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Abstract

Using the most comprehensive source of commercially available data on the US National

Market System, we analyze all quotes and trades associated with Dow 30 stocks in calendar

year 2016 from the vantage point of a single and fixed frame of reference. We find that ineffi-

ciencies created in part by the fragmentation of the equity marketplace are relatively com-

mon and persist for longer than what physical constraints may suggest. Information feeds

reported different prices for the same equity more than 120 million times, with almost 64 mil-

lion dislocation segments featuring meaningfully longer duration and higher magnitude. Dur-

ing this period, roughly 22% of all trades occurred while the SIP and aggregated direct feeds

were dislocated. The current market configuration resulted in a realized opportunity cost

totaling over $160 million, a conservative estimate that does not take into account intra-day

offsetting events.

1 Introduction

The Dow Jones Industrial Average, colloquially known as the Dow 30, is a group of 30 equity

securities (stocks) selected by S&P Dow Jones Indices that is intended to reflect a broad cross-

segment of the US economy (all industries except for utilities and transportation) [1]. The

Dow 30 is one of the best known indices in the US and is broadly used as a barometer of the

economy. Thus, while the group of securities that composes the Dow 30 is in some sense an

arbitrary collection, it derives economic import from its ascribed characteristics. We study the

behavior of these securities as traded in modern US equity markets, known as the National

Market System (NMS). The NMS is comprised of 13 networked exchanges coupled by infor-

mation feeds of differential quality and subordinated to national regulation. Adding another

layer of complexity, the NMS supports a diverse ecosystem of market participants, ranging

from small retail investors to institutional financial firms and designated market makers.
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We do not attempt to unravel and attribute the activity of each of these actors here; several

others have attempted to classify such activities with varying degrees of success in diverse mar-

kets [2–4]. We take a first-principles approach by compiling an exhaustive catalog of every dis-

location, defined as a nonzero pairwise difference between the prices displayed by the National

Best Bid and Offer (NBBO), as observed via the Securities Information Processor (SIP) feed,

and Direct Best Bid and Offer (DBBO), as observed via the consolidation of all direct feeds.

The SIP and consolidation of all direct feeds are representative of the displayed quotes from

the national exchanges (lit market). Additionally, we catalog every trade that occurred in the

NMS among the Dow 30 in calendar year 2016, allowing an investigation of the relationship

between trade execution and dislocations. We compile a dataset of all trades that may lead to

a non-zero realized opportunity cost (ROC). We find that dislocations—times during which

best bids and offers (BBO) reported on different information feeds observed at the same time

from the point of view of a unified observer differ—and differing trades—trades that occur

during dislocations—occur frequently. We measure more than 120 million dislocation seg-

ments, events derived from dislocations between the NBBO and DBBO, in the Dow 30 in

2016, summary statistics of which are displayed in Table 1. Approximately 65 million of those

dislocation segments are what we term actionable, meaning that we estimate that there exists a

nontrivial likelihood that an appropriately equipped market participant could realize arbitrage

profits due to the existence of such a dislocation segment. (We discuss actionability in detail in

Sec. 3.2 and the role that potential arbitrageurs play in the functioning of the NMS in Sec. 7.)

Market participants incurred an estimated $160 million USD in opportunity cost due to infor-

mation asymmetry between the SIP and direct feed among the Dow 30 in 2016. We calculate

the ROC using the NBBO price as the baseline. Deviations from this price contribute to the

ROC with positive sign if the direct feed displays a worse price than the SIP, or with negative

sign if the direct feed displays a better price than the SIP (from the perspective of a liquidity

demanding market participant).

To characterize these phenomena, we use a publicly available dataset that features the most

comprehensive view of the NMS (see Sec. 3.3 below) and is effectively identical to that used by

the Securities and Exchange Commission’s (SEC) Market Information Data Analytics System

(MIDAS). In addition to its comprehensive nature, this data was collected from the viewpoint

of a unified observer: a single and fixed frame of reference co-located from within the Nasdaq

data center in Carteret, N.J. We are unaware of any other source of public information (i.e.,

Table 1. The SIP feed consistently displayed worse prices than the aggregate direct feed for liquidity demanding

market participants during periods of dislocation, with a $84 million net difference in opportunity cost. Statistics

8–10 indicate that trades occurring during dislocations involve approximately 5% more value per trade on average

than those that occur while feeds are synchronized. The values reported above are sums of daily observations, except

for statistics 8–10, and are conservative estimates of the true, unobserved quantities since positive (favoring the SIP)

and negative (favoring the direct feeds) ROC can cancel in summary calculations.

1 Total Opportunity Cost $160,213,922.95

2 SIP Opportunity Cost $122,081,126.40

3 Direct Opportunity Cost $38,132,796.55

4 Trades 392,101,579

5 Differing Trades 87,432,231

6 Traded Value $3,858,963,034,003.48

7 Differing Traded Value $900,535,924,961.72

8 Fraction of differing trades 0.2230

9 Fraction of differing notional 0.2334

10 Ratio of (9) over (8) 1.0465

https://doi.org/10.1371/journal.pone.0226968.t001
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dataset available for purchase) or private information (e.g., available only to government agen-

cies) that is collected using the viewpoint of a single, unified observer.

We demonstrate that the topological configuration of the NMS entails endogenous ineffi-

ciency. The fractured nature of the auction mechanism, continuous double auction operating

on 13 heterogeneous exchanges and at least 35 Alternative Trading Systems (ATSs) [5], is a

consistent generator of dislocations and opportunity cost realized by market participants.

2 Literature review

2.1 Theory of market efficiency

The efficient markets hypothesis (EMH) as proposed by Fama [6] has left an indelible mark

upon the theory of financial markets. Analysis of transaction data from the late 1960s and early

1970s strongly suggested that individual equity prices, and thus equity markets, fully incorpo-

rated all relevant publicly available information—the typical definition of market efficiency. A

stronger version of the EMH proposes the incorporation of private information as well, via

insider trading and other mechanisms. Previous studies have identified exceptions to this

hypothesis [7], such as price characteristics of equities in emerging markets [8], the existence

of momentum in the trajectories of equity prices [9], and speculative asset bubbles. Recent

work by Fama and French has demonstrated that the EMH remains largely valid [9] when

price time series are examined at timescales of at least 20 minutes and over a sufficiently long

period of time. However, the NMS operates at speeds far beyond that of human cognition [10]

and consists of fragmented exchanges [11] that may display different prices to the market.

More permissive theories on market efficiency, such as the Adaptive Markets Hypothesis [12],

allow for the existence of phenomena such as dislocations due to reaction delays, faulty heuris-

tics, and information asymmetry [13]. In line with this, the Grossman-Stiglitz paradox [14]

claims that markets cannot be perfectly efficient in reality, since market participants would

have no incentive to obtain additional information. If market participants do not have an

incentive to obtain additional information, then there is no mechanism by which market effi-

ciency can improve. The proposition that markets are not perfectly efficient is supported by

recent research. O’Hara [11], Bloomfeld [15], Budish [16], and others provide evidence that

well-informed traders are able to consistently beat market returns as a result of both structural

advantages and the actions of less-informed traders, so called “noise traders” [17]. This com-

pendium of results points to a synthesis of the competing viewpoints of market efficiency.

Specifically, that financial markets do seem to eventually incorporate all publicly available

information, but deviations can occur at fine timescales due to market fragmentation and

information asymmetries.

2.2 Empirical studies of market dislocations

Since the speed of information propagation is bounded above by the speed of light in a vac-

uum, it is not possible for information to propagate instantaneously across a fragmented mar-

ket with spatially separated matching engines, such as the NMS. These physically-imposed

information propagation delays lead us to expect some decoupling of BBOs across both match-

ing engines and information feeds. Such divergences were found between quotes on NYSE

and regional exchanges as long ago as the early 1990s [18], in NYSE securities writ large [19],

in Dow 30 securities in particular [20], between NASDAQ broker-dealers and ATSs as recently

as 2008 [21, 22], and in NASDAQ listed securities as recently as 2012 [23]. U.S. equities mar-

kets have changed substantially in the intervening years, hence the motivation for our research.

It is a priori unclear to what extent dislocations should persist within the NMS beyond the

round-trip time of communication via fiber-optic cable. A first-pass analysis of latencies

Fragmentation and inefficiencies in US equity markets
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between matching engines could conclude that, since information traveling at the theoretical

speed of light between Mahwah and Secaucus would take approximately 372 μs to make a

round trip between those locations, then dislocations of this length might be relatively com-

mon. However, a light-speed round trip between Secaucus and Mahwah takes approximately

230 μs and between Secaucus and Carteret takes approximately 174 μs. Enterprising agents at

Secaucus could rectify the differences in quotes between Mahwah and Carteret without direct

interaction between agents in Carteret and agents in Mahwah.

Several other authors have considered the questions of calculating and quantifying the

occurrence of dislocations or dislocation-like measures. In the aggregate, these studies con-

clude that price dislocations do not have a substantial effect on retail investors, as these inves-

tors tend to trade infrequently and in relatively small quantities, while conclusions differ on

the effect of dislocations on investors who trade more frequently and/or in larger quantities,

such as institutional investors and trading firms. Ding, Hanna, and Hendershot (DHH) [23]

investigate dislocations between the SIP NBBO and a synthetic BBO created using direct feed

data. Their study focuses on a smaller sample, 24 securities over 16 trading days, using data

collected by an observer at Secaucus, rather than Carteret, and does not incorporate activity

from the NYSE exchanges. They found that dislocations occur multiple times per second and

tend to last between one and two milliseconds. In addition, DHH find that dislocations are

associated with higher prices, volatility, and trading volume. Bartlett and McCrary [24] also

attempted to quantify the frequency and magnitude of dislocations. However, Bartlett and

McCrary did not use direct feed data, so the existence of dislocations was estimated using only

Securities Information Processor (SIP) data, making it difficult to directly align their results

to those presented here. A study by the TABB Group of trade execution quality on midpoint

orders in ATSs also noted the existence of latency between the SIP and direct data feeds,

as well as the existence of intra-direct feed latency, due to differences in exchange and ATS

software and other technical capabilities [25]. Wah [26] calculated the potential arbitrage

opportunities generated by latency arbitrage on the S&P 500 in 2016 using data from the SEC’s

MIDAS platform [27]. Wah’s study is of particular interest as it is the only other study of

which we are aware that has used comprehensive data. Though similar in this respect, the

quantities estimated in Wah’s study differ substantially from those considered here. Wah

located time intervals during which the highest buy price on one exchange was higher than the

lowest sell price on another exchange, termed a “latency arbitrage opportunity” in that work,

and examined the potential profit to be made by an infinitely-fast arbitrageur taking advantage

of these price discrepancies. This idealized arbitrageur could have captured an estimated

$3:03B USD in latency arbitrage among S&P 500 tickers during 2014, which is on the same

order of magnitude (on a per-ticker basis) as our approximately $160M USD in realized

opportunity cost among Dow 30 tickers during calendar year 2016.

Other authors have analyzed the effect of high-frequency trading (HFT) on market micro-

structure, which is at least tangentially related to our current work due to its reliance on low-

latency, granular timescale data and phenomena. O’Hara [11] provides a high-level overview

of the modern-day equity market and in doing so outlines the possibility of dislocation seg-

ments arising from differential information speed. Angel [28, 29] claims that price dislocations

are relatively rare occurrences, while Carrion [30] provides evidence of high-frequency trading

strategies’ effectiveness in modern-day equity markets via successful, intra-day market timing.

Budish [16] notes that high-frequency trading firms successfully perform statistical arbitrage

(e.g., pairs trading) in the equities market, and ties this phenomenon to the continuous double

auction mechanism that is omnipresent in the current market structure. Menkveld [31] ana-

lyzed the role of HFT in market making, finding that HFT market making activity correlates

negatively with long-run price movements and providing some evidence that HFT market

Fragmentation and inefficiencies in US equity markets
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making activity is associated with increasingly energetic price fluctuations. Kirilenko [2]

provided an important classification of active trading strategies on the Chicago Mercantile

Exchange E-mini futures market, which can be useful in creating statistical or agent-based

models of market phenomena. Mackintosh noted the effects of both fragmented markets

and differential information on financial agents with varying motives, such as high-frequency

traders and long-term investors, in a series of Knight Capital Group white papers [32]. These

papers provide at least three additional insights relevant to our study. The first is a comparison

of SIP and direct-feed information, noting that “all data is stale” since, regardless of the source

(i.e., SIP or direct feed), rates of data transmission are capped at the speed of light in a vacuum

as discussed above. The second is that the SIP and the direct feeds are almost always synchro-

nized. That is, for U.S. large cap stocks like the Dow 30 in 2016, synchronization between the

SIP and direct feeds existed for 99.99% of the typical trading day. Stated another way, Mackin-

tosh observed dislocations between quotes reported on the SIP and direct feeds for 0.01% of

the trading day, or a sum total of 23 seconds distributed throughout the trading day. The third

insight from the Mackintosh papers relevant to our study reflects the significance of disloca-

tions. Mackintosh observed that 30% of daily value typically traded during these dislocations.

For a more comprehensive review of the literature on high frequency trading and modern

market microstructure more generally, we refer the reader to Goldstein et al. [33] or Chordia

et al. [34]. Arnuk and Saluzzi [35] provide a monograph-level overview of the subject from the

viewpoint of industry practitioners.

3 Description of exchange network and data feeds

Here we provide a brief overview of the National Market System (NMS), including a descrip-

tion of infrastructure components and some varieties of market participants. In particular, we

note the information asymmetry between participants informed by the Securities Information

Processor and those informed by proprietary, direct information feeds.

3.1 Market participants

There are, broadly speaking, three classes of agents involved in the NMS: traders, of which

there exist essentially four sub-classes (retail investors, institutional investors, brokers, and

market-makers) that are not mutually exclusive; exchanges and ATSs, to which orders are

routed and on which trades are executed; and regulators, which oversee trades and attempt

to ensure that the behavior of other market participants abides by market regulation. See S3

Appendix for an overview of select regulations. We note that Kirilenko et al. claim the exis-

tence of six classes of traders based on technical attributes of their trading activity [2]. This

classification was derived from activity in the S&P 500 (E-mini) futures market, not the equi-

ties market, but is an established classification of trading activity. It is not possible to perform a

similar study in the NMS since agent attribution is not publicly available. However, the Con-

solidated Audit Trail (CAT) is an SEC initiative (SEC Rule 613) that may provide such attribu-

tion in the future [36]. At the time of writing this framework was not yet constructed. Though

the scope of this work does not encompass an analysis of various classes of financial agents, we

describe some important agent archetypes in S1 Appendix.

3.2 Physical considerations

Contrary to its moniker, “Wall Street” is actually centered around northern New Jersey. The

matching engines for the three NYSE exchanges are located in Mahwah, NJ, while the match-

ing engines for the three NASDAQ exchanges are located in Carteret, NJ. The other major

exchange families base their matching engines at the Equinix data center, located in Secaucus,

Fragmentation and inefficiencies in US equity markets

PLOS ONE | https://doi.org/10.1371/journal.pone.0226968 January 22, 2020 5 / 24

https://doi.org/10.1371/journal.pone.0226968


NJ, except for IEX, which is based close to Secaucus in Weehawken, NJ. The location of indi-

vidual ATSs is generally not public information. However, since there is a great incentive for

ATSs to be located close to data centers (see sections 2 and 6), it is likely that many ATSs are

located in or near the data centers that house the NMS exchanges. For example, Goldman

Sachs’s Sigma X2 ATS has its matching engine located at the Equinix data center in Secaucus,

NJ [37].

Since matching engines perform the work of matching buyers with sellers in the NMS, we

hereafter refer to the locations of the exchanges by the geographic location of their matching

engine. For example, IEX has its point of presence in Secaucus, but its matching engine is

based in Weehawken; we locate IEX at Weehawken.

This geographic decentralization has a profound effect on the operation of the NMS. We

calculate minimum propagation delays between exchanges and are displayed in Table 2. In

constructing Table 2 we use estimates of propagation delays in fiber optic cables provided by

M2 Optics [38] as well as data center locations, distances between data centers, and one-way

hybrid laser propagation delays from Anova Technologies [39].

In reality, the time for a message to travel between exchanges will be strictly greater than

these lower bounds, since light is slowed by transit through a fiber optic cable, and further slo-

wed by any curvature in the cable itself. The two-way estimates in Table 2 give a lower bound

on the minimum duration required for a dislocation segment to be “actionable” and a more

realistic estimate derived by assuming propagation through a fiber optic cable with a refractive

index of 1.47 [38]. These estimates do not account for computing delays, which may occur at

either end of the communication lines, in order to avoid speculation. In practice such comput-

ing delays will also have a material effect on which dislocation segments are truly actionable

and will depend heavily on the performance of available computing hardware.

Connecting the exchanges are two basic types of data feeds: SIP feeds, containing quotes,

trades, limit-up / limit-down (LULD) messages, and other administrative messages complied

by the SIP; and direct data feeds, which contain quotes, trades, order-flow messages (add,

modify, etc), and other administrative messages. The direct data feeds operate on privately-

funded and installed fiber optic cables that may have differential information transmission

ability from the fiber optic cables on which the SIP data feeds are transmitted. Latency in prop-

agation of information on the SIP is also introduced by SIP-specific topology (SIP information

must travel from a matching engine to a SIP processing node before being propagated from

that node to other matching engines) and computation occurring at the SIP processing node.

Due to the observed differential latency between the direct data feeds and the SIP data feed

Table 2. The speed of light is approximated by 186, 000 mi/s (or 300, 000 km/s) and fiber propagation delays are assumed to be 4.9μs/km. These propagation delays

form the basis for estimates of the duration required for a dislocation segment to be considered actionable, though these figures do not account for any computing delays

and thus are lower bounds for the definition of actionable.

NMS Propagation Delay Estimates

Carteret-Mahwah Mahwah-Secaucus Carteret-Secaucus Secaucus-Weehawken

Straight-line Distance 34.55 mi 21.31 mi 16.22 mi 2.56 mi

55.6 km 34.3 km 26.1 km 4.12 km

Light speed, one-way 185.75 μs 114.57 μs 87.2 μs 13.76 μs

Light speed, two-way 371.5 μs 229.14 μs 174.4 μs 27.52 μs

Fiber, one-way 272.44 μs 168.07 μs 127.89 μs 20.19 μs

Fiber, two-way 544.88 μs 336.14 μs 255.78 μs 40.38 μs

Hybrid laser, one-way - - 94.5 μs -

Hybrid laser, two-way - - 189 μs -

https://doi.org/10.1371/journal.pone.0226968.t002
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and the heterogeneous distance between exchanges, dislocation segments are created solely by

the macro-level organization of the market system. We note that in the intervening years since

data was collected for analysis, the SIP has been upgraded substantially to lower latency arising

from computation at SIP processing nodes.

Our understanding of the physical layout of the NMS is depicted in Fig 1 at a relatively high

level.

There are three basic types of information flow within the NMS:

1. Direct feed information, which flows to anyone who subscribes to it. Direct feed informa-

tion is associated with non-trivial costs (on the order of $130, 000 USD per month, see S2

Table for details) and so is used primarily by exchanges, large financial firms, and ATSs.

Direct feed information thus flows to and from the exchanges (and the major exchange

participants). We hypothesize that direct feed information also flows to ATSs, since they

require some type of price signal in order for the market mechanism to function and

may benefit from low latency data. This was the case for at least one major ATS, Goldman

Fig 1. The NMS (lit market and ATSs) as implied by the comprehensive market data. As we do not have the specifications of inter-market

center communication mechanisms and have minimal knowledge of intra-market center communication mechanisms, we simply classify

information as having high latency, as the SIP and lagged information heading to the SIP do, or low latency, as the information on the direct

feeds does. Note the existence of the observer, located in Carteret NJ. Without a single, fixed observer it is difficult to clock synchronization

issues and introduces an unknown amount of noise into measurements of dislocations and similar phenomena. Clock synchronization issues

are avoided when using data collected from a single point of presence since all messages may be timestamped by a single clock, controlled by the

observer.

https://doi.org/10.1371/journal.pone.0226968.g001
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Sachs’s Sigma X2, as of May 2019, so it is plausible that it is true for others [37]. The direct

feeds provide the fastest means by which to acquire a price signal, and thus may provide the

best economic value to traders dependent on frequent information updates; this provides

the economic foundation for our hypothesis.

2. SIP information, which is considerably less expensive than direct feed information and

exists by regulatory mandate. However, market participants may still subscribe to the SIP as

a tool for use in arbitrage; see Section 2 for discussion of this possibility. Market participants

that choose not to purchase the direct feed data might also choose to purchase the SIP data

for use as a price signal and as a backup to the consolidated direct feeds. At least one ATS,

Goldman Sachs’s Sigma X2, uses SIP data as a backup to direct feed data and combines both

data sources to construct their local BBO [37].

3. Lagged reporting data that is not yet collated by the SIP. Regulation requires that exchanges

report all local quote and trade activity, and that ATSs report all trade activity. This infor-

mation is collected by the appropriate SIP tapes and then disseminated through the SIP

data feeds. It is the responsibility of the exchanges to report their quote and trade informa-

tion to the SIP, and of ATSs to report their trade information to FINRA Trade Reporting

Facilities (TRF). Thus, though this information will be eventually visible to all subscribers

to SIP or direct feed data, it differs qualitatively from that data due to its lagged nature.

For example, suppose a trade occurs at NYSE MKT on a NASDAQ-listed security that

updates the NBBO for that security. Since this trade occurs at Mahwah, it takes a non-negli-

gible amount of time for the information to propagate to SIP Tape C, located in Carteret.

However, traders located at Mahwah have access to this information more quickly, possibly

allowing them an information advantage over their Carteret-based competitors.

3.3 Data

Our study utilizes all quotes and trades associate with Dow 30 stocks that occurred in calendar

year 2016 (2016-01-01 through 2016-12-31), observed via the SIP and Direct feeds from a sin-

gle point of presence in Carteret, NJ. This data is provided by Thesys Group Inc., formerly

known as Tradeworx, who is the sole data provider for the SEC’s MIDAS [27, 40]. MIDAS

ingests more than one billion records daily—order flow, quote updates, and trade messages—

from the direct feeds of all national exchanges. These records represent the exhaustive set of

posted orders, quotes, order modifications, cancellations, trades, and administrative messages

issued by national exchanges. Prior to awarding Thesys Group the MIDAS contract [41], the

SEC conducted a sole source selection [42], thereby designating Thesys Group as the only cur-

rent authoritative source for NMS data.

In addition to being the authoritative data source for the SEC’s MIDAS program, another

significant attribute of the Thesys data is that it is collected by a single observer from a consis-

tent location in the NMS (the Nasdaq data center in Carteret, NJ) as depicted in Fig 1. The sin-

gle observer not only allows the user to account for the relativistic effects described above but

also to directly observe dislocation segments and realized opportunity cost instead of compil-

ing estimates of these quantities as has been done in previous studies. At the NASDAQ data

center, Thesys applies a new timestamp to each message received, including messages originat-

ing from the SIP feed or one of the direct feeds, that allows subscribers to observe information

flow through the NMS in the same manner as a market participant located at the Carteret data

center. In our analysis we use this “Thesys timestamp” to synchronize information from dispa-

rate data feeds and avoid issues that otherwise could arise from clock synchronization errors

and relativistic effects. Since this timestamp is given at the time the data arrives at the server
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from which the data is collected, any discrepancies in the clocks at different exchanges, ATSs,

and the SIP do not affect our measurement procedures. This timestamping procedure is iden-

tical to that used in Ding, Hanna, and Hendershott [23]. Ideally, we would have data from

four different unified observers—an observer located at each data center—so that we could

compile the different states of the market that must exist depending on physical location of

observation, but we do not believe that comprehensive consolidated data is available from the

point of view of observers located anywhere but at Carteret, hence our selection of this location

for observation.

4 Dislocations

We provide a brief definition of a dislocation segment as calculated and used in this work.

Each dislocation segment can be represented by a 4-tuple:

vn ¼ ðt
start
n ; tendn ; minDp; maxDpÞ: ð1Þ

The maximum (resp. minimum) value of the dislocation segment are simply the maximum

(resp. minimum) difference in the prices that are generating the dislocation segment over the

time period ½tstartn ; tendn Þ. The time period ½tstartn ; tendn Þ is determined by identifying a contiguous

period of time where Δp> 0 or Δp< 0. From the above quantities the duration of the disloca-

tion segment can also be calculated. The quantity Δp(t) is the difference in the price displayed

by the information feeds at time t as measured and timestamped by our observer in Carteret.

From the definitions of max Δp and min Δp the reader will note that dislocation segments will

tend to feature min(|min Δp|)� $0.01, since the minimum tick size in the NMS is set at one

penny for securities with a share price of at least $1.00. In collating dislocation data, we record

the maximum and minimum value of each dislocation segment rather than a time-weighted

average of dislocation value or other statistic for the sake of simplicity. In much of our analysis

we take the absolute values of the maximum and minimum values of each dislocation segment

as the fundamental object of study as any dislocation, regardless of which feed is favored, pres-

ents an opportunity for market inefficiency.

See Fig 2 for a stylized depiction of two dislocation segments, along with annotations denot-

ing their recorded attributes.

Based on the definition of dislocation segments given above, and fully specified in S2

Appendix, we may identify the necessary and sufficient conditions for a dislocation segment to

occur. Specifically, the market state must include two or more distinct trading locations, two

or more information feeds with differing latency, and a price discrepancy. These all follow

directly from elements of the definition; such that a simple, null model configuration of a sin-

gle exchange with a single data feed cannot support the existence of dislocation segments as

specified here.

5 Realized opportunity cost

We used the following decision procedure to calculate realized opportunity cost: for each

trade that occurred in the NMS we checked if a price discrepancy between the SIP and con-

solidated direct feeds was present at the time the trade executed, from the point of view of

our observer in Carteret, and counted each as a differing trade. If the differing trade exe-

cuted at a price displayed by the prevailing NBBO then a price difference was calculated, i.e.

pSIP − pdirect if the liquidity-demanding order was a offer and pdirect − pSIP if the liquidity-

demanding order was a bid, and a cost, termed the realized opportunity cost (ROC), was

assigned to the trade using the number of shares multiplied by the price difference. Depth of

book was not taken into account in this calculation. The sum total of all ROC occurrences
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over a day was calculated and recorded. With this construction, positive opportunity costs

indicate an incentive for liquidity demanding market participants to use the SIP feed while

negative opportunity costs indicate an incentive to use the aggregated direct feeds. By ignor-

ing the sign of the opportunity costs, and thus which feed is favored, an aggregate or total

realized opportunity cost is constructed. Intra-day events can offset—e.g., a trade that

resulted in ROC that disadvantaged direct data users and a trade that resulted in ROC that

disadvantaged SIP data users could both occur on the same day, partially offsetting the total

ROC due to opposite signs. Precise definitions of quantities described here are located in S2

Appendix.

As above, we provide a brief toy example of how realized opportunity cost can arise and a

description of its’ calculation. A minimal example involves two traders, each of which is in

the market to buy the security XYZ. One trader places orders using the SIP NBO to deter-

mine the appropriate limit price and the other places orders using the best offer from a direct

feed. If a trade for 100 shares of XYZ executes at $100.00 per share, the current direct best

offer, when the NBBO was a SIP quote of $100.01 per share, a trader placing a bid informed

by the SIP could receive an execution that resulted in a realized opportunity cost of $0.01 per

share, or $1.00 in total. Because this opportunity cost favored the direct feed, this portion of

ROC would be assigned a negative value. If, during another trade on the same day, another

trade for 100 shares of XYZ executes when the direct best offer price is $101.02 and the SIP

NBO price is $101.00 per share, the trader who places orders informed exclusively by the

direct feeds could have experienced a realized opportunity cost of $0.02 per share, or $2.00 in

Fig 2. Diagram of two dislocation segments (DS). The inset plot shows the time series of best quotes that generate the DSs. Where the time

series diverge from the same value, a DS occurs. We have deliberately not placed units on t, Δp, and p to indicate that DSs can occur in any

market in which there are differing information feeds, not just in the NMS, though we do assume that these quantities are quantized. In the case

of the NMS, we take t in units of μs and Δp in units of $0.01. For the sake of simplicity this figure only displays one side of a hypothetical book.

Marker size in the inset plot is used only for visual distinction.

https://doi.org/10.1371/journal.pone.0226968.g002
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total, assuming that they may have been able to find counter-parties at the SIP NBO. This

ROC is assigned a positive value because it favors the SIP feed. Summing these two together

produces a net ROC of $1.00, hence the conservative nature of our estimates. If, instead,

our calculation summed the absolute value of each ROC-generating event, the figure above

would instead be $3.00. A more detailed example of ROC calculation from real trade data is

located in S4 Appendix.

6 Results

6.1 Dislocations and dislocation segments

We find that dislocations and dislocation segments are widespread, from the point of view of

our observer in Carteret, and may have qualitative welfare effects on NMS participants, par-

ticularly large investors or investors that interact with the NMS directly on a frequent basis.

There were a total of 120,355,462 dislocation segments among Dow 30 stocks in 2016. Now,

let’s assume a uniform distribution of dislocations throughout the trading day. On average,

we therefore expect 120;355;462

252�6:5�602 � 20:4 dislocation segments per second. When restricting

our attention to what we term actionable dislocation segments (those with a duration longer

than 545 μs), we find that there were 65,073,196 actionable dislocation segments, or on aver-

age, 65;073;196

252�6:5�602 � 11 actionable dislocation segments every second. Even when inspecting

actionable dislocation segments with a minimum magnitude greater than 1 cent, we find

that there were 2,872,734 instances of these dislocation segments, or on average, 2;872;734

252�6:5�602 �

0:49 dislocation segments per second, or almost one large and actionable dislocation seg-

ment every two seconds.

We focus much of our subsequent analysis on the dislocation segment distribution condi-

tioned on both duration (> 545μs) and magnitude (> $0.01) From an academic point of view,

dislocations with a minimum magnitude greater than one cent are more interesting, since one

might expect many dislocations to feature a magnitude that corresponds with the price quanti-

zation—minimum tick size ($0.01 in this case). There are several aspects of this conditional

distribution that bear special notice. First, the distribution of each attribute is exceptionally

heavy-tailed. In absolute value, the 75%-iles of the minimum and maximum magnitude are

three cents—but the mean in absolute value of the minimum magnitude (resp. maximum

magnitude) is 3.05 (resp. 8.23) cents. A similar phenomena is true for the duration distribu-

tion, displayed in Fig 3, where the 75%-ile is 4231 μs, while the mean is an astounding 0.389

seconds, almost two orders of magnitude longer. The max magnitude, min magnitude, and

duration distributions are all highly skewed, while the distributions of the maximum and mini-

mum magnitudes are nearly identical. Further summary statistics on dislocations with various

conditioning are displayed in Table 3.

Fig 4 shows the distribution of dislocation segments modulo day, binned by minute. Intra-

day dislocation segment distributions are markedly nonuniform, with a majority of the proba-

bility mass concentrated toward the beginning of the trading day. There is also a notable spike

in the number of dislocation segments occurring in mid-afternoon and at the very end of the

trading day. Additionally, there seems to be a decaying cyclic pattern in the distribution, with

spikes occurring with a 30 minute frequency.

We postulate that the mid-afternoon spike, which occurs at approximately 2:00pm, is asso-

ciated with meetings of the Federal Open Market Committee (FOMC). These meetings release

economically important information such as decisions regarding federal rate changes and eco-

nomic forecasts, and their impact has been noted by several market participants, including

analysts at NYSE [43, 44]. Note that the NYSE analysis of the impact of FOMC meetings is
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Fig 3. Panel A displays the distribution of dislocation segment (DS) durations. Panel B displays the distribution of DS durations with a

magnitude greater than $0.01. Both panels have a logged x-axis.

https://doi.org/10.1371/journal.pone.0226968.g003

Table 3. Dislocation segment (DS) attributes where the first section is unconditioned, the middle section is restricted to DSs with a duration longer than 545μs, and

the final section is restricted to DSs with a duration longer than 545μs and a minimum magnitude greater than $0.01. Of the approximately 120 million DSs observed,

more than 54% of them have a duration that would allow them to be considered actionable, and about 2.4% of them are both actionable and feature a minimum magnitude

greater than $0.01. This makes the magnitude of the realized opportunity cost even more remarkable. Additionally, note that observed durations of “0” are the result of

DSs that begin and end within the same microsecond, the maximum precision used for the majority of market data timestamps.

Filter Statistic Duration Min. Value Max. Value Min. Mag. Mean Mag. Max. Mag.

None count 120, 355, 462

mean 0.073712 -0.0012 0.0013 0.0112 0.0124 0.0137

std 5.519033 0.1698 0.4815 0.0529 0.2581 0.5075

min 0.000000 -141.49 -63.21 0.01 0.01 0.01

25% 0.000216 -0.01 -0.01 0.01 0.01 0.01

50% 0.000624 0.01 0.01 0.01 0.01 0.01

75% 0.001190 0.01 0.01 0.01 0.01 0.01

max 10,789.83 372.69 4,905.69 372.69 2,452.85 4,905.69

Duration > 545μs count 65, 073, 196

mean 0.136142 -0.0020 0.0022 0.0109 0.0130 0.0151

std 7.505197 0.2233 0.6511 0.0653 0.3474 0.6850

min 0.000546 -141.49 -63.21 0.01 0.01 0.01

25% 0.000751 -0.01 -0.01 0.01 0.01 0.01

50% 0.001103 0.01 0.01 0.01 0.01 0.01

75% 0.002391 0.01 0.01 0.01 0.01 0.01

max 10,789.83 372.69 4,905.69 372.69 2,452.85 4,905.69

Duration > 545μs
&

Min. Mag. > $0.01

count 2, 872, 734

mean 0.387866 -0.0250 0.0267 0.0305 0.0564 0.0823

std 29.566716 0.9046 1.0021 0.3102 0.7116 1.3115

min 0.000546 -141.49 -63.21 0.02 0.02 0.02

25% 0.000724 -0.02 -0.02 0.02 0.02 0.02

50% 0.001207 0.02 0.02 0.02 0.02 0.02

75% 0.004231 0.02 0.02 0.03 0.03 0.03

max 10,789.83 372.69 593.43 372.69 372.84 593.43

https://doi.org/10.1371/journal.pone.0226968.t003
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based upon a quote volatility measure, which is conceptually quite similar to the dislocations

discussed in our work. Regarding the cyclic pattern, it seems that most of this activity can be

attributed to the aggregated effect of seemingly random market events. Investigating the data

without aggregation reveals that almost no days exhibit this cyclic behavior for DS occurrence,

though there are many days that seem to have one or more abnormal spikes in DS occurrence

at seemingly random times. During aggregation, these potentially large spikes are not entirely

smoothed out, leading to the cyclic pattern observed in Fig 4. Interested readers may investi-

gate the dislocation segment occurrence distributions without aggregation by using the inter-

active application provided in our GitLab repository [45].

To further unpack the relationship between time of day, length, and magnitude of disloca-

tion segments, we created a representation of dislocation segments modulo day as an ordered

network, termed a circle plot. Fig 5 illustrates the construction of the circle plots from a few

toy examples. Figs 6 and 7 depict circle plots for AAPL for an arbitrary day, whereas Figs 8 and

9 depict circle plots for AAPL for the entirety of 2016.

Circle plots are constructed using the following algorithm. Starts and stops of dislocation

segments at time t (as measured and timestamped by our observer in Carteret) are termed

events v(t) and denoted by black nodes. More than one event can occur at each time t; all

events are represented by the same node. Events vi(t) and vj(s) where t< s are connected by an

edge eij when a dislocation segment starts at vi(t) and ends at vj(s). It is not necessarily the case

that dislocation segments start and stop in order as seen above; for example consider two dislo-

cation segments, the first starting at vi, and the second starting at vj. The first dislocation seg-

ment could end at vk, and the second could end at vℓ. When N events occur “out of order” in

this way, we identify the events as a single component (even though, as in the above example,

the component decomposes into two two-tuples of events) and term it an N-component for

reasons we state below; the above example is a 4-component. Nodes are plotted in rays that

spread outward from the geometric center of the plot in a modulo 10 relation. Edges between

nodes vi and vj are weighted according to the quantity

X

ðvi ;vjÞ

maxðjDpmaxj; jDpminjÞ; ð2Þ

Fig 4. Panel A displays the distribution of dislocation segment (DS) start times binned by minute. Panel B displays the distribution of

actionable DSs. Actionable DSs are those with a duration longer than 545μs. Panel C filters the actionable DSs to only include those with

a minimum magnitude> $0.01. Note that the distributions are heavily skewed right. A plurality of actionable DSs occur in the half-hour

following the opening bell when compared to any other half-hour during the day. There is also a spike in the number of dislocation

segments in the middle of the afternoon, which may be due to information events, such as press releases from meetings of the Federal

Open Market Committee.

https://doi.org/10.1371/journal.pone.0226968.g004
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where the sum is taken over all events that started at node vi and ended at node vj and Δpmax

and Δpmin are the largest positive (resp. smallest negative) change in value that occurred during

each event. Fig 9 displays the ordered network for AAPL aggregated (modulo day) over the

entire trading year. There is high event density near the beginning of the day and there is

another spike in density near noon-12:30 PM. This clustering can make interpretation of the

fine event structure difficult to discern, so we conduct a re-normalization into event space with

a simple method: consecutive events vi(t) and vj(s) are plotted in order, but at a uniform dis-

tance so that the measure on the graph becomes a Stieltjes-type instead of a Lebesgue-type

measure. In other words, in the case of the real time representation, an event represented by a

node on a fixed but arbitrary circle of the graph occurred at a multiple of 10μs from all other

events represented by nodes on the ring; in the case of the event-time representation, an event

represented by a node on a fixed but arbitrary circle of the graph and another event repre-

sented by a node on the same circle are separated by an integer multiple of events that occurred

between them. Fig 6 displays the ordered network in this re-normalized space, where it is easier

to see that the usual behavior of dislocation segments is a regular cyclic, on-off (start-stop)

Fig 5. A depiction of the injection mapping from an N-component in a ordered network to a tied positive random walk of length N + 1.

The injection is given by j outgoing edgesffi j steps up and likewise k incoming edgesffi k steps down. The total number of steps up or down is

given by xn+1 − xn = # of steps up + # of steps down. The top row displays a simple 2-component, where an equity begins a dislocation at time ti
and ends it at time ti+1. The corresponding walk on the line starts at zero, moves up a step, and then moves down. The second row displays a

4-component identical to that described in the text of the article. This 4-component, which is separable into two disconnected pieces,

demonstrates the geometric nature of the ordered network. Since an ordering is imposed on the nodes, the crossing of the edges implies the

staggered starts and stops of the two dislocations.

https://doi.org/10.1371/journal.pone.0226968.g005
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pattern. However, there are multiple deviations from this pattern—any component other than

a 2-component is structurally different from a purely sequential pattern. In fact, there is an

injection from an N-component and a tied, non-negative sequence fxng
N
n¼0

, x0 = xN+1 = 0,

xn� 0 for all n. This injection is defined by the relationships “start of k eventsffi k steps up”

and “end of k eventsffi k steps down”.

As a concrete example, the 4-component described above maps to the sequence steps {1, 1,

−1, −1}, with values x0 = 0, x1 = 1, x2 = 2, x3 = 1, x4 = 0. Fig 5 displays a toy example of the

Fig 6. Distribution of dislocation segments (DS) with minimum magnitude greater than $0.01 and duration longer than 545μs for

AAPL on 2016-01-07 visualized with a time re-normalization procedure. Nodes are placed in rings modulo 10; nodes zero through 9

are in the first ray from the origin, then the angle in the plot is incremented and nodes 10 through 19 are in the second ray, etc. A link eij
connects two nodes, vi and vj, if a dislocation segment starts at vi and stops at vj. This view of the dislocation segment network preserves

time ordering while defining a nonlinear transformation between uniform time ordering, as shown below in Fig 7, and uniform event-

space ordering, as shown here. As noted in the text, it is not necessary for only one dislocation segment to exist at the same point in time

t. For example, there are many instances of new dislocation segments starting while another is still ongoing—the first starts at vi and then

another starts at vj and ends at vk, followed by the first dislocation segment ending at vℓ. Irregular behavior such as this generates the

banding of the edge distribution. Interested readers may wish to have some more context for the selected date. For AAPL, 2016-01-07

ranked 8th out of 252 trading days when considering ROC. $106,990.23 in ROC was accumulated, which lies between the minimum of

$2,773.35 and the maximum of $138,331.08. This day of AAPL also ranked 15th when considering the number of DSs. A total of 108,843

occurred, falling between the minimum of 9,256 and the maximum of 188,656.

https://doi.org/10.1371/journal.pone.0226968.g006
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injection between N-components in an ordered network and a tied positive sequence, as out-

lined above.

When aggregated over all trading days, evidence of persistent nontrivial structure in the

event-space density of N-tuples emerges. As stated above, Figs 8 and 9 display the aggregate

of events in AAPL modulo day. Visualizations of all Dow 30 securities in this format are at the

authors’ webpage (https://compfi.org).

6.2 Realized opportunity cost

The large number of actionable dislocation segments likely has a direct effect on the opportu-

nity cost market participants may incur by using one information source over the other. The

aggregate of this realized opportunity cost can be estimated by cataloging the quantity and

characteristics (average price difference, etc.) of differing trades. Table 1 summarizes many of

these findings. In the time period studied (01-01-2016 through 31-12-2016) there were a total

of 392,101,579 trades of stocks in the Dow 30, with a traded value of $3,858,963,034,003.48

USD. Of those trades, we classified 87,432,231 trades, or 22.3% of the total number of trades,

Fig 7. Dislocation segments in AAPL on 2016-01-07 without time re-normalization. The characteristic structure in the occurrence of

dislocations segments is clearly displayed, with the majority occurring near the beginning of the trading day.

https://doi.org/10.1371/journal.pone.0226968.g007
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as differing trades, defined as follows: if the trade is on the buy side, it is a differing trade if

the SIP bid is not equal to the direct bid; if the trade is on the sell side, it is a differing trade

if the SIP offer is not equal to the direct offer. These differing trades had a traded value of

$900,535,924,961.72 USD, or 23.34% of the total traded value. More optimal use of informa-

tion presented by the SIP and direct feeds could have saved market participants a total of

$160,213,922.95 USD in ROC. This opportunity cost was distributed unevenly, with traders

informed by NBBO prices suffering $122,081,126.40 USD in ROC, while traders informed by

DBBO prices only accumulated $38,132,796.55 USD in ROC.

Fig 10 provides insight into the joint distribution of total and differing trades. While we

might expect that the ratio of total to differing trades would have a linear relationship, this is

not observed empirically. Fig 11 displays the daily net opportunity cost aggregated over all

tickers in our sample, showing some of the dynamics present in the occurence of ROC over

the period of study. Table 4 provides an aggregated summary that describes ROC and related

Fig 8. Dislocation segments (DS) aggregated over an entire year (modulo trading day). Investigating structures at the trading day

timescale is of interest as this is likely the longest timescale over which HFT strategies are used. Here DSs are plotted in event space,

where density is uniform between events. Note the presence of irregular structure even here, evidence of higher-order structure in the

ordering of starts and stops of DSs.

https://doi.org/10.1371/journal.pone.0226968.g008
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statistics over the tickers and trading days in our sample. S1 Table gives additional details of

these statistics for each ticker in our study. Though our observer was located in Carteret while

many securities (all but four during 2016) in the Dow 30 are listed on NYSE, located in Mah-

wah, consultation with S1 Table demonstrates that mean ROC per ticker does not differ signif-

icantly by listing venue (one-way ANOVA: F(4, 20) = 1.35, p = 0.25; Kruskal-Wallis H-test:

H = 0.84, p = 0.35).

7 Concluding remarks

Using the most comprehensive set of NMS data publicly available, we have shown that market

inefficiencies in the form of dislocations and realized opportunity cost were common in the

Dow 30 in 2016 as measured by our observer in the NASDAQ data center in Carteret, NJ. We

find that inefficiencies due to the physical fragmentation of the market are widespread, totaling

over $160M USD in realized opportunity cost and 2,872,734 dislocations of magnitude >

$0.01 and duration > 545μs. These figures correspond well with those reported in other

bodies of work [23, 26]. Additionally, we found that the average trade that occurred during a

Fig 9. Dislocation segments (DS) aggregated over an entire year (modulo trading day), as above, but not transformed to event

space. The high density of dislocation segments at the beginning of the trading day, near 12:10, and near 2:00 is readily apparent.

https://doi.org/10.1371/journal.pone.0226968.g009
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dislocation moved approximately 5% more value than the average trade that occurred when

the NBBO and DBBO were synchronized (see Table 1 row 10). In the fifth Need for Speed

report [32], Mackintosh and Chen indicate that 29% of traded value executes within a small

window around quote changes, closely aligning with rows 8 and 9 from Table 1. This may indi-

cate that market participants could be more heavily impacted by the existence of dislocation

segments than previous analyses suggest.

Beyond our empirical results, S2 Table contains estimates of some costs associated with the

usage of direct feeds, highlighting the stark cost difference between SIP data and direct feed

data.

Though our work is empirical, our results do have implications for theoretical results on

nuances of financial market efficiency. The discovery of systematically-different prices as mea-

sured in geographically-distinct locations that can be routinely observed by agents with access

to higher-speed information flows—and cannot be routinely observed by agents without this

access—has a logical bearing on questions of distributional effects of asymmetric information

and market design. This feature of fragmented market structure can be viewed as a modern-

day example of the Grossman-Stiglitz paradox [14]. Trading agents who are able to act at

higher speeds may be rewarded for their investment, effort, and risk-taking behavior by exe-

cuting on trading opportunities that exist for very short time intervals. In fact, without compe-

tition among traders to reduce processing time and infrastructure providers to implement

faster communications protocols and networking equipment, dislocations and associated inef-

ficiencies would likely be more prevalent. Opportunity cost realized by market participants (in

the form of ROC as detailed above) is ultimately attributable to the physically- and topologi-

cally-fragmented nature of the NMS. Despite this fact, we believe that the current market con-

figuration offers many benefits over alternative configurations, such as the null model defined

in Section 4. These results should not be considered as evidence for or against a specific market

configuration since, as stated above, the observed phenomena may incentivize the participa-

tion of certain kinds of market actors.

Fig 10. Left: A bivariate empirical distribution function for total trades and number of differing trades. Right: The same distribution,

but with logged axes. We might expect a priori that they are related by a constant proportion and hence should observe a fit log10 total

trades = c + log10 differing trades, where c< 0. Though there is good evidence of this linear relationship, we see there is a non-negligible

area of higher total trades with markedly sub-linear scaling of differing trades.

https://doi.org/10.1371/journal.pone.0226968.g010
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We focused our attention on the Dow 30 during calendar year 2016 in order to provide

a strong, but tractable baseline. Future work should investigate longer time periods, larger

groups of equities, and other exchange traded products such as Exchange Traded Funds

(ETF). For example, an extension of the current work to larger groups of equities, such as the

S&P 500 or the Russell 3000 would provide greater context for how fragmentation effects dif-

ferent portions of the equities market. While a time series analysis of dislocation segments and

realized opportunity cost series over several years could provide useful information about how

Fig 11. Daily ROC during calendar year 2016 aggregated across all tickers. A large majority of days favored the direct data feeds. Both

Direct and SIP ROC time series show signs of decay across 2016, which may be due to infrastructure improvements.

https://doi.org/10.1371/journal.pone.0226968.g011

Table 4. Summary statistics of realized opportunity cost and related statistics for Dow 30 stocks, aggregated over the 252 trading days in 2016.

Trades Traded Value Diff. Trades Diff. Traded Value ROC ROC/Share

mean 1,555,958.65 15,313,345,373.03 346,953.30 3,573,555,257.78 635,769.54 0.011804

std 463,558.93 3,891,299,900.31 146,677.85 1,234,882,079.43 655,911.15 0.008592

min 579,206 6,664,671,053.15 89,564 1,035,855,029.71 145,205.65 0.008848

25% 1,278,813.25 12,915,031,172.08 262,209 2,804,569,367.64 417,485.73 0.009613

50% 1,429,062 14,431,597,662.02 309,158 3,274,390,601.60 514,856.64 0.010154

75% 1,715,351.25 16,829,521,684.38 387,772 3,993,470,514.97 666,268.27 0.011213

max 3,596,006 30,999,914,293.66 1,073,029 9,428,952,387.10 7,817,684.58 0.098303

https://doi.org/10.1371/journal.pone.0226968.t004
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fragmentation effects have evolved due to changes in regulation, technology, and market par-

ticipant behavior.

Supporting information

S1 Appendix. Market participants. Describes several classes of market participants and how

they interact.

(PDF)

S2 Appendix. Glossary. Provides formal definitions for many of the terms used in the study.

(PDF)

S3 Appendix. Regulation National Market System. A high level summary of some regula-

tions that impact the implementation of the National Market System in the US.

(PDF)

S4 Appendix. Dislocations and ROC. Additional details on how we calculate Realized Oppor-

tunity Cost and Dislocations. Also provides some example calculations and discussion regard-

ing the connections between ROC and Dislocations.

(PDF)

S1 Table. Summary ROC statistics for Dow 30 Stocks. Aggregated by day and trading symbol.

(PDF)

S2 Table. Direct feed and historical data pricing. The pricing presented in this table assumes

a single consumer with an academic use case aiming to construct a dataset similar to what was

used in this analysis. It is also assumed that non-display fees do not apply. Historical data costs

assume a 12 month period of interest, i.e. calendar year 2016. Strictly speaking, historical data

may sufficient for replicating the analysis presented in this paper, making subscription to live

feeds unnecessary. However, utilizing historical data provided by each exchange excludes the

possibility of collecting data from a single point of observation, reintroducing the issues of

clock synchronization and relativity. Additionally, highlighting the monthly cost for compre-

hensive direct feed access shines a light on one of the reasons for the lack of academic partici-

pation in the analysis of modern U.S. stock markets. This does not include costs which may be

incurred while curating the data, fulfilling potential co-location requirements, ISP/networking

costs, computing hardware acquisition and maintenance, etc. DoB indicates that a product

contains full Depth of Book information (adds, mod, and cancel messages), while ToB indi-

cates that a product contains only Top of Book information (trade and quote messages). The

NYSE Historical ToB product, also called NYSE Daily TAQ, is frequently used in academic

studies due to it’s relatively low cost and broad coverage (e.g. [24] use this product). Historical

data from CHX is not directly available, and the live feeds are transitioning to NYSE technol-

ogy, thus historical CHX data must be purchased from a third party. This list is not guaranteed

to be comprehensive, additional fees/costs may exist. �Access to UTP data and NASDAQ

direct feed data may granted freely to academic institutions, see UTP Feed Pricing and NAS-

DAQ Academic Waiver Policy for more info. ��Historical data purchased from NYSE only

covers 5/21/2018—present for NYSE National, thus an alternative data provider is required

in order to obtain historical data from 2016. The sources used to construct this table include

CTA feed pricing, UTP feed pricing via the Data Policies document, NYSE feed pricing, NYSE

historical data pricing, NASDAQ feed pricing, BATS/DirectEdge feed pricing, and CHX feed

pricing.

(PDF)
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S3 Table. Example AAPL trades. Trades that occurred during a dislocation in AAPL on

2016-01-07 at approximately 9:48am, more than three minutes after the trading “guardrails”

are enforced. The “Delta” column indicates the difference between the Thesys timestamp and

the SIP publication timestamp (in microseconds). For trade 0, Thesys received the trade at

9:48:55.396951 and the SIP timestamp was 9:48:55.396696. The “Extra” column contains addi-

tional deltas related to the timestamps added in the 2015 SIP changes, see [24] for additional

details. In particular, this column contains the difference (in microseconds) between the

Thesys timestamp and the exchange timestamp. For trade 0, Thesys received the trade at

9:48:55.396951 and the exchange timestamp was 9:48:55.397602, an example of the timestamp

inversion seen in [24], which is generally cause by clock synchronization issues.

(PDF)

S4 Table. Example AAPL trades with positive ROC. A subset of the trades from S3 Table

that resulted in positive ROC. Positive ROC indicates that these trades received favorable

prices that were aligned with the SIP NBBO.

(PDF)

S5 Table. Example AAPL trades with negative ROC. A subset of the trades from S3 Table

that resulted in negative ROC. Negative ROC indicates that these trades executed at less favor-

able prices than what was offered by the DBBO.

(PDF)
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