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Abstract

This research investigates the difficulties associated with climate and weather pre-

diction by forecasting the future state of a toy climate, analogous to the Lorenz model

of natural convection. Temperature measurements, collected from a computational

fluid dynamics (CFD) simulated thermal convection loop, are fit with a set of three

differential equations using Eureqa, a recently developed software tool for inferring

natural laws from freeform data. Several forecasts, made using the optimal differential

equations, are compared against a verifying set of temperature data from the CFD

system to evaluate the accuracy of the forecast model. The results are interpreted

with respect to a physical model derived from first principles. The goal is to discover

reasonably accurate, low-dimensional prediction equations which model the physical

laws governing this system.
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1 Introduction

The ability to forecast the future state of chaotic physical systems such as Earth’s climate

and weather has become increasingly vital [5]. Natural systems such as these are nonlin-

ear, making them difficult to predict for reasons we will discuss. Attempts can be made

to improve the forecasting models for these systems by observing simplified versions with

reduced structure and fewer parameters, but which exhibit qualitatively similar dynamics.

We utilize a toy climate in the form of a thermal convection loop, or thermosyphon, to pro-

duce a prediction model. By improving the prediction capabilities for our toy climate, we

are working toward the long term objective of making improvements in climate forecasting.

Our goal for this research is two-fold: (1) construct a thermal convection loop physical

experiment and (2) find low-dimensional equations which forecast future states of the sys-

tem. In addressing this second objective, we compare a model derived from first principles

to a model generated by a genetic algorithm. Eureqa is a recently developed software pro-

gram which determines governing equations based on a series of data points, in our case

temperature data. We intend to input data collected from a thermosyphon to generate

governing equations for the system, and then test the ability of these equations to predict

future states of the system.

The thermosyphon is a toroidal loop which is filled with fluid and oriented vertically. It

is encircled by two baths, one enclosing the top half and one surrounding the bottom half,

both of which are filled with fluids of fixed temperature. The lower bath is heated, while

the upper bath is cooled, creating a temperature difference between the top and bottom of

the loop. For a moderate temperature difference, the fluid will rotate either clockwise or

counterclockwise. As the temperature difference between the top and bottom is increased,

a bifurcation leads the fluid to switch the direction in which it is flowing nonperiodically.

The aperiodicity in the system gives rise to the difficulties associated with forecasting

future states of the thermosyphon. This aperiodicity causes the system to be chaotic and

therefore experience sensitive dependence on initial conditions. In other words, the trajec-

tories of two initial states which differ by a small amount will diverge exponentially in time

on average. Sensitive dependence on initial conditions causes forecasting to be very difficult,

since any prediction will diverge rapidly from the truth, no matter how accurate the initial

measurement. It is this difficulty we seek to mediate in creating our prediction model.

2 Background

In the early 1960s, the National Weather Service was using linear differential equations to

predict the weather. They knew their model was not optimal, but they did not discover

how inaccurate the linear assumption was until Edward Lorenz presented his work. Lorenz,
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a mathematician and meteorologist, decided to test a nonlinear model of convection in his

1963 paper “Deterministic Nonperiodic Flow” [10]. In this paper, Lorenz looked at a system

of three ordinary nonlinear differential equations, now called the Lorenz equations. The

equations attempt to describe the fluid flow in a Rayleigh-Bénard cell, where convection cells

form in a fluid which is heated from below and cooled above. This system of deterministic

equations represents an idealization of a forced dissipative hydrodynamical system (e.g.

Earth’s weather). The equations are:

dx

dt
= σ(y − x) (1a)

dy

dt
= ρx− xz − y (1b)

dz

dt
= xy − βz (1c)

Where x is proportional to flow velocity, y is proportional to the temperature differ-

ence across the convection cell, z is proportional to the deviation of the vertical profile

of convecting temperature from that of conduction, and σ (the Prandtl number), ρ (the

Rayleigh number), and β are parameters related to the fluid flow. The Rayleigh number is

proportional to the temperature difference between the heat source and the heat sink and

is typically the parameter adjusted to observe flow instability. The Prandtl number is the

ratio of momentum diffusivity to thermal diffusivity, and β is proportional to tube geometry.

By numerically solving these equations, Lorenz found that the nonperiodic solutions for

the system of equations - which make up almost all of the solutions - must be unstable. Since

Earth’s atmosphere is nonperiodic, Lorenz concluded that long-range weather prediction

will be impossible, since the instability causes sensitive dependence on initial conditions.

In fact, even with sensors hanging every square foot throughout the atmosphere, feeding

perfect observations into an infinite computer with exact knowledge of the atmosphere’s

governing equations, the limit of predictability is only two weeks - the time required for the

unresolved behavior to become relevant [11].

In an attempt to simplify the Lorenz system, later researchers used a thermosyphon

to study the chaotic behavior of a convection cell [4, 6, 7]. The smaller radius of the loop,

approximately 3 cm, to an outer radius of 50 cm, allows only a single major convection

cell to form 1. There are three equilibrium states, or regimes, which the thermosyphon

experiences: conduction, clockwise (CW) rotation, or counter-clockwise (CCW) rotation.

Thermocouples, the temperature measuring devices on the thermosyphon, placed at the 3

o’clock and 9 o’clock positions (see Figure 1) measure the temperature T inside the loop

1Though the thermosyphon is used for the simplification provided by creating a single convection cell, it

has been shown that minor disturbances can occur inside the loop where small pockets of the fluid do not

flow in the predominant direction [12].
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Figure 1: The heating bath surrounds the bottom

half, heated to temperature Tbottom. The cooling

bath surrounds the top half, chilled to tempera-

ture Ttop. The direction of the fluid flow can be

determined by measuring the temperature differ-

ence between points A and B. If TA−TB is positive

(negative) the flow is CW (CCW).

Figure 2: Snapshot of a 2-D CFD simulation sim-

ulating the flow inside the thermosyphon where

the aspect ratio has been exaggerated into a donut

for the purpose of illustration. Note that the fluid

is rotating CCW since the heated fluid (light blue

and green) is flowing past point B while the chilled

fluid (dark blue) is flowing past point A. The col-

orbar units are in Kelvin. Picture from Harris et

al. (2011) [8].

and can be used to identify which state the fluid is in. When TA is greater than TB the

fluid inside the loop is rotating clockwise - the heated fluid from the bottom half of the

loop is flowing past the point A, while the cooled fluid from the top is flowing past point B.

Therefore, if TA is less than TB it is rotating counter-clockwise, and if TA equals TB then

the fluid is not moving (see Figure 2).

Creveling et al. (1975) explored the different states produced by varying the temperature

differences between the top and bottom halves of the thermosyphon using water for the fluid

inside the loop. For small temperature differences between the top and bottom, ∆T , the

fluid does not rotate and is in a stable conducting state. Once ∆T reaches a certain critical

point, the fluid will begin to rotate either clockwise or counter-clockwise and will continue

to rotate in that one direction stably as long as ∆T remains fixed. In this case, TA − TB

will not vary and the stable fixed state is now rotation in either the CW or CCW direction.

As ∆T is increased further, the CW (CCW) rotation becomes unstable, seen as oscillations

in the temperature reading of TA − TB . Eventually a second critical temperature difference

is reached and the rotation becomes unstable. In this state, the fluid will repeatedly switch

the direction in which it is flowing. These flow reversals occur nonperiodically, displaying

chaotic behavior [4].
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A flow reversal begins when a ‘pocket’ of fluid becomes hotter than the fluid around

it. As the hot pocket passes point B (for fluid rotating CCW), it exerts a buoyancy force

on the fluid, causing a positive acceleration in the counterclockwise direction and speeding

up the rotation. As the pocket travels around the top of the thermosyphon, it does not

cool as much and arrives at point A hotter than stably rotating fluid. Consequently, there

is a buoyancy force in the reverse (clockwise) direction acting to slow down the speed of

rotation. This deceleration allows the hot pocket to spend more time in the heated section

causing it to become hotter. The pocket now arrives at point B hotter than it was on the

previous rotation. Therefore, it has greater acceleration going through the top half and

greater deceleration as it goes past point A. As the instability grows, this amplification

process continues until the buoyancy force generated by the pocket at point A grows large

enough, causing the flow to stop. With no rotation in the tube, the temperature difference

between the top and bottom portions of the fluid grows undisturbed. The fluid will then

‘choose’ a direction of rotation, and if it begins to rotate clockwise, we call the rotation

change a flow reversal, or regime change.

Gorman et al. (1986) categorized chaotic flow into three different regimes which depend

on the parameters chosen for the system: transient chaos, subcritical chaos, and globally

attracting chaos. Transient chaos occurs when the flow inside the loop at first displays

chaotic behavior in the form of increasing amplitudes and flow reversals, but this behavior

eventually decays and is replaced by a stable rotating flow. If all initial conditions display

chaotic behavior (except the unstable equilibrium solutions), the behavior is defined as glob-

ally attracting chaos. Subcritical chaos is the in-between state where some initial conditions

result in transient chaos while other initial conditions result in globally attracting chaos [7].

Several researchers have compared the behaviors found in the thermosyphon to the

theoretical equations which describe Rayleigh-Bénard convection (i.e. the Lorenz model).

Depending on the assumptions made and the data collected, most found that the Lorenz

equations generally describe the fluid flow inside the thermosyphon. Ehrhard and Müller

worked toward refining the model in their 1990 paper “Dynamical behavior of natural con-

vection in a single-phase loop” [6]. They developed a transformed set of equations which,

given certain parameter values, are equivalent to the Lorenz equations. Ehrhard and Müller’s

equations include an expression using an experimentally determined constant K, which char-

acterizes the nonlinear condition for the heat transfer coefficient. Ehrhard and Müller found

that their experimental data agreed with values found using their theoretical model for con-

duction and steady convection. The values were not in agreement for time-dependent chaos

and subcritical instability. They explain that the discrepancies are most likely due to an

inaccurate measurement for K.

More recently, Harris et al. (2011) have looked at forecasting the chaotic flow reversals
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Figure 3: Graph of forecast (blue line) and data (black points). The forecast is the result of

Equation 2 using the parameters defined below. The parameters have been tuned to minimize

residuals over a set of windows (dashed red). Picture from Harris et al. [8]

in a CFD simulated thermosyphon. To do so, they derive a model from first principles using

a variation of the Ehrhard-Müller (EM) derivations. The equations are:

dx

dt
= α(y − x) (2a)

dy

dt
= βx− y(1 +KH(|x|))− xz (2b)

dz

dt
= xy − z(1 +KH(|x|)) (2c)

These equations are equivalent to the Lorenz equations for K = 0. The main difference

is due to H(|x|) which represents the Heaviside step function. In Equation 2, the Heaviside

step function causes H(x) to vary as p(x) = 44
9 x

2− 55
9 x

3+ 20
9 x

4 for x ≤ 1 and x
1/3 for x > 1,

where the piecewise function is designed to keep the model differentiable when x = 0 [8].

Harris et al. compare various methods of data assimilation to predict the nonlinear

phenomena a thermosyphon would experience. In particular, they look at 3D-Var and

several forms of the Kalman filter to develop an accurate method for predicting the duration

of a regime. They find that the amplitude of x (proportional to the mass flow rate), preceding

a regime change is correlated to the duration of the following regime. In particular, larger

amplitudes result in longer duration of following regimes with a threshold at approximately

x = 15, after which the following regimes are not always longer. In addition, more unstable

system states precede longer duration regimes.

Using a multiple-shooting method, Harris et al. solved for the optimal parameters to use

for Equation 2 [2]. These values are: α = 7.99, β = 27.3 and K = 0.148. Figure 3 displays
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Figure 4: Picture of physical thermosyphon in process of being built.

a graph which applies these parameters to Equation 2 to fit a set of data points. These

values were also used in our analysis to compare Equation 2 to the equations generated by

Eureqa.

3 Experimental Analysis

Our work began with developing a physical thermosyphon from which to collect data (see

Figure 4). The thermosyphon was partially built when we began our work; the inner loop

and surrounding baths were built and the thermocouples were in place. Sixteen thermo-

couples were placed evenly around the thermosyphon to measure the temperature data.

Our first goal was to gather the data from the thermosyphon. For this purpose, the soft-

ware TracerDAQ Pro was utilized. TracerDAQ Pro reads the temperature data from the

thermocouples and creates a real-time graph of temperature versus time. To test the ther-

mocouples, a heat gun was used to heat the water inside the inner loop. Using TracerDAQ

Pro, data was generated that accurately portrayed the increasing temperature inside the

thermosyphon.

Once the thermocouples and the temperature software were set up, we began working

toward completing the heating and cooling baths. The cavities in which the fluid would run
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Figure 5: Temperature versus time plot of channels 3 and 4 (surrounding the 3 o’clock position of the

thermosyphon) and channels 11 and 12 (surrounding the 9 o’clock position of the thermosyphon).

Data taken with chiller on. Inset: Picture of where the channels are on the thermosyphon. There

was no thermocouple in the N/A position.

through were in place, but both a heater and a chiller were needed to bring the fluid to the

appropriate temperatures. First a small chiller was hooked up. The chiller was not fully

functional in that we did not have control over setting the temperature. Instead, it would

continuously drop in temperature until it reached an equilibrium point in the range of 41◦F

to 46◦F. With the chiller running, we were able to collect data which revealed that the fluid

in the inner loop was rotating counter-clockwise. Figure 5 shows that channels 3 and 4 (at

the 3 o’clock position) were reading at a higher temperature than channels 11 and 12 (at

the 9 o’clock position) leading us to this conclusion.

Next, a small hot water heater which could reach temperatures of 160◦F was hooked up

to the bottom half of the loop. With just the heater on, we again collected data which read

that the fluid was rotating counter-clockwise (see Figure 6). A difficult issue arose when

we tried to run the heater and the chiller at the same time to produce a large temperature

difference between the top and bottom halves of the thermosyphon. The heater was running

at a much higher wattage than the chiller, leading it to overpower the chiller. While the

heater was running, the chiller read approximately 104◦F to 114◦F. These temperatures,

160◦F for the heater and 110◦F for the chiller, did not create a large enough temperature

difference to produce chaotic results.
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Figure 6: Temperature versus time plot of channels 3 and 4 (surrounding the 3 o’clock position of the

thermosyphon) and channels 11 and 12 (surrounding the 9 o’clock position of the thermosyphon).

Data taken with heater on.

Figure 7: Data taken with heater on and tap water running through top half. Channels 3 and 12 are

reading much colder than channels 4 and 11. This signifies that the fluid inside the thermosyphon

is not moving since channels 3 and 12 are in the chilled section, while channels 4 and 11 are in the

heated section. The large dip in channels 4 and 11 was due to decreasing the heater temperature

and then raising it again.
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Figure 8: Temperature versus time plot from TracerDAQ Pro showing the increase in channel 15.

In an attempt to reach lower temperatures, tap water was run through the upper bath.

The tap water temperature was approximately 45◦F, and the heater was running at approx-

imately 145◦F. This temperature difference, 100◦F, should have been enough to produce

chaotic results. Instead, the temperature readings were the exact opposite. The data

showed that the fluid in the inner loop was not moving, i.e. it was in a state of conduction

(see Figure 7). This state is very unstable and is analogous to a pendulum holding steady

while pointing straight up. Knowing that this situation could not be correct, we realized

that there must be another issue at hand.

After coming up with several hypotheses to explain the data we were receiving, a test

was run to see if the thermocouples were the issue. Thermocouples only read temperature

at their tip. We thought that the sides of the thermocouples were touching the aluminum

casing which encloses the thermosyphon. The aluminum heats up (or cools) due to the

bath water running through the system; we believed that the thermocouples were therefore

heating up (or cooling) along their length, causing the temperature reading to be inaccurate.

To test the theory, a thermocouple was held against the heated section of the thermosyphon

while its tip was in open air. As seen in Figure 8, channel 15 (the tested thermocouple) did

read at an increased temperature even though its tip should have read room temperature.

We were not able to resolve this issue in time to collect physical data for this paper.

Instead synthetic data from a CFD experiment was used.
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Distilling Free-Form Natural Laws
from Experimental Data
Michael Schmidt1 and Hod Lipson2,3*

For centuries, scientists have attempted to identify and document analytical laws that underlie
physical phenomena in nature. Despite the prevalence of computing power, the process of finding
natural laws and their corresponding equations has resisted automation. A key challenge to finding
analytic relations automatically is defining algorithmically what makes a correlation in observed
data important and insightful. We propose a principle for the identification of nontriviality. We
demonstrated this approach by automatically searching motion-tracking data captured from various
physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any
prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians,
Lagrangians, and other laws of geometric and momentum conservation. The discovery rate
accelerated as laws found for simpler systems were used to bootstrap explanations for more
complex systems, gradually uncovering the “alphabet” used to describe those systems.

Mathematical symmetries and invariants
underlie nearly all physical laws in na-
ture (1), suggesting that the search for

many natural laws is inseparably a search for con-
served quantities and invariant equations (2, 3).
Automated techniques for generating, collecting,
and storing data from scientific measurements
have become increasingly precise and powerful,
but automated processes for distilling this data into
knowledge in the form of analytical natural laws
have not kept pace. Thus, there is a pressing prac-
tical need (4, 5) for improved forms of scientific
data mining (6, 7).

The most prohibitive obstacle to overcome in
order to search for conservation laws computa-
tionally is finding meaningful and nontrivial
invariants. There exist an infinite number of
identities that are numerically invariant but have

no connection to the natural physics or dynamics
of the system. We introduce a principle for iden-
tifying only the useful analytical relations that are
related to the system dynamics. We then dem-
onstrate how a search algorithm based on this
principle identifies meaningful analytical links
in data captured from various physical systems
(Fig. 1).

Our goal is to find natural relations where
they exist, with minimal restrictions on their
analytical form (i.e., free-form). Many methods
exist for modeling scientific data: Some use
fixed-form parametric models derived from ex-
pert knowledge, and others use numerical models
(such as neural networks) aimed at prediction.
Still others have explored restricted model spaces
using greedy monomial search (8, 9). Alterna-
tively, we seek the principal unconstrained
analytical expression that explains symbolically
precise conserved relations, thus helping distill
data into scientific knowledge.

Symbolic regression (10) is an established
method based on evolutionary computation (11)
for searching the space of mathematical expres-
sions while minimizing various error metrics [see

section S4 in the supporting online material
(SOM)]. Unlike traditional linear and nonlinear
regression methods that fit parameters to an
equation of a given form, symbolic regression
searches both the parameters and the form of
equations simultaneously (see SOM section S6).
Initial expressions are formed by randomly com-
bining mathematical building blocks such as
algebraic operators {+, –, ÷, ×}, analytical
functions (for example, sine and cosine), con-
stants, and state variables. New equations are
formed by recombining previous equations and
probabilistically varying their subexpressions.
The algorithm retains equations that model the
experimental data better than others and aban-
dons unpromising solutions. After equations reach
a desired level of accuracy, the algorithm termi-
nates, returning a set of equations that are most
likely to correspond to the intrinsic mechanisms
underlying the observed system.

Although symbolic regression is typically
used to find explicit (12–14) and differential
equations (15), this method cannot readily find
conservation laws or invariant equations. Rather
than trying to model a specific signal, we are
trying to detect any underlying physical law that
the system obeys, which may or may not be
constant (e.g., a Lagrangian).

A particular challenge is requiring the law to
be a function of the system’s state while avoiding
trivial or meaningless relations. For any system
over the state space x, there are infinitely many
trivial equations over x that satisfy a conserved
quantity, such as sin2(x1) + cos2(x1) or x1 + 4.56 –
x2x1/x2. Additionally, there are infinitely many
arbitrarily close trivial conservations, such as
4.56 + 1/(100 + x1

2). To distinguish good con-
servation law candidates from poor ones, we
need a more robust principle than simply invar-
iance alone.

The identification of nontrivial relations is a
major challenge, even for human scientists: Many
published invariant quantities have turned out to
be coincidental (16). The mere appearance of a
conserved value is insufficient for a conservation

1Computational Biology, Cornell University, Ithaca, NY 14853,
USA. 2School of Mechanical and Aerospace Engineering,
Cornell University, Ithaca, NY 14853, USA. 3Computing and
Information Science, Cornell University, Ithaca, NY 14853,
USA.

*To whom correspondence should be addressed. E-mail:
hod.lipson@cornell.edu

Fig. 1. Mining physical systems. We captured the angles and angular velocities
of a chaotic double-pendulum (A) over time using motion tracking (B), then we
automatically searched for equations that describe a single natural law relating

these variables. Without any prior knowledge about physics or geometry, the
algorithm found the conservation law (C), which turns out to be the double
pendulum’s Hamiltonian. Actual pendulum, data, and results are shown.
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Figure 9: Picture taken from Schmidt and Lipson paper representing how Eureqa forms equations

from data [13].

4 Numerical Analysis

4.1 Eureqa

In our research, we tested the predictive ability of equations derived from the Navier-Stokes

equations, namely Equation 2, to those found using Eureqa software [16]. Eureqa seeks

to find analytical expressions which explain symbolically precise conserved relations. To

accomplish this goal, symbolic regression is used by piecing equations together using basic

building blocks including algebraic operators, analytical functions, constants, etc. If the

resulting equation models the data within a certain fitness the equation is subsequently

refined or mutated to better fit the experimental data. To identify equations which are

nontrivial and can model conservation laws, partial derivatives between pairs of variables

are used. Since the desired equation needs to accurately model the data while not overfitting

it, the algorithm produces a number of equations which are listed based on their accuracy

and their complexity.

The complexity is measured as the number of nodes in the expression trees; more specif-

ically, constants, algebraic operators (except division) and variables add one to complexity

while division operators and trigonometric functions add two 2. The accuracy, or fitness, is a

numerical measure of how well a candidate equation fits the data. Eureqa uses the following

equation to measure fitness: − 1

N

N�

i=1

log

�
1 + abs

�
∆xi

∆yi
− δxi

δyi

��
. This equation measures

how well the generated equation predicted the data by taking the difference between esti-

mated partial derivatives - one from the data
�

∆xi
∆yi

�
and one predicted by the candidate law

equation
�

δxi
δyi

�
- then uses a mean-log-error to combine the residuals. The mean-log-error

was chosen due to its ability to reduce high-magnitude residuals which can occur when the

2Other nodes may add a different amount to complexity, but the above values were the only ones used

in this work.
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denominator approaches or crosses zero, without discarding them entirely. [13]

This algorithm was tested by solving for the laws governing motion data collected from

an air-track oscillator and a double pendulum. The results of running the experimental

data, consisting of position and velocity measurements, through Eureqa came in the form of

energy laws for each system i.e. Hamiltonian and Lagrangian equations. In particular, for

chaotic data from the double pendulum, the algorithm produced a law of conservation of

angular momentum. While the equation F = ma took Newton years to formulate, it took

Eureqa a few hours to find this governing law from the inputted data.

4.2 Computational Fluid Dynamics (CFD) Experiment

Due to our inability to use physical data, synthetic data from a high resolution simulation

CFD experiment was employed as input to produce solutions from Eureqa. This CFD data

was generated by observing the velocity, weighted by the mass of the fluid (mass flow rate),

flowing through a single cross-section of the loop. This value, which is analogous to the

x variable of the Lorenz equations, was related to Equation 2 in order to find the best

x, y, and z variables to represent the synthetic observation. This was done using data

assimilation, a process which takes observations of past states of the system and combines

them with numerical forecasts made by Equation 2 to create the analysis - a best estimate

of the system with a defined area of uncertainty. Examples of data assimilation methods

include the Kalman filter, the ensemble square root filter, and 3D-Var.

The synthetic data was comprised of 250,000+ points in time for each of the three

variables. We used the first 100,000 data points as training data for finding equations in

Eureqa and the subsequent 100,000 data points as validating data to test the predictive

abilities of the generated equations.

4.3 Analysis and Results

The three variables x, y, and z from the synthetic data were input into Eureqa along with

a time variable using 100,000 data points each. The three equations for dx
dt ,

dy
dt , and

dz
dt

were solved for separately using the following basic building blocks: constants, algebraic

operators, and the sine and cosine trigonometric functions. Eureqa produced approximately

20 equations for each expression. We chose two equations from the resulting list - the

equation which most closely resembled the Lorenz equations and the equation with the best

fitness.
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dx

dt
= 0.310112y − 0.306327x (3a)

dy

dt
= 1.54139x− 0.0738879y − 0.0459884xz (3b)

dz

dt
= 0.0473712xy − 0.0536667z (3c)

dx

dt
=

1.46267x+ x cos(0.0598488− 0.0775666x)− 0.169405 cos(0.0598488− 0.0775666x)− 2.29592y

cos(−0.256487x− 0.33668)− 7.39457

(4a)

dy

dt
=

0.242576z

46.1372 + xy + y2
+

432.735x

65.3906 + z
− 0.0737205y − 4.39379x− 0.0954854 (4b)

dz

dt
=

0.470141x3 + 2.35432y2 + 49.0364xy − 4.15505x2 − 8.97079y

1008.87 + 5.67322x
− 0.0485457z − 0.125211

(4c)

For each set of equations, Eureqa provided a fitness and complexity measurement, de-

scribed above. These values were as follows:

Equation Complexity Fitness

3a 7 0.148

3b 13 0.118

3c 9 0.069

4a 38 0.093

4b 33 0.075

4c 42 0.037

Equations 3a and 3c, while resembling the Lorenz equations, were also chosen because

they occur at the largest drop in fitness - the previous equations produced by Eureqa had

a significantly higher fitness than these equations, while all equations following had only a

small reduction of the fitness (see Figure 10). The equations produced for dy
dt did not display

a significant drop in fitness; therefore Equation 3b was chosen based on its similarity to the

Lorenz equation for dy
dt .

Next, we analyzed how well the generated Eureqa equations could predict future states

of the system by using the validating data. To begin, an initial condition (the 100,001st

x, y, and z variables) from this data set was selected to evaluate the generated equations.

This state was then integrated with each model using the Runge-Kutta (order 4) method

in Matlab with a timestep of size 0.01. Figure 11 shows a comparison between the forecast

and the validating data using this initial condition. From these graphs, we determined that

the generated equations were able to predict the state of the system for approximately 150
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Figure 10: Graph produced by Eureqa for dx
dt showing the fitness of the equation generated versus

the complexity. The sharp drop at complexity = 7 lands on the point representing Equation 3a,

which is similar in form to the Lorenz equation (Equation 1a). The large red dot (last point on the

graph) represents Equation 4a.

Figure 11: Plots of validating data (blue) and forecast (red) for variable x, y, and z respectively

versus time. Above: Forecast using Equation 3. Below: Forecast using Equation 4

time units, where one time unit is equal to 30 seconds in real time 3. Since these graphs

only show the predictive ability for a single initial condition, we determined that 300 time

units would be a sufficient amount of time in which to evaluate the ability of the model to

predict the system’s state.

3The CFD data has an increment of 5 timesteps of .01 between data points. A time step equals 6 seconds

in real time, therefore 5 timesteps is equivalent to 30 seconds in real time.
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Figure 12: Above: RMSE for a single run using the 100,001st initial condition for Equations 3

(black) and 4 (dashed blue). Below: Average RMSE plots for 400 forecasts using Equation 3

(black), Equation 4 (dashed blue) and Equation 2 (dot dash green).

In order to more fully evaluate these equations, two tests were employed: the Root Mean

Square Error (RMSE) and the Anomaly Correlation. The RMSE measures the 2-norm of

the difference between the values predicted by the model and values taken to be the truth

(i.e. direct observations of the analysis), in this case the validating data from the CFD

experiment.

RMSE = ||za − z∗|| (5)

where za is the truth (validating data) and z∗ is the forecast (data from the generated

equations).

We used 400 initial conditions to evaluate the RMSE. Each evaluation was compared to

the truth for 300 time units. The average of the 400 runs was taken to see how accurately the

forecast performed over the 300 time units. Figure 12 (top) shows the RMSE as a function

of time for a single initial condition for both Equations 3 and 4. Figure 12 (bottom) shows

the three models - Equations 2, 3, 4 - and their loss of predictive ability over time. The
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Figure 13: Anomaly Correlation plots for Equation 3 (black), Equation 4 (dashed blue), and

Equation 2 (dot dash green). The threshold line AC = 0.6 (red) is crossed between t = 41 and

t = 42 for Equation 3 and between t = 44 and t = 45 for Equation 4. The threshold line is crossed

between t = 48 and t = 49 for Equation 2.

more complex inferred model performs better than its less complex counterpart, and Harris’

version of the EM model slightly outperforms the Eureqa equations.

The Anomaly Correlation (AC) was also employed to measure the accuracy of the gen-

erated equations. It is used to analyze the difference between the forecast and the truth

for climate data by measuring the cosine of the smallest angle between two vectors. The

following equation is used for calculating the Anomaly Correlation:

AC =
(z∗ − z̄)T (za − z̄)

||z∗ − z̄||||za − z̄|| (6)

where za is the truth (validating data), z∗ is the forecast (data from the generated

equations), and z̄ is the average of the forecasted variables.

The Anomaly Correlation has a threshold at 0.6, above which the forecast is considered

useful. This limit provides the ability to quantitatively measure the improvement of one

generated equation over the other. For this experiment, we again used 400 initial conditions

each of which ran for 300 time units. Averaging over the 400 runs resulted in a length

300 vector which was plotted against time. The threshold line AC = 0.6 was also plotted
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for reference. As Figure 13 shows, Harris’ model does indeed provide an improvement over

Eureqa’s output. It was found that the Anomaly Correlation for Equation 3 crossed the line

AC = 0.6 between t = 41 and t = 42 while the Anomaly Correlation for Equation 4 crossed

between t = 44 and t = 45. This gave Equation 4 a 7.3% improvement over Equation 3. The

improvement makes sense due to Eureqa’s calculation of improved fitness for this equation

with greater complexity.

Included in Figures 12 and 13 is the RMS and Anomaly Correlation for Equation 2,

Harris’ model. By including this equation in our tests, we are able to see how well our

Eureqa-generated equations compare to an ODE derived from the physics governing the

system. We see from both figures that Harris’ model does forecast better than the equa-

tions from Eureqa, but the Eureqa equations are not far behind. Looking at the Anomaly

Correlation, Equation 2 crossed the line AC = 0.6 between t = 48 and t = 49, and therefore

Equation 2 has a 6.7% improvement over Equation 4.

In order to obtain another perspective of how well the equations were performing based

on the Anomaly Correlation, another graph was generated. Figure 14 is a 3D plot of each of

the 100,000 validating points using the x, y, and z variables as coordinates. The Anomaly

Correlation was calculated for each point in the validating data by evaluating Equation 3,

the lower complexity Eureqa equation, and using a run of 200 time units. The time at

which the Anomaly Correlation falls below 0.6 was calculated for each point, and the point

is colored based on this number.

From the plot in Figure 14, we can see that forecasts which begin near unstable con-

vecting equilibrium states do well, since their Anomaly Correlation falls below 0.6 at a later

time. The same is true for points further away from the foci. Points in dark blue in the

middle area of the wings do not perform as well. There are two sections of note: one is

the ‘spine’ of dark blue points between the two wings. These points have smaller z values.

A small z value represents little to no rotation inside the thermosyphon. This is a very

unstable state, and therefore it makes sense that the forecast might quickly deviate from

observations in these situations. There is also a region of yellow to red points along the spine

and below the wings. We believe that initial conditions in this region are well predicted

by the model due to the trajectory they are most likely to follow. In Figure 15, one such

trajectory is mapped for the point whose Anomaly Correlation remained above 0.6 for the

longest amount of time. We note that the trajectory travels around the left wing once,

immediately heads toward the center of the right wing, and then slowly winds its way out.

This type of behavior allows the equation to forecast accurately for a long period of time.
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Figure 14: 3D plot of the 100,000 validating points. Each point is used as an initial condition

and evaluated using Equation 3. The points are colored based on the duration until the Anomaly

Correlation fell below 0.6. Points which are colored based on a lower number performed worse than

points colored based on a higher number. The plot shows the X-Z view.
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Figure 15: Trajectory for truth (blue) and forecast (dotted black) using the initial condition for

which the Anomaly Correlation for Equation 3 remained above 0.6 the longest. The trajectory runs

for 100 time units. The plot shows the X-Z view.
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5 Conclusions

This work began with two objectives. Our first goal was not fully completed since we

were unable to collect usable temperature data from the thermosyphon. However, the

thermosyphon will soon be a functional toy climate which can produce data for further

analysis as a sandbox for data assimilation algorithms. Regarding the second goal, we were

able to utilize the Eureqa software to solve for forecasting equations.

By analyzing these equations through forecasting tests, we were able to draw some

conclusions about the ability of Eureqa to infer governing laws from data. Though the

Eureqa generated equations did not outperform Harris’ model with regards to forecasting,

both Eureqa equations came very close to matching the forecasting ability of an equation

which was derived specifically for the purpose of describing the thermosyphon system. It

is a remarkable feat that this software, just by inputting a data set, can output equations

which describe the system so well. We are eager to see how further advances in equation-

generating software can improve not only the prediction capabilities for climate forecasting,

but work in other scientific studies as well. One potential mechanism for improving Eureqa’s

performance is the involvement of scientists in the choice of mutations genetic algorithm

implementation. Indeed, recent work on protein folding using online games has led to the

realization that human-computer interacting systems are capable of producing far better

results than either in isolation [3].

Another conclusion we were able to draw from this work was the intrinsic relationship

between forecasting ability and initial conditions. From Figure 14, we saw that a data

point’s position in 3D space is a critical factor in determining how well the forecast model

will perform.

The next steps in this process will be to complete work on the physical thermosyphon

so it can produce temperature data which will be inputted into the Eureqa software. It

will be interesting to see if the physical data still produces equations with the same form

as the Lorenz equations. From there, the generated equations can be used to work toward

an improved forecasting model. Eventually, this work may lead to more accurate long-time

forecasts for weather and climate prediction. However, the most interesting question raised

by this work is: how long will physical principles be the bread and butter of science? When

will software and computer systems, such as Watson, suggest laws we cannot interpret?
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