happiness score regardless of the threshold, α. While this
stability is desirable, tuning ∆h allows us to sharpen the resolution of the hedonometer.
This tuning, however, must be balanced with the appropriate choice of α.
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Figure 2.9: Average assortativity of happiness ∆h. Average assortativity of happiness
for week networks measured by Spearman’s correlation coefficients as ∆h is dialed from
0 to 2.5, with α = 50. As ∆h increases, the average correlation decreases. For large
∆h the resulting words under analysis have more disparate happiness scores and thus the
correlations between users’ happiness scores are smaller. Similarly, choosing ∆h to be too
small (e.g., ∆h = 0) could result in an over estimate of happiness-happiness correlations
because of the uni-modal distribution of havg for the labMT words. Thus a moderate value
for ∆h is chosen (∆h is set to 1 for this study).
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Figure 2.10: Happiness assortativity with varying path length. The assortativity of happi-
ness as measured by Spearman’s correlation coefficients is shown for week networks, with
∆h = 1 and (a) the threshold of labMT words written by users set to α = 1 and (b) α = 50.
The dashed lines indicate weakening happiness-happiness correlations as the path length
increases from one, two, and three links away, for each week in the data set.

week, were significant (p < 10−10). This suggests that the network is assortative with

respect to happiness and that user happiness is more similar to their nearest neighbors than

those who are 2 or 3 links away.

In Figure 2.11 we provide a visualization of an ego-network for a single node, including

neighbors up to three links away. Nodes are colored by their havg score, illustrating the

assortativity of happiness. Figure 2.A5 visualizes the happiness assortativity for an entire

week network.

In Figure 2.12, we show the average happiness score as a function of user degree k

for all week networks. The average happiness score increases gradually as a function of

degree, with large degree nodes demonstrating a larger average happiness than small degree

nodes. Large degree nodes use words such as “you,” “thanks,” and “lol” more frequently

than small degree nodes, while the latter group uses words such as “damn,” “hate,” and

“tired” more frequently. A word shift diagram, comparing nodes with k < 100 vs. nodes
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Figure 2.11: Ego-network happiness scores visualization. A visualization of a user and
its neighbors 3-links away for a week beginning September 9, 2008 (Week 1). Colors
represent happiness scores for users posting more than α = 50 labMT words. Nodes
depicted with the color black are nodes for which the user’s wordbag did not meet our
thresholding criteria.
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with k ≥ 100 is included in the Appendix (Fig. 2.A7). Figure 2.12 also reveals that the

number of large degree nodes is fairly small. Our results support recent work showing

that most users of Twitter exhibit an upper limit on the number of active interactions in

which they can be engaged [31]. This may provide further evidence in support of Dunbar’s

hypothesis, which suggests that the number of meaningful interactions one can have is near

150 [42].
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Figure 2.12: Node degree vs. happiness. Top Panel: The average happiness score as a
function of user degree k for week networks is increasing, as larger degree nodes use fewer
negative words (see Figure 2.A7). Bottom Panel: The number of unique users is reported
with respect to degree k; some users appear in more than one bin because they exhibit
different degree k for different weeks of the study.
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2.3.3 Testing assortativity against a null model

To further examine these findings, we create a null model which maintains the network

topology (i.e., adjacency matrices for one link, two link, and three link remain intact), but

randomly permutes the happiness scores associated with each node. The Spearman corre-

lation coefficient shows no statistically significant relationship for the null model applied

to a sample week of the data set. Figure 2.13 shows the results of 100 random permutations

applied to nodes’ associated happiness scores. The Spearman correlation coefficients for

the observed data are shown as blue squares (∆havg = 0) and green diamonds (∆havg = 1).

The average and standard deviation of the Spearman correlation coefficient calculated for

the 100 randomized happiness scores (null model) are shown as red circles with error bars

(the error bars are smaller than the symbol). This data supports the hypothesis that happi-

ness is less assortative as network distance increases.

Lastly, we explore whether these correlations are due to similarity of word usage. For

this analysis, we compute the similarity of word bags for users connected in the reciprocal

reply networks. We compare the distribution of observed similarity scores to similarity

scores obtained by randomly reassigning word bags to users. Figure 2.A8 shows that both

distributions are of a similar form, with the randomized version exhibiting a slightly lower

mean similarity score (Di,j = .167) as compared to the mean of the observed similarity

scores for users (Di,j = .267). If users were tweeting similar words with a similar fre-

quency, we would expect a much larger mean similarity score for the observed data. Thus,

we do not find evidence suggesting that the happiness correlations are due to similarity of

word bags.
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Figure 2.13: Application of null model to happiness scores. One hundred random permu-
tations were applied to the happiness scores associated with each node in a sample week
network (week beginning October 8, 2008 is shown), with ∆h = 0 (blue square) and
∆h = 0 (green diamonds). The threshold for all cases is set to α = 50. The Spearman cor-
relation coefficients, rs for the observed data are shown as blue squares. The average and
standard deviation of the Spearman correlation coefficient calculated for the 100 random-
ized data (null model) are shown as red circles with error bars (the error bars are smaller
than the symbol). The plot shows Spearman correlation coefficients for the null model to
be nearly 0 and provides supporting evidence for our observed trend, namely the network
is assortative with respect to happiness and the strength of assortativity decreases as path
length increases.
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2.4 Discussion

In this paper, we describe how a social sub-network of Twitter can be derived from

reciprocal-replies. Countering claims that Twitter is not social a network [15], we pro-

vide evidence of a very social Twitter. The large volume of replies (millions every week)

and assortativity of user happiness indicates that Twitter is being used as a social service.

Furthermore, conducted at the level of weeks, our analysis examines an in the moment so-

cial network, rather than the stale accumulation of social ties over a longer period of time.

A network in which edges are created and never disintegrate results in dead links with no

contemporary functional activity. This problem of unfriending has been noted [26] and can

greatly impact conclusions drawn when observational data are used to infer contagion.

Our characterization of the reciprocal reply network reveals several trends over the 25

week period from September 2008 to February 2009. The number of nodes, N , in a given

week network increased as time progressed, which is undoubtedly due to Twitter’s enor-

mous growth in popularity over the study period. Similarly, with an increasing number of

nodes, we observe a smaller proportion of closed triangles (i.e., clustering shows a slight

decrease). This may be due in part to sub-sampling effects or due to an increasing N , with

which the number of closed triangles (i.e., friends of friends) cannot keep up. The propor-

tion of nodes in the giant component remains fairly constant, as does degree assortativity as

measured by Spearman’s correlation coefficient. Had we used the Pearson correlation co-

efficient, degree assortativity would have been highly variable (Fig. A1) due to the extreme

values of maximum degree (kmax) during weeks 12-14 and 22. Using the Spearman rank

correlation coefficient, which is less sensitive to extreme values, we find that the degree

assortativity is fairly constant.
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Our work is based on a sub-sample of tweets and is thus subject to the effects of missing

data. The problem of missing data has been addressed by several researchers investigat-

ing the impact of missing nodes [43–47], missing links, or both [48]. More specifically,

the work of Stumpf [43] shows that sub-sampled scale-free networks are not necessarily

themselves scale-free. Further work which addresses the problem of missing messages and

identifies the consequences of missing data on inferred network topology is needed to more

fully address these questions.

We find support for the “happiness is assortative” hypothesis and evidence that these

correlations can be detected up to three links away. Further, this finding does not appear

to be based on users tweeting similar words (Fig. 2.A8). Our correlation coefficients for

reciprocal-reply networks constructed at the level of weeks are smaller than those obtained

by Bollen et al. [8] for a reciprocal-follower network constructed by aggregating over a six

month period. This difference is likely a reflection of differences in methodologies, such as

our more dynamic time scale (one-week periods vs. six month periods), our exclusion of

central value happiness scores (i.e., stop words), and our use of the Spearman correlation

coefficient.

While this paper does not attempt to separate homophily and contagion, future work

could use reciprocal-reply networks to investigate these effects. While reciprocal-reply

networks are subject to errors caused by missing data (see above discussion of this issue)

they may provide a valuable framework for studying contagion effects, given that they are

based on a conservative and dynamic metric of what constitutes an interaction on Twitter.

A network structure in which links are known to be active and valid provides an arena in

which the diffusion of information and emotion may be properly studied.
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Figure 2.A1: Degree distribution for a sample week. Log-log plot of the complemen-
tary cumulative distribution function (CCDF) of the degree distribution for a sample
month (January 2009) network is shown (blue), along with the best fitting power law
model (α = 3.50 and kmin = 109) using the procedure of Clauset, Shalizi, and New-
man [41]. We test whether the empirical distribution is distinguishable from a power
law using the Kolmogorov-Smirnov test and find no evidence against the null hypothe-
sis (D = 1.82× 10−2, p = 0.35, n = 495881) data. This distribution may be fit by a power
law.
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Figure 2.A2: Comparison of Spearman and Pearson correlation coefficients for assortativ-
ity. Spearman and Pearson correlation coefficients are used to measure degree assortativity.
The Pearson correlation coefficient is more sensitive to extreme values. As a result, the
Pearson correlation coefficient obscures the trend that the network is assortative with re-
spect to the rank of node degrees. Given the nature of the degree distribution and the
questions that we are asking, we use the Spearman correlation coefficient for our study.
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Figure 2.A3: Happiness assortativity vs. word count threshold. Measured happiness as-
sortativity as threshold for labMT word usage increases for a single week network. The
Spearman correlation coefficient (right) exhibits less variability as compared to the Pear-
son correlation coefficient (left). Notice that when ∆h = 0, there is less variation due to
the numerous words centered around the mean happiness score, regardless of the threshold,
α. 46
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Figure 2.A4: Visualization of a reciprocal reply network with emphasis on degree. A
visualization of the reciprocal reply network for the week beginning September 9, 2008
(Week 1) is depicted. The size of a node is proportional to the degree, and colors further
emphasize the degree detected by Gephis implementation of the algorithm suggested by
Blondel et al. [40].
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Figure 2.A5: Visualization of the reciprocal reply network for the week beginning Septem-
ber 9, 2008 (Week 1) where colors represent happiness scores for nodes with greater than
α = 50 labMT words (57% of all nodes in the week). The visualization was produced
using Gephi [39]. The algorithm employed by the software clusters nodes according to
their connectivity. Collections of nodes with similar colors provide a visualization of the
happiness is assortativity finding.
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Figure 2.A6: A visualization of the reciprocal reply network for the day of October 28,
2008. The size of the nodes is proportional to the degree and colors indicate communi-
ties detected by Gephi’s implementation of the community detection algorithm suggested
by [49].
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Figure 2.A7: Wordshift for large and small degree nodes. The collection of words used
by nodes k ≥ 100 (Tcomp) is compared to words written by users k < 100 (Tref). The
horizontal bars on the right side of the plot represent words which raise the happiness score
of Tcomp. The symbols of +/− and ↑ / ↓ combine to convey whether a positive/negative
word appears more/less frequently in the Tcomp as compared to the Tref. Notice that an
increase in the usage of positive words (e.g., “you”), as well as a decrease in the use of
a negative word (e.g., “last”) will contribute to Tcomp having a higher happiness score. In
the lower right, the relative text sizes are depicted as rectangles proportional to the number
of words. The circle plots depicted the relative amount of positive vs. negative words
contained in Tref and Tcomp. While both collections are similar in terms of positive word
usage, the collection of words used by larger nodes contains fewer negative words and thus,
this contributes to the slightly higher happiness score for this collection of words. The
lower left inset shows the cumulative sum of individual word contributions as a function of
log10 r, where r is the rank of the 3,686 labMT words. See [11] for the full details of the
wordshift graph.
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Figure 2.A8: Similarity scores of word bags and null model. The similarity of word bags
for pairs of users connected in a week reciprocal reply network is computed as follows:
For users i and j, we compute Di,j = 1 − 1

2

∑3686
n=1 |fi,n − fj,n|, where fi,n represents

the normalized frequency of word usage of the nth labMT word by user i. The value of
Di,j ranges from 0 (dissimilar word bags) to 1 (similar word bags). The proportion of
occurrences of user-user pairs in the reciprocal reply network for a sample week (Sept. 16,
2008) having word similarity indices between 0 and 1 are shown (blue dots), with α = 50
and ∆h = 1. The majority of user-user similarity indices are less than 0.4, indicating that
users and their nearest neighbors use dissimilar collections of words in their tweets. We
then perform 100 random permutations of word vector assignments to users, while holding
the network topology intact (black squares). The resulting distributions show that while
users are using more similar words than would be expected by chance, this shift is small.
The mean score for randomized user-user paired word collections is Di,j = .167. This
value is not zero, since users are using a common language (English). The mean score for
our observed network data is Di,j = .267, which is slightly higher than the randomized
value due to conversations occurring between these users.
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Rank Word Frequency Happiness Rank Word Frequency Happiness Rank Word Frequency Happiness
(×105) (×105) (×105)

1 you 103.55 6.24 41 happy 8.40 8.30 81 google 5.05 7.20
2 my 94.91 6.16 42 tomorrow 7.88 6.18 82 everyone 5.03 6.12
3 me 56.35 6.58 43 nice 7.80 7.38 83 most 4.95 6.22
4 not 39.98 3.86 44 best 7.61 7.18 84 wait 4.88 3.74
5 up 36.04 6.14 45 she 7.57 6.18 85 start 4.87 6.10
6 no 34.40 3.48 46 yes 7.42 6.74 86 please 4.79 6.36
7 new 34.03 6.82 47 fun 7.37 7.96 87 con 4.78 3.70
8 like 31.75 7.22 48 hope 7.34 7.38 88 try 4.77 6.02
9 all 30.71 6.22 49 bad 6.98 2.64 89 thought 4.69 6.38

10 good 30.20 7.20 50 never 6.92 3.34 90 school 4.66 6.26
11 will 23.58 6.02 51 sure 6.82 6.32 91 thank 4.64 7.40
12 we 22.59 6.38 52 done 6.81 6.54 92 weekend 4.56 8.00
13 day 21.80 6.24 53 show 6.73 6.24 93 hey 4.48 6.06
14 know 19.45 6.10 54 awesome 6.72 7.60 94 wish 4.44 6.92
15 more 19.32 6.24 55 check 6.51 6.10 95 hate 4.42 2.34
16 don’t 18.29 3.70 56 bed 6.42 7.18 96 haha 4.41 7.64
17 today 18.24 6.22 57 sleep 6.33 7.16 97 friends 4.41 7.92
18 love 17.66 8.42 58 cool 6.32 7.20 98 making 4.40 6.24
19 think 17.45 6.20 59 live 6.28 6.84 99 dinner 4.27 7.40
20 see 15.28 6.06 60 big 6.28 6.22 100 coffee 4.27 7.18
21 great 14.60 7.88 61 free 6.18 7.96 101 music 4.24 8.02
22 lol 13.35 6.84 62 life 6.17 7.32 102 found 4.23 6.54
23 thanks 13.09 7.40 63 old 6.07 3.98 103 doesn’t 4.23 3.62
24 home 13.05 7.14 64 didn’t 6.04 4.00 104 online 4.23 6.72
25 people 12.71 6.16 65 find 6.00 6.00 105 party 4.20 6.34
26 night 12.70 6.22 66 die 6.00 1.74 106 soon 4.20 6.34
27 blog 12.26 6.02 67 video 5.99 6.48 107 thinking 4.15 6.28
28 last 11.89 3.74 68 house 5.99 6.34 108 snow 4.14 6.32
29 well 11.70 6.68 69 christmas 5.89 7.96 109 give 4.13 6.54
30 make 11.27 6.00 70 playing 5.77 7.14 110 movie 4.12 6.84
31 right 11.04 6.54 71 world 5.76 6.52 111 ha 4.09 6.00
32 can’t 10.93 3.42 72 game 5.54 6.92 112 sorry 4.08 3.66
33 morning 10.38 6.56 73 wow 5.54 7.46 113 real 4.06 6.78
34 very 10.10 6.12 74 ready 5.53 6.58 114 kids 3.98 7.38
35 first 9.69 6.82 75 iphone 5.53 6.54 115 phone 3.91 6.44
36 our 9.26 6.08 76 listening 5.41 6.28 116 tv 3.91 6.70
37 better 8.89 7.00 77 pretty 5.40 7.32 117 stop 3.89 3.90
38 us 8.82 6.26 78 always 5.39 6.48 118 play 3.88 7.26
39 tonight 8.79 6.14 79 help 5.27 6.08 119 waiting 3.88 3.68
40 down 8.73 3.66 80 read 5.07 6.52 120 lunch 3.81 7.42

Table 2.A1: Most frequently occurring words (stop words removed). The top 120 most
frequently occurring words from the labMT list in our Sept 2008 through Feb 2009 data
set, where stop words (4 < havg < 6) have been removed.
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Rank Word Frequency Happiness Rank Word Frequency Happiness Rank Word Frequency Happiness
(×105) (×105) (×105)

1 the 295.60 4.98 41 what 29.46 4.80 81 off 14.89 4.02
2 to 249.91 4.98 42 about 28.97 5.16 82 great 14.60 7.88
3 i 221.28 5.92 43 it’s 27.14 4.88 83 need 14.45 4.84
4 a 218.13 5.24 44 if 25.21 4.66 84 he 14.34 5.42
5 and 135.23 5.22 45 by 24.66 4.98 85 still 13.74 5.14
6 is 127.94 5.18 46 as 24.50 5.22 86 been 13.43 5.04
7 in 122.94 5.50 47 time 24.19 5.74 87 lol 13.35 6.84
8 of 121.79 4.94 48 one 23.73 5.40 88 would 13.15 5.38
9 for 114.41 5.22 49 will 23.58 6.02 89 thanks 13.09 7.40

10 you 103.55 6.24 50 can 23.57 5.62 90 home 13.05 7.14
11 on 96.97 5.56 51 an 22.73 4.84 91 want 12.81 5.70
12 my 94.91 6.16 52 we 22.59 6.38 92 people 12.71 6.16
13 it 91.09 5.02 53 some 22.32 5.02 93 night 12.70 6.22
14 that 69.81 4.94 54 que 22.26 4.64 94 here 12.28 5.48
15 at 58.51 4.90 55 day 21.80 6.24 95 o 12.26 4.96
16 with 56.42 5.72 56 how 21.64 4.68 96 blog 12.26 6.02
17 me 56.35 6.58 57 going 20.64 5.42 97 why 12.10 4.98
18 just 50.25 5.76 58 am 20.60 5.38 98 much 11.92 5.74
19 have 49.86 5.82 59 go 20.03 5.54 99 last 11.89 3.74
20 be 46.10 5.68 60 has 19.68 5.18 100 did 11.84 5.58
21 this 45.75 5.06 61 or 19.55 4.98 101 el 11.76 4.80
22 de 44.38 4.82 62 know 19.45 6.10 102 well 11.70 6.68
23 so 40.93 5.08 63 more 19.32 6.24 103 oh 11.69 4.84
24 not 39.98 3.86 64 la 18.77 5.00 104 who 11.64 5.06
25 i’m 39.89 5.74 65 don’t 18.29 3.70 105 should 11.48 5.24
26 are 39.03 5.16 66 today 18.24 6.22 106 over 11.34 4.82
27 but 37.78 4.24 67 too 18.15 5.22 107 make 11.27 6.00
28 was 37.74 4.60 68 they 18.09 5.62 108 then 11.15 5.34
29 up 36.04 6.14 69 work 17.95 5.24 109 right 11.04 6.54
30 out 35.20 4.62 70 got 17.91 5.60 110 can’t 10.93 3.42
31 now 35.12 5.90 71 love 17.66 8.42 111 way 10.84 5.24
32 no 34.40 3.48 72 think 17.45 6.20 112 only 10.72 4.92
33 new 34.03 6.82 73 back 17.37 5.18 113 getting 10.63 5.68
34 do 33.96 5.76 74 twitter 17.18 5.46 114 his 10.56 5.56
35 from 33.78 5.18 75 when 16.84 4.96 115 morning 10.38 6.56
36 like 31.75 7.22 76 there 16.39 5.10 116 very 10.10 6.12
37 your 31.43 5.60 77 had 15.30 4.74 117 after 9.82 5.08
38 all 30.71 6.22 78 see 15.28 6.06 118 watching 9.76 5.84
39 good 30.20 7.20 79 en 14.97 4.84 119 her 9.73 5.84
40 get 30.04 5.92 80 really 14.93 5.84 120 them 9.71 4.92

Table 2.A2: Top 120 most frequently occurring words from the labMT word list in our Sept
2008 through Feb 2009 data set including stop words.
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Week Start date N < k > kmax CG Assort # Comp. S

1 09.09.08 95647 2.99 261 0.10 0.24 10364 0.71
2 09.16.08 99236 2.95 313 0.10 0.24 11062 0.71
3 09.23.08 99694 2.90 369 0.09 0.13 11457 0.70
4 09.30.08 100228 2.87 338 0.09 0.13 11752 0.69
5 10.07.08 78296 2.60 241 0.09 0.21 11140 0.63
6 10.14.08 122644 3.20 394 0.09 0.14 12221 0.74
7 10.21.08 130027 3.30 559 0.08 0.09 12420 0.75
8 10.28.08 144036 3.56 492 0.08 0.14 12319 0.78
9 11.04.08 145346 3.54 330 0.08 0.19 12597 0.78

10 11.11.08 136534 3.35 441 0.08 0.12 12972 0.76
11 11.18.08 153486 3.46 444 0.08 0.13 13594 0.77
12 11.25.08 155753 3.46 1244 0.06 0.00 14122 0.77
13 12.02.08 165156 3.44 1245 0.06 0.01 14496 0.78
14 12.09.08 162445 3.33 1456 0.05 0.01 15342 0.76
15 12.16.08 148154 3.12 730 0.06 0.04 15645 0.73
16 12.23.08 140871 3.22 575 0.07 0.07 15216 0.72
17 12.30.08 143015 3.30 519 0.07 0.15 15272 0.73
18 01.06.09 170597 3.19 253 0.07 0.18 17234 0.74
19 01.13.09 188429 3.29 477 0.07 0.13 18403 0.75
20 01.20.09 196038 3.16 680 0.06 0.04 19927 0.74
21 01.27.09 203852 3.04 973 0.05 0.01 21537 0.73
22 02.03.09 212513 2.92 1718 0.04 -0.01 24387 0.71
23 02.10.09 213936 2.83 828 0.06 0.02 25854 0.70
24 02.17.09 215172 2.65 437 0.06 0.07 28742 0.67
25 02.24.09 170180 2.27 320 0.06 0.04 28388 0.58

Table 2.A3: Network statistics for reciprocal-reply networks by week. As Twitter popular-
ity grows, so does the number of users (N ) in the observed reciprocal-reply network. The
average degree (< k >), degree assortativity, the number of nodes in the giant component
(# Comp.), and the proportion of nodes in the giant component (S) remain fairly constant,
whereas the maximum degree (kmax) shows a great deal of variability from month to month.
Clustering (CG) shows a slight decrease over the course of this period.
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Week Start date # Obsvd. Msgs. # Total Msgs. % Obsvd. # Replies % Replies
×106 ×106 ×106

1 09.09.08 3.14 7.26 43.2 0.88 28.1
2 09.16.08 3.36 8.31 40.4 0.90 26.9
3 09.23.08 3.43 8.89 38.6 0.90 26.2
4 09.30.08 3.33 9.06 36.8 0.89 26.6
5 10.07.08 2.33 9.38 24.8 0.64 27.5
6 10.14.08 4.39 9.87 44.4 1.24 28.3
7 10.21.08 4.70 10.01 47.0 1.35 28.8
8 10.28.08 5.74 10.34 55.5 1.64 28.5
9 11.04.08 5.58 11.14 50.1 1.63 29.3

10 11.11.08 4.70 9.88 47.6 1.42 30.2
11 11.18.08 5.48 11.34 48.3 1.67 30.5
12 11.25.08 5.71 11.47 49.8 1.73 30.2
13 12.02.08 5.54 12.85 43.1 1.80 32.4
14 12.09.08 5.41 13.54 39.9 1.72 31.7
15 12.16.08 4.57 12.72 35.9 1.45 31.8
16 12.23.08 4.80 11.62 41.3 1.46 30.5
17 12.30.08 4.61 13.48 34.2 1.50 32.5
18 01.06.09 5.16 16.11 32.0 1.72 33.3
19 01.13.09 5.73 17.33 33.1 1.97 34.4
20 01.20.09 5.82 18.87 30.9 1.98 34.1
21 01.27.09 5.75 20.79 27.6 1.98 34.5
22 02.03.09 5.78 22.42 25.8 2.01 34.8
23 02.10.09 5.66 23.39 24.2 1.99 35.1
24 02.17.09 5.43 25.71 21.1 1.91 35.1
25 02.24.09 3.80 20.75 18.3 1.34 35.1

Table 2.A4: Number of observed messages in our database (September 2008 through
February 2009). The number of “observed” messages in our database comprise a frac-
tion of the total number of Twitter messages made during period of this study (September
2008 through February 2009). While our feed from the Twitter API remains fairly constant,
the total # of tweets grows, thus reducing the % of all tweets observed in our database. We
calculate the total # of messages as the difference between the last message id and the first
message id that we observe for a given month. This provides a reasonable estimation of the
number of tweets made per month as message ids were assigned (by Twitter) sequentially
during the time period of this study. We also report the number observed messages that are
replies to specific messages and the percentage of our observed messages which constitute
replies.

55



Chapter 3

An Evolutionary Algorithm Approach to Link

Prediction in Dynamic Social Networks

Many real world, complex phenomena have underlying structures of evolving

networks where nodes and links are added and removed over time. A central

scientific challenge is the description and explanation of network dynamics,

with a key test being the prediction of short and long term changes. For the

problem of short-term link prediction, existing methods attempt to determine

neighborhood metrics that correlate with the appearance of a link in the next

observation period. Recent work has suggested that the incorporation of topo-

logical features and node attributes can improve link prediction. We provide an

approach to predicting future links by applying the Covariance Matrix Adap-

tation Evolution Strategy (CMA-ES) to optimize weights which are used in a

linear combination of sixteen neighborhood and node similarity indices. We

examine a large dynamic social network with over 106 nodes (Twitter recip-

rocal reply networks), both as a test of our general method and as a problem

of scientific interest in itself. Our method exhibits fast convergence and high

levels of precision for the top twenty predicted links. Based on our findings,

we suggest possible factors which may be driving the evolution of Twitter re-

ciprocal reply networks.
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3.1 Introduction

Time varying social networks can be used to model groups whose dynamics change over

time. Individuals, represented by nodes, may enter or exit the network, while interactions,

represented by links, may strengthen or weaken. Most network growth models capture

global properties, but do not capture specific localized dynamics such as who will be con-

nected to whom in the future. And yet, it is precisely this type of information that would

be most valuable in applications such as national security, online social networking sites

(people you may know), and organizational studies (predicting potential collaborators).

In this paper, we focus primarily on the link prediction problem: given a snapshot of a

network Gt = (V,Et), with nodes V (nodes present across all time steps) and links Et, at

time t, we seek to predict the most likely links to newly occur in the next timestep, t+1 [1].

Link prediction strategies may be broadly categorized into three groups: similarity

based strategies, maximum likelihood algorithms, and probabilistic models. As noted by

Lu et al. [2], the latter two approaches can be prohibitively time consuming for a large

network over 10, 000 nodes. Given our interest in large, sparse networks with N & 106,

we focus primarily on local information and use similarity indices to characterize the like-

lihood of future interactions. We consider the two major classes of similarity indices:

topological-based and node attribute (Table 3.1).

There does not appear to be one best similarity index that is superior in all settings.

Depending on the network under analysis, various measures have shown to be particularly

promising [1, 3–8]. These findings suggest that the predictors which work “best” for a given

network may be related to the inherent structure within the individual network rather than a
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universal best set of predictors. Further, it is also plausible that the best link predictor may

change as the network responds to endogenous and exogenous factors driving its evolution.

Topological similarity indices encode information about the relative overlap between

nodes’ neighborhoods. We expect that the more “similar” two nodes’ topological neigh-

borhoods are (e.g., the more overlap in their shared friends), the more likely they may be

to exhibit a future link. The common neighbors index, a building block of many other

topological similarity indices, has been shown to correlate with the occurrence of future

links [9]. Several variants of this index have been proposed and have been shown to be

useful for link prediction in a variety of settings [3, 10–18]. See [2] for a review. In their

seminal paper on link prediction, Liben-Nowell and Kleinberg [1] examined author collab-

oration networks derived from arXiv submissions in four subfields of Physics. They found

that neighborhood similarity measures, such as the Jaccard [15], Adamic-Adar [19], and

the Katz coefficients [20] provided a large factor improvement over randomly predicted

links.

As a complement for topological similarity indices, node-specific similarity indices ex-

amine node attributes, such as language, topical similarity, and behavior, in the case of

social networks. Several studies have suggested that incorporating these measures can en-

hance link prediction [2, 4, 22–26]. In training algorithms for link prediction, researchers

have used supervised learning including support vector machine [27], decision trees [4],

bagged random forests [17], supervised random walks [6], multi-layer perceptrons, and

others. Notably, Al Hasan et al. [27] use both topological and node-specific features to

compare several supervised learning algorithms. They found that support vector machine

(SVM) performed the best for the prediction of future links. While SVM is often considered

a state of the art supervised learning model, one of its major drawbacks relates to kernel
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Figure 3.1: Visualization of persistent individuals and their interactions in a one week
Twitter RRN. A visualization of a one week Twitter reciprocal reply network exhibiting
interactions between a core of 25,936 users who were active in each of networks in the
period from September 9, 2008 to October 20, 2008 reveals the large degree observed in
one community (inset). The colors indicate modularity, a proxy for community structure, as
detected by Gephi’s implementation of Blondel’s “Fast unfolding of communities in large
networks” [21].

selection [28]. Furthermore, Litchenwalter et al. [17], who use Weka’s implementation of

bagged random forests to produce ensembles of models and reduce variance, note the need

to undersample due to the computational complexity of their method on large datasets. Of

particular interest, Wang et al. [4] study a network of individuals constructed from mobile

phone call data. They compare similarity indices used in isolation to a link predictor com-
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bining several indices (binary decision tree determined from supervised learning). These

researchers found that the combination of node-specific and topological similarity indices

outperform topological indices in isolation. While their results are promising, they ac-

knowledge that the cost comes from looking at only a subset (e.g., 300 potential links

which have Adamic-Adar scores > 0.5 and Spatial Co-location rate > 0.7) from the large

potential set of user-user pairs two-links away (e.g., 266,750).

Motivated by the above, we aim here to provide a link predictor encompassing both

topological and user-specific information, which exhibits fast convergence and which does

not require parametric thresholds nor undersampling due to computational complexity.

In this paper, we fix a linear model for combining neighborhood similarity measures

and node specific data and use an evolutionary algorithm to find the coefficients which

optimize the proportion of correctly predicted links. Rather than pre-supposing that all

similarity indices are of equal importance, we allow the weights of this linear combination

to adjust using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [29]). Clearly,

the optimal model combining similarity indices may not be linear and our assumption of

this model structure is a limitation of our work. With that said, our work has several

advantages over other methods for link prediction and our work reveals that a simple, linear

model produces comparable results (if not better), with the added advantage of suggesting

possible mechanisms driving the network’s evolution over time.

In many supervised learning approaches, link prediction efforts fit both a model struc-

ture and parameters. To surmount the challenge of large feature sets and large networks,

researchers limit which features to include or perform undersampling due to computational

complexity of these algorithms. Our approach of using CMA-ES for link prediction liber-

ates researchers to include several indices in the link predictor, irrespective of their assumed
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performance. This is a strength of our method in that no assumption of network class nor

prior knowledge about the system under analysis is required.

Although we focus on the link prediction problem for a large, dynamic social network,

our methods are independent of network type and may be applied to various biological,

infrastructure, social and virtual networks. We demonstrate sixteen commonly used simi-

larity indices here, but we emphasize that any other similarity indices may be interchanged

for or added to the ones included in this study. The choice of which similarity measures

to include will largely depend on available data (e.g., metadata for nodes and appropriate

topological indices one has available in the context of the network one is studying) and the

size of the network under consideration.

Another limitation of several supervised learning approaches for link prediction is that

the interpretation of the model may yield little information about the the network’s evolu-

tionary processes. Our methods provide transparency and the detection of indices which

function as good predictors for future links which can help to elucidate possible mecha-

nisms which may be driving the evolution of the network over time.

In recent years, there has been a surge of interest in viewing Twitter activity through the

lens of social network analysis. In many studies, nodes represent individuals and links rep-

resent following behavior [30–32], reciprocated following [33], replies [25] or reciprocated

replies [34].

Our application will be link prediction in Twitter reciprocal reply networks (RRNs), a

construction first proposed by Bliss et al. [34]. We examine the evolution of these networks

constructed at the time scale of weeks, where nodes represent users and links represent

evidence of reciprocated replies during the time period of analysis. While many other
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studies have examined following and reciprocated following, we use reciprocated replies

as evidence of social interaction and active engagement of individuals.1

Due to the large size of networks that we seek to study and the hypothesis that friends

of friends are more likely to become friends than individuals who have no friends in com-

mon [35, 36], we restrict out attention to the prediction of new links at time t + 1 which

occur between individuals who were separated by a path length of 2 at time t (i.e., triadic

closure). Empirical evidence suggests that a preponderance of new links form between

such 2-link neighbors in email reply networks [37], Twitter follower networks [38], and

Twitter RRNs.2

Previous link prediction efforts related to Twitter have largely focused on predicting

follower relationships. Rowe, Stankovic and Alani [23] use supervised learning to com-

bine topological and node specific features (e.g., topics of tweets, tweet counts, re-tweets,

etc.) to predict following behavior. Romero and Kleinberg also examined link prediction

in follower networks and suggest that directed closure plays an important role in the for-

mation of new links [38]. Hutto, Yardi, and Gilbert [24] examine 507 individuals and their

followers to find that user-specific characteristics, such as message content and behavior

should be given equal weight as topological characteristics for link prediction. Yin, Hong,

and Davison examine 979 individuals and their neighbors (in Twitter follower networks) to

predict following behavior over a six week time-scale [8]. Golder et al. examine Twitter

users’ desire to follow another user connected by a path length of two. They examine the

correlation between shared interests and reciprocated following on users’ expressed inter-

1Following is a relatively passive activity and the establishment of a link between such users may mis-
represent current attention to information in the network. Furthermore, follower networks typically do not
account for the “unfriending” problem and the accumulation of dead links in a network can distort the repre-
sentation of the true state of the system and spam.

2We observe approximately 35% of new links occurring between individuals connected by a path of length
2.
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est to make a new link (i.e., follow) and suggest that mutuality (reciprocated attention) is

correlated with increased desire to follow [39].

We organize our paper as follows: In Section 2, we describe our data, the sixteen sim-

ilarity indices, and the evolutionary algorithm used for evolving the weights on these in-

dices. In Section 3 we present our results and in Section 4 discuss the significance of these

findings, as well as suggest future directions for further work in this area.

3.2 Methods

3.2.1 Data

Our data set consists of over 51 million tweets collected via the Twitter gardenhose API

service from September 9, 2008 to December 1, 2008. This collection represents roughly

40% of all messages sent during this period (Table A1). Using the criteria defined by Bliss

et al. [34], we construct reciprocal reply networks3 as unweighted, undirected networks in

which a link exists between nodes u and v if and only if these individuals exhibit reciprocal

replies during the week under analysis (Fig. 3.1). These networks range in size from N =

78296 to N = 155753 nodes (Table A2).

Since our task is to predict links, we do not wish to confound our task with the problem

of node appearance or removal. To this end, we find a core of 25,936 users who were active

in each of networks in the period from September 9, 2008 to October 20, 2008 and a core

of 44,439 users who were active in each of the weeks in the six weeks from October 21,

2008 and December 1, 2008. We train our link predictor on the new links that occur in a

3We also construct reply networks, whereby nodes represent users and directed, weighted links represent
the number of replies sent from one individual to another during the week under analysis. Reply networks
are used in the computation of the average path weight, one of our similarity indices.
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given Week t (e.g., e ∈ Et \ Et−1) and validate on the new links that occur in week t + 1

(e.g., e ∈ Et+1 \ Et). We outline further details in the next two subsections.

Topological similarity indices (abbreviation)
Jaccard Index (J) J(u, v) =

|Γ(u)∩Γ(v)|
|Γ(u)∪Γ(v)| Measures the probability that a neighbor of u or v is a neigh-

bor of both u and v. This measurement is a way of character-
izing shared content and has been shown to be meaningful in
information retrieval [15].

Adamic-Adar Coeffi-
cient (A)

A(u, v) =
∑

z∈Γ(u)∩Γ(v)

1
log(|Γ(z)|) Quantifies features shared by nodes u and v and weights rarer

features more heavily [19]. Interpreting this in the context of
neighborhoods, the Adamic-Adar Coefficient can be used to
characterize neighborhood overlap between nodes u and v,
weighting the overlap of smaller such neighborhoods more
heavily.

Common neighbors
(C)

C(u, v) = |Γ(u) ∩ Γ(v)| Measures the number of shared neighbors between u and v.
Despite the simplicity of this index, Newman [9] documented
that the probability of future links occurring in a collaboration
network was positively correlated with the number of com-
mon neighbors.

Average Path Weight
(P)

P (u, v) =

∑
p∈P2(u,v)∪P3(u,v)

wp

|P2(u,v)|+|P3(u,v)| Computes the sum of the minimum weights on the directed
paths between u and v divided by the number of paths be-
tween u and v, where only paths of length 2 and 3 are con-
sidered due to the large size of this network. We take wp to
be the minimum weight of the edges in the path, in the spirit
that a path’s strength is only as strong as its weakest edge.

Katz (K) K =
∞∑
n=1

βnAn Computed as such, the Katz is a global index [20]. This se-
ries converges to (I − βA)−1 − I, when β < max(λ(A)).
When β � 1 then K approximates the number of common
neighbors. Due to the size of our network and computational
expense of this index, we truncate to n = 3. We set β = 1
because we are not concerned with convergence & to empha-
size the number of paths of length greater than two. Previous
observations suggest that individuals who appear to be con-
nected by a path length of n in Twitter RRNs may actually be
connected by a path of shorter length due to role of missing
data [34].

Preferential Attach-
ment (Pr)

Pr(u, v) = ku × kv Gives higher scores to pairs of nodes for which one or both
have high degree. This index arose from the observation that
nodes in some networks acquire new links with a probability
proportional to their degree [9] and preferential attachment
random growth models [10].

Resource Allocation
(R)

R(u, v) =
∑

z∈Γ(u)∩Γ(v)

1
|Γ(z)| Considers the amount of a given resource one node has and

assumes that each node will distribute its resource equally
among all neighbors [3].

Hub promoted Index
(Hp)

Hp(u, v) =
|Γ(u)∩Γ(v)|
min{ku,kv}

First proposed to measure the topological overlap of pairs of
substrates in metabolic networks, this index assigns higher
scores to links adjacent to hubs since the denominator de-
pends on the minimum degree of the two users [11].

Hub depressed Index
(Hd)

Hd(u, v) =
|Γ(u)∩Γ(v)|
max{ku,kv}

When one of the nodes has large degree, the denominator will
be larger and thus Hd is smaller in the case where one of the
users is a hub [13].

Leicht-Holme-
Newman Index
(L)

L(u, v) =
|Γ(u)∩Γ(v)|

kukv
Measures the number of common neighbors relative to the
square of their geometric mean. This index gives high simi-
larities to pairs of nodes that have many common neighbors
compared to the expected number of such neighbors [14].

continued . . .
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. . . continued
Topological similarity indices (abbreviation)
Salton Index (Sa) Sa(u, v) =

|Γ(u)∩Γ(v)|√
kukv

Measures the number of common neighbors relative to their
geometric mean [15].

Sorenson Index (So) So(u, v) =
2|Γ(u)∩Γ(v)|
ku+kv

Measures the number of common neighbors relative to their
arithmetic mean. This index is similar to J , however J
counts the number of (unique) nodes in the shared neighbor-
hood. This index was previously used to establish equal am-
plitude groups in plant sociology based on the similarity of
species [16].

Individual characteristics similarity indices
Id similarity (I) I(u, v) = 1− |Id(u)−Id(v)|

max{|Id(a)−Id(b)|}a,b∈V
In 2008, user ids were numbered sequentially and a user’s id
served as a proxy for the relative length of time since opening
a Twitter account. Id similarity characterizes the extent to
which two individuals adopt Twitter simultaneously.

Tweet count similarity
(T)

T (u, v) = 1− |T (u)−T (v)|
max{|T (a)−T (b)|}a,b∈V

Tweet count T (u) measures the number of Tweets we have
gathered for node u in a given week. Tweet count similar-
ity quantifies how similar two individuals’ tweet counts are,
with 1 representing identical tweet counts and 0 representing
dissimilar tweet counts.

Happiness similarity
(H)

H(u, v) = 1− |h(u)−h(v)|
max{|h(a)−h(b)|}a,b∈V

Building on previous work [40], happiness scores (h(u) and
h(v)) are computed as the average of happiness scores for
words authored by users u and v during the week of analysis.

Word similarity (W) W (u, v) = 1− 1
2

50000∑
n=1

|fu,n − fv,n| From a corpus consisting of the 50,000 most commonly oc-
curring words used in Twitter from 2008 through 2011 [40],
the similarity of words used by u and v is computed by a
modified Hamming distance, where fu,n represents the nor-
malized frequency of word usage of the nth word by user u.
The value of W (u, v) ranges from 0 (dissimilar word usage)
to 1 (similar word usage) [34].

Table 3.1: The sixteen similarity indices chosen for inclusion in the link predictor. We
define the neighborhood of node u to be Γ(u) = {v ∈ V |eu,v ∈ E}, where G = (V,E) is
a network, consisting of vertices (V ) and edges (E). The degree of node u is represented
by ku, the adjacency matrix is denoted by A, and a path of length n between u, v ∈ V is
denoted as Pn(u, v).

3.2.2 Similarity indices

Similarity indices capture the shared characteristics or contexts of two nodes. We briefly

describe 16 similarity indices chosen for inclusion in our link predictor, but wish to em-

phasize that any number of other similarity indices may be chosen for inclusion in the

evolutionary algorithm. The choice of which similarity indices to include may largely de-

pend on the metadata one has about the nodes and interactions, as well as the size of the

network.
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Figure 3.2: Similariy scores do not differentiate the link prediction signal. Scores for user-
user pairs with path length two in Week 7, which exhibit a link (blue) and which did not
(red) in Week 8. A higher score means that the user-user pair is more similar. For many
indices, there are more “duds” than “links” for a given score. Indices for which there are
“links” scoring higher than “duds” tend to exhibit a large, positive evolved coefficient (e.g.,
Adamic-Adar).
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Reproduction 
& Mutation 

Individual 

An individual or 
candidate solution is a 
vector, 𝑤 ∈ 𝑹16. 

Population 

CMA-ES 
From 1 individual, 
generate a Gaussian 
cloud of candidate 
solutions in 𝑹16  using 
the covariance matrix. 

A population consists of 
several candidate 
solutions (vectors in 
𝑹16). 

Evaluate fitness 

             S =  𝑤𝑖𝑆𝑖
16
𝑖=1 .            Node-node pairs  w/top                                                                            

.                                                 scores in S are predicted .                

.                                                 new links.  
 

                                             Fitness=
# 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑖𝑛𝑘𝑠

#  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑖𝑛𝑘𝑠
 

Selection 

The candidate solution 
with the best 
performance (min. 
fitness) survives 
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Figure 3.3: Link prediction with CMA-ES. An individual (or candidate solution) is a vector,
~w ∈ Rn, where n represents the number of indices used to constructor the predictor. We
chose 16 such similarity indices. The initial individual is ~w0 where each entry is initialized
between 0 and 1. From one individual, a Gaussian cloud of points in R16 is generated
from the covariance matrix. This step mimics reproduction and mutation and creates a
population of candidate solutions. Fitness is calculated for each candidate as the proportion
of links incorrectly predicted, where a new link eij is predicted if sij is one of the top entries
in matrix S. Selection occurs by taking the best candidate solution, ~w ∈ R16. This one
individual survives the generation and the cycle is repeated.
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Topological similarity indices may be characterized by local, quasi-local, or global

measures. Since global similarity measures (i.e., Katz, SimRank, and Matrix Forest Index)

are computationally laborious for large networks [13], we forgo these measures in lieu of

local topological indices. For node similarity we calculate four indices: Twitter Id similar-

ity, tweet count similarity, word similarity and happiness similarity. All of these indices are

described in Table 3.1. We then rescale the computed scores to range from 0 to 1, inclusive,

and store as N ×N sparse matrices, hereafter referred to as Si, for i = 1, 2, . . . , 16.

We depict frequency plots for the computed similarity indices in Figure 3.2. These plots

demonstrate that none of the similarity indices separate the newly formed “links” (user-user

pairs who are separated by a minimal path of length 2 at t and a path of length 1 at t + 1)

and “duds” (user-user pairs who are separated by a minimal path of length 2 at t and a path

of length δ 6= 1 at t + 1). This lack of separation is one indication that a predictor which

combines information from several indices may improve link prediction efforts. Figure 3.2

also reveals that the manner in which the predictors should be combined is not as straight-

forward as one might envision. For example, some similarity indices, such as Adamic-Adar

(Fig. 3.2b) and Resource Allocation (Fig. 3.2i) show potential for differentiating links and

duds. Other indices, such as Twitter Id similarity (Fig. 3.2o) maintain a greater number

of duds than links, across all scores. This is a result of the large class imbalance between

the number of potential user-user pairs for new links and the actual numbers of new links

formed, a common occurrence in large, sparse networks.

3.2.3 Evolutionary algorithm

Evolutionary algorithms take inspiration from biological systems whereby individuals rep-

resenting candidate solutions evolve over generational time via selection, reproduction,
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mutation, and recombination (Fig. 3.3). In our task, we construct a linear combination of

similarity indices, Si, and use an evolutionary strategy to evolve the coefficients, wi, used

in computing a score matrix, S,

S =
16∑

i=1

wiSi, (3.1)

for which the minimum error in link prediction is desired.

Our task is essentially an optimization problem. Our choice for CMA-ES stems from its

efficiency in finding real valued solutions in noisy landscapes [41]. In contrast to gradient

descent approaches for finding optimal solutions, CMA-ES is not reliant on assumptions of

differentiability nor continuity of the fitness landscape. Our method requires no heuristics,

which is an advantage over many existing supervised learning methods (e.g., SVM) that

require extensive parameter tuning and kernel selection [29]. Additionally, our method is

flexible and allows for any similarity index to be substituted into or added to the evolution-

ary algorithm. Ideally, the transparency of the evolved “best” predictors will help illustrate

possible driving mechanisms behind the network’s evolution. This method is also one of

the best evolutionary algorithms for finding optima of real valued solutions due to its fast

convergence.4 We refer the interested reader to [42] for more detail regarding the CMA-ES

algorithm.

Figure 3.3 outlines our implementation of CMA-ES for link prediction. Before employ-

ing the evolutionary algorithm, all similarity indices are computed and stored as N × N

sparse matrices, Si for i = 1, 2, . . . , 16. The evolutionary algorithm begins with a candidate

solution termed an “individual” in the language of evolutionary computation. Entries of ~w

are initially set to real values between 0 and 1 chosen from a uniform random distribution.

4Here, we refer to fast convergence in generational time. The CPU time for one generation of our CMA-
ES implementation for link prediction was 13 seconds.
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These values are not constrained during evolution. Using CMA-ES with both rank-1 and

rank-µ updates5 we evolve ~w = 〈w1, w2, . . . , w16〉 ∈ R16 over 250 generations [29]. At

each generation, a population of candidate solutions is selected from a multivariate Gaus-

sian cloud6 surrounding the “individual” surviving the previous generation.

Each candidate solution in the “population” is assessed for fitness and the individual

with the best fitness survives the generation. The standard implementation of CMA-ES

selects the “best solution” as that which minimizes fitness. As such, our fitness function7

computes the link prediction error for each ~w ∈ R16. One of the difficulties with CMA-ES

is the potential to be trapped in local optima. To avoid this, we perform 100 restarts, a

technique suggested by Auger and Hansen [43].

3.2.4 Cross referencing links

From the 100 best solutions evolved via CMA-ES for each of the four fitness functions

(e.g., where the top 20, 200, 2000 or 20000 scores are used to predict future links) we

cross-reference the top N scoring user-user pairs. The user-user pairs which are most

heavily cross-referenced (i.e., links which most models agree upon) are those for which we

predict a link. In addition to the 400 best evolved predictors, we also feed in information

from the Resource Allocation similarity index when prediction top N <10 because of the

high performance of this index for predicting the top 10 or fewer links on training sets.

5Briefly, rank-1 updates utilize information about correlations between generations, which is helpful for
evolution with small populations of candidate solutions. Rank-µ updates utilize information from the current
generation, which helps speed up the algorithm for large populations.

6We use the default population size of 4 + b3 log(m)c, for solutions in Rm, from Hansen’s source code
available at https://www.lri.fr/˜hansen/cmaes_inmatlab.html (last accessed on October
1, 2012). Increasing the population size did not improve our results.

7for each of four fitness functions fitness20, fitness200, fitness2000, fitness20000 where the subscript denotes
the top N scoring user-user pairs (e.g., predicted links). By incorporating fitness functions which operate at
different scales, we investigate the sensitivity of the top N on the link predictor’s performance in validation.
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3.3 Results

Our overall finding is that the evolved predictor consisting of all sixteen similarity indices

outperformed all other combined and individual indices on the training data when training

occurred on a given week’s RRN. In Figure 3.4, we present the results for fitness20 during

training on new links formed from Week 7 to Week 8. The solid black curve depicting the
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Figure 3.4: Mean best fitness computed from 100 simulations of CMA-ES. The algorithm
trains on the new links that occur in Week 8 (i.e., links present in Week 8 that were not
present in Week 7) using fitness20. The evolutionary algorithm seeks to minimize fitness
(i.e., minimize the proportion of falsely predicted links). We compare each individual index
(shown in color), along with the three evolved predictors (shown in black): “all16” (all 16
indices), “topo12” (12 topological indices), and “node4” (4 individual similarity indices).
The “all16” predictor performs the best, followed by the “topo12” predictor.

“all16” predictor shows that while the average fitness at generation 1 for the 100 candidates
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was far worse (≈ 0.65) than several similarity indices such as Adamic-Adar (≈ 0.55),

Common neighbors (≈ 0.55) and Resource Allocation ≈ 0.60), convergence to a far better

set of solutions occurred within 100 generations (≈ .22). The combination of the twelve

topological indices outperformed all individual indices, but was outperformed by the all16

predictor. This difference is most pronounced for the top N=20 cases, however this trend

holds true for the other fitness functions (Appendix, Fig. 3.A1).

(a) 100 evolved best “inidividuals” from CMA-ES (b) Frequency plot for ranked coefficients,
wi corresponding to similarity indices

Figure 3.5: Characterizing the 100 best “individuals” from CMA-ES. (a.) Presentation of
the best solutions evolved from each of 100 simulations using fitness20 and the “all16” pre-
dictors to predict new links that occurred from Week 7 to 8. (b.) Frequency plot of ranked
coefficients from (a.), where 1st place represents large, positive coefficients and 16th place
represents large, negative coefficients. Disk size indicates the fraction of times an index
received a given ranking. Adamic-Adar, Happiness similarity, Resource Allocation and
Twitter Id similarity were the most commonly occurring indices ranked 1st (largest, pos-
itive) coefficient, and LHN often evolved to the largest, negative coefficient. This sug-
gests possible mechanisms which may have been driving the evolution of the network
during this time period. J=Jaccard, A=Adamic-Adar, C=Common neighbors, P=Paths,
K=Katz, Pr=Preferential attachment, R=Resource allocation, Hd=Hub depressed, Hp=Hub
promoted, L=Leicht-Holme-Newman, Sa=Salton, So=Sorenson, I=Twitter id similarity,
T=Tweet count similarity, H=Happiness similarity, W=Word similarity.
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Our interest extends beyond an analysis of the proportion of links correctly predicted.

We reveal the constituents of our link predictor (~w ∈ R16) as a means to gain an (initial)

understanding of the mechanisms which may be driving the evolution of Twitter RRNs. In

this spirit, we present two visualizations which capture this information. For illustration

purposes, we highlight the results from Week 8, using a fitness function which selects the

top 20 scores as new links, in Figure 3.5.

Figure 3.5a shows all 100 solutions which evolved after 250 generations of CMA-ES,

~w, as horizontal rows. The ith column signifies the wi coefficient used in the linear com-

bination of the weights. The color axis reveals the value of ith coefficient. Several trends

are worth noting here. First, there is considerable variability between the 100 evolved best

candidates. Second, despite this variability, Adamic-Adar, Common neighbors, Resource

Allocation, Happiness, and Twitter Id similarity columns have many more positive values

than negative. On the other hand, the coefficient for the Leicht-Holme-Newman index often

evolved to a large negative weight. This signifies that user-user pairs which had high scores

for the indices which evolved large, positive weights (e.g., Adamic-Adar, Common neigh-

bors, Resource Allocation, Happiness, and Id similarity) and low scores for the indices

which evolve large, negative weights (e.g., Leicht-Holme-Newman) were more likely to

exhibit a future link.

We also visualize the relative ranking of the indices by their coefficients the Fig. 3.5b

(and corresponding plots in the Appendices 3.A2–3.A5). Ordering the coefficients from

greatest (most positive in 1st place) to least (most negative in 16th place) reveals that

Adamic-Adar, Common neighbors, Resource Allocation, Happiness, and Twitter Id simi-

larity often occupied the 1st-4th rankings (i.e., indices with the largest positive contribution,

whereas LHN was often in 16th place (the largest negative weight). Other indices showed
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considerable variability in their ranking. We explore the implications of these findings in

our discussion.
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Figure 3.6: Receiver Operating Curve (ROC) for the all16 predictor using fitness20000.
AUCWeek 2 7−→3 = .723, AUCWeek 4 7−→5 = .721, AUCWeek 8 7−→9 = .726,, and
AUCWeek 10 7−→11 = .707.

The ROC curve demonstrates that the true positive rate is considerably larger than the

false positive rate (TPR > FPR) (Fig. 3.6). We find AUC scores greater than 0.7 for all

weeks in the validation set, suggesting that our predictor performs quite well, especially

compared to other work with Twitter follower networks which did not suffer from missing

data issues [23]. We discuss these implications further in Section 4.
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For large, sparse networks, the negative class is often much larger than the positive

class. In our case, the number of new links (positive class) is on the order of 104, whereas

the number of potential links which do not exhibit future links (negative class) is on the

order of 108. Given this imbalance, measures such as accuracy, negative predictive value,

and specificity will be very close to 1, even for random link predictors. As suggested

by Wang et al. [4], more emphasis should be placed on recall and precision due to the

large class imbalance between positives and negatives. The tunable parameter β allows for

unequal weighting on recall vs. precision:

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

. (3.2)

In some applications, false positives (“false alarms”) may be relatively costless, whereas

false negatives (“misses”) may pose an imminent threat. In these cases, recall is much

more important than precision and setting β > 1 will weight recall more heavily in the Fβ

score. In contrast, other applications may involve scenarios where false positives are costly

to explore and a small number of links, for which we are fairly certainly about, is highly

prized. In these cases, one can set β < 1 to place more importance on precision.

Tuning β to one of 0.5, 1 or 2, we find that the F1 peaks around top N ≈ 104 (Fig. 3.7).

F -scores are higher for weeks during which we received a higher percentage of tweets

from the Twitter API service. For example, F0.5 = 0.203, F1 = .177, F2 = .142, and

F0.5 = 0.226, F1 = .181, F2 = .143 for links which occurred from Weeks 8 to 9 and Weeks

10 to 11, respectively. In Week 5, we received a far smaller percentage of tweets. F -scores

for new links occurring from Weeks 4 to 5 are F0.5 = 0.184, F1 = .152, F2 = .128.

Figure 3.8 depicts the precision of the predicted links as a function of the top N scor-

ing user-user pairs. High precision is achieved for the fitness function which operates by
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selecting the top 20 scoring user-user pairs, which is often the region of interest. Preci-

sion is lower for predicted links from Week 4 to 5, a week in which we received a very

low percentage of tweets from the Twitter API service, and higher for predicted links from

Week 8 to 9 and Week 10 to 11, weeks for which we received a higher percentage of tweets

from the Twitter API service (see Table A1). We also compute negative predictive value,

and find this is consistently close to 1 due to the large true negative class. Specificity and

accuracy are close to 1 for nearly all values of top N links predicted, except for particularly

large N (> 104). This is due to the large class imbalance of true negatives (TN ), which

dominate the numerator and denominator of these calculations.

3.3.1 Exploring the impact of missing data

During the twelve week period from September 9, 2008 - Dec 1, 2008 we received approx-

imately 40% of all tweets from Twitter’s API service (Table A1). There are therefore both

individuals and interactions that are unaccounted for in our training and validation period.

Consequently, there are individuals who are connected by a path of length two in the true

network, but which appear to be connected by a longer path because we have not captured

interactions for intermediaries.

We explore the potential impact of missing tweets on our predictor by randomly se-

lecting 50% of our observed tweets and constructing the reciprocal reply subnetworks for

Weeks 1 through 12. The evolutionary algorithm trains and validates on these subnetworks.

For clarity, we denote G for our observed networks and Gs, for our subnetworks. We iden-

tify the percent of links which are labeled as false positives in Gs and true positive in G.

This occurs precisely because our link predictor suggested a link which was actually cor-

rect, but for which an incomplete data set caused the link to be classified as a false positive.
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As such, we are underestimating the success of our link prediction method. Given a more

complete data set, our results would most likely be better than we report here.

We next investigate the effects of missing data on our predictor, under the condition that

50% of the Tweets have been removed. We observe that the number of correctly predicted

links is hindered by the missing data, and the proportion of links which are incorrectly

termed “false-positive” because they are actually links in the weekly network containing a

more complete data set is roughly 10% (Fig. 3.9). This result from bootstrapping suggests

that the performance of our predictors is a lower bound on performance, i.e., true precision

and recall are most likely better than we report.

3.3.2 Comparison to other methods

Other studies in the area of link prediction have reported the factor improvement over

random link prediction [1, 4]. We follow suit and compute the factor improvement of our

predictor over a randomly chosen pair of users. The probability that a randomly chosen

pair of individuals who are not connected in week i become connected in week i + 1 is
|Edgesnew|

(|V (G)|
2 )−|Edgesold|

. There are 44,439 nodes in the validation set and, as a sample calculation,

71,927 edges in week 7. There are 53,722 new links that occur from Week 7 to 8. Thus,

the probability of a randomly chosen pair of nodes from Week 7 exhibiting a link in Week

8 is approximately 53,722

(44,439
2 )−71,927

≈ .0054%.

We observe significant factors of improvement over randomly selected new links, usu-

ally on the order of 104 for top N <20 (Fig. 3.10). We notice that Resource Allocation

outperformed other similarity indices when used in isolation to select the top 5 links during

training and have included this in the cross-validation (PredictorRA) step for selecting the

top 10 (or fewer) links. We observe that the combined predictor outperforms indices used in
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Figure 3.7: Fβ scores for each of the validation sets. When β = 1, precision and recall are
weighted equally. β > 1 weights recall (TPR = TP

TP+TP+FN
), whereas β < 1 places more

importance on precision (PPV = TP
TP+FP

). Our predictor performs better with respect to
precision and peaks for values on the order of 103. The standard F1 score peaks around
104 and compares favorably with the work of [23]. The highest Fβ scores are found for
W10→ 11.

isolation most choices of top N link prediction. Due to the recent interest in using network

flow measures, we also compare our predictors to propflow restricted to a path of length

two, a method proposed by Lichtenwalter et al. [17]. Our method strongly outperforms this

index.

Lastly, we compare our results to those obtained by training a binary decision tree

classifier.8 Typically, balanced classes are used in training binary decision trees in order

8We use Matlab’s implementation of binary classification trees to train on new links that form from Week
7 to Week 8.
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Figure 3.8: Precision for the predicted links in the validation sets. High precision is
achieved for topN < 20, which is often the region of interest. The precision for pre-
dicted links in W4 → W5′ is lower than the other weeks and this may be due to missing
data for those weeks (see Table A2).

to overcome problems associated with unbalanced classes [17, 44, 45]. We note that since

our method for link prediction operates on all node-node pairs separated by path length two

(e.g., highly unbalanced classes), we train our binary decision tree on unbalanced classes to

avoid confounding our comparison with issues related to balanced and unbalanced classes.

Furthermore, we set our method to select the topN=7417 links, which provides for roughly

the same number of true positives as identified by the binary decision tree classifier. Ta-

ble 3.2 reveals the results of this comparison. With this choice of topN , our approach

performs slightly better across several indicators, such as accuracy and recall. Most no-

tably, our precision is nearly three times as great as that obtained from our binary decision
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Figure 3.9: Proportion of incorrectly labeled false positives due to incomplete data. To test
the effect of missing data, we remove 50% of our observed tweets and recreate networks
using this subsample of the data for Week 7 to 8.

tree. Our false discovery rate is lower than that obtained for binary decision trees and this

may be simply due to our taking a topN approach to link prediction, which inherently

limits the number of false positives by tuning the topN links to predict. We discuss these

results in more detail in the next section.

3.4 Discussion

Our measures perform quite well in comparison to other researchers working in the area

of link prediction for Twitter. Rowe, Stankovic, and Alani [23] explore topological and

individual specific similarity indices (words and topic similarity) in an effort to predict
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(a) W2→W3
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(b) W4→W5
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(c) W8→W9
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(d) W10→W11

Figure 3.10: Factor improvement over randomly selected user-user pairs. Large factor
improvements are exhibited for predicting the topN links, with notable peaks forN <100.
The combined predictor outperforms the Common neighbors, Adamic-Adar, Paths, Katz,
and Resource Allocation indices used in isolation over most choices for the top N links
predicted.

following behavior. They find an AUC < 0.6 whereas we find AUC > 0.7 for all exper-

iments. Yin, Hong, and Davison [8] develop a structure based link prediction model and

report F -scores on the order of F = .190 for Twitter follower networks. These networks

do not suffer from incomplete data in the same way that Twitter reciprocal reply networks
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Binary Decision Tree CMA-ES
Accuracy 0.9555 0.9741
Precision 0.0894 0.2131
Recall (true pos. rate) 0.0694 0.0858
False positive rate 0.0197 0.0068
False discovery rate 0.9106 0.7869

Table 3.2: Comparison of binary decision trees vs. CMA-ES for topN link prediction.
CMA-ES (with topN=7417) slightly outperforms binary decision trees trained on new links
that form from Week 7 to Week 8. We note that unbalanced classes are used in both cases.

do. Our predictor performs comparatively well, with scores ranging from F1 =0.152 for

validation on new links occurring from Week 4 to 5, a week for which we obtained approx-

imately 24% of all tweets, to F1 =0.181 for validation on new links occurring from Week

10 to 11, a week for which we obtained approximately 48% of all tweets.

We have developed a meaningful link predictor for Twitter reciprocal reply networks, a

social subnetwork consisting of individuals who demonstrate active and ongoing engage-

ment. We were able to achieve a factor of improvement over random link selection on

the order of 104 for the top 20 (or fewer) links predicted and 103 over several orders of

magnitude for the top N links predicted.

Wang et al. [4] examine a social network constructed from mobile phone call data and

find a factor improvement of approximately 1.5 × 103. To compare our work, however,

one must standardize for the number of nodes in the network.9 Upon doing so, we find our

factor improvement is an order of magnitude higher.

We compare our results to other approaches, such as propflow and binary decision trees.

As suggested by others and observed here, link prediction in large, sparse networks suffers

from problems related to unbalanced classes. As such, we caution the interpretation of our

9These researchers report 579,087,610 potential new links and a factor improvement of 1500. Rescaling
the factor improvement for networks of the same size amounts to computing the probability of a randomly
predicted link being correct.
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results in comparision to industry standards, such as binary decision trees. Future work may

improve upon our methods by using balanced classes in the evolution of coefficients over

generational time in CMA-ES. Incorporating these strategies and others may allow for more

insightful comparisons between our methods and other supervised learning approaches.

One of the most intriguing aspects of this work is the detection of similarity indices

which evolve to have large, positive weights in our link predictors. Perhaps the most notable

similarity index for which this is the case is the Resource Allocation index. Resource

allocation considers the amount of resource one node has and assumes that each node will

distribute its resource equally among all neighbors [3]. Considering the limits to time and

attention an individual has, this may be suggestive of a mechanism by which users limit

their interaction, a result suggested by Gonçalves et al. [46] and also noted by [34] in

Twitter RRNs.

In addition to suggesting that our work is comparable to or an improvement upon other

work which combines measures via supervised learning, we present a method which is

transparent and transferable. Future work may involve the inclusion of geospatial data [47]

or community structure to predict links. Efforts to consider the persistence or decay of

links over time, or inconsistencies in flow rates [48] could also prove fruitful.
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3.7 Appendix

Week Start date # Obsvd. Msgs. # Total Msgs. % Obsvd. # Replies % Replies
×106 ×106 ×106

1 09.09.08 3.14 7.26 43.2 0.88 28.1
2 09.16.08 3.36 8.31 40.4 0.90 26.9
3 09.23.08 3.43 8.89 38.6 0.90 26.2
4 09.30.08 3.33 9.06 36.8 0.89 26.6
5 10.07.08 2.33 9.38 24.8 0.64 27.5
6 10.14.08 4.39 9.87 44.4 1.24 28.3
7 10.21.08 4.70 10.01 47.0 1.35 28.8
8 10.28.08 5.74 10.34 55.5 1.64 28.5
9 11.04.08 5.58 11.14 50.1 1.63 29.3

10 11.11.08 4.70 9.88 47.6 1.42 30.2
11 11.18.08 5.48 11.34 48.3 1.67 30.5
12 11.25.08 5.71 11.47 49.8 1.73 30.2

Table 3.A1: Number of “observed” messages in our database. The number of “observed”
messages in our database comprise a fraction of the total number of Twitter message made
during period of this study (September 2008 through November 2009). While our feed
from the Twitter API remains fairly constant, the total # of tweets grows, thus reducing
the % of all tweets observed in our database. We calculate the total # of messages as the
difference between the last message id and the first message id that we observe for a given
month. This provides a reasonable estimation of the number of tweets made per month as
message ids were assigned (by Twitter) sequentially during the time period of this study.
We also report the number observed messages that are replies to specific messages and the
percentage of our observed messages which constitute replies.
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Week Start date N < k > kmax CG Assort # Comp. S

1 09.09.08 95647 2.99 261 0.10 0.24 10364 0.71
2 09.16.08 99236 2.95 313 0.10 0.24 11062 0.71
3 09.23.08 99694 2.90 369 0.09 0.13 11457 0.70
4 09.30.08 100228 2.87 338 0.09 0.13 11752 0.69
5 10.07.08 78296 2.60 241 0.09 0.21 11140 0.63
6 10.14.08 122644 3.20 394 0.09 0.14 12221 0.74
7 10.21.08 130027 3.30 559 0.08 0.09 12420 0.75
8 10.28.08 144036 3.56 492 0.08 0.14 12319 0.78
9 11.04.08 145346 3.54 330 0.08 0.19 12597 0.78

10 11.11.08 136534 3.35 441 0.08 0.12 12972 0.76
11 11.18.08 153486 3.46 444 0.08 0.13 13594 0.77
12 11.25.08 155753 3.46 1244 0.06 0.00 14122 0.77

Table 3.A2: Network statistics for reciprocal-reply networks by week. As Twitter popular-
ity grows, so does the number of users (N ) in the observed reciprocal-reply network. The
average degree (< k >), degree assortativity, the number of nodes in the giant component
(# Comp.), and the proportion of nodes in the giant component (S) remain fairly constant,
whereas the maximum degree (kmax) shows a great deal of variability from month to month.
Clustering (CG) shows a slight decrease over the course of this period.
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Figure 3.A1: Mean fitness computed from 100 simulations of CMA-ES. Training occurs
on the new links that occur in a given week for each of (columns left to right) top N=20,
top N=200, top N=2000 and top N=20,000. We compare each individual index, along
with “all16” (evolved predictor consisting of all 16 indices), “topo12” (evolved predictor
consisting of only the 12 topological indices), and “node4” (evolved predictor consisting
of only the 4 node similarity indices). To show detail, the axes are not uniformly scaled
between each column.
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(a) N=20 (b) N=200 (c) N=2000 (d) N=20000

(e) N=20 (f) N=200 (g) N=2000 (h) N=20000

Figure 3.A2: Ranking of the value of the evolved coefficients from each of 100 CMA-
ES runs, Weeks 1-2. Preferential attachment, resource allocation and common neighbors
are the most frequently chosen top ranking (i.e., heavily weighted) indices. The lowest
ranking index was LHN. Individual similarity indices, such as happiness, word similar-
ity, Twitter user Id and Tweet count were ranked intermediate. J=Jaccard, A=Adamic-
Adar, C=Common neighbors, P=Paths, K=Katz, Pr=Preferential attachment, R=Resource
allocation, Hd=Hub depressed, Hp=Hub promoted, L=Leicht-Holme-Newman, Sa=Salton,
So=Sorenson, I=Twitter Id similarity, T=Tweet count similarity, H=Happiness similarity,
W=word similarity.
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(a) N=20 (b) N=200 (c) N=2000 (d) N=20000

(e) N=20 (f) N=200 (g) N=2000 (h) N=20000

Figure 3.A3: Ranking of the value of the evolved coefficients from each of 100 CMA-
ES runs, Weeks 3-4. Happiness similarity, resource allocation and Adamic-Adar are the
most frequently chosen top ranking (i.e., heavily weighted) indices. The lowest rank-
ing index was LHN. Individual similarity indices, such as happiness, word similarity,
Twitter user Id and Tweet count were ranked intermediate. J=Jaccard, A=Adamic-Adar,
C=Common neighbors, P=Paths, K=Katz, Pr=Preferential attachment, R=Resource al-
location, Hd=Hub depressed, Hp=Hub promoted, L=Leicht-Holme-Newman, Sa=Salton,
So=Sorenson, I=Twitter Id similarity, T=Tweet count similarity, H=Happiness similarity,
W=word similarity.
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(a) N=20 (b) N=200 (c) N=2000 (d) N=20000

(e) N=20 (f) N=200 (g) N=2000 (h) N=20000

Figure 3.A4: Ranking of the value of the evolved coefficients from each of 100 CMA-
ES runs, Weeks 7-8. Happiness similarity, common neighbors and resource allocation
are the most frequently chosen top ranking (i.e., heavily weighted) indices. The lowest
ranking index was LHN. Individual similarity indices, such as happiness, word similar-
ity, Twitter user Id and Tweet count were ranked intermediate. J=Jaccard, A=Adamic-
Adar, C=Common neighbors, P=Paths, K=Katz, Pr=Preferential attachment, R=Resource
allocation, Hd=Hub depressed, Hp=Hub promoted, L=Leicht-Holme-Newman, Sa=Salton,
So=Sorenson, I=Twitter Id similarity, T=Tweet count similarity, H=Happiness similarity,
W=word similarity.
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(a) N=20 (b) N=200 (c) N=2000 (d) N=20000

(e) N=20 (f) N=200 (g) N=2000 (h) N=20000

Figure 3.A5: Ranking of the value of the evolved coefficients from each of 100 CMA-ES
runs, Weeks 9-10. Resource allocation and common neighbors are the most frequently
chosen top ranking (i.e., heavily weighted) indices. The lowest ranking index was LHN.
Individual similarity indices, such as happiness, word similarity, Twitter user Id and Tweet
count were ranked intermediate. J=Jaccard, A=Adamic-Adar, C=Common neighbors,
P=Paths, K=Katz, Pr=Preferential attachment, R=Resource allocation, Hd=Hub depressed,
Hp=Hub promoted, L=Leicht-Holme-Newman, Sa=Salton, So=Sorenson, I=Twitter Id
similarity, T=Tweet count similarity, H=Happiness similarity, W=word similarity.

96



Chapter 4

Estimation of global network statistics from in-

complete data

Complex networks underlie a variety of social, biological, physical, and virtual

systems. In many settings, it is impossible to observe all nodes and all network

interactions. Previous work addressing the impacts of partial network data,

which is surprisingly limited and focuses primarily on missing nodes, suggests

that network statistics derived from subsampled data are not suitable plug in

estimators for network statistics describing the overall network topology. Our

aim is to generate scaling methods to predict true network parameters from

only partial knowledge of nodes, links, or weights. We validate analytical re-

sults on four simulated network classes (Erdös-Rényi, Scale-free, Small World,

and Range dependent networks) each with N = 2 × 105 and kavg = 10 and

empirical data sets of various sizes. We perform 100 subsampling experiments

by varying proportions of sampled data and demonstrate that our scaling meth-

ods provide very good estimates of the true network parameters. Lastly, we

apply our techniques to a set of rich and evolving large-scale social networks,

Twitter reply networks. From over 100 million tweets, we use our scaling tech-

niques to propose a statistical characterization of the Twitter interactome from

September 2008-February 2009.
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4.1 Introduction

Complex networks have been used to represent a variety of interactions in biological, so-

cial, and virtual realms. In practice, data collected about networks is often incomplete due

to covert interactions or constraints in sampling. Particular individuals may wish to remain

hidden, such as members of organized crime, and individuals who are otherwise overt may

have some interactions that they wish to remain hidden because those interactions are of

a sensitive nature (e.g., sexual contacts). In other instances, sampling constraints for ex-

tremely large networks necessitate an understanding of how network statistics scale under

various sampling regimes [1, 2]. Explorations of empirically studied networks have largely

ignored these biases and consequently, characterizations of the observable (sub)networks

have been reported as if they characterize the “true” network of interest.

When members of a population are drawn at random, each with equal selection prob-

ability, the sample parameter being studied is often a good estimate of the population pa-

rameter. Problematically, global statistics of subnetwork data are often not good character-

izations of the true network because subsamples can be biased in that some individuals or

interactions may be more likely to be selected in a subsample [3]. As an example, consider

a network for which a random selection of links are observed. The collection of observed

nodes in such a subnetwork is biased because large degree nodes are more likely to be

included in the sample than nodes of small degree.

The errors introduced by biases in sampling may be exacerbated by particular sam-

pling strategies and also by various underlying network topologies of the true network from

which the subsamples are chosen [4–11]. Kossinets [7] highlighted the missing data prob-

lem for social networks and demonstrated that both the sampling strategy and underlying
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network topology influence how a particular network parameter scales. Kossinets docu-

ments that subnetwork statistics are often not good estimates of true network statistics, in

some cases, producing an error of over 200% [7]. Other researchers have similarly ex-

plored sampling by nodes [1, 5, 9, 12–14], sampled edges or messages [1, 2, 14], and graph

exploration methods based on random walks, snowball sampling or respondent driven sam-

pling [1, 15, 16]. Others have explored biases in these sampling regimes [14–19].

The development of techniques to correct sample estimates of population parameters

would enable more accurate portrayals of empirically studied networks and aid in efforts

to model cascading failures, as well as complex contagion. Additionally, in cases where

a characterization of a large network is desired, the development of techniques to probe

a system with minimal effort and computational resources would greatly aid in the un-

derstanding of large network data sets. Before proceeding, we outline some of the most

common global network statistics.

4.1.1 Global network statistics

Networks may be characterized by a variety of network statistics. In this paper, we explore

how descriptive measures such as the number of nodes (N ), the number of edges (M ), the

average degree (kavg), clustering coefficient (C) [20], the proportion of nodes in the giant

component (S) and the max degree (kmax) scale with respect to missing network data and

suggest predictor methods for inferring true network statistics from subsampled network

data. Problematically, sample statistics are not good estimators for the true, underlying

network from which the sample was drawn. Relatively few studies focusing on how miss-

ing network data impacts inferred network topology provide analytical results that can be

applied to scale subsampled network statistics to values described the full, often unknown,
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network. Those that have provided analytical results focus primarily on subnetworks in-

duced by sampled nodes [12, 21].

In addition to these parameters, the degree distribution, Pr(k), can provide valuable

insight into network structure. The classical Erdös-Rényi random graph growth model

exhibits a Poisson degree distribution, Pr(k) = λke−λ

k!
[22]. In contrast to Erdös-Rényi ran-

dom networks, preferential attachment growth models describe a random process whereby

new nodes attach preferentially to nodes of large degree giving rise to a Powerlaw or Scale-

free degree distribution, Pr(k) ∝ k−γ [23–26]. Other distributions, such as lognormals

and powerlaws with exponential cutoffs may equally characterize the degree distributions

of some empirical networks [27].

Previous work has explored how the degree distribution is distorted when the subnet-

work is the induced subgraph on sampled nodes [5, 6, 9, 13, 14, 28–30]. Han et al. [5]

investigate the effect of sampling on four types of simulated networks (random graphs with

(1) Poisson, (2) Exponential (3) Power-law and (4) Truncated normal distributions). They

observe that degree distributions of sampled Erdös-Rényi random graphs appear to be lin-

ear on a log-log plot. Others have also suggested that subnetworks of Erdös-Rényi random

graphs appear “powerlaw-like” and could be mistaken for a scale-free network [5, 13].

Typically, scale-free networks have degree distributions which span several orders of mag-

nitude and thus, subnetworks of Erdös-Rényi random graphs would not be classified as

scale-free networks by most researchers. As warned by Clauset, Shalizi and Newman [27],

further errors may be incurred when attempting to use linear regression to fit a power-law.

Stumpf and Wiuf [28] examine how degree distributions of Erdös-Rényi random graphs

scale when subnetworks are obtained through uniform random sampling on nodes and

“preferential sampling of nodes,” whereby large degree nodes have a greater probability
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of being selected. They show that Erdös-Rényi random graphs are closed under subsam-

pling by nodes, but not under preferential sampling of nodes.

Stumpf et al. [9] suggest that the degree distribution of the subnetwork induced on

randomly selecting nodes is independent of the proportion of nodes sampled and that the

true degree distribution can only be determined by knowledge of the generating mechanism

for the network. Problematically, this is often not known or fully understood.

To understand these distortions, we consider the probability that a node v will have

degree k in a subnetwork. Under uniform random sampling of nodes, a node of degree i

in the true network will become a node of degree k in the subnetwork (k ≤ i) with proba-

bility Pr(k|i) =
(
i
k

)
qk(1 − q)i−k. The subnetwork degree distribution can be determined

by weighting these probabilities by Pr(i), the probability of node i appearing in the true

network [31]. The subnetwork degree distribution is given by

P̃ r(k) =
kmax∑

i=k

(
i

k

)
qk(1− q)i−kPr(i). (4.1)

Several researchers have explored techniques for estimating the true degree distribution

from subnetwork data. One approach involves viewing Equation 4.1 as a system of equa-

tions and solving for the true degree distribution in terms of the (observed) subnetwork

degree distribution. Denoting P̂ r(k) as the predicted degree distribution yields

P̂r(k) =
kmax∑

i=k

(−1)i−k
(
i

k

)
q−i(1− q)i−kP̃r(i). (4.2)

101



CHAPTER 4. INCOMPLETE DATA

Our result is similar1 to the derivation provided by Frank [29],

P̂r(k) =
∑

i=k

(−1)i−k
(
i

k

)
q−i−1(1− q)i−kP̃r(i), (4.3)

which is not guaranteed to be non-negative [3].

Model selection methods employ maximum likelihood estimates to select which type

of degree distribution characterizes a true network, given only a subnetwork degree distri-

bution [32]. Although this method highlights that some heavy tailed empirical networks

may be better characterized by lognormal or exponential cutoff models instead of power

laws, the shortcoming of this method is that only models selected a priori for testing form

the candidate pool of possible distributions.

In contrast to the model selection technique proposed by Stumpf et al. [32], we ex-

plore a probabilistic approach which utilizes knowledge of the proportion of sampled net-

work data (q) and the subnetwork degree distribution. In doing so, we desire an estimation

that captures the qualitative nature of the degree distribution without making any assump-

tions about candidate models. We show that reasonably good estimations of Pr(k) can be

achieved with no knowledge of the generating mechanism. With a reasonable estimation

for the degree distribution available, we are able to overcome a previously noted obstacle

identified by Kolaczyk [3]. He notes that predictors for network statistics when sampling

by links has proven more elusive because of the need for knowledge of the true degree dis-

tribution [3]. Our estimations can be used in conjunction with Hortiz-Thompson estimators

to reasonably predict network statistics for cases where node selection is not uniform (i.e.,

subnetworks obtained by the induced subgraph on sampled links or weights).

1Our derivation differs from [29] by a factor of q. When k = kmax, our result becomes P̂ rkmax
=

∑kobs
max

i=kmax
(−1)i−k

(
i
k

)
q−i(1 − q)i−kPi = (−1)0

(
kmax

kmax

)
q−kmax(1 − q)0Pkmax

. This supports our derivation
(Equation (4.2)).
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In the subsequent sections, we summarize this work and show how our method sur-

mounts this obstacle. To our knowledge, scaling techniques for networks generated by

sampled by interactions (e.g., weighted networks) have not been addressed in the literature

and given the interest in large, social networks derived from weighted, directed interactions,

we find this analysis timely and relevant.

4.2 Sampling techniques and missing data

In this paper, we focus on four sampling regimes (1) subnetworks induced on randomly

selected nodes, (2) subnetworks obtained by random failure of links, (3) subneworks gen-

erated by randomly selected links, and (4) weighted subnetworks generated by randomly

selecting interactions. Motivated by our work with Twitter reply networks [33] for which

we have a very good approximation of the percent of messages which are obtained, we

base our work on the assumption that the proportion of missing data is known. This is a

critical assumption and one that we acknowledge may not always be satisfied in practice.

Efforts to estimate the proportion of missing nodes or links are intriguing, but are beyond

the scope of this paper.

The remainder of this paper is organized as follows. In Section 4.3, we describe our

data. In Section 4.4, we describe our sampling strategies in greater detail and describe

scaling methods for global network statistics. We apply our methods to four classes of

simulated networks and six empirical datasets. In Section 4.5 we apply our methods to

Twitter reply networks as both a case of scientific interest and demonstration of our meth-

ods. In Section 4.6, we discuss the implications of these findings and suggest further areas

of research.
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4.3 Methods

4.3.1 Unweighted, undirected networks

Our data consist of simulated and empirical networks. We generate unweighted, undirected

networks with N = 2 × 105 and kavg = 10 according to four known topologies: Erdös-

Rényi random graphs with a Poisson degree distribution [22], Scale-Free random graphs

with a power law degree distribution [24, 34], Small world networks [35], and Range de-

pendent networks [36] .2 We also examine six well known empirical network datasets: C.

elegans [35, 38], Airlines [39], Karate Club [40], Dolphins [41], Condensed matter [42],

and Powergrid [35]).

Each of these simulated and empirical networks is subsampled and the subnetwork is

taken to be the subnetwork induced on sampled nodes (Fig. 4.1), the subnetwork obtained

by failing links (Fig. 4.2), or the subnetwork generated by sampled links (Fig. 4.3). For a

given network, 100 simulated subnetworks are obtained for a given sampling strategy and

given q as q varies from 5% to 100% (in increments of 5%).

2Erdös-Rényi, Scale-free, Small world and Range dependent models were constructed with the CON-
TEST Toolbox for Matlab [37]. We note that the small world networks were set to have random rewiring
probability p = 0.1 and preferential attachment networks were set to have d = 5 new links when they enter
the network. Range dependent networks were set to establish a link between nodes vi and vj with probabil-
ity αλ|j−i|−1 where we set λ = 0.9 and α = 1. As noted by [37], this choice of α ensures that nodes vi
and vi+1 are adjacent and λ|j−i|−1 ensures that short range connections are more probable than long range
connections.
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4.3.2 Weighted, undirected networks

We examine the effects of uniformly increasing edge weight (Experiment 1, Cases I-V) as

well as the distribution of edge weights (Experiment 2, Cases VI and VII) on the scaling of

network statistics (Table 4.1).

Table 4.1: Summary of weighted network experiments. Note: w(ej) refers to the weight
of edge ej , s(vj) refers to the strength of node vi) and randi {1..9} refers to a randomly
selected integers between 1 and 9 (inclusive).

Case kavg wavg Distribution of weights
I 6 1.0 w(ej) = wavg (uniform)
II 6 2.0 w(ej) = wavg (uniform)
III 6 3.0 w(ej) = wavg (uniform)
IV 6 4.0 w(ej) = wavg (uniform)
V 6 5.0 w(ej) = wavg (uniform)
VI 6 5.0 s(vi) =

⌈
30
k

⌉
(equal effort)

VII 6 5.0 w(ej) = randi {1..9} (randomized)

Experiment 1: Uniform distribution of edge weights

In this set of experiments we generate Erdös-Rényi networks with N = 2000 nodes and

kavg = 6. Each edge receives equal weight, w, where w = 1, 2, 3, 4, or 5 (corresponding to

Cases I-V). We similarly generate Scale-free networks with N = 2000 nodes and kavg = 6.

Each of the weighted, undirected networks described is subsampled by randomly selecting

q
∑

ei∈E(G)w(ei) interactions. The subnetwork is taken to be the network generated by

links with w(ej) > 0 (Fig. 4.4). One hundred subnetworks are obtained for each network

for varying proportions of sampled interactions (q).
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Experiment 2: Non-uniform distribution of edge weights

In this set of experiments, we explore how the distribution of weights on edges can impact

scaling of global network statistics. As in the previous case, we first generate an Erdös-

Rényi network with N = 2000 and kavg = 6. We then add weights to edges in one of two

ways. In Case VI, we assume “equal effort” in that all nodes will have an equal number of

interactions distributed equally among their incident edges. This requirement ensures that

all nodes have equal node strength and that effort is equally distributed to each neighbor.

More specifically, for node deg(vi) = k, we set each of the k edges to have weight
⌈

30
k

⌉
.

In Case VII, for each edge we select an integer weight between 1 and 9 from a uniform

probability distribution. Certainly, other variants of the weight distribution exist and their

analysis may provide additional insight in future studies.

4.3.3 Weighted, directed networks - Twitter reply networks

Twitter reply networks [33] are weighted, directed networks constructed by establishing a

directed edge between two users if we have a directed reply from a user to another during

the week under analysis. These networks are derived from over 100 million tweets ob-

tained from the Twitter API service during September 2008 to February 2009.3 During this

time, we obtained between 25% to 55% of all tweets 4.A24. Using the scaling methods

developed in Sections 4.4.1-4.4.4, we predict global network statistics for the Twitter inter-

actome during this period of time by viewing in- and out-network statistics separately (e.g.,

two distinct networks) to account for directionality.

3We refer the interested reader to [33] for more information.
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4.4 Estimating global network statistics

4.4.1 Sampling by nodes

Given a network, G = (V,E), where V is the collection of nodes (or vertices) and E is the

collection of links (or edges), we randomly select a portion of nodes q, where 0 < q ≤ 1.

The node induced subgraph on these randomly sampled nodes is given by G∗ = (V ∗, E∗),

where V ∗ represents the randomly selected nodes and E∗ represents the edges in E for

whom both endpoints lie in V ∗ (Fig. 4.1). This type of sampling occurs when a selected

group, representative of the whole, is observed and all interactions between sampled indi-

viduals are known. This sampling strategy is well studied and we will overview key results

here (see [3]).

Scaling of N,M, kavg, C, kmax, S

Given a subnetwork of size n = qN known to be obtained by randomly selecting qN

nodes, the number of nodes in the subsample clearly scales linearly with q (Figs. 4.A1a

and 4.A2a). The size of the true network is predicted by

N̂ =
1

q
n, (4.4)

which shows good agreement with the true network parameter (Table 4.A1). Note that this

result is independent of network type and is only dependent on q, the fraction of nodes

subsampled, and n, the size of the subsample.

Given a network withN nodes and a subnetwork of n nodes, the probability of selecting

edge eij is given by n(n−1)
N(N−1)

. This is simply the probability that the two nodes, vi and vj ,
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(a) Sampled nodes (b) Nodes induced subnetwork

Figure 4.1: Node induced subnetwork on randomly sampled nodes. (a) The true network
is sampled by randomly selecting nodes (red). (b) The node induced subnetwork consists
of sampled nodes and edges whose endpoints both lie in the collection of sampled nodes.

incident with the edge eij , are selected. The number of edges in the subnetwork is found

by

m =
n(n− 1)

N(N − 1)
·M, (4.5)

wherem represents the number of edges in the subnetwork andM represents the number of

edges in the true network. For large networks, m ≈ q2M. This agrees well with simulated

results (Figs. 4.A1b and 4.A2b). The predicted number of edges is given by

M̂ = m · N(N − 1)

n(n− 1)
, (4.6)
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which scales as M̂ ≈ 1
q2m for large networks. This predictor shows good agreement with

actual values (Table 4.A2).

The average degree, kavg, is found by

kavg =
2M

N
.

Given expressions for the expected number of edges (4.6) and the expected number of

nodes (4.4), the expected average degree of a true network, k̂avg, based on an observed

average degree of a subnetwork:

k̂avg =
2M̂

N̂
(4.7)

=
2m · N(N−1)

n(n−1)

n
q

(4.8)

=
2m

n
· N − 1

n− 1
(4.9)

= kobs
avg ·

N − 1

n− 1
(4.10)

≈
kobs

avg

q
, (4.11)

where in line (10) we have assumed that N̂ ≈ N , N >> 1 and n >> 1. Comparing this

result to simulated subnetworks induced by subsampling nodes (Figs. 4.A1c and 4.A2c),

we find very good agreement between the predicted average degree and true average degree

(Table 4.A3), except for the small empirical networks (Karate club and Dolphins) sampled

with low q. In these cases, we violate the assumption that n >> 1 because subsamples

of the Karate Club network degenerate to subnetworks of 3 edges or less when q ≤ 0.20.
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Similarly, subsamples of the Dolphin network degenerate to subnetworks of 3 edges of less

when q ≤ 0.15. When the observed number of edges in the subnetwork exceeds 3, our

predicted M̂ has an error less than 5% (Table 4.A3).

The scaling of the max degree is highly dependent on network type, or more precisely,

the relative frequency of high degree nodes. For networks with relatively few large hubs

and many small nodes of small degree, kmax scales linearly with q and k̂max ≈ kmax

q
. For

networks with many nodes of maximal degree4 kmax scales nonlinearly with q (Figs. 4.A1d

and 4.A2d).

This distinction makes predicting the maximum degree more challenging since an accu-

rate predictor ultimately relies on knowledge of the network type - knowledge one usually

does not have in an empirical setting. Our proposed technique utilizes k̂max ≈ kobsmax

q
, unless

our algorithm detects a large number of nodes with degree similar to kmax and are assured

that the subnetwork that has not degenerated to a small network (n < 30).5 In this case,

k̂max ≈
kobsmax

1− q
θ

, (4.12)

where θ =the number of nodes with degree greater than 75% of kmax. The rationale for this

rough approximation is that the nodes which have high degree (> 75% of the observed max.

degree) may have been nearly equal contenders for losing a neighbor during subsampling.

When all nodes have equal degree, the denominator of Equation 4.12 tends to k̂max ≈ kobsmax.

Table 4.A4) presents the error for this predictor and demonstrates that our method performs

4An example of this would be a regular lattice. All nodes have the same (and hence maximal) degree.
This pathological example is not often seen in practice. Simulated Small world networks begin as a regular
lattice with random rewiring probability, p. Since our Small world networks have p = 0.1, our Small world
networks exhibit this pathological behavior more so than several empirical Small world networks. We note
that this is simply a matter of tuning p and not indicative of all Small world networks.

5More specifically, if our algorithm detects nkmax−1 ·kmax−1 > nkmax
·kmax, then we use the adjustment

Equation 4.12, where nkmax−1 represents the number of nodes of degree kmax − 1.
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reasonably well for most network in our data set. To our knowledge, this is the first attempt

to characterize how kmax scales with subsampling and we hope that future work improves

upon our estimate.

We measure clustering using Newman’s global clustering coefficient [20] CG =

3×τ∆(G)

τ+
3 (G)

, where τ∆(G) denote the number of triangles on a graph and τ+
3 (G) = τ3(G) −

3τ∆(G), which is the number of vertex triples connected by exactly two edges (as in

the notation used by [3]). Since the probability of selecting a node is q, both the num-

ber of triangles and connected vertex triples scale as q3. Thus, τ̂∆(G) = 1
q3 τ∆(G∗) and

τ̂+
3 (G) = 1

q3 τ
+
3 (G∗) [21]. We then expect

ĈG ≈ C∗G. (4.13)

This is supported by simulations (Figs. 4.A1e and 4.A2e) and small errors in ĈG (Ta-

ble 4.A5). We note that for small q, some subnetworks completely breakdown and no

connected triples are present. In these situations, the clustering coefficient can not be com-

puted nor can the true network’s clustering coefficient be well predicted.

We next explore how the size of the giant component scales with the proportion of nodes

sampled (Fig. 4.A1f and 4.A2f). For the Erdös-Rényi and Scale-free random graphs, the

giant component emerges when the subnetwork has ksubavg > 1. This occurs when qkavg > 1

and so for our simulated Erdös-Rényi and Scale-free networks, this occurs when q = .10

because the true networks have kavg ≈ 10. The thresholds for the emergence of the giant

component in Small World and Range dependent networks are much higher. This may be

due to the relatively large clustering coefficients of these networks. As suggested by Holme

et al. [43], networks with a large (Watts and Strogatz [35]) clustering coefficient are more
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vulnerable to random removal of nodes. We observe the same trend with Newman’s global

clustering coefficient.

In the case of the empirical networks, we find that the giant component emerges for

q corresponding to kobsavg > 1. C. elegans, Airlines and Condensed Matter networks are

more resilient to random removal of nodes in that the giant component persists for small

levels of q. This is most likely due to their relatively high average degrees, as compared

to the other networks (heterogeneity of nodes’ degrees in these networks). Heterogeneous

networks demonstrate more resilience due to random removal of nodes at high levels of

damage [44]. In general, it may be very difficult to predict the exact critical point at which

the giant component emerges from subnetwork datasets.

Scaling of Pr(k)

The complementary cumulative degree distribution (CCDF) becomes more distorted as

smaller proportions of nodes are sampled, as shown in Figure 4.A3 and given by Equation

4.1. Subnetworks obtained by the induced graph on sampled nodes will often have P̃ r(0) >

0. This occurs when vi is selected in sampling, but no neighbors of vi are selected in the

sample.

Our goal is to predict the degree distribution, given only knowledge of the proportion

of nodes sampled (q) and the subnet degree distribution. We note that the probability that

an observed node of degree k came from a node of degree j ≥ k in the true network is

given by

Pr(k|j) =





(
j
k

)
qk(1− q)j−k, when j ≥ k

0, when j < k,
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where q is the probability that a node’s neighbor was included in the subsample and 1 − q

is the probability that a node’s neighbor is not included in the subsample.

After normalizing, we find ψ(j) = Pr(k|j)
c

describes the normalized probability that

an observed node of degree k came from a node of degree j in the true network, where

c =
∑∞

j=k Pr(k|j). Note that when |1 − q| < 1 this series converges and we find c =
∑∞

j=k Pr(k|j) = 1
q
. Thus,

ψ(j) =





q
(
j
k

)
qk(1− q)j−k, when j ≥ k

0, when j < k,
(4.14)

Considering all nodes of degree, nk, we compute

nk · ψ(k) = nk ·

((
j
k

)
qk(1− q)j−k

c

)
(4.15)

= nk ·
(
q

(
j

k

)
qk(1− q)j−k

)
, (4.16)

where Stirling’s approximation is used to approximate the binomial coefficients for large

j. Care is taken to include observed nodes of degree zero in this process (e.g., k = 0 in

Equation 4.15).

For networks with large degrees (e.g., hubs), one can further speed up the computation

and reduce floating point arithmetic errors by mapping back observed nodes of degree k to
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the expected value of the distribution obtained in Equation 4.14:

E(j) =
1

c

∞∑

j=k

j

(
j

k

)
qk(1− q)j−k (4.17)

= q
1− q + k

q2
(4.18)

≈ k

q
, for k >> 1, (4.19)

where c ≈ 1
q
. In making use of Equation 4.17, we perform a separate calculation for nodes

of degree zero:
{
n0 · (1−q)j∑

j(1−q)j

}4kobsmax

j=1
.6

Figure 4.A4 reveals the predicted degree distribution for subnets induced on varying

levels of randomly selected nodes. To test the goodness of fit for the estimated degree

distribution and the true Pr(k), we apply the two sample Kolmogorov-Smirnov test. Fig-

ure 4.A16 shows the D test statistics for the predicted degree distributions for both estima-

tion methods (Equations 4.15 and 4.17), as well as the Dcrit computed from c(α)
√

n1+n2

n1n2
,

where c(0.05) = 1.36, n1 = kmax and n2 = k̂max. For most networks, D ≤ Dcrit for

q ≥ 0.3, suggesting that when at least 30% of network nodes are sampled, our methods

provide an estimated degree distribution which is statistically indistinguishable from the

true degree distribution. Although we reject the null hypothesis for the preferential attach-

ment case, for all q 6= 1, we wish to point out the potential for bias in the Kolmogorov-

Smirnov test with large n [45]. As shown, Dcrit values are quite low and the bias in this

test is due to large n1, n2. The statistical power in this test leads to the detection sta-

tistically significant differences, even when the absolute difference is negligible. Thus,

we caution the interpretation of this statistical test and place more interest in the value

6In all cases, we assume a finite network. We limit our calculations to 4 · kobsmax as a rough estimate on the
upper bound needed for the sum in Equation 4.14.
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D = max |Fi,true − Fi,predicted|, where Ftrue and Fprediction represent the true and predicted

CDFs.

4.4.2 Link failure

We know turn our attention to link failure. As in the previous cases, we denote the true,

unsampled network as G = (V,E). Some proportion, q of links remain “on” (or present in

the sample) and 1− q are hidden or undetected by sampling. E∗ ⊆ E consists of precisely

the links that remain “on” and V ∗ = V (Fig. 4.2).

(a) Failed links

Figure 4.2: Failed link subnetwork. Hidden or missing links are depicted in grey. All nodes
remain in the subnetwork and only visible or sampled links remain.
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In this case we may use the plug-in estimator to predict the number of nodes, N̂ = n

and we may predict the number of edges by M̂ = m
q

. The average degree is found by

k̂avg =
2M̂

N̂
(4.20)

=
2m

qn
(4.21)

=
kobs

avg

q
. (4.22)

Newman’s global clustering coefficient CG = 3×τ∆(G)

τ+
3 (G)

[20] and note that q3τ∆(G) =

τ∆(G∗) and q2τ+
3 (G) = τ+

3 (G∗) because each edge is selected with probability q. Thus,

C∗G =
3× τ∆(G∗)

τ+
3 (G∗)

=
3q3 × τ∆(G)

q2τ+
3 (G)

= qCG.

Thus,

ĈG =
1

q
C∗G. (4.23)

The maximum degree is computed with the same method as described in Section 4.4.1

because the number of neighbors of a node scales the same whether nodes or edges are

removed from the network. Using these estimates, we find relatively low error in the pre-

dicted the network measures for N,M, kavg, kmax, and CG (Tables 4.A6– 4.A10).

Several networks’ giant component exhibit similar patterns of resilience when sampling

by nodes or failing links. Comparing the resilience of the proportion of nodes in the giant
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component under sampling by nodes vs. failing links, we see that Erdös-Rényi random

graphs, random graphs with preferential attachment, Airlines, Condensed matter, C. ele-

gans and Powergrid networks all perform relatively similar under the sampling regimes. A

noticeable difference is seen in Small world, Range dependent, Karate club and dolphins.

In the case of Small world and Range dependent, the regularity of the underlying lattice

in these networks means that each time a node is not observed, this also means that kavg

edges are also missing. Given that the majority of nodes have the same degree for these

networks these networks fracture the giant component quickly (i.e., for q around 0.7 and

0.8 respectively). In the case of the small Karate club and Dolphins networks sampled by

nodes, the proportion of nodes in the giant component increases with decreasing q. In these

cases, the network consists of relatively few nodes, which are connected. In contrast, when

examining the failing links case, we have all nodes present but these nodes are missing

almost all links and the network is highly disconnected.

Figure 4.A7 reveals the distortion of the CCDF when links fail in a network and all

nodes remain known to the observer. Clearly, there are nodes of degree zero that are

observed in this sampling regime. The predicted degree distribution is obtained by the

methods described under sampling by nodes (including the treatment of observed nodes of

degree zero). The results of the two sample test Kolmogorov-Smirnov reveal that the esti-

mated degree distribution and the true degree distribution are statistically indistinguishable

for q ≥ 0.3 for most networks (Fig. 4.A17). As previously noted, the large number of ob-

servations in degree distribution for the random graph grown with preferential attachment

leads to high statistical power and a low Dcrit.
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4.4.3 Sampling by links

The problem of missing links may also manifest itself in another manner. In contrast to

the case when all nodes are known and some links are hidden links, we now consider sub-

networks generated by sampled links and the nodes incident to those links (Fig. 4.3). This

type of sampling occurs in many social network settings, such as networks constructed

from sampled email exchanges or message board posts. In this case, we have data pertain-

ing to messages (links) and nodes (individuals) are only discovered when a link (email)

which connects to them is detected.

(a) Sampled links (b) Link induced subnetwork

Figure 4.3: Link induced subnetwork. (a) A network is sampled by randomly selecting
links shown in red. (b) The subnetwork consists of all sampled links and only nodes which
are incident with the sampled links. In this type of sampling, no nodes of degree zero
are included in the network. Large degree nodes are more likely to be included in the
subnetwork.
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In this case, edges are sampled uniformly at random and we may use our previous

estimator, M̂ = m
q

. Node inclusion is biased, however, in that nodes of high degree will

detected with greater probability than nodes of low degree precisely because they are more

likely to have an incident edge sampled.

To motivate an appropriate predictor, we must first consider how the number of nodes

in a subnetwork obtained by the subnetwork generated by sampled links scales with q

(Figs. 4.A9a and 4.A10a). To do this, let us consider the probability that a node is included

in such a subsample. If the number of edges not sampled (M − m) is less than the de-

gree k(vi) of node vi, then we can be certain that our node of interest will be detected in

sampling. On the other hand, if M − m ≥ k(vi), then the probability of vi being in the

subnetwork scales nonlinearly with q. Using the framework set forth by Kolaczyk [3], ob-

serve that there are
(
M−k
m

)
ways of choosing m edges from the M − k edges not incident

with node vi and there are
(
M
m

)
total ways of choosing m edges from all M . Thus, we have

P (vi is sampled) = 1− P (no edge incident to vi is sampled)

=





1− (M−k(vi)
m )

(Mm)
, if m ≤M − k(vi)

1, if m > M − k(vi).

The Horvitz-Thompson estimator given by

N̂ =
∑

vi∈V ∗

1

πi
, (4.24)

where πi = P (vi is sampled).

Kolaczyk [3] warns that this may not be a useful result, due to the fact that the true

degree of a given node is likely to be unknown. In our paper, we overcome this limitation by
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using our predicted degree distributions obtained by the techniques previously mentioned.

Observe that when sampling by links, no nodes of degree zero will be observed. We also

note that in the case when k << M and m, we may make the following approximation

which is less computationally burdensome:

(
M−k
m

)
(
M
m

) =
(M − k)!M −m)!

M !(M −m− k)!

=
(M −m)(M −m− 1)(M −m− 2) . . . (M −m− (k − 1))

M(M − 1)(M − 2) . . . (M − (k − 1))

=

(
M −m
M

)(
M − 1−m
M − 1

)
. . .

(
M − (k − 1)−m
M − (k − 1)

)

=
(

1− m

M

)(
1− m

M − 1

)
. . .

(
1− m

M − (k − 1)

)

≈ (1− q)k(vi) for k(vi) relatively small compared to m and M.

This is simply the probability that a node of degree k(vi) loses all edges during subsampling

q0(1− q)k and thus P (not detecting vi) ≈ (1− q)k(vi). Thus,

N̂ =
∑

vi∈V ∗

1

πi
(4.25)

=
∑

vi∈V ∗

1

1− (1− q)k(vi)
(4.26)

(4.27)

We apply these methods to our simulated and empirical networks.

Once N̂ and M̂ have been computed, the average degree is simply k̂avg = 2M̂

N̂
. The

max degree scales roughly linearly for preferential attachment models and many of the em-

pirical networks, however networks with high proportion of regular lattice structure (e.g.,
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Small world and Range dependent) scale sublinearly. Clustering scales approximately as

Ĉ = c
q

and the giant component shows a critical threshold which varies according to net-

work type and average degree. The relative error of our predictors are summarized in

Tables 4.A11- 4.A15. Small world and Range dependent) scale sublinearly. Clustering

scales approximately as Ĉ = c
q

and the giant component shows a critical threshold which

varies according to network type and average degree. The relative error of our predictors

are summarized in Tables 4.A11- 4.A15.

To test the goodness of fit for the estimated degree distribution and the true Pr(k),

we again compute D = max |Fi,true − Fi,predicted|, two sample Kolmogorov-Smirnov test

statistic (Fig. 4.A18). This figure shows that reasonable results are achieved when q > 50%,

a noticeable increase in the percent of network knowledge needed, as compared to other

sampling strategies (sampling by nodes and failing links).

4.4.4 Sampling by interactions

Lastly, we consider the case of sampling by interactions in the special case of a weighted

network (Fig. 4.4). In this case, we begin with G = (V,E), where E is a set of undirected7

edges, ej , with weight w(ej). The weight on an edge represents the number of interactions

between two vertices and an alternative representation is simply a network with multiple

edge between two such vertices, one for each interaction. A subnetwork generated by

q
∑

ej∈E w(ej) sampled interactions is simply a sampled collection of multi-edges and the

nodes incident to these edges (e.g., the subnetwork generated by links with nonzero weight

and nodes incident to those edges).

7We will treat the directed case as a special case at the end of this section.
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(a) Weighted network (b) Weighted subnetwork

Figure 4.4: Subsampling by interactions in a weighted network. (a.) An unsampled
weighted network consists of nodes, links and weights representing the number of interac-
tions represented by the link. (b.) Sampling by interacting produces a subsample whereby
links are included in the subsample only if at least one interaction has been sampled. The
subnetwork is the induced subgraph on these links with wi ≥ 1.

To consider how the number of nodes scales, we consider a similar formulation as

discussed in the previous section for the probability that a given node is selected when

sampling by links, however instead of the degree of a node, k(vi), we are now interested

in the strength of a node. The strength of a node is given by s(vi) =
∑

ej∈N (vi)
w(ej),

where N (vi) denotes the neighborhood of vertex vi [46]. Let L =
∑

ejinE
w(ej) represent

network load and ` = qL, the number of sampled interactions. If the number of interactions

which are not sampled (L − `) is less than the strength of a node (s(vi)), then we can be

certain that node vi will be detected in sampling.

On the other hand, if L− ` ≥ s(vi), then observe that there are at most
(
L−s(vi)

`

)
ways8

of choosing ` interactions from the L − s(vi) interactions not involving node vi and there

are at most
(
L
`

)
total ways of choosing ` (distinct, labeled) interactions from all L. Letting

8As an upper bound, we assume that the L−s(vi) interactions are distributed over L−s(vi) edges (weight
of 1 on each edge) which maximizes the number of ways these could be chosen.
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µ(i) represent the probability that vi is sampled, we have

µi = 1− P ( no interaction incident to vi is sampled)

=





1− (L−s(vi)` )
(L`)

, if ` ≤ L− s(vi)

1, if ` > L− s(vi).

Thus, our Horvitz-Thompson estimator is,

N̂ =
∑

vi∈V ∗

1

µi
, (4.28)

where µi = P (vi is sampled). This can be well approximated by

µi = 1− (1− q)s(vi). (4.29)

It should be noted that the strength of a node is the predicted strength of a node and thus

effort must be made to predict the node strength distribution in the same spirit as was

previously done for the degree distribution. To predict the node strength distribution, we

modify Equation 4.17 and predict that an observed node of strength s to be of strength s
q

in the true network. Applying this to corrector to our subsampled weighted networks, we

find low relative error in the predicted number of nodes for most networks (Tables 4.A16

and 4.A17). An exception to this is Case I (Erdös-Rényi) for q < 0.55. In this case, we

are essentially predicting a node strength by s
q
≥ 2 and yet in this case, the true network

is unweighted (e.g., w(ej) = 1,∀ej ∈ E). If there is knowledge that the network is

unweighted, this example shows that the techniques from Section 4.4.3 will yield much

better results.
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We now consider how the number of edges in the subnetwork scales with the propor-

tion of sampled interactions. The probability of selecting an edge ej ∈ E is equal to

1-P ( not selecting edge ej). Notice that when the ` > L − w(ej), the edge ej is certain to

be included in the subsample. When ` ≤ L − w(ej), the probability of not selecting edge

ej is simply the number of ways of selecting the L− w(ej) interactions ` at a time, which

are not on edge ej divided by the number of ways of selecting ` weights from L.

P (ej is sampled) = 1− P ( no interaction along ej is sampled)

=





1− (L−w(ej)

` )
(L`)

, if ` ≤ L− w(ej)

1, if ` > L− w(ej).

Thus, our Horvitz-Thompson estimator is,

M̂ =
∑

ej∈E∗

1

λj
, (4.30)

where λj = P (ej is observed), which is well approximated by

λj = 1− (1− q)w(ej). (4.31)

Again, we must have knowledge of the edge weights, or be able to predict them with

reasonable accuracy. To do this, we predict an edge of weight w(ej) in the subnetwork to

be of edge weigh w(ej)

q
in the true network.
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As the weights on edges tends to 1 (the unweighted network case), we retrieve our result

for how edges scale when links (syn. with weights in the case where wi = 1) are sampled.

lim
w(ej)→1

P (ej is observed) = lim
w(ej)→1

1− P (w(ej))

= lim
w(ej)→1

1−
(
L−w(ei)

`

)
(
L
`

)

= 1−
(
M−1
m

)
(
M
m

)

= 1− M −m
M

=
m

M

= q,

where q is the proportion of sampled links. Thus, when the weights on edges tends to 1,

our Horvitz-Thompson estimator is

M̂ =
∑

ej∈E∗

1

λj
,

=
m

q
,

which recovers our previous result for scaling of edges when sampling by links. The

relative error incurred for the predicted number of edges is presented in Tables 4.A18

and 4.A19.
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Having found suitable predictors for N and M , the average degree may be predicted

by,

k̂avg =
2M̂

N
.

Applying these scaling techniques, we obtain reasonably low error for both networks in

both experiments 1 and 2 (Tables 4.A20- 4.A21).

To estimate kmax, we recognize that the observed max degree will need to be scaled by

roughly the proportion of missing edges. Using M̂
m

as our scaling factor, we find relatively

high error for both networks (Tables 4.A22- 4.A23) and this is due to errors in the M̂ may

be hindering k̂max.

Table 4.2: Summary of scaling techniques.

Sampled Failed Sampled Sampled
nodes links links interactions

N̂ n
q

n
∑

vi∈V ∗
1

1−(1−q)d(vi)
∑

vi∈V ∗
1

1−(1−q)s(vi)

M̂ m
q2

m
q

m
q

∑
ei∈E∗

1
1−(1−q)w(ei)

k̂obsavg
kobsavg

q

kobsavg

q
2M̂

N̂

2M̂

N̂

Ĉ C qC C
q

–

k̂max
kobsmax

q
kobsmax

q
kobsmax

q
M̂
m
· kobsmax

4.5 Estimating the size of the Twitter interactome

In this section we consider the weighted, directed network of replies whereby a link from

node vi to node vj represents the existence of at least one reply directed from vi to vj and
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the weight on this edge represents the number of messages sent in the time period under

consideration. We apply our methods to reply networks constructed from tweets gathered

during the ten week period from September 9, 2008 to November 17, 2008, a period for

which we have a substantially higher percentage of all authored messages.

For each of these weeks, we receive between 20-55% of all messages posted on Twitter

and similarly believe that we receive approximately 20-55% of all replies posted in this

period (Table 4.A24). We apply our previously developed methods to estimate the number

of nodes, edges, strengths on these edges, average degree, max degree and distribution

of node strength. To help validate our predictions, we also predict the number of nodes,

edges, average degree and max degree by performing 100 sampling experiments in which a

proportion q of the observed messages used for subnetwork construction. These sampling

experiments essentially “hide” some of the messages from our view and thus allow us to

consider how further subsampling impacts the inferred networks statistics. Curve fitting

over this region of q allows us to extrapolate the network statistic to a predicted value over

increased percentages of observed messages. We use this to validate with our estimated

parameter using the methods from the previous section.

4.5.1 Number of nodes

Since our reply networks are directed, we consider both the number of nodes which make

a reply (Nreplier) and the number of nodes which receive a reply (Nreceiver). As expected

from our previous discussion, the number of nodes scales nonlinearly with the proportion

of observed messages (Fig. 4.5). We fit models of the form N = axb to observed data

and in doing so find an excellent fit (R2 ≈ 0.99) for all weeks over the subsampled region

(Fig. 4.5). Extrapolating these fitted models to q = 1, we find excellent agreement with our
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predicted number of nodes obtained from Equations 4.28 and 4.29. The predicted number

of nodes agrees from both methods agree to within ± 5%.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

5

Proportion of messages observed

N
re

pl
ie

rs

 

 

Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9
Week 10

(a) Nrepliers

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

5

Proportion of messages observed

N
re

ci
ev

er
s

 

 

Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9
Week 10

(b) Nreceivers

Figure 4.5: Number of nodes in Twitter reply subnetworks. (a.) The Nrepliers is shown
for Weeks 1 to 10, where each data point (dot) represents the average over 100 simulated
subsampling experiments. The dashed line represents the best fitting model of the form
Nrepliers = axb to the observed data. We extrapolate this model to predict Nrepliers. (b.) The
same as panel (a.), except for Nreceivers.
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Figure 4.6: Predicted number of nodes in Twitter reply networks. The relatively low pro-
portion of messages received for Week 5 (< 25%) may be creating greater inaccuracies in
the predictors for that week.
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4.5.2 Strength of nodes

Figure 4.7 depictes a log-log plot of the predicted node strength distribution. This plot

reveals that there are fewer nodes in the high strength region than would be expected in

a scale-free node strength distribution. Figure 4.8 reveals that low degree nodes dominate

the dataset and that many of these low degree nodes often have low average edge weight

(wavg ≈ 1.5). We also find a peak in the average weight per edge as a function of degree

around k ≈ 102 (Dunbar’s number [47]). This peak is large for more pronounced for out-

going edges and may suggest that beyond this value, a limiting factor may prevent increases

in the weight per edge, a result also noted by Gonçalves et al. (31).
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Figure 4.7: Predicted Pr(s) for Twitter reply networks. (a.) The node strength distribution
for in-coming interactions. (b.) The node strength distribution out-going interactions. In
both cases, the distribution is heavy tailed, but falls off faster than would be expected in a
scale-free distribution.
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(d)

Figure 4.8: In, Out-degree vs. Average edge weight for Twitter reply networks. (a.) The
average in-coming edge weight for each node of degree k is depicted in a logarithmically
binned heatmap. (b.) The same as (a), except for out-going edges. (c.) The average weight
per edge for in-coming edges as a function of kin shows a gradual increase to kin ≈ 102

with a peak of approximately 2.2 interactions per edge. (d.) The average weight per edge
for out-going edges as a function of kout shows a gradual increase to kout ≈ 102 with a peak
of between 2.5 and 3 interactions per edge.
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4.5.3 Number of edges

The number of edges can be predicted using Equations 4.30 and 4.31. We present our

results in Figure 4.9. In all cases, the number of edges increases throughout the period of

the study. Figure 4.10 depicts the predicted edge weight and degree distributions. The edge

weight distribution shows that very few (< .001%) edges have an edge weight greater than

102. The degree distribution of the observed subnetwork can be rescaled by reassigning

nodes of degree k, to nodes of degree M̂
m
k. Figure 4.10bc demonstrates a slightly heavier

tail in the in-degree distribution as compared to the out-degree distribution. The degree

distribution reveals that fewer than .01% of the nodes have more than 102 distinct neighbors.

This value is approximately Dunbar’s number, a value suggested to be the upper limit on

the number of active social contacts for humans (47).
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Figure 4.9: Predicted number of edges in Twitter reply networks. (a.) A small proportion of
observed messages for Week 5 (< 25%) may explain the spike in the estimated number of
edges for that week. (b.) Each data point represents the number of directed edges observed,
averaged over 100 simulated subsampling experiments. The dashed line extrapolates the
predicted number of edges for greater proportions of sampled data.

131



CHAPTER 4. INCOMPLETE DATA

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

w

P
r(

X
 ≥

 w
)

 

 

W1
W2
W3
W4
W5
W6
W7
W8
W9
W10

(a) Edge weights

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

k

P
r(

X
 ≥

 k
)

 

 

W1
W2
W3
W4
W5
W6
W7
W8
W9
W10

(b) Pr(kin)

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

k

P
r(

X
 ≥

 k
)

 

 

W1
W2
W3
W4
W5
W6
W7
W8
W9
W10

(c) Pr(kout)

Figure 4.10: Predicted edge weight and degree distributions for Twitter reply networks.
(a.) The predicted edge weight distribution. (b.) Predicted Pr(kin) and (c.) Pr(kout) for
Twitter reply networks.

4.5.4 Average degree

Once the number of nodes and edges have been predicted for the network, we may simply

compute the average degree as k̂avg,in = M̂

N̂receivers
and k̂avg,out = M̂

N̂repliers
. Upon doing so,

we find that the average degree for Twitter reply networks by between 4 and 5 (Fig. 4.11).

We find that the average in-degree is less than the average out-degree.
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Figure 4.11: Predicted kavg,in and kavg,out in Twitter reply networks.
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Figure 4.12: kavg,in and kavg,in for Twitter reply networks. Each data point represents the
observed average in- and out-degree, averaged over 100 simulated subsampling experi-
ments. The dashed line extrapolates the predicted number of edges for greater proportions
of sampled data.

4.5.5 Maximum degree

The maximum degree simply scales in proportion to the probability of edge inclusion.

Since the probability of edge inclusion is no longer q, as in the case of sampling by links,
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we may approximate the probability of edge inclusion by m

M̂
and thus k̂max = M̂

m
kobsmax

as mentioned in the previous section. The predicted maximum degree for Twitter reply

networks is shown in Figures 4.13 and 4.14.
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Figure 4.13: Predicted kmax,in and kmax,out in Twitter reply networks.
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Figure 4.14: kmax,in and kmax,in for Twitter reply networks. Each data point represents the
observed maximum in- and out-degree, averaged over 100 simulated subsampling experi-
ments. The dashed line extrapolates the predicted number of edges for greater proportions
of sampled data.
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4.6 Discussion

Network measures derived from empirical networks will often be poor plug-in estimators

of the true underlying network structure of the system. We have explored four sampling

regimes: (1) subnetworks induced on randomly sampled nodes, (2) subnetworks obtained

when all nodes are known and some links fail or are hidden, (3) subnetworks generated

from randomly sampled links and (4) weighted subnetworks generated by randomly sam-

pled interactions. We have described how network statistics scale under these regimes via

sampling experiments on simulated and empirical networks. Our paper advances an under-

standing of how network statistics scale, and more importantly how to correct for missing

data when the proportion of missing nodes, links or interactions is known.

A major obstacle to generating scaling techniques for subnetworks generated by sam-

pled links or interactions has previously been the lack of a practical method for estimat-

ing the true degree distribution or node strength distribution. Problematically, the random

selection of links creates a biased sample of nodes whereby hubs are more likely to be

detected and nodes of small degree are more likely to go undetected. Although scaling

methods have been suggested, they are based on knowledge of (or a reasonable estimate

of) the degree or node strength distribution (3). In this paper, we have overcome this obsta-

cle by our proposed scaling techniques for the degree distribution and apply this to several

simulated and empirically derived networks with reasonably good results.

Very few studies have addressed the missing data problem in empirically studied net-

works, such as those constructed from tweets. An exception is work by Morstatter et al.

(2013) who compares network statistics for the current Twitter streaming API (≈ 1% of all
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tweets) to the full Firehose (100% of all tweets), however no methods for scaling from data

collected via the API are suggested.

We conclude our work by applying our derived scaling methods to Twitter reply net-

works. Our work supports Dunbar’s hypothesis which suggests that individuals maintain

an upper limit of roughly 100-150 contacts each week (47). Further evidence for this hy-

pothesis comes from previous work in link prediction effort which detects the Resource

Allocation index to be one that often evolves to have a large, positive weight - thus con-

tributing heavily (and positively) in the prediction of new links (49). This index considers

the amount of time and attention one individual has as a “social resource” to spend in the

social network and assumes that each node will distribute its resource equally among all

neighbors. Although the presence of hubs is suggestive of preferential attachment, it is

clear that the constraints of time and attention limit truly scale-free behavior in weekly

Twitter reply networks. We find that the number of individuals who make replies is less

than the number of individuals who receive replies.

One limitation of our work is that our scaling methods are based upon the assumption

that q is known, while in practice this need not be the case. In cases where one may estab-

lish an upper and lower bound for q, our methods could be used to help establish bounds

for the predicted network measures. In some cases, particularly when sampling by links or

interactions, small changes in q may have relatively little impact on the predicted param-

eters, especially for large q. Future work that seeks to classify subnetworks by network

class based on signature subsampling properties may also prove to be fruitful. With some

knowledge of network class or generative model, methods for estimating q may be possi-

ble. Additionally, efforts to predict structural holes in networks from localized information

may also greatly advance the field (50).
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To our knowledge, this is the first attempt provide scaling methods for kmax. While

our scaling techniques for predicting kmax perform well for several networks, they did not

perform as well on simulated networks with a regularized structure.9 Future work which

detect and accounts motif distributions may improve upon our efforts here.

With an increased interest in large, networked datasets, we hope that continued efforts

aid in the understanding of how subsampled network data can be used to infer properties

of the true underlying system. Our methods advance the field in this direction, not only

adding to the body of literature surrounding sampling issues and Twitter’s API (2), but also

to the growing body of literature on incomplete network data.
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(c) Average degree
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(e) Clustering
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(f) Prop. of nodes in Giant
Component

Figure 4.A1: Scaling of statistics for simulated subnetworks induced on sampled nodes.
(a.) The number of nodes in a subnetwork sampled by nodes scales as n = qN precisely
because only qN nodes are selecting during subsampling. (b.) The number of edges scales
as m ≈ M · n(n−1)

N(N−1)
≈ Mq2, for n >> 1 and N >> 1. (c.) The average degree scales

linearly with the proportion of nodes subsampled. (d.) The scaling of the max degree
is dependent on network type. For networks with few large hubs, kobskmax

≈ qkmax. For
networks exhibiting a nontrivial number of nodes with degrees relatively close to kmax, the
max. degree scales nonlinearly. (e.) The clustering coefficient (20) shows little variation
with respect to q as suggested by the analytical result from Frank (21). This suggests
that Ĉ ≈ Cobs. (f.) The proportion of nodes in the giant component increases with the
proportion of nodes sampled. For the random graphs (Erdrey and Pref) there is a critical
point corresponding to the approximate sampling level corresponding to when kobsavg > 1.
The thresholds for Small World and Range dependent networks are much higher due to the
uniformity of the motif distribution in these networks. Markers indicates the mean over
100 simulations. Error bars showing one standard deviation are too small to see, except for
(d.).
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(e) Clustering
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(f) Prop. of nodes in Giant
Component

Figure 4.A2: Scaling of statistics for empirical subnetworks induced on sampled nodes.
(a.) The number of nodes scales as n = qN precisely because only qN nodes are selecting
during subsampling. (b.) The number of edges scales as m ≈ M · n(n−1)

N(N−1)
≈ Mq2,

where q is the proportion of nodes subsampled. (c.) The average degree scales as kobs
avg ≈

qktrue
avg. (d.) The max degree scales roughly linearly as kobs

max ≈ qktrue
max. (e.) The clustering

coefficient (20) shows little variation with respect to q as suggested by the analytical result
from Frank (21), Ĉ ≈ Cobs. (f.) Large networks, such as the Powergrid and Condensed
Matter author collaboration networks show the expected transition to the giant component
as q increases corresponding to when kobsavg > 1. Smaller networks, such as the Karate club
and Dolphin network show a high proportion of nodes in the giant component, for low q
because the subnetwork generated for these levels of q contains fewer than 10 nodes (i.e.,
the network is degenerate).
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(c) Smallworld
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(d) Renga
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(f) Airlines
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(g) Karate
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(h) Dolphins
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(i) Condmat
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(j) Powergrid

Figure 4.A3: CCDF distortion for subnetworks induced on sampled nodes. Subnetwork
degree distributions do not capture the true degree distribution, especially for small q.
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(a) Erdrey+
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(c) Smallworld+
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(d) Renga+
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(e) C. elegans∗
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(f) Airlines∗
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(h) Dolphins+
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(i) Condmat∗
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(j) Powergrid∗

Figure 4.A4: Predicted CCDF from subnetworks induced on sampled nodes. The predicted
CCDF shows relatively good agreement with the true CCDF for most networks. Karate
club and Dolphins exhibit significant deviation, possible due to the small number of nodes
in these networks. Networks designated with + utilized Equation 4.15 and those designated
with with ∗ utilized Equation 4.17.
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(a) Nodes
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(b) Edges
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(c) Average degree
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(e) Clustering
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(f) Prop. of nodes in Giant Com-
ponent

Figure 4.A5: Scaling of subnetwork statistics for simulated networks obtained by failing
links. (a.) When all nodes are known q links are observed through sampling, the sample
statistic for the number of nodes n equals the true number of nodes N . It should be noted,
though, that some nodes of degree 0 may be observed and these are counted as nodes (not
discarded). (b.) The number of edges scales linearly as Mobs = qM . (c.) The average
degree scales linearly as kobsavg =

ktrueavg

q
. (d.) The max degree scales linearly for Pref, but

nonlinearly for other networks which have several nodes with degree similar to kmax. (e.)
Clustering scales roughly linearly with q. (f.) The percolation threshold for random graphs
(Erdös-Rényi and Preferential attachment) roughly corresponds to the q for which kavg ≥ 1.
Smallworld and Renga show more fragility and have a threshold which is closer to q ≈ 0.4.

148



CHAPTER 4. INCOMPLETE DATA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Proportion of links observed

N

 

 

C.elegens
Airlines
Karate
Dolphins
Condmat
Power

0 1
0

50

100

(a) Nodes

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

4

Proportion of links observed

M

 

 

C.elegens
Airlines
Karate
Dolphins
Condmat
Power

0 1
0

100

200

(b) Edges

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Proportion of links observed

k av
g

 

 

C.elegens
Airlines
Karate
Dolphins
Condmat
Power

(c) Average degree
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(e) Clustering

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proportion of links observed

P
ro

p.
 o

f n
od

es
 in

 G
ia

nt
 C

om
po

ne
nt

 

 

C.elegens
Airlines
Karate
Dolphins
Condmat
Power

(f) Prop. of nodes in Giant Com-
ponent

Figure 4.A6: Scaling of subnetwork statistics for empirical networks obtained by failing
links. (a.) When all nodes are known q links are observed through sampling, the sample
statistic for the number of nodes n equals the true number of nodes N . It should be noted,
though, that some nodes of degree 0 may be observed and these are counted as nodes (not
discarded). (b.) The number of edges scales linearly as Mobs = qM . (c.) The average
degree scales linearly as kobsavg =

ktrueavg

q
. (d.) The max degree scales linearly (e.) Clustering

scales roughly linearly with q. (f.) The percolation threshold roughly corresponds to the q
for which kavg ≥ 1.
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(c) Smallworld
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(d) Renga
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(f) Airlines
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(g) Karate
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(h) Dolphins
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Figure 4.A7: CCDF distortion for subnetworks obtained by failing links. Subnetwork
degree distributions do not capture the true degree distribution, especially for small q.
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Figure 4.A8: Predicted CCDF from subnetworks obtained by failing links. The predicted
CCDF shows relatively good agreement with the CCDF for most networks. Karate club
and Dolphins exhibit significant deviations, possibly due to the small number of nodes in
these networks. Networks designated with + utilized Equation 4.15 and those designated
with with ∗ utilized Equation 4.17.
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(e) Clustering
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Figure 4.A9: Scaling of subnetwork statistics for simulated networks induced on sampled
links. (a.) The number of nodes in a subnetwork sampled by links scales nonlinearly with
q. (b.) The number of edges scales as m ≈ qM . (c.) The average degree scales roughly
linearly with the proportion of nodes subsampled ksubavg ≈ qkavg . (d.) The max degree scales
roughly linearly for networks with few large hubs (e.g., Pref) and nonlinearly when there
are several nodes with degrees roughly similar to kmax. (e.) The clustering coefficient scales
roughly linearly Csub ≈ qC. (f.) The proportion of nodes in the giant component increases
with the proportion of nodes sampled. For the random graphs (Erdrey and Pref) there is
a critical point corresponding to the approximate sampling level when kavg > 1 (which
corresponds to q = 0.1). The thresholds for Small World and Range dependent networks
are much higher due to the uniformity of the motif distribution in these networks. Markers
indicates the mean over 100 simulations. Error bars showing one standard deviation are too
small to see.
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(e) Clustering
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(f) Giant Component

Figure 4.A10: Scaling of subnetwork statistics for empirical networks induced on sampled
links. (a.) The number of nodes in a subnetwork sampled by nodes scales nonlinearly with
q. (b.) The number of edges scales as m ≈ qM . (c.) The average degree scales roughly
linearly with the proportion of nodes subsampled ksubavg ≈ qkavg. (d.) The max degree scales
roughly linearly for networks with few large hubs. (e.) The clustering coefficient scales
roughly linearly Csub ≈ qC. (f.) The proportion of nodes in the giant component increases
with the proportion of links sampled. C. elegans and airlines maintain a large proportion
of nodes in the giant component, most likely because these networks have high average
degree. Karate club and dolphins show considerable variability (as shown by error bars ±
s.d.) because these are relatively small networks. Powergrid is fragile to sampling by links,
meaning the a high proportion of sampled links must be obtained to reach a fully connected
network.
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Figure 4.A11: CCDF distortion for subnetworks induced on sampled links. Subnetwork
degree distributions do not capture the true degree distribution, especially for small q.
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Table 4.A1: Error in N̂ when sampling by nodes.

q Erdrey Pref Smallw Renga C.elegans Airlines Karate Dolphins Condmat Power
0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A2: Error in M̂ when sampling by nodes. The percent error in the number of
predicted nodes is nearly zero when, except in the small empirical networks where for
small q, we violate the assumption that n >> 1 and incur large errors.

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.00 0.00 0.00 0.00 0.08 0.02 2.71 2.04 0.00 0.01
0.10 0.00 0.00 0.00 0.00 0.02 0.03 1.04 0.28 0.00 0.00
0.15 0.00 0.00 0.00 0.00 0.01 0.00 0.24 0.04 0.00 0.01
0.20 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.02 0.00 0.00
0.25 0.00 0.00 0.00 0.00 0.06 0.01 0.08 0.06 0.01 0.00
0.30 0.00 0.00 0.00 0.00 0.02 0.03 0.05 0.02 0.00 0.00
0.35 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.04 0.00 0.00
0.40 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00
0.45 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.03 0.00 0.00
0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.01 0.00 0.00
0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.03 0.00 0.00
0.60 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.00
0.65 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00
0.70 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.00
0.75 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A3: Error in k̂avg when sampling by nodes. Errors in M̂ are largely responsible for
errors in k̂avg.

q Erdrey Pref Smallw Renga C.elegans Airlines Karate Dolphins Condmat Power
0.05 0.00 0.00 0.00 0.00 0.08 0.02 2.71 2.04 0.00 0.01
0.10 0.00 0.00 0.00 0.00 0.02 0.03 1.04 0.28 0.00 0.00
0.15 0.00 0.00 0.00 0.00 0.01 0.00 0.24 0.04 0.00 0.01
0.20 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.02 0.00 0.00
0.25 0.00 0.00 0.00 0.00 0.06 0.01 0.08 0.06 0.01 0.00
0.30 0.00 0.00 0.00 0.00 0.02 0.03 0.05 0.02 0.00 0.00
0.35 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.04 0.00 0.00
0.40 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00
0.45 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.03 0.00 0.00
0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.01 0.00 0.00
0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.03 0.00 0.00
0.60 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.00
0.65 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00
0.70 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.00
0.75 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A4: Error in k̂max when sampling by nodes. The percent error in the predicted max
degree is nearly zero for large q. In general, predicting the max. degree is difficult due to
the dependence on network structure.

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 2.70 0.67 7.70 3.73 0.59 0.39 0.00 0.08 0.13 0.14
0.10 1.60 0.54 4.94 2.26 0.52 0.28 0.18 0.02 0.09 0.08
0.15 1.13 0.49 3.73 1.67 0.46 0.21 0.31 0.01 0.05 0.05
0.20 0.89 0.42 2.96 1.29 0.46 0.18 0.30 0.01 0.06 0.04
0.25 0.72 0.38 2.46 1.06 0.44 0.15 0.28 0.01 0.05 0.03
0.30 0.57 0.33 2.09 0.87 0.33 0.12 0.21 0.01 0.05 0.02
0.35 0.48 0.27 1.77 0.73 0.33 0.12 0.18 0.01 0.06 0.01
0.40 0.40 0.24 1.50 0.62 0.30 0.09 0.10 0.01 0.05 0.01
0.45 0.34 0.21 1.22 0.52 0.25 0.07 0.17 0.01 0.02 0.01
0.50 0.29 0.19 1.00 0.44 0.20 0.07 0.13 0.01 0.01 0.01
0.55 0.24 0.16 0.82 0.38 0.20 0.07 0.11 0.01 0.01 0.01
0.60 0.21 0.15 0.67 0.33 0.19 0.04 0.04 0.01 0.00 0.01
0.65 0.17 0.13 0.54 0.27 0.16 0.04 0.03 0.01 0.00 0.00
0.70 0.14 0.10 0.43 0.23 0.10 0.04 0.02 0.00 0.01 0.00
0.75 0.11 0.07 0.33 0.18 0.12 0.04 0.01 0.00 0.01 0.00
0.80 0.09 0.05 0.25 0.13 0.10 0.02 0.01 0.00 0.01 0.00
0.85 0.07 0.04 0.18 0.10 0.07 0.01 0.01 0.00 0.00 0.00
0.90 0.04 0.03 0.11 0.07 0.04 0.01 0.00 0.00 0.00 0.00
0.95 0.02 0.02 0.05 0.04 0.03 0.01 0.01 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A5: Error in Ĉ when sampling by nodes. For some small networks with a small
portion of nodes sampled q, no paths of length three occurred and the clustering coefficient
was not computed in these cases.

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.01 0.33 0.00 0.00 – 0.04 – – 0.00 –
0.10 0.07 0.15 0.00 0.00 0.09 0.02 – – 0.01 0.21
0.15 0.04 0.10 0.00 0.00 0.08 0.02 – – 0.01 0.03
0.20 0.03 0.07 0.00 0.00 0.01 0.02 – – 0.01 0.02
0.25 0.05 0.06 0.00 0.00 0.01 0.01 – – 0.00 0.07
0.30 0.04 0.05 0.00 0.00 0.05 0.01 – 0.15 0.00 0.03
0.35 0.05 0.03 0.00 0.00 0.03 0.01 – 0.14 0.00 0.06
0.40 0.05 0.02 0.00 0.00 0.00 0.01 0.06 0.12 0.00 0.02
0.45 0.03 0.02 0.00 0.00 0.01 0.01 0.13 0.02 0.00 0.05
0.50 0.01 0.02 0.00 0.00 0.01 0.01 0.20 0.04 0.00 0.02
0.55 0.00 0.01 0.00 0.00 0.01 0.00 0.12 0.05 0.00 0.00
0.60 0.02 0.00 0.00 0.00 0.01 0.00 0.08 0.02 0.00 0.02
0.65 0.01 0.00 0.00 0.00 0.01 0.00 0.04 0.01 0.00 0.01
0.70 0.01 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.00
0.75 0.00 0.01 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00
0.80 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.85 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00
0.90 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A6: Error in N̂ when sampling by failing links. No error is encountered because
all nodes remain in the subnetwork.

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 4.A12: Predicted CCDF from subnetworks induced on sampled links. The predicted
CCDF shows relatively good agreement with the CCDF for most networks. Karate club and
Dolphins exhibit significant deviations, possibly due to the small number of nodes in these
networks. Networks designated with + utilized Equation 4.15 and those designated with
with ∗ utilized Equation 4.17.
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Figure 4.A13: Scaling of subnetwork statistics for simulated networks induced on sampled
interactions.
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Figure 4.A14: Predicted node strength distribution for weighted, simulated networks.
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Figure 4.A15: Predicted degree distribution for weighted, simulated networks.
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Figure 4.A16: Kolmogorov-Smirnov two sample test for true CDF and predicted CDF from
subnetworks induced on sampled nodes. The red line represents Dcrit for α = 0.05 and
sample sizes n1 = kmax of the true CDF and n2 = kmax of the observed CDF. The predicted
CDFs for for most networks are statistically indistinguishable from the true CDF for these
networks for q > 0.3. Due to the presence of large hubs in Pref, n1, n2 are quite large
leading to high statistical power in the KS test. Thus, even very small differences between
the true and predicted CDFs result in a statistically significant difference and rejection of
the null hypothesis, even though the curves show relatively good agreement.
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Table 4.A7: Error in M̂ when sampling by failing links. Since we are sampling qM links,
errors in predicting the true number of links are quite small and nonzero only due to round-
off error (e.g., m =round(qM )).

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00
0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00
0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00
0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00
0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00
0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00
0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A8: Error in k̂avg when sampling by failing links. The predicted average degree is
computed from N̂ and M̂ . Error in the predicted average agree are small and only occur due
to rounding errors in the selecting an integer number of qM edges in the random sample.

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.00 0.00 0.00 0.00 0.03 0.03 0.06 0.09 0.00 0.00
0.10 0.00 0.00 0.00 0.00 0.02 0.02 0.03 0.05 0.00 0.00
0.15 0.00 0.00 0.00 0.00 0.02 0.01 0.03 0.03 0.00 0.00
0.20 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.02 0.00 0.00
0.25 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.02 0.00 0.00
0.30 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.00 0.00
0.35 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00
0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A9: Error in Ĉ when sampling by failing links.

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.50 0.11 0.00 0.01 0.13 0.18 – – 0.06 0.28
0.10 0.66 0.05 0.00 0.00 0.05 0.03 0.36 0.04 0.02 0.18
0.15 0.18 0.02 0.00 0.00 0.00 0.01 0.18 0.24 0.06 0.05
0.20 0.06 0.02 0.00 0.00 0.00 0.04 0.45 0.18 0.03 0.01
0.25 0.05 0.00 0.00 0.00 0.02 0.00 0.01 0.09 0.10 0.04
0.30 0.03 0.01 0.00 0.00 0.01 0.00 0.21 0.02 0.03 0.00
0.35 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.02 0.01 0.02
0.40 0.02 0.01 0.00 0.00 0.01 0.01 0.15 0.07 0.00 0.01
0.45 0.01 0.01 0.00 0.00 0.01 0.01 0.05 0.02 0.04 0.00
0.50 0.01 0.00 0.00 0.00 0.00 0.01 0.07 0.01 0.02 0.01
0.55 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.01
0.60 0.00 0.00 0.00 0.00 0.01 0.00 0.05 0.03 0.00 0.00
0.65 0.00 0.01 0.00 0.00 0.00 0.01 0.06 0.02 0.00 0.00
0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00
0.75 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00
0.80 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00
0.95 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

168



CHAPTER 4. INCOMPLETE DATA

Table 4.A10: Error in k̂max when sampling by failing links.

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.47 0.01 0.33 0.23 0.07 0.17 0.21 0.18 0.06 0.24
0.10 0.29 0.00 0.02 0.39 0.02 0.17 0.05 0.13 0.15 0.37
0.15 0.26 0.00 0.11 0.32 0.01 0.13 0.17 0.10 0.12 0.19
0.20 0.26 0.00 0.09 0.32 0.01 0.09 0.08 0.00 0.12 0.07
0.25 0.09 0.01 0.09 0.33 0.01 0.05 0.11 0.11 0.08 0.13
0.30 0.24 0.00 0.02 0.26 0.01 0.06 0.03 0.07 0.09 0.01
0.35 0.21 0.00 0.00 0.21 0.01 0.03 0.10 0.10 0.08 0.02
0.40 0.09 0.00 0.00 0.18 0.01 0.05 0.08 0.02 0.07 0.01
0.45 0.09 0.00 0.00 0.19 0.00 0.04 0.07 0.06 0.07 0.01
0.50 0.00 0.00 0.00 0.13 0.01 0.04 0.13 0.05 0.05 0.04
0.55 0.06 0.00 0.00 0.09 0.00 0.01 0.10 0.02 0.05 0.03
0.60 0.06 0.00 0.00 0.12 0.01 0.02 0.08 0.04 0.03 0.05
0.65 0.02 0.00 0.00 0.14 0.00 0.03 0.08 0.03 0.03 0.01
0.70 0.02 0.00 0.00 0.11 0.00 0.02 0.06 0.02 0.02 0.02
0.75 0.05 0.00 0.00 0.09 0.00 0.02 0.06 0.03 0.01 0.02
0.80 0.00 0.00 0.00 0.06 0.01 0.01 0.04 0.02 0.02 0.04
0.85 0.02 0.00 0.00 0.04 0.01 0.00 0.03 0.02 0.02 0.04
0.90 0.00 0.00 0.06 0.03 0.00 0.00 0.02 0.01 0.01 0.02
0.95 0.00 0.00 0.05 0.01 0.00 0.00 0.01 0.01 0.00 0.01
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00
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Figure 4.A17: Kolmogorov-Smirnov two sample test for true CDF and predicted CDF
from subnetworks obtained by failing links. The red line represents Dcrit for α = 0.05 and
sample sizes n1 = kmax of the true CDF and n2 = kmax of the observed CDF. The predicted
CDFs for for most networks are statistically indistinguishable from the true CDF for these
networks for q > 0.3. Due to the presence of large hubs in Pref, n1, n2 are quite large
leading to high statistical power in the KS test. Thus, even very small differences between
the true and predicted CDFs result in a statistically significant difference and rejection of
the null hypothesis, even though the curves show relatively good agreement.
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Table 4.A11: Error in N when sampling by links. Predictors show good agreements with
true values, except for low values of q. In these cases, errors in the predicted degree distri-
bution contribute to errors in the predicted number of nodes. Future improvements in the
predicted degree distribution would improve N̂ .

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.40 0.47 0.38 0.39 0.34 0.53 0.68 0.64 0.65 0.80
0.10 0.11 0.21 0.08 0.09 0.11 0.34 0.46 0.41 0.44 0.64
0.15 0.02 0.06 0.06 0.04 0.02 0.23 0.33 0.26 0.31 0.51
0.20 0.07 0.02 0.10 0.09 0.01 0.17 0.23 0.16 0.22 0.40
0.25 0.08 0.05 0.10 0.09 0.01 0.12 0.15 0.10 0.15 0.31
0.30 0.07 0.07 0.08 0.08 0.01 0.10 0.10 0.06 0.11 0.24
0.35 0.05 0.07 0.06 0.06 0.01 0.07 0.06 0.04 0.07 0.18
0.40 0.04 0.06 0.04 0.04 0.00 0.06 0.04 0.03 0.05 0.14
0.45 0.03 0.05 0.02 0.03 0.00 0.04 0.00 0.02 0.03 0.10
0.50 0.02 0.04 0.01 0.02 0.00 0.03 0.01 0.02 0.02 0.07
0.55 0.01 0.03 0.01 0.01 0.00 0.03 0.01 0.01 0.01 0.05
0.60 0.01 0.02 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.03
0.65 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.02
0.70 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01
0.75 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

171



CHAPTER 4. INCOMPLETE DATA

Table 4.A12: Error in M when sampling by links. Error is nonzero only because of round-
off errors when selecting an integer number of edges to sample.

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00
0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00
0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00
0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00
0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00
0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00
0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A13: Error in kavg when sampling by links.

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.66 0.89 0.61 0.63 0.50 1.13 2.18 1.79 1.83 4.03
0.10 0.12 0.26 0.08 0.10 0.12 0.51 0.90 0.71 0.79 1.79
0.15 0.02 0.07 0.05 0.04 0.02 0.30 0.52 0.36 0.45 1.04
0.20 0.06 0.02 0.09 0.08 0.01 0.20 0.32 0.20 0.28 0.67
0.25 0.07 0.05 0.09 0.08 0.01 0.14 0.21 0.12 0.18 0.46
0.30 0.06 0.06 0.07 0.07 0.01 0.11 0.09 0.07 0.12 0.32
0.35 0.05 0.06 0.05 0.05 0.01 0.08 0.06 0.05 0.08 0.22
0.40 0.04 0.05 0.04 0.04 0.00 0.06 0.04 0.03 0.05 0.16
0.45 0.03 0.04 0.02 0.03 0.00 0.05 0.00 0.03 0.03 0.11
0.50 0.02 0.03 0.01 0.02 0.00 0.03 0.01 0.02 0.02 0.07
0.55 0.01 0.02 0.01 0.01 0.00 0.03 0.01 0.00 0.01 0.05
0.60 0.01 0.02 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.03
0.65 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.02
0.70 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01
0.75 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A14: Error in C when sampling by links.

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.51 0.20 0.00 0.01 0.05 0.15 – – 0.02 0.05
0.10 0.36 0.05 0.00 0.01 0.04 0.05 – – 0.00 0.27
0.15 0.21 0.00 0.00 0.00 0.00 0.06 – – 0.01 0.03
0.20 0.20 0.02 0.00 0.00 0.02 0.01 – – 0.00 0.02
0.25 0.01 0.00 0.00 0.00 0.01 0.00 – 0.19 0.00 0.04
0.30 0.00 0.00 0.00 0.00 0.02 0.02 0.16 0.06 0.00 0.01
0.35 0.05 0.00 0.00 0.00 0.00 0.01 0.05 0.07 0.00 0.00
0.40 0.03 0.01 0.00 0.00 0.00 0.01 0.08 0.07 0.00 0.01
0.45 0.02 0.01 0.00 0.00 0.00 0.01 0.05 0.03 0.00 0.02
0.50 0.01 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.00 0.03
0.55 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.00 0.01
0.60 0.01 0.00 0.00 0.00 0.01 0.01 0.06 0.02 0.00 0.01
0.65 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00
0.70 0.00 0.01 0.00 0.00 0.01 0.00 0.02 0.01 0.00 0.00
0.75 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.00 0.00
0.85 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A15: Error in kmax when sampling by links.

q Erdrey Pref Smallw Renga C. elegans Airlines Karate Dolphins Condmat Power
0.05 0.67 0.00 0.20 0.16 0.11 0.18 1.14 2.38 0.06 0.24
0.10 0.33 0.00 0.05 0.37 0.01 0.09 0.62 1.39 0.15 0.37
0.15 0.30 0.00 0.10 0.18 0.00 0.14 0.42 0.02 0.12 0.19
0.20 0.28 0.01 0.10 0.40 0.02 0.10 0.36 0.02 0.12 0.07
0.25 0.17 0.00 0.05 0.23 0.03 0.06 0.32 0.10 0.08 0.13
0.30 0.17 0.00 0.03 0.24 0.01 0.07 0.16 0.11 0.09 0.01
0.35 0.15 0.00 0.00 0.27 0.00 0.04 0.15 0.03 0.08 0.02
0.40 0.19 0.00 0.00 0.20 0.01 0.04 0.11 0.05 0.07 0.01
0.45 0.11 0.00 0.00 0.11 0.00 0.05 0.13 0.04 0.07 0.01
0.50 0.07 0.00 0.00 0.16 0.01 0.03 0.13 0.04 0.05 0.04
0.55 0.01 0.00 0.00 0.15 0.00 0.03 0.09 0.06 0.05 0.03
0.60 0.09 0.00 0.00 0.17 0.01 0.03 0.06 0.02 0.03 0.05
0.65 0.08 0.00 0.00 0.13 0.01 0.01 0.09 0.04 0.03 0.01
0.70 0.07 0.00 0.00 0.10 0.00 0.02 0.06 0.02 0.02 0.02
0.75 0.02 0.00 0.00 0.07 0.01 0.02 0.06 0.02 0.01 0.02
0.80 0.01 0.00 0.00 0.03 0.00 0.00 0.04 0.03 0.02 0.04
0.85 0.00 0.00 0.00 0.04 0.00 0.00 0.03 0.03 0.02 0.04
0.90 0.01 0.00 0.05 0.02 0.01 0.00 0.01 0.01 0.01 0.02
0.95 0.01 0.00 0.05 0.00 0.00 0.00 0.00 0.02 0.00 0.01
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00
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(c) Smallworld
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(d) Renga
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(e) C. elgegans
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(h) Dolphins
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(i) Condmat
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Figure 4.A18: Kolmogorov-Smirnov two sample test for true CDF and predicted CDF from
subnetworks generated by sampled links. The red line represents Dcrit for α = 0.05 and
sample sizes n1 = kmax of the true CDF and n2 = kmax of the observed CDF. The predicted
CDFs for for most networks are statistically indistinguishable from the true CDF for these
networks for q > 0.3. Due to the presence of large hubs in Pref, n1, n2 are quite large
leading to high statistical power in the KS test. Thus, even very small differences between
the true and predicted CDFs result in a statistically significant difference and rejection of
the null hypothesis, even though the curves show relatively good agreement.
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Table 4.A16: Error in N̂ when sampling by interactions on an Erdös-Rényi random graph.

q I II III IV V VI VII
0.05 0.54 0.50 0.46 0.41 0.36 0.34 0.36
0.10 0.48 0.39 0.30 0.23 0.18 0.14 0.18
0.15 0.42 0.28 0.19 0.12 0.09 0.06 0.10
0.20 0.35 0.20 0.12 0.07 0.05 0.03 0.05
0.25 0.29 0.14 0.07 0.04 0.02 0.01 0.03
0.30 0.24 0.10 0.05 0.02 0.01 0.01 0.02
0.35 0.19 0.07 0.03 0.02 0.01 0.00 0.01
0.40 0.14 0.05 0.02 0.01 0.01 0.00 0.01
0.45 0.11 0.03 0.01 0.01 0.00 0.00 0.01
0.50 0.08 0.02 0.01 0.00 0.00 0.00 0.00
0.55 0.06 0.01 0.01 0.00 0.00 0.00 0.00
0.60 0.05 0.01 0.00 0.00 0.00 0.00 0.00
0.65 0.03 0.01 0.00 0.00 0.00 0.00 0.00
0.70 0.02 0.00 0.00 0.00 0.00 0.00 0.00
0.75 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.80 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.85 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A17: Error in N̂ when sampling by interactions from a Scale-free weighted net-
work.

q I II III IV V VI VII
0.05 0.36 0.36 0.36 0.36 0.36 0.36 0.36
0.10 0.18 0.18 0.18 0.18 0.18 0.18 0.18
0.15 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.25 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.30 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.35 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.40 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.45 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A18: Error in M̂ when sampling by interactions from an Erdös-Rényi weighted
network.

q I II III IV V VI VII
0.05 0.00 0.85 0.78 0.72 0.66 0.65 0.67
0.10 0.00 0.71 0.60 0.49 0.40 0.41 0.44
0.15 0.00 0.59 0.44 0.32 0.22 0.24 0.29
0.20 0.00 0.48 0.31 0.19 0.10 0.12 0.19
0.25 0.00 0.38 0.21 0.10 0.02 0.05 0.13
0.30 0.00 0.30 0.13 0.03 0.02 0.00 0.08
0.35 0.00 0.22 0.07 0.01 0.05 0.02 0.06
0.40 0.00 0.16 0.02 0.04 0.06 0.04 0.04
0.45 0.00 0.11 0.01 0.05 0.06 0.04 0.03
0.50 0.00 0.07 0.03 0.05 0.05 0.04 0.02
0.55 0.00 0.03 0.04 0.04 0.04 0.03 0.01
0.60 0.00 0.01 0.04 0.04 0.03 0.02 0.01
0.65 0.00 0.01 0.04 0.03 0.02 0.02 0.01
0.70 0.00 0.02 0.03 0.02 0.01 0.01 0.01
0.75 0.00 0.02 0.02 0.01 0.01 0.01 0.01
0.80 0.00 0.02 0.02 0.01 0.00 0.00 0.00
0.85 0.00 0.02 0.01 0.00 0.00 0.00 0.00
0.90 0.00 0.01 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A19: Error in M̂ when sampling by interactions Scale-free weighted network.

q I II III IV V VI VII
0.05 0.67 0.67 0.67 0.67 0.67 0.67 0.67
0.10 0.44 0.44 0.44 0.44 0.44 0.44 0.44
0.15 0.29 0.29 0.29 0.29 0.29 0.29 0.29
0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.19
0.25 0.13 0.13 0.13 0.13 0.13 0.13 0.13
0.30 0.08 0.08 0.08 0.08 0.08 0.08 0.08
0.35 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.40 0.04 0.04 0.04 0.04 0.04 0.04 0.04
0.45 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.50 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.55 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.60 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.65 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.70 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.75 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A20: Error in k̂avg when sampling by interactions from an Erdös-Rényi weighted
network.

q I II III IV V VI VII
0.05 0.35 0.90 0.85 0.80 0.75 0.74 0.76
0.10 0.33 0.79 0.69 0.59 0.49 0.48 0.53
0.15 0.29 0.68 0.53 0.40 0.28 0.28 0.35
0.20 0.26 0.57 0.38 0.24 0.14 0.14 0.23
0.25 0.23 0.46 0.26 0.13 0.04 0.06 0.15
0.30 0.19 0.36 0.17 0.05 0.01 0.01 0.10
0.35 0.16 0.27 0.10 0.00 0.04 0.02 0.07
0.40 0.13 0.20 0.04 0.03 0.05 0.03 0.05
0.45 0.10 0.14 0.01 0.04 0.05 0.04 0.03
0.50 0.08 0.09 0.02 0.05 0.04 0.04 0.02
0.55 0.06 0.05 0.03 0.04 0.03 0.03 0.02
0.60 0.04 0.02 0.04 0.04 0.03 0.02 0.01
0.65 0.03 0.00 0.03 0.03 0.02 0.02 0.01
0.70 0.02 0.01 0.03 0.02 0.01 0.01 0.01
0.75 0.01 0.02 0.02 0.01 0.00 0.01 0.01
0.80 0.01 0.02 0.01 0.01 0.00 0.00 0.00
0.85 0.01 0.01 0.01 0.00 0.00 0.00 0.00
0.90 0.00 0.01 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A21: Error in k̂avg when sampling by interactions from a Scale-free weighted net-
work.

q I II III IV V VI VII
0.05 0.76 0.76 0.76 0.76 0.76 0.76 0.76
0.10 0.53 0.53 0.53 0.53 0.53 0.53 0.53
0.15 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.20 0.23 0.23 0.23 0.23 0.23 0.23 0.23
0.25 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.30 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.35 0.07 0.07 0.07 0.07 0.07 0.07 0.07
0.40 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.45 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.50 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.55 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.60 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.65 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.70 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.75 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.A22: Error in kmax when sampling by interactions from an Erdös-Rényi weighted
network.

q I II III IV V VI VII
0.05 3.00 0.76 0.81 0.84 0.83 0.84 0.85
0.10 1.82 0.66 0.73 0.76 0.76 0.77 0.80
0.15 1.27 0.60 0.67 0.71 0.69 0.70 0.73
0.20 0.82 0.53 0.60 0.66 0.62 0.66 0.69
0.25 0.72 0.48 0.56 0.59 0.59 0.60 0.63
0.30 0.49 0.44 0.51 0.52 0.54 0.55 0.58
0.35 0.51 0.35 0.50 0.52 0.49 0.53 0.55
0.40 0.35 0.36 0.42 0.49 0.47 0.47 0.49
0.45 0.29 0.28 0.39 0.44 0.41 0.44 0.45
0.50 0.20 0.31 0.37 0.37 0.37 0.39 0.42
0.55 0.17 0.26 0.32 0.36 0.34 0.34 0.37
0.60 0.16 0.22 0.33 0.33 0.31 0.32 0.33
0.65 0.13 0.20 0.31 0.28 0.23 0.27 0.30
0.70 0.10 0.19 0.26 0.26 0.20 0.23 0.26
0.75 0.08 0.15 0.21 0.23 0.17 0.17 0.23
0.80 0.01 0.13 0.21 0.18 0.14 0.14 0.18
0.85 0.02 0.12 0.17 0.14 0.08 0.08 0.14
0.90 0.01 0.09 0.12 0.11 0.04 0.04 0.11
0.95 0.04 0.08 0.10 0.06 0.01 0.02 0.06
1.00 0.05 0.04 0.06 0.02 0.07 0.05 0.03
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Table 4.A23: Error in kmax when sampling by interactions from a Scale-free weighted
network.

q I II III IV V VI VII
0.05 0.85 0.85 0.85 0.85 0.85 0.85 0.85
0.10 0.80 0.80 0.80 0.80 0.80 0.80 0.80
0.15 0.73 0.73 0.73 0.73 0.73 0.73 0.73
0.20 0.69 0.69 0.69 0.69 0.69 0.69 0.69
0.25 0.63 0.63 0.63 0.63 0.63 0.63 0.63
0.30 0.58 0.58 0.58 0.58 0.58 0.58 0.58
0.35 0.55 0.55 0.55 0.55 0.55 0.55 0.55
0.40 0.49 0.49 0.49 0.49 0.49 0.49 0.49
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.50 0.42 0.42 0.42 0.42 0.42 0.42 0.42
0.55 0.37 0.37 0.37 0.37 0.37 0.37 0.37
0.60 0.33 0.33 0.33 0.33 0.33 0.33 0.33
0.65 0.30 0.30 0.30 0.30 0.30 0.30 0.30
0.70 0.26 0.26 0.26 0.26 0.26 0.26 0.26
0.75 0.23 0.23 0.23 0.23 0.23 0.23 0.23
0.80 0.18 0.18 0.18 0.18 0.18 0.18 0.18
0.85 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.90 0.11 0.11 0.11 0.11 0.11 0.11 0.11
0.95 0.06 0.06 0.06 0.06 0.06 0.06 0.06
1.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03
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Table 4.A24: Number of messages from September 2008-November 2009. The number
of “observed” messages in our database comprise a fraction of the total number of Twitter
messages made during period of this study (September 2008 through November 2009).
While our feed from the Twitter API remains fairly constant, the total # of tweets grows,
thus reducing the % of all tweets observed in our database. We calculate the total # of
messages as the difference between the last message id and the first message id that we
observe for a given month. This provides a reasonable estimation of the number of tweets
made per month as message ids were assigned (by Twitter) sequentially during the time
period of this study. The % observed represent the percent of messages observed out of the
estimated total. We also report the number observed messages that are replies to specific
messages and the percentage of our observed messages which constitute replies.

Week Start date # Obsvd. Msgs. # Total Msgs. % Obsvd. # Replies % Replies
×106 ×106 ×106

1 09.09.08 3.14 7.26 43.2 0.88 28.1
2 09.16.08 3.36 8.31 40.4 0.90 26.9
3 09.23.08 3.43 8.89 38.6 0.90 26.2
4 09.30.08 3.33 9.06 36.8 0.89 26.6
5 10.07.08 2.33 9.38 24.8 0.64 27.5
6 10.14.08 4.39 9.87 44.4 1.24 28.3
7 10.21.08 4.70 10.01 47.0 1.35 28.8
8 10.28.08 5.74 10.34 55.5 1.64 28.5
9 11.04.08 5.58 11.14 50.1 1.63 29.3
10 11.11.08 4.70 9.88 47.6 1.42 30.2
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Chapter 5

Conclusion

In this work, we describe the construction of Twitter reply and reciprocal reply networks.

Countering claims that Twitter is not social a network (Kwak, et al., 2010), we provide

evidence of a social subnetwork structure within Twitter. Given that our networks are

derived from only a fraction of all tweets authored during the weeks under analysis, we

are motivated to develop scaling methods to more accurately portray the global network

statistics characterizing these networks. This analysis leads us to consider previous work,

which is largely based on subnetworks induced on randomly selected nodes.

Subnetworks generated from randomly selected links differ substantially from those

generated by randomly selected nodes. Most notably, the nodes in the former are a biased

subsample in that hubs are much more likely to be included in the subnetwork. Because

of this bias, Horvitz-Thompson estimators are required for predicting the number of nodes

in the true network and this requires knowledge or the true degree distribution. Previous

work has been challenged by this requirement. We surmount this challenge by providing

a practical means of approximating the degree distribution. Using this approximation, we

show that the Horvitz-Thompson estimators perform reasonably well for the true network

statistics. We extend these methods to account for weighted networks and weighted, di-

rected networks - sampling strategies largely unexplored in the literature. We conclude by

providing estimates of the global network statistics for Twitter reply networks during the

weeks from September 2008-November 2009.
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CHAPTER 5. CONCLUSION

The large volume of replies (millions every week) and assortativity of user happiness

indicates that Twitter is being used as a social service. Furthermore, we find evidence of an

upper threshold of approximately 150 neighbors. This supports previous work by Dunbar

(1992), who found a positive correlation between the size of the neocortex of nonhuman

primates and the number of social relationships that they can maintain. His theory suggests

that humans can maintain approximately 150 social relationships. More recent support for

Dunbar’s number was detected in the work of Gonçalves et al. (2011). These researchers

examine Twitter reply networks constructing from the Twitter firehose and find that edge

weights of out-going edges gradually increase to a maximum around kout ≈ 150. They sug-

gest that the “economy of attention” is a limiting factor restricting increased edge weights

beyond this value.

Previous network constructions of Twitter utilized follower networks and our work

overcomes the limitations of stale accumulation of social ties with no functional activity

by examining an “in the moment” social network. By examining networks constructed at

the time scale of weeks, we are able to view Twitter reciprocal reply networks as a dy-

namic social network. In this light, we examine a fundamental property of dynamic social

networks: network densification. Using an evolutionary algorithm that exhibits fast con-

vergence for optimizing real valued functions, we explore a link predictor that performs

relatively well to other efforts in this realm. We note that a limitation of our work is the

assumption of a linear model, as well as our inclusion of a highly unbalanced class for

training our predictor. Future work which utilizes balanced classes, while still capitalizing

on sparse matrix computations may be particularly fruitful. At the very least, such a de-

velopment would enable a fair comparison of our method with state of the art supervised
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learning methods, such as binary decision trees (with balanced classes). Additional work

may explore the persistence or decay of links over time.

One of the most intriguing aspects of this work is the detection of similarity indices

which evolve to have large, positive weights in our link predictors. Perhaps the most no-

table similarity index for which this is the case is the Resource Allocation Index. Resource

allocation considers the amount of resource one node has and assumes that each node will

distribute its resource equally among all neighbors (Zhou, Lü, & Zhang, 2009). Consider-

ing the limits to time and attention an individual has, this may be suggestive of a mechanism

by which users limit their interaction.

While this work does not attempt to separate homophily and contagion, future work

could examine the change in individuals’ hedonometric scores, relative to changes in their

nearest neighbors’ and ambient hedonometric scores. Further research may explore the ex-

tent to which information or expressed sentiment flows in emergent virtual communities.

Granovetter (1973) explores the role of strong and weak ties mediating the flow of infor-

mation. Recent work by Weng, Menczer, and Ahn (2013) suggests that highly connected

communities may trap contagion, however, the role of network topology has not been fully

explored and it is also possible that communication of similar interests drives the evolution

of tightly bound communities.

In a larger context, this work not only reveals a social network structure of Twitter, but

also presents several tools for working with large, possibly incomplete network datasets.

Future work which continues to explore techniques for inferring network topology from

noisy or incomplete observations, as well as work which explore the role of topology on

complex contagion will greatly advance our understanding behavior of networked systems.
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Erdös, P. and A. Rényi (1960). On the evolution of random graphs. Magyar Tud. Akad.
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