
Categorizing Snow Depth Trends in Vermont with
Singular Value Decomposition

Brendan Whitney
Computational Story Lab, University of Vermont

December 6, 2017

Abstract

Snow depth records for 11 weather stations in Vermont were analyzed using Sin-
gular Value Decomposition to extract the seasonal modes for snowpack shape. Linear
regression on the modes revealed temporal trends. Stations located in municipalities
with higher population densities exhibited higher variability in their yearly snowpack.
Certain stations exhibited significant changes in reliance on a particular mode. These
trends were site specific and a significant trend present at one station was most likely
not exhibited by the other Vermont stations.

1 Introduction/Literature Review

General warming trends in the Northeastern United States have impacted the snowfall cycles
and snowpack accumulation. Vermont relies heavily upon the tourist industry to support its
economy, and the activitiy most dependent on snowfall and snowpack is skiing. The skiing
industry attracts roughly 4 million visitors each winter, and employs more than 14,000
Vermonters (2.5% of Vermont’s population). Snowpack depth is the measurement most
connected to success in the Vermont ski industry. While snowfall is required, ski resorts
cannot operate without snowpack retention and consistent depths throughout the season.
Ski resorts have the ability to make snow when temperatures cooperate, which allows them
to build the snowpack earlier and sustain the snowpack later into the season. However,
snowmaking is an expensive undertaking, and is not feasible for an entire season. A deep
natural snowpack is necessary for the financial success of ski resorts. In the present thesis,
we look into the current state of Vermont snowpacks across the state using Singular Value
Decomposition on historical snow depth data, but begin with a literature review.

1.1 Burakowski et al [1]

Research prior to Burakowski indicated a general trend of increasing temperature in con-
junction with a reduction of snow to total precipitation ratios in Northern New England.
The general warming trend has been confirmed by various other hydrological and climate

1

measurements. Snowpacks are getting shallower and melting earlier because of this trend of
warming temperatures throughout the Northeast [2] [3].

The ski industry relies heavily on deep (> 12in), cold snowpack for revenue. Research has
shown that warm and slushy winters are not only detrimental to ski resort visits and sales,
but to general wintertime economic activity throughout the Northeast. Fewer resort visits
lead to less traffic in towns serving said resorts, and a decrease in revenue throughout the
different industries supported by resort towns. Characterizing the severity of the warming
trend in the Northeast is critical to predicting the economic impact that continued warming
will have on the communities supported by ski tourism.

Burakowski et al created a time series from 1965 to 2005 using stations from the Northeast
with less than 10% daily precipitation values missing. For the purpose of their study, the
Northeast was defined as New England, New York, New Jersey, and Pennsylvania. The
data were split into 12 moving windows each of size 30 years. A moving window represents
the data so that the first year of a window is one year later than the previous window.
For example, if a window started in 1965, the next 30-year window would start in 1966.
The 30-year windows served to remove the emphasis placed on the beginning and end of
the time series. Only stations with a p < 0.10 in warming across all 12 decadal windows
were considered statistically significant. The study found that 22 of 128 stations reported
statistically significant warming across all the decadal windows. However, ony one station
was shown to be statistically significant for a reduction in snow covered days.

The results from Burakowski et al provide a good reason to delve into the problem of
characterizing snow depth trends for the Northeast. The research shows that portions of
the region have shown statistically significant warming over the 40 year period. However,
they have also shown that the warming experienced by the region has not had an impact
on the number of days with snow cover. The ski industry does not just rely on having snow
coverage: there needs to be a significant amount of snow on the ground to have a successful
season. Even though the warming weather might not affect the number of days with snow
coverage, it could impact the quality of the snow. There needs to be an exploration into the
impact of warming trends on the depth of the snowpack from year to year.

1.2 Dyer and Mote [2]

Snowfall record keeping for snow depth for North America was very sparse pre-1960. Before
1960, the US and Canada had a high concentration of weather stations on the coast, but not
much by way of weather stations in the prairie regions of North America. After 1960, both
the US and Canada prioritized a more comprehensive weather station system allowing for
better data collection. Therefore, after 1960, Dyer and Mote created a grid system spanning
North America using snow depth values from the 5 nearest stations to each specific 0.25°x
0.25°. The smaller grids were then spatially averaged into 1°x 1°for analysis.

Shortcomings of the data collection include persistent sparsity issues in more remote
locations of North America, where data were being collected from weather stations more
than 100km away from the grid. Another data collection issue is the spatial averaging does
not measure snow depth of mountain slopes and locations with heavy snow deposits from
wind loading.

Data analysis consisted of linear regression performed on pentad (5-day) averages. A

2

two-sample difference of means test was computed for each regression to determine if there
have been significant changes. The snowpack has stayed relatively constant for pentads in
early (October-December) and mid-winter (January-February). Significant decreases in snow
depth in late March and early April point towards an earlier spring melting cycle. The earlier
melting cycle in Canada could be attributed to either a less frequent spring cyclone storm
generation bringing less spring snow storms to the region, or more snow melt energy in the
early spring climate system. In North America, the earlier snow melt is likely attributable
to shallower snowpacks and higher early spring temperatures.

Dyer and Mote combined the snow depth measurements with Snow Coverage Extent
(SCE) gathered from satellite values to map the extent of specific snowpack depth across
North America. The combination of SCE and snow depth led to some interesting insights.
The snow pack depth with the largest decrease in SCE was the snow pack with a depth of
40cm followed closely by the snow pack of 2cm depth. The shallower snow packs reached
their peak size in early-mid January, while the deeper snow packs reach their peak size in
March. Combination of SCE and snow depth further confirmed the observation that the
spring melt is occuring earlier in the season.

1.3 Hamburg et al [4]

Hamburg et al used the Hubbard Brook Experimental Forest (HBEF) to analyze climate
trends on the local level in comparison to trends observed at the global level. HBEF is
a historically undisturbed forest with weather stations that provide extensive and nearly
complete (> 99.9% complete) climate records. The study focused on 18 different weather
measurements, but the results for mean annual temperature, mean winter temperature, mean
summer temperature, snowpack duration, and maximum snowpack were the most relevant
to my analysis. The climate measurements were taken from the longest records in areas of
the forest not tampered by experimental logging practices. Temperature was measured daily,
and the snowpack was analyzed weekly for depth and water content. The local values were
compared against the global values observed from weather stations at Mount Washington,
NH, Pinkham Notch, NH, and Hanover, NH.

The non-parametric Mann-Kendall test was used to detect decadal trends in the local
data over two date ranges. The first range was the entire length of data collection for the 7
different weather stations, which varied from station to station. The second range spanned
from 1966-2005, which was the longest range with complete records from every recording
station. Statistical significance was set at the p = 0.10 threshold.

The annual mean temperature was significantly increasing in 3 of the 4 temperature
recording weather stations, faster than the global data. The same ratio was observed in the
trend analysis for both mean summer temperature (June-August) and mean winter temper-
ature (December-February) with 3 of 4 weather stations indicating increasing temperature
trends. The mean winter temperature is experiencing a greater increase over mean summer
temperature in a non significant fashion. Additionally, the mean winter temperatures are
more variable than the mean summer temperature.

The snow pack analysis focused on the first and last dates of measurable snow pack. The
decadal rate of change for the last date of measurable snowpack is significantly earlier by
2.5 days per decade. The rate for first date of measurable snowpack is increasing by 1.67

3

days per decade, but is not significant. The net decrease in measureable snowpack days
(4.2 days per decade) is significant (p = 0.06). Therefore at the local level, the snowpack
is melting earlier and on the ground for a smaller amount of time each decade. The data
collection did begin in an especially cold decade (the 1960s), which does have an influence
on the impact of the warming trend indicated by the trend test. A cold decade would also
lead to longer lasting snowpacks, thereby making assumptions from this data set difficult to
justify. Replication of the tests with a larger and longer lasting data set would be necessary
to fully justify the findings of the study.

1.4 Wobus et al [5]

Wobus et al modeled the effect of climate change on the ski industry in North America. The
model utilized in the study was the Utah Energy Balance (UEB). They trained their model on
30 years of climate data collected from the North American Land Data Assimilation System
(NLDAS-2). NLDAS-2 is the only multi-decadal, high-spatial resolution, continental-scale
dataset, which is why it was chosen for this study. Driving the UEB model with NLDAS-2
allowed for good regional approximations across the entire continental US. This allowed for
UEB to be as broad and generalizeable as possible.

The researchers optimized the model to have high computational efficiency, minimal pa-
rameters to improve the applicability across North America, and acceptable performance
when validated with the Snow Data Assimilation System (SNODAS). SNODAS provides
daily snow water extent, a measurement of the water content in a snowpack, at high resolu-
tion. SNODAS was used as a reliable season length source against which season predictions
from UEB were validated. UEB was used to model natural snow accumulation and melt for
a given year. The snow accumulation modeling was done at two different elevations repre-
senting the base and the summit of each of the 247 ski resorts analyzed in the continental
United States.

UEB also modeled temperature to predict snowmaking conditions, to best predict the
opening day for each resort. Snowmaking hours were modeled beginning on October 1st,
and are only considered when the wet bulb temperature drops below 28°F. The opening
date for ski resorts was modeled as the date that the resort reached 450 cumulative hours
of snowmaking. The average start date for each resort was calculated across the 30 years
of collected data. Five global climate models (GCMs) and two representative concentration
pathways (RCPs) were chosen for modeling. The two RCPs were chosen to represent a
modeling scenario where there is no green house gas (GHG) emission reduction over the
modeled years (RCP8.5), and a modeling scenario with GHG emission reduction (RCP4.5).

The modeling results indicate a stark decrease in the ski season for continental US ski
resorts. Under both RCP scenarios, the climate models predict a delay in season start date.
RCP4.5 predicts a 10-20 day delay in resort openings across the US, while RCP8.5 predicts
a 30-70 day delay. These results are regionally variable with the Northeast changing most
drastically, and the Rocky Mountains remaining the most robust to such changes. Another
important metric measured in terms of ski resort success is opening before the Christmas
holiday break. Both RCP levels predict that by 2090 fewer than 25% of US ski resorts will be
open by December 15th. This is a significant drop from the 70% of ski resorts that currently
operate by December 15th.

4

The Northeast is of particular note in this study because it was the most drastically
affected by climate change according the UEB model. Understanding the extent of climate
change disrupting the operation of Northeastern ski resorts is important to the economies
that rely on ski tourism. The modeling shows there is a need for location specific research
to determine the underlying shifts in snow cover in response to a warming climate. There is
a strong indication that snow packs are shrinking, but the full extent and effect of shrinking
on snow pack construction remain mysteries.

1.5 Dodds et al. [6]

Dodds et al researched the concept termed the ”teletherm”. Their study defined a teletherm
as the average hottest or coldest day of the year for a 30 year window–commonly refered to
as normals from the National Oceanic and Atmospheric Administration (NOAA). 30-year
averages were used instead of the raw hottest day of each year to reduce the stochastic
pattern of daily temperature distributions.

The researchers encountered very similar data issues as I did. They handled varying
record lengths, missing values, and periods of non-existence for certain weather stations.
Additionally,values for leap days were not used in the analysis to ensure each year was 365
days. Finally, to center the coldest teletherms, they rearranged the yearly data from July to
June, which mirrors the construction of one continuous winter snowfall season. Despite the
research being on a different topic, the teletherm research was an important tool for insight
into handling of climate data.

The researchers plotted the teletherm data for a 30 year window only if the stations had
80% of the data collected for that window. Then they fit a smoothed curve with a Gaussian
kernel to best represent the underlying shape of the points, which tend to be noisy. The
Gaussian kernel works by giving weights to the surrounding points relative to the distance
from the point where the estimate is desired. This process is repeated for every point in
the year and the resulting smoothed line is analyzed for its maximum value. The teletherm
varies little, as the number of points used for Gaussian kernel smoothing increases from 7 to
31 days.

Following their characterizations of teletherms for each weather station, the researchers
split their data into two adjacent 50 year windows (1912-1961 and 1962-2011 for the winter).
They compared the two teletherms from the 50 year windows, and recorded the number
of days the teletherm shifted and the direction of the shift. The shifts were not random,
nor centered around zero, which indicates that the teletherms are shifting in a non-trivial
manner. The teletherm results have good spatial representations despite the data requiring
specific results for each station. This is one aspect where the snow depth analysis falls short.

2 Data

The data for analysis in the present work comes from the Climate Database Online (CDO),
made available by NOAA. CDO provides a comprehensive list of all weather stations pro-
viding data for any given period of time in the United States. The data for Vermont is
included only if it had 85% data coverage and more than 50 years of data collection. The

5

Figure 1: A sample Snow Depth plot for Mount Mansfield Weather Station, VT including
daily maximum temperature values from 10/02/1978 to 05/26/1979.

coverage value, which is the percentage of missing data inputs on the daily level, on the
CDO was calculated for all five datatypes satisfying the search criteria. Those datatypes
were Maximum Daily Temperature (TMAX), Minimum Daily Temperature (TMIN), Daily
Precipitation (PRCP), Daily Snowfall (SNOW), and Snow Depth (SNWD).

Further analysis of missing values in the individual categories, set a baseline for the
stations that performed well for SNWD coverage. The analysis included graphing of the
SNWD per season, with a season being defined as stretching from August to July. Figure 1
shows an example SNWD plot. Following the diagnostic analysis, visual inspection of the
snow depth plots refined the usability of the weather stations gathered from the CDO. From
the analysis, the weather stations from Gilman, Woodstock, and Cornwall all had missing
snow depth percentages > 45%. This large missing percentage in conjunction with the
presence of missing values throughout the duration of record led to the determinion that
the stations did not record SNWD with the completeness required for a good mathematical
analysis. Other stations with large missing value percentages–Rutland (31%), Barre (28%),
and Enosburg (38%)–showed long streches of uninterrupted recording, with the missing
values concentrated at the beginning or end of their records (see section 2.1 for explanation
of handling missing values). Those values were removed from the analysis, and the stations
were included. The final 11 stations used for analysis are plotted in Figure 2.

All the data gathered from the CDO were measured in standard metric units. The
temperature measurements were recorded in Celsius. The PRCP, SNOW, and SNWD values
were all recorded in mm. These values are standard for weather recording in the United

6

Figure 2: Locations of the 11 stations used in the present study. Map created from the CDO
data.

7

Table 1: Length of Analyzed Record

Station Seasons Analyzed
Barre Montpelier 1948-1994
Burlington 1948-2015
Enosburg 1948-2009
Mount Mansfiled 1955-2015
Newport 1949-2013
Peru 1948-1999
Rochester 1948-1992
Rutland 1948-2015
Saint Johnsbury 1926-2015
South Hero 1970-2015
Union Village Dam 1950-2015

States. The measurement values were not altered for the purpose of this analysis.

2.1 Handling of Missing Values

Missing values were prevalent in two different aspects of the CDO data. There were both
missing recordings of daily SNWD and missing days of record from stations.

The missing daily values for SNWD were handled with simple linear interpolation if
the missing value was isolated, i.e. it had a recorded value on the day before and the day
after. This assumption is safe with SNWD data, because it is highly unlikely that in one
given day there would be a significant snow accumulation instance, followed by a significant
snowmelt to bring the total back down to the total recorded the following day. Additionally,
a single day spike in the snowpack does not have a wide ranging impact on the shape of the
snowpack over the course of a winter. A single day spike is noise, and does not contribute to
the underlying seasonal structure of the snowpack. However, the handling of missing values
for multiple days in a row proved to be more difficult. This is because multiple missing
days could contain a significant accumulation and melt phase. Without sufficient radiation
data, snowmelt probabilities could not be calculated [7]. Therefore, no action was taken with
multiple days of missing SNWD values, and they were left in the analysis as missing values.

If the weather station had missing days of all recordings from their season, the days
were filled with linear separation when graphed for SNWD. However, for the singular value
decomposition (SVD), those seasons with missing records were not included. The canonical
SVD requires complete years in order to work properly (See section 3).

Stations were analayzed individually to determine completeness of time series in the
SVD manipulation. The time series for Barre-Montpelier was stopped after 1995 because
the station no longer recorded snow depth data after the 1995 season. The time series for
Rochester was shortened to only consider the seasons starting in 1948 and ending in 1992
because every season in between those dates was complete for snow depth measurements. A
complete list of season lengths for the analyzed stations can be found in Table 1.

8

3 Methods

3.1 Singular Value Decomposition

3.1.1 Linear Algebra

For an arbitrary m×n matrix A, singular value decomposition (SVD) extracts the orthonor-
mal left and right singular vectors and corresponding singular values associated with A. Both
sets of singular vectors are unit vectors at right angles with each other. The left singular
vectors form the columns of a m × m matrix U . The singular values are arranged in de-
scending order on the diagonal of Σ, which is a m × n diagonal matrix. The right singular
values sit in the columns of V , a n× n matrix. Both U and V are unitary matrices, which
means that U−1 = UT .

The construction of right singular vectors maximizes the projections of rows of A onto
a unit vector v. The rows of A are considered m points in a n-dimensional space. The
projection of a particular row in A, ai onto v is |ai · v|. To construct the right singular
vectors we want to maximize the square of the sum of all the row projections onto v, written
as |Av|2 [8]. The first singular vector is the vector v1 that maximizes |Av|2. The construction
of the next vector chooses the vector v2 such that v1 ⊥ v2, and v2 is the orthogonal vector
that maximizes |Av|2. Construction of the remaining right singular vectors follows in a
similar fashion, with the current vector, vn satisfying vn ⊥ v1, v2, . . . , vn−1 and maximizing
|Av|2

The singular values follow from the construction of the right singular vectors. Namely,
the singular value for the right singular vector, σ1, is the sum of row projections from A
onto v1, i.e |Av1|. Since the construction of singular vectors are ordered by maximizing
the projections, it follows that the singular values are in desceding order. Because |Av1| >
|Av2| > · · · > |Avn|, σ1 > σ2 > · · · > σn ≥ 0.

The left singular vectors, ui, of A are constructed by the following formula:

ui =
1

σi
Avi where σi = 0 is handled by choosing ui ⊥ u1, u2, . . . , un−1

The construction of left singular vectors, singular values, and right singular vectors allow
for the construction of A using the following simple equation

A =
n∑

i=1

σiuiv
T
i

3.1.2 Application to Snowpack

SVD was used to extract the season snow depth modes from each of the useful stations. In
order to utilize SVD, a matrix was constructed out of the years for each weather station.
The matrix has 365 rows, one for each day of recorded snow depth. The number of columns
was dependent on the number of seasons with complete yearly recordings for each weather
station. To ensure that each year was 365 days, all years with a leap day had the recording
for February 29th removed. Seasons with missing recordings that could not be resolved using
the interpolation method described in the Section 2.1 were not included in the matrix.

9

The constructed matrix (A) was then decomposed into three different matrices using
SVD. The left matrix (U) is called the left singular matrix. U is a unitary matrix with
365 rows and 365 columns. Each column represents the left singular vector component
of our constructed matrix. The singular vectors in U are ranked in order of importance
to the construction of A. The singular vectors contained within U are the unweighted
representations of the modes for snow depth for the station.

The middle matrix (Σ) is a 365 by number of years matrix with the singular values
on the diagonal and 0s elsewhere. The singular values give the appropriate weight to the
importance of the left and right singular vectors. The larger the singular value, the more
the corresponding singular vectors contribute the construction of A. The singular values are
ranked along the diagonal in descending order.

The right matrix (V T) is the right singular matrix. V T is a unitary matrix with rows and
columns equal to the number of complete years recorded by the particular weather station
it is representing. The rows of V T contain the right singular vectors responsible for the
construction of A.

For mode analysis, Z = ΣV T was calculated as a representation of the coefficients of the
mode’s importance to each year constructing the A matrix. The weights in Z transform the
left singular vector to the corresponding mode acting on that particular year. The weights
construct A as follows:

Z[i, j] · U [:, i] = Construct the ith mode for the jth year of A

Adding each weighted left singular vector, i.e each mode, for a particular season con-
structed the complete snow depth profile for that season. For a station matrix A with n
years, the construction of complete season for a particular year j, denoted Aj is

Aj =
n∑

i=1

Z[i, j] · U [:, i]

The above method was adapted from a paper that used mode reconstruction to explain
common story arcs [9]. See Figure 3 for an example of mode construction for a given season.

3.1.3 Explained Variance

In order to determine the variance explained by each seasonal mode, the singular value for
each mode was divided by the sum of the singular values for that particular station.

Explained Variance =

∑p
i=1 σi∑n
i=1 σi

A useful measure of mode importance is the calculation of the cumulative variance ex-
plained by the modes. For example, we are interested in the explained variance of the first
five modes added together, then we add the first five singular values together and divide by
the sum of all the singular values. See Figure 4 for an example of the explained variance
plots. For modal analysis, a threshold of 90% explained variance was chosen.

10

(a) First mode (b) Second mode addition

(c) Third mode addition (d) Fourth mode addition

Figure 3: Demonstration of mode addition for Mount Mansfield, VT during the 1966-1967
season. The blue curve represents the actual recorded snow depth for the season. The red
curve represents the mode approximations for the season.

11

Figure 4: Explained Variance plot for the Burlington, VT weather station

3.2 Linear Regression

The entries of the Z matrix described in the project specifications section provide insight into
the importance of a particular mode to a given year. In order to quantify the trend of modal
importance, the absolute values of the entries of the Z matrix were used for linear regression.
The entries in Z can take on both positive and negative values depending on the influence
of a left singular value. A negative value simply indicates the year requiring construction
with a negative mode instead of a positive one. The influence of a particular mode changes
with a negative value, but a larger number indicates a more substantial influence on seasonal
construction regardless of the coefficient taking on a positive or negative value. Therefore,
despite the difference in interpretation between a positive and negative entry in the Z matrix,
the absolute values of the entries were utilized to assess modal importance.

Statistical significance of yearly trends in modal importance were reported at a p = 0.05
level. A different regression model was created for each mode, and for each station inde-
pendently of one another. This was due to the orthogonality between the modes inherent
in the use of singular value decomposition. Therefore, it would not be reasonable, statisti-
cally, to combine similar modes from different stations, i.e. the transformation coefficients of
mode 1 for Mansfield were not combined with the transformation coefficients of mode 1 for
Burlington.

12

4 Results

The modal constructions, see Figure 3 for a modal construction example, of each season
were starkly different for individual stations across Vermont. Analysis of one station did
not directly provide insight to analysis of a different station, even if that station was nearby.
This station to station independence is likely due to the number of weather phenomena snow
pack construction relies upon, and the spatial variability of these phenomena in Vermont.
The creation of stable snowpacks requires long continuous periods of freezing temperatures,
and weather events generating significant snowfall events during that cold strecth. Once a
snowpack has become stable, it can withstand short warming fronts with little snowmelt or
reduction. Ideal snowpack conditions generally require less energy than the requirements for
an ideal snowfall event. Additional requirements for snow pack retention beyond temperature
include limited thermal and solar radiation, wind interaction, and precipitation added to
snowpack (rain) [7].

Vermont experiences a lot of variation of these measurements across the state due to
its variations in elevation, terrain types, and proximity to bodies of water. This results in
varying snow packs for locations in Vermont that are very close to each other. The Green
Mountains heavily influence the variation observed between stations. In conjunction with
the prevailing Westerly winds, the mountain spine influences the amount of precipitation
experienced on either side of the range and at the summits. Another huge factor for spatial
variability is Lake Champlain, which typically moderates the weather experienced along
the western edge of Vermont. From the east, large energetic storms move in and deposit
large amounts of snow throughout the winter. These storms push their way up to the Green
Mountains were they dissipate, which results in larger snowfall events to the east of the Green
Mountains. In the case of easterly storms, the Green Mountains act as a wall stopping the
storms from heavily impacting the western parts of the state.

4.1 Winter Variability

The number of modes required to reach the 90% threshold of explained variance provide
insight into the seasonal variability of each station. The more modes required to reach the
threshold, the more seasonal variability that is observed at that weather station. Results are
shown in Table 2.

4.2 Mode Trends

Analysis of mode trends, indicate relatively few significant trends in mode influence values.
Linear trend regression was performed on the first 5 modes for the 11 VT weather stations
in the analysis. Table 3 on page 17 contains the slope coefficients for regression and the
corresponding p-value. Significant trends are highlighted in gray.

Understanding the meaning of significant changes in influence values over time depends
on the sign of the coefficients, and how the sign alters the influence of that particular mode
on season construction. Figure 5 shows an example of the trend analysis for Saint Johnsbury.
The example trend indicates a non-significant increasing trend in mode 2. Mode 2 is more

13

Table 2: Modes Required to explain 90% variance per station

Station Modes
Barre Montpelier 27
Burlington 40
Enosburg 24
Mount Mansfiled 24
Newport 31
Peru 19
Rochester 23
Rutland 35
Saint Johnsbury 43
South Hero 26
Union Village Dam 26

important in construction of snow pack of more recent years than the earlier years of record
for Saint Johnsbury, but with little statistical support.

Trend analysis indicates a significant decreasing trend for mode 2 for Mount Mansfield
(see Figure 6). More recent snow packs on Mansfield depend less on the shape of mode 2 for
snowpack construction. Figures 7 and 8 on pages 19 and 20 respectively show the unweighted
mode shape for the first five modes for Mansfield. Using the shape of unweighted modes,
a decreasing trend for mode 2 indicates one of two possible interpretations. For years with
a positive coefficient value, smaller influence values indicates a decrease in the number of
late season snow accumulation (i.e. a mid-April) snow accumulation event. For years with
a negative coefficient value, smaller influence values indicate a reduction in the amount of
faster early season accumulation and early April snowmelt. Analysis of the trend graphs for
mode 2 and mode 3 indicate that the influence values for mode 3 are larger in more recent
years than the influence values for mode 2. Therefore, mode 3 is explaining more variance
for recent snow packs than mode 2.

4.3 Limitations

It is important to note that other modes can compensate for the decreasing importance for
a particular mode. For instance, while mode 2 indicates a smaller chance of a late season
snow event, or earlier spring melting, mode 3 for Mansfield has a similar shape as mode 2 at
the end of the season. Therefore, depending on the influence value for mode 3, the influence
of mode 2 could be overridden or canceled out.

Another shortcoming of seasonal mode analysis falls to the construction method of adding
modes together to create each season. Therefore, for instance, the influence of adding mode
4 to a particular year not only depends on the influence value, but the prior construction of
the season. Different additions of modes 1 through 3 affects the impact that mode 4 has to
a particular season. Look at modal construction of Mount Mansfield using the unweighted
mode shapes as seen in Figures 7 and 8 on pages 19 and 20. Depending on the sign of a
transformation coefficient, mode 2 either indicate a late increase in snowpack, or an early
melt. Then after adding either mode 2 shape to the first mode, the addition of mode 3

14

could indicate another late season snow pack increase, or even earlier snow melt. The two
could possibly cancel each other out. There are many different possibilities for just 3 modes,
nevermind 53. Considering the combination of modes could change from season to season,
analysis is difficult to generalize to each season for a particular station.

5 Conclusion

The results from linear trend analysis indicate that while modes are changing for some
stations in Vermont, they aren’t changing in a manner consistent across stations. The trends
for modal importance seem to behave stochastically, and are heavily dependent on the station
for which the modes are calculated. Interpretation of the modes proved difficult and only
applicable to the station for which the mode was calculated. Calculating the number of
modes required to explain the variance of a particular gave insight into the variability of the
snowpack at a given station.

Future research into mode construction could categorize the seasons that are most ad-
herent to each mode, i.e. which seasons are most similar to the first mode, second mode, etc.
Perhaps there will be a more spatially quantifiable results for the years that adhere most
to certain modes. For instance, it could be the case that across Vermont, years 1980-1990
drive the creation of a certain mode for each weather station. Another topic for future re-
search could average snow pack construction over a few years for a particular station and
determine the modal construction of these averages. This approach could certainly reduce
the variability of year to year construction and potentially extract a more meaningful trend
analysis of modal importance. From this approach, it might be possible to determine which
mode drives the characteristic snow pack for a period of time in Vermont.

Climate models are predicting less snowfall in conjunction with higher temperatures for
the Northeast. An example of this trend was shown in the paper written by Wobus et al.
Understanding the snowpack change in light of the predicted climate change for the Northeast
could result in very interesting results predicting the change in snow pack shape for winter
seasons. The problem of changing snow pack is vital to the success of the ski industry, and
requires a combination of mode construction methods, and climate model predictions.

15

Figure 5: Linear trend of influence values for mode 2. Blue x indicates a negative coefficient,
and red x indicates a positive coefficient. This mode is not experiencing a significant change
in time.

Figure 6: Linear trend of influence values for mode 2. Blue x indicates a negative coefficient,
and red x indicates a positive coefficient. This mode is reducing in importance over time.

16

Table 3: Modular Trend Analysis

Station Mode Slope p-value
Barre Montpelier 1 -27.76 0.267

2 -6.14 0.348
3 -7.19 0.160
4 -10.06 0.037
5 -0.94 0.820

Burlington 1 0.84 0.887
2 2.09 0.406
3 -0.68 0.717
4 4.26 0.013
5 -0.32 0.816

Enosburg Falls 1 -9.39 0.450
2 -0.74 0.888
3 -6.20 0.137
4 4.34 0.167
5 -3.48 0.199

Mount Mansfield 1 65.59 0.184
2 -33.62 0.016
3 3.51 0.675
4 -2.83 0.712
5 0.30 0.955

Newport 1 -15.09 0.304
2 8.97 0.017
3 4.33 0.129
4 2.32 0.237
5 -0.59 0.774

Peru 1 -9.21 0.811
2 0.23 0.989
3 9.55 0.277
4 -2.26 0.773
5 -0.96 0.891

Rochester 1 18.93 0.496
2 4.93 0.587
3 -0.61 0.909
4 7.58 0.072
5 1.10 0.773

Rutland 1 9.73 0.198
2 5.88 0.025
3 5.13 0.019
4 1.02 0.513
5 2.11 0.111

17

Station Mode Slope p-value
Saint Johnsbury 1 -3.03 0.667

2 3.08 0.135
3 0.27 0.881
4 -0.27 0.801
5 0.57 0.605

South Hero 1 -19.14 0.107
2 -10.22 0.043
3 -2.56 0.551
4 -7.37 0.103
5 -3.24 0.302

Union Village Dam 1 -2.32 0.898
2 -0.80 0.872
3 -6.96 0.060
4 -5.45 0.035
5 1.14 0.668

Trend calculations for the first 5 modes of each weather station analyzed.

18

Figure 7: Positive coefficient mode vectors for Mount Mansfield

19

Figure 8: Negative coefficient mode vectors for Mount Mansfield

20

References

[1] E. A. Burakowski, C. P. Wake, B. Braswell, and D. P. Brown, “Trends in wintertime
climate in the northeastern united states: 1965–2005,” Journal of Geophysical Research:
Atmospheres, vol. 113, no. D20, 2008. D20114.

[2] J. L. Dyer and T. L. Mote, “Spatial variability and trends in observed snow depth over
north america,” Geophysical Research Letters, vol. 33, no. 16, 2006. L16503.

[3] R. D. Brown, “Northern hemisphere snow cover variability and change, 1915–97,” Journal
of Climate, vol. 13, no. 13, pp. 2339–2355, 2000.

[4] S. P. Hamburg, M. A. Vadeboncoeur, A. D. Richardson, and A. S. Bailey, “Climate
change at the ecosystem scale: a 50-year record in new hampshire,” Climatic Change,
vol. 116, pp. 457–477, Feb 2013.

[5] C. Wobus, E. E. Small, H. Hosterman, D. Mills, J. Stein, M. Rissing, R. Jones, M. Duck-
worth, R. Hall, M. Kolian, J. Creason, and J. Martinich, “Projected climate change
impacts on skiing and snowmobiling: A case study of the united states,” Global Envi-
ronmental Change, vol. 45, no. Supplement C, pp. 1 – 14, 2017.

[6] P. S. Dodds, L. Mitchell, A. J. Reagan, and C. M. Danforth, “Tracking climate change
through the spatiotemporal dynamics of the teletherms, the statistically hottest and
coldest days of the year,” PLOS ONE, vol. 11, pp. 1–20, 05 2016.

[7] U. S. S. C. Service, National Engineering Handbook. Part 630, Hydrology. 1985.

[8] J. Hopcroft and R. Kannan, “Computer science theory for the information age,” 2012.

[9] A. J. Reagan, L. Mitchell, D. Kiley, C. M. Danforth, and P. S. Dodds, “The emotional
arcs of stories are dominated by six basic shapes,” EPJ Data Science, vol. 5, p. 31, Nov
2016.

21

A Source Code

−∗− coding : u t f−8 −∗−
”””
Created on Wed Aug 30 11 :22 :27 2017

@author : brendan

This f i l e w i l l run d i a gno s t i c s to t e s t the v i a b i l i t y o f data
”””
import pandas as pd
import datet ime as dt
Make a func t i on t ha t keeps t rack o f number o f data po in t s and miss ing data
def data check year (data) :

#crea t e an empty dataframe to s t o r e the d i a gno s t i c va l u e s in
d iag y r = pd . DataFrame ()
Generate a l i s t o f s t a t i o n s to i t e r a t e through
s t a t i o n s = l i s t (data [’STATION NAME ’] . unique ())
for s t a t i o n in s t a t i o n s :

sub s e t to j u s t a dataframe o f the g iven s t a t i o n
dfcheck= data [data [’STATION NAME ’] == s t a t i o n]
#crea t e a column of years determined from the date t ime f e a t u r e
dfcheck [’YEAR’] = pd . DatetimeIndex (dfcheck [’DATE’]) . year
genera te a l i s t o f years to i t e r a t e through
years = l i s t (dfcheck [’YEAR’] . unique ())
for year in years :

#sub s e t f u r t h e r to a dataframe fo r j u s t the year
i t d f = dfcheck [dfcheck [’YEAR’]==year]
#ca l c u l a t e days , miss ing va lues , and percentage o f miss ing va l u e s
days = len (i t d f [’DATE’])
miss ing = len (i t d f [’DATE’])− i t d f . count ()
mperc = i t d f . i s n u l l () .sum()/ days ∗100
#ass i gn the miss ing va l u e s and percen tages to i n d i v i u a l v a r i a b l e s
m prcp , m snwd , m snow , m tmax , m tmin = miss ing [2 : −1]
p prcp , p snwd , p snow , p tmax , p tmin = mperc [2 : −1]
#add a l l the v a r i a b l e s as a dataframe l i n e and append them to the
#empty data frame
i n s = pd . DataFrame ({ ’STATION ’ : s ta t i on , ’YEAR’ : year , ’NUM DAYS’ : days ,

’MISSING PRCP ’ : m prcp , ’MISSING SNWD ’ : m snwd ,
’MISSING SNOW ’ : m snow , ’MISSING TMAX ’ : m tmax ,
’MISSING TMIN ’ : m tmin , ’PERCENT PRCP ’ : p prcp ,
’PERCENT SNWD’ : p snwd , ’PERCENT SNOW’ : p snow ,
’PERCENT TMAX’ : p tmax , ’PERCENT TMIN ’ : p tmin } ,
index =[0])

d i ag y r = d iag y r . append (ins , i g n o r e i n d e x=True)

#rearrange the columns to make them look p r e t t y
c o l s=d iag y r . columns . t o l i s t ()
c o l s = c o l s [−2:]+ c o l s [5 : 6] + c o l s [: 5] + c o l s [6 : −2]
d i ag y r=d iag y r [c o l s]
print (da i g y r)
d i ag y r . t o c s v (’ data f rames / y e a r l y d i a g n o s t i c s . csv ’ , index=False)

22

def data check (data) :
#crea t e an empty dataframe to s t o r e the d i a gno s t i c va l u e s in
diag=pd . DataFrame ()
Generate a l i s t o f s t a t i o n s to i t e r a t e through
s t a t i o n s = l i s t (data [’STATION NAME ’] . unique ())
for s t a t i o n in s t a t i o n s :

sub s e t to j u s t a dataframe o f the g iven s t a t i o n
dfcheck= data [data [’STATION NAME ’] == s t a t i o n]
days = len (dfcheck [’DATE’])
miss ing = len (dfcheck [’DATE’])− dfcheck . count ()
mperc = dfcheck . i s n u l l () .sum()/ days ∗100
#ass i gn the miss ing va l u e s and percen tages to i n d i v i u a l v a r i a b l e s
m prcp , m snwd , m snow , m tmax , m tmin = miss ing [2 :]
p prcp , p snwd , p snow , p tmax , p tmin = mperc [2 :]
#add a l l the v a r i a b l e s as a dataframe l i n e and append them to the
#empty data frame
i n s = pd . DataFrame ({ ’STATION ’ : s ta t i on , ’NUM DAYS’ : days ,

’MISSING PRCP ’ : m prcp , ’MISSING SNWD ’ : m snwd ,
’MISSING SNOW ’ : m snow , ’MISSING TMAX ’ : m tmax ,
’MISSING TMIN ’ : m tmin , ’PERCENT PRCP ’ : p prcp ,
’PERCENT SNWD’ : p snwd , ’PERCENT SNOW’ : p snow ,
’PERCENT TMAX’ : p tmax , ’PERCENT TMIN ’ : p tmin } ,
index =[0])

d iag = diag . append (ins , i g n o r e i n d e x=True)
#rearrange the columns to make them look p r e t t y
c o l s=diag . columns . t o l i s t ()
c o l s = c o l s [−1:]+ c o l s [5 : 6] + c o l s [: 5] + c o l s [6 : −1]
d iag=diag [c o l s]
print (d iag)
diag . t o c s v (’ data f rames / d i a g n o s t i c s . csv ’ , index=False)

data = pd . r ead c sv (” data f rames / f i na l ve rmont . csv ” , na va lue s= −9999)
data . drop ([’STATION ’ , ’ELEVATION ’ , ’LATITUDE ’ , ’LONGITUDE’] , a x i s =1, i n p l a c e=True)

data check year (data)
data check (data)

23

−∗− coding : u t f−8 −∗−
”””
Created on Thu Mar 30 21 :31 :40 2017

@author : brendan

This code organ i z e s the raw data in t o the form tha t i s l a t e r used to p l o t
the snow depth and tmax f o r each year f o r each s t a t i o n .
”””
import numpy as np
import matp lo t l i b . pyplot as p l t
import pandas as pd
import os
import path l i b as p l
import re

mypath = ” data f rames / snwd temp comparison /”
d e s t i n a t i o n p a t h = ’ p l o t s / snwd temp data/ ’
datatypes = [’STATION NAME ’ , ’DATE’ , ’SNWD’ , ’TMAX’]

#save the data to a csv and c rea t e a new d i r e c t o r y i f i t doesn ’ t a l r eady e x i s t
def f i l e s a v e (f i l e p a t h , f i l e , data) :

p l . Path (f i l e p a t h) . mkdir (parents=True , e x i s t o k=True)
data . t o c s v (f i l e p a t h+f i l e , index=False)

def a s s e s s o u t l i e r s (data) :
snow = np . squeeze (np . asar ray (data [’SNWD’]))
#We can ignore the two endpo in t s f o r assessment because they were ze ros
#added in by the code p r i o r to a s s e s s i n g f o r o u t l i e r s
for i in range (len (snow)−1):

i f i ==0:
continue

x = snow [i]−snow [i −1]
y = snow [i +1]−snow [i]
i f x>0:

#i f the snow f a l l i n c r ea s e s by 1000 and drops by 1000 the next day
#c l a s s i f y the po in t as an o u t l i e r
i f (np . abs (x)>1000 and np . abs (y)>1000):

snow [i] = np .NaN
else :

continue
i f x<0:

#i f the snowdepth goes down to zero and back up the next day
#c l a s s i f y i t as an o u t l i e r
i f (np . abs (x/snow [i −1])==1 and np . abs (y/snow [i +1])==1):

snow [i] = np .NaN
#e l s e i f the snowdepth drops 500 and r i s e s 500 the next day ,
#c l a s s i f y i t as an o u t l i e r
e l i f (np . abs (x)>500 and np . abs (y)>500):

snow [i] = np .NaN
data [’OUT’] = snow
#in t e r p o l a t e the NaN va lu e s l i n e a r l y s ince each day i s r epre sen t ed by the
#data

24

data [’SNWD’] = data [’OUT’] . i n t e r p o l a t e ()
data [’TMAX’] = data [’TMAX’] . i n t e r p o l a t e ()
return data [datatypes]

def depthplot (data , o r g f i l e) :
#ge t the indexes o f the f i r s t and l a s t rows wi th snow on the ground
snow = data [’SNWD’]
f i r s t s n o w = min(min((snow>0). nonzero ()))
l a s t snow = max(min((snow>0). nonzero ()))
#sub s e t the winter by t h e s e va l u e s and add one on e i t h e r s i d e to b e t t e r
#complete the graph
winter = data . i l o c [f i r s t s n o w −1: l a s t snow +1 , :]
winter = a s s e s s o u t l i e r s (winter)

f i l e s a v e (de s t ina t i on path , o r g f i l e , winter)

#turn the t e x t f i l e path in t o something the os can read
d i r e c t o r y = os . f s encode (mypath)

for f i l e in os . l i s t d i r (d i r e c t o r y) :
f i l ename = os . f sdecode (f i l e)
data = pd . r ead c sv (mypath+f i l ename)
i f ’MANSFIELD ’ in f i l ename :

try :
depthplot (data , f i l ename)

#i f a va lue error i s r a i s ed j u s t p r i n t the f i l ename in s t ead o f sav ing i t
#in the f i l e . This j u s t means a l l the snow va l ue s equa l 0 or are
#miss ing va l u e s
except ValueError :

e r r o r pa t h = ” p l o t s / snwd temp data/ v a l u e e r r o r s /”
f i l e s a v e (e r ro r path , f i l ename , data)

25

#!/ usr / b in /env python3
−∗− coding : u t f−8 −∗−
”””
Created on Wed Sep 27 21 :57 :42 2017

@author : brendan

V i s ua l i z e the snow depth and max temp data f o r each season us ing the snow depth
data generated by c l a s s i f y s nowd . py
”””
import numpy as np
import matp lo t l i b . pyplot as p l t
import pandas as pd
import os
import path l i b as p l

mypath = ’ p l o t s / snwd temp data/ ’
d e s t i n a t i o n p a t h = ’ p l o t s / snwd temp plots / ’

def depthplot (data) :
#ge t the s t a t i o n name and year f o r the t i t l e o f the p l o t
s t a t i o n = l i s t (data [’STATION NAME ’] . unique ())
year = min(pd . DatetimeIndex (data [’DATE’]) . year)

f i g , ax1 = p l t . subp lo t s ()
#i n i t i a l i z e the f i r s t a x i s and p l o t the snow depth on t h i s a x i s in b l u e
ln1 = ax1 . p l o t d a t e (data [’DATE’] , data [’SNWD’] , ’b− ’ , l a b e l=’Snow Depth ’)
ax1 . s e t x l a b e l (’ Date ’)
ax1 . s e t y l a b e l (’Snow Depth (mm) ’)
ax1 . t i ck params (’ y ’)
ax1 . l egend ()

#i n i t i a l i z e a second y−ax i s on the same x−ax i s to p l o t the maximum temp
ax2 = ax1 . twinx ()
ln2 = ax2 . p l o t d a t e (data [’DATE’] , data [’TMAX’] , ’ r− ’ ,

l a b e l=’ Temperature ’ , alpha =0.5)
ax2 . s e t y l a b e l (’Maximum Daily Temperature (C) ’)
ax2 . t i ck params (’ y ’)
#Combine the two l i n e s on d i f f e r e n t axes in t o one l egend
l n s = ln1+ln2
l abs = [l . g e t l a b e l () for l in l n s]
ax1 . l egend (lns , labs , l o c=’ upper l e f t ’)
#make the x ax i s l ook nice
p l t . g c f () . autofmt xdate ()
p l t . s u p t i t l e (” Plot o f Winter Snow Depth from ”+str (year)+” to ”+str (year +1)
+”\n f o r ”+s t a t i o n [0])

f i l ename = (s t a t i o n [0]+ ’ ’+str (year)+ ’− ’+str (year+1)+ ’ . png ’)
#crea t e d i r e c t o r y i f i t doesn ’ t e x i s t and save f i l e as . png
pl . Path (d e s t i n a t i o n p a t h) . mkdir (parents=True , e x i s t o k=True)
p l t . s a v e f i g (d e s t i n a t i o n p a t h+f i l ename , dpi =600)
p l t . c l o s e (f i g)

#turn the t e x t f i l e path in t o something the os can read

26

d i r e c t o r y = os . f s encode (mypath)

for f i l e in os . l i s t d i r (d i r e c t o r y) :
f i l ename = os . f sdecode (f i l e)
try :

data = pd . r ead c sv (mypath+f i l ename , eng ine = ’ python ’)
except I sADirectoryError :

continue
try :

depthplot (data)
except ValueError :

e r r o r pa t h = ’ p l o t s / snwd temp plots / e r r o r / ’
f i l e s a v e (e r ro r path , f i l ename , data)

27

−∗− coding : u t f−8 −∗−
”””
Created on Fri Oct 13 07 :49 :50 2017

@author : brendan

Perform s i n gu l a r va lue decomposi t ion a f t e r hand l ing o u t l i e r s in the data
and organ i z ing the o r i g i n a l data in t o seasons years in s t ead o f ca lendar years .
Then save the r e s u l t i n g matr ices in t o appropr ia t e f o l d e r s f o r l a t e r use .
”””

import pandas as pd
import numpy as np
import path l i b

f i n a l p a t h = ’ data f rames / svd data / ’
datatypes = [’STATION NAME ’ , ’DATE’ , ’SNWD’ , ’TMAX’]

#save the data to a csv and c rea t e a new d i r e c t o r y i f i t doesn ’ t a l r eady e x i s t
def f i l e s a v e (f i l e p a t h , f i l e , data) :

pa th l i b . Path (f i l e p a t h) . mkdir (parents=True , e x i s t o k=True)
data . t o c s v (f i l e p a t h+f i l e , index=False)

def proc e s s svd (svd data , s ta t i on , datatype) :
#in t e r p o l a t e over the miss ing va lues , and perform svd over the matrix o f
#the va l u e s from the dataframe
e v a l s = svd data . i n t e r p o l a t e ()
i f (e v a l s . i s n u l l () . va lue s .any ()) :

e v a l s = e v a l s . dropna (a x i s =1, how=’ any ’)
try :

#perform SVD and save the data to the appropr ia t e f i l e s
U, s ,V = np . l i n a l g . svd (np . matrix (e v a l s . va lue s))
l e f t = pd . DataFrame (U)
e i g e n v a l s = pd . DataFrame (s)
r i g h t = pd . DataFrame (V)
f i l e = s t a t i o n+’ ’+datatype
f i l e s a v e (f i n a l p a t h+’ o r i g i n a l s / ’ , f i l e , e v a l s)
f i l e s a v e (f i n a l p a t h+’ l e f t s i n g u l a r / ’ , f i l e , l e f t)
f i l e s a v e (f i n a l p a t h+’ r i g h t s i n g u l a r / ’ , f i l e , r i g h t)
f i l e s a v e (f i n a l p a t h+’ eva lue s / ’ , f i l e , e i g e n v a l s)

except :
print (s ta t i on , datatype)

def a s s e s s o u t l i e r s (data) :
snow = np . squeeze (np . asar ray (data [’SNWD’]))
#We can ignore the two endpo in t s f o r assessment because they were ze ros
#added in by the code p r i o r to a s s e s s i n g f o r o u t l i e r s
for i in range (len (snow)−1):

i f i ==0:
continue

x = snow [i]−snow [i −1]
y = snow [i +1]−snow [i]
i f x>0:

#i f the snow f a l l i n c r ea s e s by 1000 and drops by 1000 the next day

28

#c l a s s i f y the po in t as an o u t l i e r
i f (np . abs (x)>1000 and np . abs (y)>1000):

snow [i] = np .NaN
else :

continue
i f x<0:

#i f the snowdepth goes down to zero and back up the next day
#c l a s s i f y i t as an o u t l i e r
i f (np . abs (x/snow [i −1])==1 and np . abs (y/snow [i +1])==1):

snow [i] = np .NaN
#e l s e i f the snowdepth drops 500 and r i s e s 500 the next day ,
#c l a s s i f y i t as an o u t l i e r
e l i f (np . abs (x)>500 and np . abs (y)>500):

snow [i] = np .NaN
data [’OUT’] = snow
#in t e r p o l a t e the NaN va lu e s l i n e a r l y s ince each day i s r epre sen t ed by the
#data
data [’SNWD’] = data [’OUT’] . i n t e r p o l a t e ()
data [’TMAX’] = data [’TMAX’] . i n t e r p o l a t e ()
return data [datatypes]

def s e p a r a t e y e a r s (data , s t a t i o n) :
#Set the indexes to run from August 1 s t to Ju ly 31 s t
dates = pd . date range (’ 2012−08−01 ’ , p e r i od s =365 , f r e q=’D ’) . t o s e r i e s ()
indexes = dates . dt . s t r f t i m e (’%m−%d ’)
svd snwd = pd . DataFrame (index=indexes)
svd tmax = pd . DataFrame (index=indexes)
years = l i s t (pd . DatetimeIndex (data [’DATE’]) . year . unique ())
for year in years :

#These l o g i c a l s ta tements g i v e a year t ha t goes from July to August
#wrapping through the winter . Very u s e f u l f o r winter long graphs
data winte r = data [

((pd . DatetimeIndex (data [’DATE’]) . year == year−1) &
(pd . DatetimeIndex (data [’DATE’]) . month>=8)) |
((pd . DatetimeIndex (data [’DATE’]) . year == year) &

(pd . DatetimeIndex (data [’DATE’]) . month <= 7))]
#remove l eap year days to ge t uniform 365 day years
data winte r = data winte r [

˜ ((pd . DatetimeIndex (data winte r [’DATE’]) . month == 2) &
(pd . DatetimeIndex (data winte r [’DATE’]) . day == 2 9))]

#make sure the dataframe to be added to svd has e x a c t l y 365 days
i f (len (data winte r . index)==365):

data winte r = a s s e s s o u t l i e r s (data winte r)
c o l y e a r s = l i s t (

pd . DatetimeIndex (data winte r [’DATE’]) . year . unique ())
svd snwd [str (c o l y e a r s [0])] = data winte r [’SNWD’] . va lue s
svd tmax [str (c o l y e a r s [0])] = data winte r [’TMAX’] . va lue s

#handle case s p e c i f i c data sho r t a g e s f o r both Barre and Rochester where
#the va l u e s are a l l NaN or 0 ou t s i d e o f the s p e c i f i e d ranges
i f ’BARRE’ in s t a t i o n :

svd snwd = svd snwd . l o c [: , ’ 1948 ’ : ’ 1995 ’]
i f ’ROCHESTER’ in s t a t i o n :

svd snwd = svd snwd . l o c [: , ’ 1948 ’ : ’ 1992 ’]

29

proc e s s svd (svd snwd , s ta t i on , ’SNWD’)

sep = pd . r ead c sv (’ data f rames / f i na l ve rmont . csv ’)
s t a t i o n s = l i s t (sep [’STATION NAME ’] . unique ())
for s t a t i o n in s t a t i o n s :

s ep 1 = sep [sep [’STATION NAME ’]== s t a t i o n]
data = sep 1 [[’STATION NAME ’ , ’DATE’ , ’SNWD’ , ’TMAX’]]
s e p a r a t e y e a r s (data , s t a t i o n)

30

#!/ usr / b in /env python3
−∗− coding : u t f−8 −∗−
”””
Created on Tue Oct 17 19 :05 :17 2017

@author : brendan

Generate the mode t rans format ions in comparison to the p a r t i c u l a r year . P lo t
each i t e r a t i o n o f mode add i t i on to v i s u a l i z e the progre s s o f adding each mode
to the prev ious modes . This where we cons t ruc t the season mode by mode to show
how the modes are r e l a t e d to each season f o r each s t a t i o n .
Add i t i ona l l y , keep t rack o f the t rans format ion v a r i a b l e s f o r the l i n e a r model .
”””
import os
import pandas as pd
import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . dates as mdates
import path l i b as p l

eva lue s path = ’ data f rames / svd data / eva lue s / ’
uvec to r s path = ’ data f rames / svd data / l e f t s i n g u l a r / ’
vvec to r s path = ’ data f rames / svd data / r i g h t s i n g u l a r / ’
o r i g i n a l p a t h = ’ data f rames / svd data / o r i g i n a l s / ’
p l o t d e s t i n a t i o n = ’ p l o t s / mode plots / ’
f i l e d e s t i n a t i o n = ’ data f rames / svd data / p l o t da ta / ’

#pa i r s up the e i g en v e c t o r s wi th the appropr ia t e e i g enva l u e s by matching
#the two f i l enames
def g e t e v a l u e s (f i l ename) :

e v a l u e s d i r e c t o r y = os . f s encode (eva lue s path)
for f i l e in os . l i s t d i r (e v a l u e s d i r e c t o r y) :

e v a l u e s f i l e n a m e = os . f sdecode (f i l e)
i f f i l ename == e v a l u e s f i l e n a m e :

try :
eva lue s = pd . r ead c sv (eva lue s path+eva lue s f i l ename ,

eng ine = ’ python ’)
return eva lue s

except I sADirectoryError :
continue

#re turns the o r i g i n a l data t ha t genera ted the e i g en v e c t o r s by the same method
#used by g e t e v a l u e s
def g e t o r i g i n a l d a t a (f i l ename) :

o r i g d i r e c t o r y = os . f s encode (o r i g i n a l p a t h)
for f i l e in os . l i s t d i r (o r i g d i r e c t o r y) :

o r i g f i l e n a m e = os . f sdecode (f i l e)
i f f i l ename == o r i g f i l e n a m e :

try :
o r i g i n a l = pd . r ead c sv (o r i g i n a l p a t h+o r i g f i l e n a m e ,

eng ine = ’ python ’)
return o r i g i n a l

except I sADirectoryError :
continue

31

#re turns the r i g h t s i n gu l a r v e c t o r s by matching the two f i l enames
def ge t v (f i l ename) :

v d i r e c t o r y = os . f s encode (vvec to r s path)
for f i l e in os . l i s t d i r (v d i r e c t o r y) :

v f i l ename = os . f sdecode (f i l e)
i f f i l ename == v f i l ename :

try :
v = pd . r ead c sv (vvec to r s path+v f i l ename ,

eng ine = ’ python ’)
return v

except I sADirectoryError :
continue

#crea t e a p l o t o f the modes and each season , keep ing t rack o f how many
#modes the r e are
def make mode plot (mode , uvector , o r i g i n a l , s t a t i on , datatype) :

uvec = np . squeeze (np . asar ray (uvector))
dates = pd . date range (’ 2012−08−01 ’ , p e r i od s =365 , f r e q=’D ’) . t o s e r i e s ()
x = np . squeeze (np . asar ray (dates))
f i g , ax = p l t . subp lo t s ()

ax . p l o t (x , uvec , ’ r− ’ , l a b e l=’mode approx ’)
ax . p l o t (x , o r i g i n a l , ’b− ’ , l a b e l = ’ season ’)
ax . s e t y l a b e l (’Snow Depth (mm) ’)
ax . l egend ()

p l t . gca () . xax i s . s e t m a j o r f o r ma t t e r (mdates . DateFormatter (’%m−%d ’))
p l t . s u p t i t l e (o r i g i n a l . name+’ compared aga in s t %s modes f o r \n ’%(mode+1)+ s t a t i o n)

f i l ename = (datatype+’ ’+o r i g i n a l . name+’ %s ’%(mode+1)+ ’ . png ’)
d e s t i n a t i o n p a t h = (p l o t d e s t i n a t i o n+s t a t i o n+’ / ’)
#crea t e d i r e c t o r y i f i t doesn ’ t e x i s t and save f i l e as . png
pl . Path (d e s t i n a t i o n p a t h) . mkdir (parents=True , e x i s t o k=True)
p l t . s a v e f i g (d e s t i n a t i o n p a t h+f i l ename , dpi =600)
p l t . c l o s e (f i g)

#save the data to a csv and c rea t e a new d i r e c t o r y i f i t doesn ’ t a l r eady e x i s t
def f i l e s a v e (f i l e p a t h , f i l e , data) :

p l . Path (f i l e p a t h) . mkdir (parents=True , e x i s t o k=True)
data . t o c s v (f i l e p a t h+f i l e , index=False)

def manipulate (o r i g i n a l , eva lues , uvectors , vvectors , s t a t i on , datatype) :
uvec to r s = np . matrix (uvec tor s . va lue s)
tuvec to r s = uvecto r s .T
vvec to r s = np . matrix (vvec to r s . va lue s)
e v a l s = np . squeeze (np . asar ray (eva lue s . va lue s))
#put the s i n gu l a r va l u e s in a d iagona l matrix
s i g = np . diag (e v a l s)
#make the matrix t ha t has the c o e f f i c i e n t s to b u i l d each year out o f the
#modes , which are conta ined in the l e f t s i n gu l a r matrix (u)
mode mult = s i g ∗ vvec to r s
modes = 5
years = len (o r i g i n a l . columns)

32

vals mat = np . matrix (np . empty ((modes , years)))
columns = l i s t (o r i g i n a l)

for i in range (years) :
#i n i t i a l i z e the p l o t va l u e s f o r the mode in que s t i on
p l o t u = np . z e r o s ((1 , 3 6 5))
for j in range (modes) :

#add the transformed v a r i a b l e s to p l o t v e c t o r and then p l o t i t
#fo r each mode . In t h i s c on s t r u c t i on s the modes add onto each o ther
p l o t u += mode mult [j , i]∗ tuvec to r s [j , :]
season = o r i g i n a l . i l o c [: , i]
make mode plot (j , p lot u , season , s ta t i on , datatype)
#keep t rack o f the t rans format ion v a r i a b l e s
vals mat [j , i] = mode mult [j , i]

#make a dataframe o f the t rans format ion va r i a b l e s , and save them fo r
#l a t e r v i s u a l i z a t i o n .
v a l s d f = pd . DataFrame (vals mat , columns = columns)
f i l e s a v e (f i l e d e s t i n a t i o n+’ Manipulat ion Values / ’ , f i l ename , v a l s d f)

d i r e c t o r y = os . f s encode (uvec tor s path)

for f i l e in os . l i s t d i r (d i r e c t o r y) :
f i l ename = os . f sdecode (f i l e)
components = f i l ename . s p l i t (’ ’)
s t a t i o n = components [0]
datatype = components [1]
try :

uvec to r s = pd . r ead c sv (uvec to r s path+f i l ename , eng ine=’ python ’)
eva lue s = g e t e v a l u e s (f i l ename)
o r i g i n a l = g e t o r i g i n a l d a t a (f i l ename)
vvec to r s = get v (f i l ename)
manipulate (o r i g i n a l , eva lues , uvectors , vvectors , s t a t i on , datatype)

except I sADirectoryError :
continue

33

#!/ usr / b in /env python3
−∗− coding : u t f−8 −∗−
”””
Created on Fri Oct 13 09 :35 :22 2017

@author : brendan

Plo t both the o r i g i n a l unweighted and the nega t i v e unweighted modes f o r the
5 most important modes o f each s t a t i o n .
”””

import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . dates as mdates
import pandas as pd
import os
import path l i b as p l

mypath = ’ data f rames / svd data / l e f t s i n g u l a r / ’
d e s t i n a t i o n p a t h = ’ p l o t s / s v d p l o t s / ’

def depthplot (data , f i l ename) :
name data=f i l ename . s p l i t (’ ’)
s t a t i o n=name data [0]
datatype=name data [1]

dates = pd . date range (’ 2012−08−01 ’ , p e r i od s =365 , f r e q=’D ’) . t o s e r i e s ()

raw data = np . matrix (data . va lue s)
raw data = raw data .T
f i g1 , ax = p l t . subp lo t s (5 , f i g s i z e = (8 , 1 0))

for i in range (5) :
i f (i ==0):

#f l i p the f i r s t mode r e g a r d l e s s because a l l o f the t rans format ion
#va lue s are nega t i v e f o r every s t a t i o n . F l i pp ing i t makes i t more
#i n t u i t i v e , doesn ’ t change ana l y s i s
p l o t da ta = np . squeeze (np . asar ray (−raw data [i]))

else :
p l o t da ta = np . squeeze (np . asar ray (raw data [i]))

indexes = np . squeeze (np . asar ray (dates . va lue s))
#i n i t i a l i z e the f i r s t a x i s and p l o t the snow depth on t h i s a x i s in b l u e
ax [i] . p l o t (indexes , p lo t data , l a b e l=’SV ’+str (i +1))
ax [i] . l egend ()

#put the x l a b e l be low a l l 5 p l o t s
ax [4] . s e t x l a b e l (’ Date ’)
#make the da te s l ook b e t t e r
p l t . gca () . xax i s . s e t m a j o r f o r ma t t e r (mdates . DateFormatter (’%m−%d ’))
p l t . s u p t i t l e (” Plot o f SVD Singu la r Vectors from \n”+s t a t i o n+’ f o r ’+datatype)

f i l ename = (s t a t i o n+’ ’+datatype+’ o r i g i n a l . png ’)
#crea t e d i r e c t o r y i f i t doesn ’ t e x i s t and save f i l e as . png
pl . Path (d e s t i n a t i o n p a t h) . mkdir (parents=True , e x i s t o k=True)
p l t . s a v e f i g (d e s t i n a t i o n p a t h+f i l ename , dpi =600)

34

p l t . c l o s e (f i g 1)

#make a second f i l e t h a t w i l l have the nega t i v e
f i g 2 , ax = p l t . subp lo t s (5 , f i g s i z e =(8 ,10))
for i in range (5) :

p l o t da ta = np . squeeze (np . asar ray(−raw data [i]))
indexes = np . squeeze (np . asar ray (dates . va lue s))
#i n i t i a l i z e the f i r s t a x i s and p l o t the snow depth on t h i s a x i s in b l u e
i f (i ==0):

ax [i] . p l o t (indexes , p lo t data , l a b e l=’SV ’+str (i +1))
else :

ax [i] . p l o t (indexes , p lo t data , l a b e l=’−SV ’+str (i +1))
ax [i] . l egend ()

ax [4] . s e t x l a b e l (’ Date ’)

p l t . gca () . xax i s . s e t m a j o r f o r ma t t e r (mdates . DateFormatter (’%m−%d ’))
p l t . s u p t i t l e (” Plot o f SVD Singu la r Vectors from \n”+s t a t i o n+’ f o r ’+datatype)

f i l ename = (s t a t i o n+’ ’+datatype+’ negat ive . png ’)
#crea t e d i r e c t o r y i f i t doesn ’ t e x i s t and save f i l e as . png
pl . Path (d e s t i n a t i o n p a t h) . mkdir (parents=True , e x i s t o k=True)
p l t . s a v e f i g (d e s t i n a t i o n p a t h+f i l ename , dpi =600)
p l t . c l o s e (f i g 2)

#turn the t e x t f i l e path in t o something the os can read
d i r e c t o r y = os . f s encode (mypath)

for f i l e in os . l i s t d i r (d i r e c t o r y) :
f i l ename = os . f sdecode (f i l e)
try :

data = pd . r ead c sv (mypath+f i l ename , eng ine=’ python ’)
except I sADirectoryError :

continue
depthplot (data , f i l ename)

35

−∗− coding : u t f−8 −∗−
”””
Created on Thu Nov 2 22 :01 :33 2017

@author : brendan

Generate the data and then v i s u a l i z e the exp l a ined var iance p l o t s . In add i t i on
p r i n t out the number o f modes t ha t e xp l a i n 90% of the var iance .
”””

import numpy as np
import matp lo t l i b . pyplot as p l t
import pandas as pd
import path l i b as p l
import os

d i r e c t o r y p a t h = ’ data f rames / svd data / eva lue s / ’
d e s t i n a t i o n p a t h = ’ p l o t s / s c r e e p l o t s / ’
#crea t e a sc ree p l o t by trans forming the s i n gu l a r va l u e s to e i g enva l u e s f o r
#each weather s t a t i o n matrix
def s c r e e p l o t (data , f i l ename) :

#square a l l the data po in t s to g e t the e i g enva l u e s o f the covar iance
#matrix , which w i l l e x p l a i n the var iance by each number
sums = np . squeeze (np . asar ray (np . cumsum(np . power (data , 1))))
var= []
for i in range (len (sums)) :

var . append (sums [i] / sums [−1])
i f (sums [i] / sums [−1] >0.9) :

print (f i l ename , i +1)
l i n e = 0 .9∗ np . ones (len (data))
f i g , ax = p l t . subp lo t s ()
ax . p l o t (np . arange (len (data)) , var , ’ bo ’ , l a b e l=’ s i n g u l a r va lue s ’)
ax . p l o t (np . arange (len (data)) , l i n e , ’ r− ’ , l a b e l=’90% thre sho ld ’)
ax . s e t x l a b e l (’ S ingu la r Value Number ’)
ax . s e t y l a b e l (’ Explained Variance ’)
ax . s e t y l i m (0 , 1 . 0 5)
ax . l egend ()
p l t . s u p t i t l e (’ Scree Plot o f the S ingu la r Values f o r \n ’+f i l ename)
#crea t e d i r e c t o r y i f i t doesn ’ t e x i s t and save f i l e as . png
pl . Path (d e s t i n a t i o n p a t h) . mkdir (parents=True , e x i s t o k=True)
p l t . s a v e f i g (d e s t i n a t i o n p a t h+f i l ename , dpi =600)
p l t . c l o s e (f i g)

d i r e c t o r y = os . f s encode (d i r e c t o r y p a t h)

for f i l e in os . l i s t d i r (d i r e c t o r y) :
f i l ename = os . f sdecode (f i l e)
try :

data = pd . r ead c sv (d i r e c t o r y p a t h+f i l ename , eng ine=’ python ’)
s c r e e p l o t (data , f i l ename)

except I sADirectoryError :
continue

36

#!/ usr / b in /env python3
−∗− coding : u t f−8 −∗−
”””
Created on Thu Nov 2 22 :42 :45 2017

@author : brendan

Generate the l i n e a r r e g r e s s i on data , and p l o t i t f o r the b e s t f i v e modes
saved by the svd manipu la t ion source code .
”””

import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . dates as mdates
import pandas as pd
import os
import path l i b as p l
import s ta t smode l s . ap i as sm
import matp lo t l i b

data path = ’ data f rames / svd data / p l o t da ta / Manipulat ion Values / ’
d e s t i n a t i o n p a t h = ’ p l o t s / l i n e a r t r e n d p l o t s / ’

#save the data to a csv and c rea t e a new d i r e c t o r y i f i t doesn ’ t a l r eady e x i s t
def f i l e s a v e m o d e l (f i l e , data) :

p l . Path (d e s t i n a t i o n p a t h) . mkdir (parents=True , e x i s t o k=True)
data . t o c s v (d e s t i n a t i o n p a t h+f i l e , index=False)

def l i n e a r r e g r e s s i o n (data , f i l ename) :
#take the a b s o l u t e va lue o f a l l the data
abs ln s = [np . abs (data . i l o c [i , :]) for i in range (len (data . index))]
#crea t e a map to t rack which va l u e s are p o s i t i v e and which va l u e s are
#nega t i v e . Negat ive va l u e s are as s i gned a 0 , p o s i t i v e as s i gned a 1
cmap = data . copy ()
cmap [cmap<0]=0
cmap [cmap>0]=1
indexes = data . columns
#for each mode (rows o f data) , c r ea t e an array o f cons tan t s and unknown
#c o e f f i c i e n t s f o r r e g r e s s i on
for i in range (len (data . index)) :

X org = np . arange (len (abs ln s [i]))
X = sm . add constant (X org)
y = abs ln s [i]
#f i t the l i n e a r model , and then use the f i t to p r e d i c t y va l u e s
model = sm .OLS(y ,X) . f i t ()
p r e d i c t i o n s = model . p r e d i c t (X)
#p l o t the data wi th a map to show which va l u e s were p o s i t i v e and which
#va lue s were o r i g i n a l l y nega t i v e
f i g , ax = p l t . subp lo t s ()
ax . s c a t t e r (indexes , abs ln s [i] , c= cmap . i l o c [i , :] , marker = ’ x ’ ,

cmap = p l t . cm . coolwarm , l a b e l = ’ Absolute va lue s ’)
#p l o t the l i n e a r b e s t f i t l i n e
ax . p l o t (indexes [X org] , p r e d i c t i o n s , ’ r− ’ , l a b e l = ’ bes t f i t ’)
ax . l egend ()

37

ax . s e t x l a b e l (’ Year ’)
ax . s e t y l a b e l (’Mode Transformation Value ’)
p l t . s u p t i t l e (’Mode i n f l u e n c e va lue s f o r mode %s \n ’%(i +1)+ ’ f o r ’+f i l ename)
p l . Path (d e s t i n a t i o n p a t h) . mkdir (parents=True , e x i s t o k=True)
p l t . s a v e f i g (d e s t i n a t i o n p a t h+f i l ename+’ mode%s ’%(i +1) , dpi =600)
p l t . c l o s e (f i g)
#pr in t the r e g r e s s i on summary to the conso l e f o r manual record ing in t o
#a t a b l e in the f i n a l product
print (f i l ename+”%s :\n”%(i +1) , model . summary ())

#turn the t e x t f i l e path in t o something the os can read
d i r e c t o r y = os . f s encode (data path)

for f i l e in os . l i s t d i r (d i r e c t o r y) :
f i l ename = os . f sdecode (f i l e)
try :

data = pd . r ead c sv (data path+f i l ename , eng ine=’ python ’)
except I sADirectoryError :

continue
for s t a t i o n in s t a t i o n s :

i f s t a t i o n in f i l ename :
l i n e a r r e g r e s s i o n (data , f i l ename)

38

