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Abstract

In addition to the tragedy they cause, major natural hazard and disaster events
place a large cost on the governments and aid organizations who help people prepare
for and recover from them. Such organizations are in constant need of strategies
for distributing aid efficiently and comprehensively. The emergence of social media
in everyday life has provided a platform for such organizations to coordinate relief
efforts and communicate with people affected by disasters. It also has allowed affected
individuals to communicate with one another on a large scale. The present thesis
examines the dynamics of Twitter during extreme climate events and their aftermath
in order to shed light on potential strategies for aid providers.

We begin by looking at the five most expensive natural disasters in the United
States between 2011 and 2016. We isolate Twitter users for each disaster who are
likely tweeting about food security or other basic needs during the event and its
aftermath. We examine the follower count distributions of these users for each event.
We then narrow focus to Hurricane Sandy, and look at the relationship between
follower counts and relative increase in tweeting rate during the event. We find that
users with fewer than 100 followers were more likely to increase their rate of tweet
publication than influentials with many followers.

We also use a synthetic model of Twitter’s communication network to mimic the
way Twitter stores and samples tweet data. We quantify the sensitivity of three
measures of network centrality to these mechanisms. This provides insight relevant
to those who build network representations of Twitter communication using the data
Twitter provides. We see differences in the sensitivity of the centrality measures stud-
ied, differences in sensitivity to the different mechanisms, and a dependence between
measure and mechanism.

Finally, we construct a network representation of Puerto Rican Twitter users sur-
rounding Hurricane María and its aftermath. We examine the evolution of this net-
work over time, and communities present within the aggregate network. Using infor-
mation theoretic tools, we discern differences in the body of tweets between different
communities in the network and different periods of time surrounding the hurricane’s
landfall. We observe many differences between communities, with more focus on
Puerto Rico in the community containing most local government figures, whereas
major celebrities tended to talk about more general Latin American issues. We also
hand-categorize Twitter users in the network as news outlets, politicians, citizens,
weather stations, meteorologists, or journalists, finding that the distribution of user
type has a temporal dependence.
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Chapter 1

Social Media Usage Patterns Dur-

ing Natural Hazards

1.1 Introduction

1.1.1 Background

In recent years, natural disaster relief has been the subject of much scrutiny and

reform, as the frequency and severity of extreme events increases[42] and is projected

to continue increasing [19]. Concurrent with this increased attention to extreme

climate events has been the rise in prevalence of mobile communication technology

and social media. In 2017 it was estimated that 77% of Americans own and use

smartphones[1], 24% of Americans use Twitter, and 80% of social media activity

happens on mobile devices [45].

The use of social media via mobile devices for practical communication during

natural crisis events dates back to as early as 2010 when Haiti was struck by a

magnitude-7 earthquake [30]. Since then, an ever-growing body of work has looked
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at what types of information are propagated by social media during these events, and

how such information spreads [3, 6, 7, 26, 27].

1.1.2 Focus

This chapter is comprised of my own contributions to a manuscript published in the

Public Library of Science by Niles et al in 2019[39]. Here we investigate the local

networks of users (their followers in particular) and the relationship between the

local network of a user and their activity during a natural hazard event. We do this

in order to uncover useful information about whom to focus on when attempting to

disseminate useful relief information on social media.

1.2 Methods

1.2.1 Identifying tweets

Table 1.1 provides statistics and descriptions of the five disaster events, provided by

the National Oceanic and Atmospheric Administration (NOAA) [40]. For each of

these events, we identified keywords indicating that a user is likely to be referring to

the specific disaster. We include general terms as well as terms specific to the event

in question. Table 1.2 shows the union of the sets of words used for all the events.
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Event Dates Direct Summary (from NOAA)

CPI-
Adjusted

Estimated
Cost (in

Billions of
Dollars)

Deaths

Hurricane
Sandy

10/30/2012
to

10/31/2012

"Extensive damage across several northeastern states
(MD, DE, NJ, NY, CT, MA, RI) due to high wind
and coastal storm surge, particularly NY and NJ.
Damage from wind, rain and heavy snow also
extended more broadly to other states (NC, VA, WV,
OH, PA, NH), as Sandy merged with a developing
Nor’easter. Sandy’s impact on major population
centers caused widespread interruption to critical
water / electrical services and also caused 159 deaths
(72 direct, 87 indirect). Sandy also caused the New
York Stock Exchange to close for two consecutive
business days, which last happened in 1888 due to a
major winter storm."

70.9 159

Hurricane
Irene

8/26/2011
to

8/28/2011

"Category 1 hurricane made landfall over coastal NC
and moved northward along the Mid-Atlantic Coast
(NC, VA, MD, NJ, NY, CT, RI, MA, VT) causing
torrential rainfall and flooding across the Northeast.
Wind,damage in coastal NC, VA, and MD was
moderate with considerable damage resulting from
falling trees and power lines, while flooding caused
extensive flood damage across NJ, NY, and VT. Over
seven million homes and businesses lost power during
the storm. Numerous tornadoes were also reported in
several states further adding to the damage."

15.1 45

Southeast/
Ohio

Valley/
Midwest
Tornadoes

4/25/2011
to

4/28/2011

"Outbreak of tornadoes over central and southern
states (AL, AR, LA, MS, GA, TN, VA, KY, IL, MO,
OH, TX,OK) with an estimated 343 tornadoes.
The deadliest tornado of the outbreak, an EF-5, hit
northern Alabama, killing 78 people. Several major
metropolitan areas were directly impacted by strong
tornadoes including Tuscaloosa, Birmingham, and
Huntsville in Alabama and Chattanooga, Tennessee,
causing the estimated damage costs to soar."

11.4 321

Louisiana
Flooding

8/12/2016
to

8/15/2016

"A historic flood devastated a large area of southern
Louisiana resulting from 20 to 30 inches of rainfall
over several days. Watson, Louisiana received an
astounding 31.39 inches of rain from the storm. Two-
day rainfall totals in the hardest hit areas have a 0.2%
chance of occurring in any given year: a 1 in 500 year
event. More than 30,000 people were rescued from
the floodwaters that damaged or destroyed over
50,000 homes, 100,000 vehicles and 20,000
businesses. This is the most damaging U.S. flood
event since Superstorm Sandy impacted the Northeast
in 2012."

10.4 13

Midwest/
Southeast
Tornadoes

5/22/2011
to

5/27/2011

"Outbreak of tornadoes over central and southern
states (MO, TX, OK, KS, AR, GA, TN, VA, KY, IN,
IL, OH, WI, MN, PA) with an estimated 180
tornadoes. Notably, an EF-5 tornado struck Joplin,
MO resulting in at least 160 deaths, making it the
deadliest single tornado to strike the U.S. since
modern tornado record keeping began in 1950."

10.2 177

Table 1.1: Weather and Climate Billion-Dollar Hazard Events to affect the U.S. from 2011-
2016 (CPI-Adjusted)
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1.2.2 Distribution of Network Sizes and Rela-

tion to tweet Volume

We examined statistics associated with the follower network of individuals who au-

thored tweets in the collection described in Section 1.2.1. Specifically, for each tweet

we use the author’s user ID, as well as the number of accounts that followed the au-

thor. Individuals with multiple messages in the two-week window were assigned the

follower count associated with their first tweet. The number of messages posted by

each user during the interval of interest was aggregated by user as well, representing

roughly 10% of their total number of posts. We plot the base-10 logarithm of user

count for a matrix of binned message frequencies and follower counts. Using account

data accumulated for all disasters, we plot the total number of tweets per account

against the number of followers of the account using both linear and logarithmic

scales. While the follower count is not a proxy for meaningful interaction, it is a first

order approximation of the size of an account’s audience.

canned food assistance food security fridge hurricane rain snow unprepared
drinks food bank food shelf generator irene sandy store water
emergency food insecurity food stamps groceries power shelter supermarket watson
farm food market food store grocery store prepare shock supplies wind
flood food pantry foods help preparing SNAP tornado

Table 1.2: Words used in the Twitter analysis.

1.2.3 Tweet Volume Increase by Network Size

We estimated changes in individual behavior observed during Hurricane Sandy, com-

pared to a baseline reference, as a function of network size. To do this, we used the
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“total tweet count” field in the Decahose JSON metadata, which represents the exact

number of messages posted to the account up to that moment. For each user found

to have tweeted one of the keywords surrounding Hurricane Sandy’s landfall, we col-

lected the first and last tweet authored during the month of September 2012. We

used these two tweets to compute a baseline tweet rate, found by taking the differ-

ence in total tweet count and dividing by the number of days between the two tweets.

We repeated this process for October 21 through November 4, 2012 to compute the

tweet rate during the disaster and its aftermath. We required at least two tweets

during each period for a user to be included. We used the quotient of the tweet rate

during Sandy (numerator) and the baseline tweet rate (denominator) to compute the

estimated change in tweet volume for each user. Despite being restricted to a random

10% of messages, and therefore not being able to observe most tweets, the message

rate calculation is exact for the period of observation. Work by Barabasi has shown

that the rates of human activities such as emailing follow a Pareto distribution of lag

time between events [10]. Although tweeting likely follows a similar distribution, our

sample does not allow us to accurately measure the lag time between user tweets, so

we are limited to this homogeneous approach.

We also generated a null-model of this change in tweet volume by using the same

method to estimate the change for the same users between every month of the year

and the following 16-day period, analogous to the dates we sampled for Hurricane

Sandy. These pairs of time periods were all observed in 2012, except for those that

overlapped with Hurricane Sandy, which were instead drawn from 2011.
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1.3 Results

We sought to understand the relationship between tweet frequency and follower count.

While the follower count associated with an individual is not a perfect reflection of

their influence, it does serve as a proxy for the size of their audience. In looking

at the follower counts associated with individuals tweeting about disaster events, we

are seeking an understanding of the role various stakeholders play in the spread of

information.

Figure 1.1: Log-log plot of the distribution of individuals observed to tweet during each dis-
aster as a function of their follower count across the five disasters: a) Hurricane Irene; b)
Hurricane Sandy; c) Louisiana flooding; d) Ohio Valley/Midwest tornadoes; e) Midwest/-
Southeast tornadoes. Most accounts have a small number of followers (e.g. less than 100),
and a few accounts have many followers (e.g. more than 10,000).

In Figure 1.1, we plot the distribution of follower counts, which appear typical

for social networks. To explore user behavior further, we establish a baseline tweet

rate for each account, and observe the increase (or decrease) in activity during the

disaster event. We find a consistent trend that the individuals who tweet the most

during disaster events tend to have “average” sized networks, as shown if Figures

1.2 and 1.3. Goncalves et al. found that social networks reflect Dunbar’s number,
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leading an individual’s set of meaningful relationships to be limited to between 100

and 200 accounts [23]. It is these accounts in which we see the largest increase in

activity during disasters. Previous work has found that “hidden influentials” in social

networks, which are users with average-sized audiences, are key to allowing system-

wide information-cascades and therefore play a major role facilitating protests online

[9, 14, 24].

Our analysis also suggests that individuals were tweeting more frequently during

Sandy than during other disaster events that we studied. Further analysis explores

how the tweet rate changed as compared to baseline during Hurricane Sandy. In

Figure 1.2 we see that, while the distribution of tweet rate change between two time

periods is normally symmetric about 0 for users of all follower counts, this distribution

for Hurricane Sandy is shifted upwards for users with 100 followers or fewer. In Figure

1.3, the same tweet rate increase distribution is shown, but the follower counts of the

users are discretized by order of magnitude (0-9,10-99,100-999,. . .). This demonstrates

that while users of all follower counts tend to have only a very small change in tweet

rate during a typical baseline period (right panel), during Hurricane Sandy a positive

average tweet rate change is observed for all users (left panel). More notably, the

average tweet rate change is, slightly but significantly, higher during Sandy for users

in the first and second groups: those with follower counts between 0 and 100. These

results suggest that people with average-sized networks were more likely to tweet with

a higher relative frequency during Hurricane Sandy than those with larger networks.

We note that even in the null comparison, nearly all of the groups show an increase

in activity, which is seemingly paradoxical for this null distribution. We expect,

however, that this is due to a subtle sampling bias in the fact that the “before” time

7



period is longer than “during”. Users were only included if at least two of their tweets

were in our tweet database for both periods. Because the “during” period is shorter,

we are more likely to include a user with an increase than one with a decrease. This

is accounted for in our comparison between different groups and the comparison to

the null distribution.
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Figure 1.2: Log-log plot of the fractional change in tweet rate as a function of follower count
for (a) before and during Hurricane Sandy and (b) the pairs of times collected for the null
distribution. The increased density observed above 0 suggests that most individuals tweet
more frequently during the disaster. In addition, the rate increase is largest for “average”
individuals, i.e. those with 100 followers or fewer. This is of notable contrast to the null
distribution, which is roughly symmetric about the zero-axis. Note that white pixels indicate
one or zero individuals exhibiting the corresponding rate change.
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Figure 1.3: Violin plots showing the distributions of fractional tweet rate change of the users
found to be tweeting about Hurricane Sandy as it occurred (a) before and during Hurricane
Sandy and (b) the pairs of times collected for the null distribution. Separate violin diagrams
are drawn for users whose follower counts fall into each order of magnitude from 100 to
105. On each violin, a black bar indicates a Bayesian 95% confidence interval for the mean
of the population distribution given the sample. For the Hurricane Sandy data, the intervals
for 100 and 101 are both notably higher than, and don’t overlap with the intervals for any
of the higher orders of magnitude in follower count. The same is not true for the null
distributions, for which most of the intervals overlap and are generally closer together. The
values of endpoints of the intervals are given in Table 1.3.

follower count order lower (Sandy) upper (Sandy) lower (null) upper (null)
100 0.136 0.225 0.033 0.111
101 0.173 0.187 0.045 0.054
102 0.108 0.114 0.051 0.054
103 0.094 0.107 0.030 0.036
104 0.062 0.096 0.016 0.031
105 0.031 0.120 -0.003 0.031

Table 1.3: Bounds of the Bayesian 95% confidence intervals for the mean of the logged
fractional increase in tweet rate in our Sandy and null datasets.
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1.4 Discussion

Our results indicate a useful difference in the behavior of different types of Twitter

users during crises. In particular, people with more modest followings (less than

100) seem to have more substantial reactions to a crisis event than those with larger

followings. In 1992 the anthropologist Robert Dunbar theorized the number of people

humans could maintain meaningful relationships with ranged from 100 to 250 [18]. We

find that the users who react the most to disasters have followings that are users who

could potentially have meaningful relationships with all of their followers. We suggest

that the difference in increase is due to the greater likelihood of these connections

being adjacent to meaningful relationships.

This has particularly important implications for events where aspects of relief

efforts, like the type of relief provided, where to get help, the length of a wait, change

rapidly with time. In these situations, it’s important to provide new information

to people willing to share it at the same frequency as it becomes available. In the

situation where relief organizations have little access to specific information about

individual Twitter accounts, the best course of action may be to target individuals

with these modest followings, as they’ll be likely to share more frequently, relative to

their own baseline, in such an event.

The present study is limited in a number of ways. Notably, the interpretations

we present cannot be taken as definite without at least conducting similar studies

on a range of different disaster events. We also acknowledge that our approach to

measuring change in Twitter activity is not the most appropriate due to heavy-tailed

“bursty” nature of social media activity [38]. We are, however, confined to our ap-

10



proach in this study due to our use of the Gardenhose, as recognizing the heavy tail

would require access to the timestamps of every tweet for each user.
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Chapter 2

A Simulation of the Limitations of

Network Analysis on Twitter

2.1 Introduction

The collection of problems that are approached from a networks perspective is ever-

diversifying, as contributions from network science become more widely recognized

by the greater scientific community, and the data to employ a networks perspective

becomes more accessible. At an alarmingly high rate, however, when network science

is employed in an applied setting, the effect of often inevitable data imperfection on

the analysis is either briefly acknowledged or entirely ignored.

Problems exist not only with research that fails to address noisy data, but with

research that neglects to fully acknowledge the mechanisms generating such noise.

Research often tests noise types independently, assumes it to be random, or considers

it outside the context of the data in question [13, 16, 21, 43, 44]. Methods have been

developed to estimate full-network statistics, such as the degree distribution, from

incomplete network data [11]. The collection of mechanisms that generate noise in
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network data can be visualized as points in a two-dimensional space with a node/edge

error axis and an added/missing data axis. Boundary specification problems, edge

misrouting, response bias, and other common network data noise can be represented

as unique points in this space [31, 34]. Additionally, the variations in the data type

also play a role in the way noise affects the network representation. For instance, data

may be reported or observed, inferred or measured, part of a small or large system,

and no single approach can adequately address the issues that could occur in all the

possible scenarios.

Figure 2.1: Schematic for how Twitter’s database storage deviates the from the true un-
derlying communication structure by only recording the original author of a Tweet that has
been Retweeted. When user C is shown user A’s Tweet by user B, the underlying communi-
cation network should really look as it does on the left. Twitter’s method of recording data,
however, leaves out information that results in the network representation looking as it does
on the right.

The third chapter of this thesis will rely heavily on building a picture of the

communication network in a segment of Twitter from the Gardenhose API sample

containing 10% of all Tweets. In this network, the nodes of this will be Twitter

accounts, and the links will be tweets where the source is the author of the tweet and

the target is a retweeted or mentioned user. There are many other ways to generate

a network from tweet data, such as mapping the co-occurance of hashtags in tweets
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[22] or the reciprocal replies to a tweet [12].

There are two major mechanisms of noise that prevent a fully accurate picture

from being realized. One issue is the small sample size of the messages sent. The

other and more subtle issue has to do with Retweets specifically. Consider three

Twitter users: A, B, and C, where user B follows user A, and user C follows user B,

but not user A. User B may Retweet a Tweet authored by user A, allowing it to be

shown in user C’s feed. If user C Retweets that Tweet, which they see due to user B’s

Retweet of it, Twitter only records that user C Retweeted user A, and leaves out all

information about how user C really Retweeted something shown to them by user B.

This process is shown graphically in Figure 2.1. This recording mechanism causes the

resulting network to be more star-shaped than the underlying true communication

network, which we explore.

2.2 Methods

2.2.1 Synthesizing Toy Network

We begin by generating a 100-node Watts-Strogatz small-world network with k = 2

and p = 0.05 [49]. We then cycle through 30 rounds of random edge addition. Each

round, we cycle through every ordered pair of nodes i, j and add an edge from i to j

with probability p = 0.5dj

m
, where dj is the current in-degree of node j, and m is the

current number of edges in the network. The resulting hybrid of a small-world and

scale-free network serves as a reasonable toy model for an online social network such

as Twitter.
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2.2.2 Artificial Noise

To simulate the sampling procedure of the Gardenhose, we randomly delete 90% of

the edges in the network. To simulate Twitter’s misleading Retweet recording, we

iterate through all directional paths of length 2 from node i to j to k, and with

probability p = 0.5dk

m
, we rewire the ij edge to an ik edge.

2.2.3 Sensitivity Analysis

To determine the sensitivity of different centrality measurements to a transformation

of the network, we use a measurement defined by Martin and Niemeyer [35]. This

“sensitivity coefficient” of a centrality measure c to a transformation of network G to

G′ is defined as

ρc(G,G′) = nc

nc + nd

, (2.1)

where nc is the number of node pairs whose order is preserved in a node-list ranked

by the centrality measure, and nd is the number of node pairs whose order changed

in such a node list. This coefficient is thus simply the fraction of node pairs whose

order changes. The measure is optimally robust if ρc(G,G′) = 1, and very sensitive

if ρc(G,G′) = 0.
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2.3 Results

2.3.1 Structure and Degree Distribution

Figure 2.2 shows the structure of all versions of the synthetic network described in

Section 2.2.1, as well as their respective in-degree distributions. The initial synthetic

distribution shown in Figure 2.2(b) has a substantial right skew, with most nodes

having in-degree 0 or 1, with the count rapidly decaying as the degree rises, with one

solitary node having an in-degree higher than 60. The sampling of the edges yields

a network whose degree distribution maintains a similar shape, as seen in Figure

2.2(d), but with the total number of nodes decreasing, and the range of in-degrees

represented shrinking to less than one sixth the original range.

16



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.2: Diagrams of the network structure and in-degree distribution histograms for the
original synthesized network (a,b), the sampled network (c,d), the rewired network, (e,f),
and the rewired, sampled network (g,h).
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The rewiring of the network results in a substantially deviant in-degree distri-

bution. The weight of the tail has not only increased, but the vast majority of this

increase has been due to a major increase in the largest node’s in-degree. This reflects

a mechanism similar to the first-mover advantage found in Simon’s rich-get-richer

model [17]. When this network is sampled in the manner of Twitter’s Gardenhose,

the shape of the distribution is not substantially changed.

2.3.2 Sensitivity Coefficients

Table 2.1 shows the sensitivity of betweenness, closeness, and degree centrality to the

sampling of the edges, the rewiring of the network, and the rewiring then sampling.

We find that all the centrality measures are more robust to the rewiring than the

sampling. Degree centrality is the most robust to all the transformations, and is

no more sensitive to the composition of rewiring and sampling than to sampling

alone. Closeness is more sensitive to all the transformations and betweenness is the

most sensitive. Both closeness and betweenness are more sensitive to sampling than

rewiring but most sensitive to their composition.

centrality measure ρ (sampled) ρ (rewired) ρ (rewired & sampled)
betweenness 0.53 0.70 0.37
closeness 0.62 0.77 0.54
degree 0.59 0.79 0.59

Table 2.1: The coefficients of sensitivity for three measures of centrality to the sampling,
rewiring, and the composition of the two.
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2.4 Discussion

In this chapter, we briefly explore some of the biases encountered when constructing

a communication network from Twitter data. The findings are particularly important

to consider in conjunction with Chapter 3, which does exactly that. We find that

when working with such data, it’s best to use degree centrality if the option is avail-

able. Additionally, we find that it’s largely advantageous to have access to Twitter’s

Firehose, a feed of every Tweet, as the centrality measures are much more sensitive

to the sampling than to Twitter’s implicit rewiring that occurs as the result of their

recording. Betweenness centrality is particularly sensitive to sampling, and is the

only measure for which more than half of node pairs had their rank-orders flipped by

the rewiring and sampling.

There are several limitations to consider in this toy model. The synthesis of

the toy Twitter network is not a perfectly accurate representation of the Twitter’s

network production mechanism, as it initializes as a basic small-world network, and

only introduces new edges, not new nodes. The size of the network, at only 100 nodes,

likely introduces some error. In particular, the biggest node, which demonstrated the

strong first-mover advantage in the mechanistic rewiring of edges, only represents 1%

of the “users”. As of 2013, Twitter had about 2 billion accounts, and while the 99th

percentile by follower count was about 3,000, the 99.9th percentile was about 25,000

[15]. There are therefore some considerable liberties taken in assuming the top 1% of

users have the same follower count.

Additionally, the rewiring algorithm used is a simplified one that only considers

chains of two Retweets. On Twitter, Retweet chains of any length are shortened in
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the database, so it’s possible that the error caused by this is more extreme than that

presented.
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Chapter 3

Twitter’s Communication Network

of Hurricane María Victims

3.1 Introduction

3.1.1 Background

In the early morning of September 20th 2017, Puerto Rico was struck by its first

category-4 cyclone in 85 years [37]. Hurricane María made landfall with wind speeds of

155 miles per hour, just 2 miles per hour short of qualifying as a category-5 hurricane.

The island’s electrical grid, which had been left in highly vulnerable condition as a

result of the territory’s extreme debt [4], was entirely wiped out. Most of the island

was left without power for nearly two months, and some areas didn’t get power back

for nearly a year [46].

Although estimates vary, the Puerto Rican government accepts an independent

study approximating that 2,975 deaths resulted from the storm and its aftermath [5].

An internal report at the Federal Emergency Management Agency acknowledges a
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failure to adequately prepare for the 2017 hurricane season, resulting in the agency

being unable to properly support the victims of Hurricane María [47].

Despite 89% of cell phone towers being offline [20], many Puerto Ricans were

connecting with loved ones in the first few days after the storm. Individuals and

families were able to find isolated hot spots of cellphone coverage, and despite only

being able to communicate with one another in person or with battery-operated

radios, knowledge of these spots spread rapidly. During the first week after the

storm, these spots could be found with dozens of cars pulled over, their passengers

outside holding smartphones in the air [36].

At the time, Hurricane María was the latest in a sequence of natural crisis events

spanning nearly a decade in which social media was utilized for practical communi-

cation. As the example with the highest death toll in recent memory, we hope to

uncover specific properties of the communication via social media of María victims

using tools from network science and information theory.

3.1.2 Existing Research

Work surrounding previous major natural hazard events has found that the temporal

distribution of disaster-related tweeting varies between disaster types, and for hur-

ricanes, the greatest volume of tweeting tends to happen in the anticipation of the

event. Additionally, users who demonstrate the greatest increase in activity during

the timeline of such an event tend to be those with an average-sized following, rather

than highly connected individuals [39]. There has also been work showing that peo-

ple are largely motivated to spread information on Twitter during disaster events

by the belief that the information is important and believable [2]. Researchers have
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also found that during hurricanes Twitter can be used to predict how to best focus

recovery efforts [25], and that Twitter activity correlates with hurricane damage [32].

Algorithms have been developed to identify flood victims asking for help on Twitter

[41].

Twitter in particular lends itself well to a network framework for analysis. Al-

though Twitter does not make follower and following lists easily accessible, public

messages between accounts can be easily identified. Research into protest move-

ments has used such interactions between accounts to specify a network representa-

tion [8, 28, 29]. Other work has analyzed the network topology of hashtag topics

and used information theory to identify the differences in discourse between hashtag

topics [22]. The use of network analysis on Twitter surrounding disasters is not new:

after the Deepwater Horizon oil spill, Twitter networks were used to study the online

conversation as the recovery efforts unfolded [48].

3.1.3 Focus of Study

We seek to identify how Twitter could potentially have been leveraged to increase

the effectiveness of aid to Puerto Rico during Hurricane María. More specifically, we

hope to uncover who the best people on Twitter would be to provide with information

about aid for such information to spread maximally to the people who need it. Are

such accounts different when dealing with information about different types of aid?

Do they change over time as the cycle from anticipation to aftermath unfolds? We

hope that a network topology for communication and information theoretic tools

provide answers that would be potentially useful to humanitarian agencies.

23



3.2 Methods

3.2.1 Data Collection

Our goal was to capture a set of tweets that could serve as a proxy for the conversa-

tion among residents of Puerto Rico and people with personal connections to those

residents. We began by finding the user names for accounts located on mainland

Puerto Rico, or any of the smaller islands of Vieques, Culebra, or Mona during the

hurricane. Looking through all geolocated tweets, we saved account names for those

who authored tweets from the island on September 20 or 21, 2017. By doing this we

collected 93 users who sent geolocated tweets from Puerto Rico during the hurricane.

We next used Twitter’s free Premium API to search for all tweets that mentioned or

retweeted a user from our original list between the dates of September 16 and October

15 (inclusive).

Our time interval is chosen to maximize preparatory time while avoiding overlap

with the recovery from Hurricane Irma, which had hit only days before. We choose to

extend the studied interval for a month, in order to look at the change in communica-

tion behavior throughout the development of the situation and the revelations of new

information. This allowed us to gather additional users who were on the island but

didn’t enable geolocation, as well as people elsewhere who are personally connected

to people on the island during the hurricane.

It’s important that we gather accounts with geolocation turned off, as geolocated

tweets comprise approximately 1% of all content on Twitter. This extended our list

of account names to 1,511 users. With our fully-generated account list, we scanned
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Twitter’s Gardenhose, a random 10% sample of public tweets, and recorded every

tweet that (1) was authored by an account on our list, (2) was marked by Twitter

as a Spanish tweet, and (3) either mentioned or retweeted another user. We restrict

our corpus to Spanish tweets as an additionally stringent criterion, as information

that’s truly targeted at the Puerto Rican populations will be in Spanish, the island’s

primary language. From our list of tweets, we keep only those using hand-selected

vocabulary that indicates a probable discussion of the hurricane’s effects or need for

supplies, shown in Table 3.1. These words are adapted from the list of words used in

Chapter 1, with the addition of words

Spanish agua bebida generador maria suministros
albergue comida huracan maría supermercado
alimento corriente huracán prepar tienda
asistencia desprevenido inund puerto rico toldo
ayuda en conserva lluv refrigera viento
banco de alimentos enlatado luz refugio

English water drink generator maria supplies
hostel food hurricane maría supermarket
food current hurricane prepare store
assistance unprepared flood puerto rico tarp
help nonperishable rain refrigerat wind
foodbank canned power refuge

Table 3.1: Words used to flag tweets in our study (top) and their English translations
(bottom).

3.2.2 Network Specification

In order to interpret the flow of information among the individuals of interest, and

identify the distribution of influence, we generate a network of Twitter users connected

by retweets and mentions. Each tweet pulled from the Gardenhose as described in

Section 3.2.1 constitutes a directed link from the author to the mentioned or retweeted

user.
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We identify communities in the network topology with a Girvan-Newman clus-

tering algorithm. Inspection of the network’s tweet content revealed that the second

largest community consisted almost entirely of people involved in the Venezuelan up-

rising, and several smaller communities shared this property. In order to get the net-

work to represent the focus of the present study, we counted the proportion of tweets

in the biggest Venezuelan network that contained the words “venezuela”, “vzla”, or

“maduro”, and computed the measurement’s Wilson interval lower bound at 99% con-

fidence. We removed all communities with a proportion of tweets containing those

same words at least as high as that lower bound.

The resulting network has 2,011 users (nodes) connected by 2,466 tweets (edges).

Although our links are generated from a 10% sample of tweets and we reduce our

corpus by content type, we maintain a third of the nodes from our user list due to

the heavy-tailed nature of online social networks [33]. We hand-identify the fifty

largest nodes by in-degree as news outlets, politicians, citizens, weather stations,

meteorologists, or journalists.

We consider three major attributes of the aggregate network: the in-degree dis-

tribution, density, and the average shortest path length. The in-degree of a node is

the number of links connecting other nodes to it (tweets mentioning or retweeting the

corresponding user). We define the density of the network as

d = m

n(n− 1) , (3.1)

where n is the number of nodes and m is the number of links in the network, each

counted once regardless of weight. This is in essence the fraction of possible locations

for a link where there exists one. We compute the average shortest path-length by
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iterating over each ordered pair of nodes s and t and finding the minimum number of

links defining a path from s to t. From these path lengths, we compute the average

shortest path-length as

a =
∑

s,t∈V

p(s, t)
n(n− 1) , (3.2)

where V is the set of nodes, and p(s, t) is length of the shortest path from node s to

node t.

3.2.3 Shannon Entropy

We heavily rely on information theoretic measurements in our analysis of actual tweet

content. The most basic measurement we use is Shannon’s entropyH, which describes

the diversity of the probability mass function of nominal variables. Shannon’s entropy

of a corpus with n unique words is defined as

H = −
n∑

i=1
pi log2 pi, (3.3)

where the ith word appears with probability pi. This entropy is maximized when

every word occurs with equal probability, and approaches 0 as the corpus becomes

dominated by one unique token.

3.2.4 Jensen-Shannon Divergence

To compare two subsets of our corpus, we compute the Jensen-Shannon divergence

between them. This is a symmetric measurement of the difference between the re-

spective probability mass functions of the corpora being compared.
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If we consider two corpora, P and Q, and their combined distributionM = πpP +

πqQ, where πp and πq are the relative sizes of the two corpora such that πp + πq = 1,

the Jensen-Shannon Divergence D is given by

D(P ||Q) = πp

k∑
i=1

pi log2
pi

mi

+ πq

k∑
i=1

qi log2
qi

mi

. (3.4)

In this definition, the mixed distribution M has k unique words, and pi, qi, mi are

the probabilities of encountering M ’s ith word in P , Q, or M respectively. This ex-

pression may be recognized as the weighted average of each corpus’s Kullback-Leibler

divergence from the mixed corpus, although it can be expressed more succinctly as

D(P ||Q) =
k∑

i=1
πppi log2 pi + πqqi log2 qi −mi log2 mi. (3.5)

It’s evident from its form in Equation 3.5 that the Jensen Shannon Divergence

is simply a sum of contributions from each word in the mixed corpus, where the

contribution from word i is

D(P ||Q)i = πppi log2 pi + πqqi log2 qi −mi log2 mi. (3.6)

We use this property of the Jensen Shannon Divergence extensively when compar-

ing corpora in order to identify the words and topics that contribute most to their

difference.
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3.3 Results

3.3.1 Communication Network

Figure 3.1: The in-degree distribution of the network, plotted on a log-log scale.

The majority of nodes in the aggregate network described in Section 3.2.2 have

in-degree of 0 or 1, while only four have an in-degree greater than 15. The full

in-degree distribution is shown in Figure 3.1. This is consistent with the heavy tails

usually seen in online social network degree distributions [33]. Among the fifty highest

ranked Twitter accounts by in-degree of this network, sixteen are news outlets, eight

are journalists, six are agencies (government and NGO), six are musicians, four are

weather stations or meteorologists, and three are citizens.

The topology of the communication networks is shown in Figures 3.2, 3.3, and 3.4.

The size of each node is proportional to the node’s in-degree, or the number of tweets

tagging or retweeting that user. Communities detected in the network topology by

the Girvan-Newman clustering algorithm are colored accordingly. Figure 3.2 shows

the aggregate network for September 16 to October 15 2017. Figures 3.3 and 3.4 show
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Figure 3.2: The networks of tweets using one or more of the keywords in Table 3.1 from
users likely to be affected by Hurricane María or to have a direct connection to someone
affected. The tweets were authored from September 16 to October 15.
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Figure 3.3: The tweet network before hurricane landfall on September 20.
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Figure 3.4: The tweet network after hurricane leaves the island.
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the network during anticipation of the hurricane (September 16 – September 19) and

during the aftermath (September 22 – October 15).

The aggregate network has one major community of more than 300 nodes, which

holds the majority of the highest ranked nodes by in-degree. Alongside this com-

munity, there are three communities of around 100 nodes. The remainder of the

detected communities have fewer than 100 nodes, and most have fewer than 20. The

four users with in-degree greater than 15 are all in the largest community. Those are

Puerto Rican Governor Ricardo Rossello, one weather station, and two news outlets.

The network has a density of d = 6.1× 10−4 and the average shortest path-length is

a = 1.3. These measurements indicate that although the network is very sparse, the

expected distance between two nodes is small. This is consistent with the heavy-tailed

nature of the degree distribution we see in Figure 3.1.

The anticipation network has 234 nodes and 261 links, and centers mainly around

two accounts: a meteorologist from Florida and a Puerto Rican weather station.

Apart from this, the network is made up of many smaller separate connected com-

ponents between relatively small nodes. The aftermath network has 1,347 nodes and

1,874 links. This subset of the aggregate network strongly resembles the entire ag-

gregate, with the collection of musicians having more prominence, while maintaining

a large community of news outlets and weather stations.

3.3.2 Divergence

We use Jensen-Shannon divergence Wordshifts to demonstrate differences in subsets

of our collection of tweets. The length of a bar corresponds to that word’s contri-

butions to the Jensen-Shannon divergence between the two corpora, a measurement
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of the difference in the two word distributions. The bars are colored according to

the Shannon entropy of the collection of tweets that use the word, such that darker

colors indicate a higher diversity of tweet content and colors closer to white indicate

more homogeneous content. Bars that are very close to white indicate that the sub-

collection of tweets using the word are mostly retweets of one specific tweet. In each

Wordshift, the fifty words with the highest contribution are shown. Emojis are each

considered to be one individual word for this analysis.

In Figure 3.5, we show the words contributing to the difference between the tweets

in anticipation of the hurricane and the tweets from the aftermath. The large majority

of the divergence between these two corpora comes from specific words used more in

anticipation. Most of these have to do with the severity of the imminent storm. An

increase in the frequency of “agua” after the hurricane contributes to this divergence,

as well as “#verificando19s”, a hashtag used in Mexico to organize a rescue effort in

the aftermath of an earthquake on September 19.

The corpora compared in Figure 3.6(a)’s Wordshift are the tweets from the central

community containing Governor Rossello’s account to those from the fourth-largest

community, which contains several famous Puerto Rican musicians such as Chayanne,

Luis Fonsi, and Ricky Martin. Although this community is dominated by famous

Puerto Ricans, discussion within this community seems to give space to the Mexican

earthquake as well, as indicated by the prominence of “méxico” and the relative

infrequency of “maría” and “luz”, which directly translates to “light”, but colloquially

means “electricity” or “power”.
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Figure 3.5: The contributions of individual words to the Jensen-Shannon Divergence between
the collection of tweets before and after the period of landfall for Hurricane María. The
length of each bar indicates the contribution of a word, and its direction indicates the corpus
in which it was more frequent. The bars are colored according to the Shannon entropy of
the tweets that contained that word, hashtag, or emoji. Darker colors indicate that tweets
using the word, hashtag, or emoji are more diverse in content, where colors closer to white
indicate that the word, hashtag, or emoji appeared mostly in retweets of the same tweet.
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Figure 3.6: (a) The word-level contribution to the divergence between the collection of tweets
in the largest and fourth-largest community. (b) The word-level contribution to the diver-
gence between the collection of tweets in the largest and second-largest community.
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3.3.3 Daily Resolution Network Evolution

We separate the aggregate network into its daily subnetworks, and look at the top-

fifty users in the aggregate network at the daily resolution. Figure 3.7 illustrates the

change of in-degree over time of these nodes in the daily networks, binned by user

type. We see that news outlets are a relatively consistent player in the conversation,

whereas weather stations and meteorologists were only prominent before the hurricane

and on the first day of October. Government and other aid organizations tend to take

up a small portion of the conversation, becoming major players somewhat suddenly

on September 24 and October 8-9.

The same figure with every individual user colored separately can be found in

the Appendix. In examining individual users with time, we find that in the days

surrounding the landfall of the hurricane, the tweets from the meteorology station

@NWSSanJuan are heavily propagated. A few days after the end of the rain, Governor

Rossello becomes a prominent voice in the network on most days from then on. During

the first few days of October, Puerto Rican singers Chayanne, Ricky Martin, and

Luis Fonsi occupy much of the conversation space. Later on, starting on October 10,

Puerto Rican rapper Residente becomes a major node in the network, but he appears

to mostly speak with smaller nodes, and not as much with other major figures.
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Figure 3.7: Stacked bar chart time-series showing the daily in-degrees of nodes in the top-fifty
by in-degree of the aggregate network. The nodes are consolidated by manually determined
type, shown in the legend. Of these nodes, the news outlets are the most consistently promi-
nent, although politicians and journalists are fairly consistently present in the network as
well. We find a spike in activity from musicians starting on October first, and decaying
away by the sixth. Musician activity comes back for an interval of four days starting on
October 9th, but this is all due to one single account, Residente. This can be seen in Figure
3.8 in the appendix, where we show the same timeseries separated by individual accounts.

3.4 Discussion

Previous work found that, in response to a major natural crisis event, average users

with small followings increased their social media activity more than influentials with

large followings [39]. Those results spoke toward who was responsible for the propa-

gation of information throughout the Twitter network. The results we present here

begin to address the naturally following question: where is such information originat-

ing? The consistent dominance of local journalists, news outlets, and politicians in
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the communication network demonstrates the accounts people turned to were those

whose audience is exclusively Puerto Rico on any given day of the year.

This helps paint one more piece of the complete picture of crisis communication.

We now have reason to believe that information is spread throughout the network by

average individuals, the first of which get such information from “local” influencers,

such as the politicians and journalists from Puerto Rico. Meanwhile, major celebrities

seem mostly removed from the conversation with the conversation centered on local

influencers and average affected individuals, touching the Puerto Rico crisis along

with a variety of issues in Latin America.

There are several important limitations to acknowledge surrounding this work

and its possible implications. The data Twitter provides via its API distorts the

network measurements by artificially rewiring retweet chains into stars centered on

the original author of the tweet. Network measurements are also altered by the use of

only a 10% sample of tweets. Our methods of identifying tweets from Puerto Ricans

and those with close connections surely introduced some error, despite being our best

resort due to the very low frequency of geolocated tweets. Additionally, most people

of interest had no cell-reception for the majority of the studied time interval. We

note, however, that this means our network presents a lower bound on representation

of regular Puerto Ricans and accounts with a mostly Puerto Rican audience. Our

main finding, that the most consistent providers of information were those with more

moderate localized audiences, is a conservative one. The true nature of the situation

may very well be stronger.
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3.5 Conclusion

Time and time again people prove incredibly resilient under conditions of extreme

diversity. In the case of Hurricane María, Puerto Ricans took care of themselves and

their families while facing a barrage of extreme weather, from flooding to heat waves.

Further, they searched for ways to communicate with those outside their immediate

presence, and found such ways on the sides of highways across the island.

The results we present hold important implications in disaster relief, and informa-

tion dissemination during major crisis events. For the most part we find that the best

accounts to provide important information tend to be local figures: journalists, news

outlets, politicians. While we did see points in time during which celebrities became

central, they did not remain reliably central for any major span of time within the

studied interval, which included anticipation, event, and aftermath.

In any natural crisis situation, there’s almost never a shortage of helpers. The

emergence of massive cooperating teams during times of need is a signature of hu-

manity. Lack of information, or blockages that keep information to those who need

it, however, can render this help not useful to overwhelming masses of crisis victims.

It’s clear that the transfer of information about where and when to find help is as im-

portant as the help itself. We hope our results can inform institutions regarding how

to, at least on Twitter, best plant information so that it most efficiently propagates

through the network, getting to as many people as possible, as quickly as possible.
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Appendix

Figure 3.8: The same timeseries as Figure 3.7, but separated by individual user.
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