
October 26, 2020 8:54 WSPC/S0218-1274 2050256

OPEN ACCESS

International Journal of Bifurcation and Chaos, Vol. 30, No. 13 (2020) 2050256 (11 pages)
c© The Author(s)
DOI: 10.1142/S0218127420502569

Chimera States and Seizures in a Mouse
Neuronal Model

Henry M. Mitchell∗ and Peter Sheridan Dodds
Vermont Complex Systems Center, University of Vermont,

82 University Place, Burlington, Vermont 05405, USA
∗Henry@HenryMitchell.org

J. Matthew Mahoney
Department of Neurology, University of Vermont,

95 Carrigan Drive, Burlington, Vermont 05405, USA

Christopher M. Danforth
Vermont Complex Systems Center, University of Vermont,

82 University Place, Burlington, Vermont 05405, USA

Received January 31, 2020; Revised June 6, 2020

Chimera states — the coexistence of synchrony and asynchrony in a nonlocally-coupled network
of identical oscillators — are often used as a model framework for epileptic seizures. Here, we
explore the dynamics of chimera states in a network of modified Hindmarsh–Rose neurons, con-
figured to reflect the graph of the mesoscale mouse connectome. Our model produces superficially
epileptiform activity converging on persistent chimera states in a large region of a two-parameter
space governing connections (a) between subcortices within a cortex and (b) between cortices.
Our findings contribute to a growing body of literature suggesting mathematical models can
qualitatively reproduce epileptic seizure dynamics.
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1. Introduction

1.1. Chimera states

A well-studied example of complex behavior aris-
ing from simple mechanisms is the coexistence of
synchrony and asynchrony within a system of iden-
tical coupled oscillators, a phenomenon known as
a chimera state [Kuramoto & Battogtokh, 2002;
Abrams & Strogatz, 2004]. The existence of these
chimera states is surprising, as they represent asym-
metry within symmetric systems. One of the sim-
plest systems which produces chimera states is the
Abrams model which consists of two populations

of identical oscillators with a stronger coupling
strength within the populations than between them
[Abrams et al., 2008]. The system is described by
the following:

dθσ
i

dt
= ω +

2∑
σ′=1

Kσσ′

Nσ′

Nσ′∑
j=1

sin(θσ′
j − θσ

i − α), (1)

where

K =

[
μ ν

ν μ

]
and σ ∈ {1, 2}.

In this model, μ represents the intra-population
strength, and ν represents the inter-population
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(a) (b)

Fig. 1. A simulation of the Abrams model for two populations of 128 oscillators. We employed a fourth-order Runge–Kutta
solver (dt = 0.01, tmax = 1000). (a) Time series of the simulation for t ∈ (800, 1000) and (b) snapshot at t ≈ 800.

strength, with μ > ν. Time can be scaled such that
μ + ν = 1. If μ − ν is not too large, and α is not
too much less than π

2 , then this system can produce
chimera states. Figure 1 shows a simulation of the
Abrams model on two populations of 128 oscillators.

An analogous system has recently been ana-
lyzed in the physical world [Martens et al., 2013].
Two swinging platforms were coupled together
with springs of variable spring constant κ, and 15
metronomes — all tuned to the same frequency —
were placed on each platform. The metronomes on
the same platform are coupled through the motion
of the swing, which heavily influences the motion
of the metronomes, represented in the Abrams
model by μ. The metronomes on opposite plat-
forms are coupled through the springs, which is a
much weaker interaction, represented in the Abrams
model by ν. For a wide range of values of κ, all of
the metronomes on one platform would synchronize,
while the metronomes on the other platform would
remain asynchronous.

While chimera states may present themselves
obviously when observed in a plot or the physi-
cal world, they can be harder to pin down analyti-
cally. In order to do so, we will investigate a system
of M communities of nonlocally-coupled oscillators,
and we sample their phases at times t ∈ [1, . . . , T ].
A useful pair of measures for detecting the pres-
ence of a chimera state are the chimera-like index
χ and the metastability index m [Shanahan, 2010;
Hizanidis et al., 2016]. To develop these two mea-
sures, we start with the order parameter rc(t) =
|〈eiφk(t)〉k∈C |, where φk is the phase of oscillator k,

and 〈f〉k∈C is the average of f over all k in commu-
nity C. The order parameter r indicates the instan-
taneous synchrony of a community (how similar the
phases of the oscillators are to the others in C), and
not its overall coherence (how similar the trajecto-
ries of the oscillators are). From this, we define the
two measures:

χ = 7 × 〈σchi〉T , (2)

m = 12 × 〈σmet〉C , (3)

where

σchi(t) =
1

M − 1

∑
c∈C

(rc(t) − 〈rc〉C)2, (4)

and

σmet(c) =
1

T − 1

∑
t≤T

(rc(t) − 〈rc〉T )2. (5)

To put this into words, the chimera-like index χ is
the average over time of the variance of the order
parameter across communities, while the metasta-
bility index m is the average across communities of
the variance of the order parameter within a given
community over time.

The normalization constants follow from the
indices’ maximum possible values [Shanahan, 2010].
If a community spends equal time in a maximally
chimeric state and a minimally chimeric state, then
its chimera-like index will be at its maximum1:
χmax = 1

7 . If a community c spends equal time in
all stages of synchronization (i.e. the phase parame-
ter of c is uniformly distributed), then σmet(c) is at

1While it is possible for half of a system’s communities to be synchronous and the other half asynchronous for all times
(resulting in a chimera-like index of 2

7 ), this is transient due to the effects of metastability [Shanahan, 2010]. Therefore, we
will ignore this case.
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its maximum, which is the variance of the uniform
distribution: mmax = 1

12 .

1.2. Seizures

Chimera states have been observed in many other
systems, whether they be purely mathematical, bio-
logical, electrical, or mechanical [Shanahan, 2010;
Abrams & Strogatz, 2004; Andrzejak et al., 2016;
Hizanidis et al., 2016; Kuramoto & Battogtokh,
2002; Martens et al., 2013; Panaggio & Abrams,
2015; Santos et al., 2015; Santos et al., 2017; Kruk
et al., 2018; Xie et al., 2014]. One of the most com-
mon ways that chimera states are discussed is in
regards to seizures.

As is often the case with emergent phenomena,
it is wildly impractical to simulate the collective
behavior of a brain by simulating its constituent
neurons. Since the human brain has approximately
1011 neurons with 1014 synapses, direct simulation
is too computationally intensive. To better under-
stand the dynamics of large portions of the brain,
many researchers have turned to the techniques of
thermal and statistical physics [Breakspear, 2017],
resulting in neural field models and neural mass net-
works. The first treats the brain as a continuous
sheet of cortex, within which activity obeys wave
equations. The second represents the brain as a dis-
crete graph of cortices, or a network of coupled oscil-
lators. The network used for the coupling of the
oscillators is determined by the brain’s connectiv-
ity matrix, or connectome. An example of a neural
mass network model is the modified Hindmarsh–
Rose model [Eqs. (6), (7) and (8)], which we discuss
later.

One of the benefits of a neural mass network
model is that its outputs are similar to those of
an electroencephalograph, or EEG. The EEG is a
device used to record the electrical activity of the
brain. Electrodes are placed in specific areas on the
scalp, and then changes in voltage are measured
from neural masses beneath the skull. Much of the
signal is distorted and attenuated by the bone and
tissue between the brain and the electrodes, which
act like resistors and capacitors. This means that,
while the membrane voltage of the neuron changes
by millivolts, the EEG reads a signal in the micro-
volt scale [Westbrook, 2013]. The EEG also has
relatively low spatial and temporal resolution (16
electrodes for the whole brain, and a sampling rate
of 33 ms). However, when properly treated, neural
mass models make for effective predictors of the

output from EEGs [Taylor et al., 2012; Leistritz
et al., 2007]. This is useful, as EEGs are the main
tool used to detect and categorize seizures.

1.2.1. Seizure Ætiology

Researchers define seizures as abnormal, excessive,
or overly-synchronized neural activity [Westbrook,
2013; Baier et al., 2012]. It is important to distin-
guish between seizures and epilepsy, as the two are
often conflated. Seizures are an acute event, whereas
epilepsy is a chronic condition of repeated seizures.
While classification schemes vary, all center around
the division between generalized and focal seizures.

The focus of the present work is focal seizures,
which start in one part of the brain (the seizure
focus). They are typically preceded by auras such
as a sense of fear, or hearing music, and often mani-
fest as clonic movement of the extremities. In many
cases, they secondarily generalize, spreading to the
entire brain. This can make focal seizures and pri-
mary generalized seizures hard to distinguish, as
a focal seizure can generalize rapidly after a brief
aura. This can lead to misdiagnoses and improper
treatments.

2. Literature Review

Chimera states in brain models have often been
linked loosely to unihemispheric sleep, seizures,
and other brain behaviors [Abrams et al., 2008;
Panaggio & Abrams, 2015; Martens et al., 2013;
Abrams & Strogatz, 2004; Shanahan, 2010; Höhlein
et al., 2019; Bansal et al., 2019; Chouzouris et al.,
2018]. In most cases, these connections are made
in off-hand remarks to introduce the concept of
a chimera state, but serious connections between
these phenomena are rarely drawn. However, there
are some notable cases of investigations of chimera
states in brains.

A example of a chimera state being investigated
in neural models was an exploration of chimera
states on a network of Hindmarsh–Rose neurons
[Eqs. (6), (7) and (8)] [Santos et al., 2017]. This
model was simulated on the connectome of a cat.
Parameter space for the two connection strengths
α and β was explored. Chimera states are most
prevalent for low values of β, the inter-cortex con-
nection strength [Santos et al., 2017]. This is unsur-
prising. If the inter-cortex connection strength is
too high as compared to the intra-cortex connec-
tion strength, the coupling acts globally instead of
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nonlocally. This means that each cortex has less
holding it together than pulling it apart, allowing
the system to descend into asynchrony.

Further, with increasing input current Ij (and
increasing noise in the input current), chimera
states give way to incoherence. This also intuitively
makes sense. As the input current increases, its
significance relative to the coupling also increases.
Thus, the oscillators have no reason to synchronize.
And, of course, adding noise will simply amplify the
effect [Santos et al., 2017].

3. Methods

3.1. Model

The model we used was a modified Hindmarsh–Rose
neural model2 taken from [Santos et al., 2017].

ẋj = yj − x3
j + bx2

j + Ij − zj

− α

n′
j

N∑
k=1

G′
jkΘj(xk) − β

n′′
j

N∑
k=1

G′′
jkΘj(xk),

(6)

ẏj = 1 − 5x2
j − yj, (7)

and

żj = μ(s(xj − xrest) − zj), (8)

where

Θj(xk) =
xj − xrev

1 + e−λ(xk−θ)
(9)

is the sigmoidal activation function. This function
helps the model better approximate the behavior
of neural masses, as opposed to specific neurons.
Table 1 shows the values and meanings of the sym-
bols in the model.

The measurable output of an EEG corresponds
to the mean of the membrane potential within a
cortex (i.e. the observable values are 〈xj〉j∈C).

We chose this model due to the intelligibil-
ity of its parameters, as well as its proven abil-
ity to exhibit chimera-like behavior as a neural
mass model [Santos et al., 2017]. Additionally, the
Hindmarsh–Rose model was not designed to emu-
late seizures, which provides further evidence for the
assertion that chimeras may be a universal aspect
of brain activity.

It is worth noting that one of the limitations
of this model is the changing nature of intra- and

Table 1. The list of parameters used in modeling the Hindmarsh–Rose network.

Symbol Value Meaning

xj — Membrane potential of the jth neural mass
yj — Associated with the fast processes
zj — Associated with slow processes

b 3.2 Tunes the spiking frequency
Ij 4.4 External input current

xrev 2 Ambient reversal potential
λ 10 Activation function parameter
θ −0.25 Activation function parameter
μ 0.01 Time scale for variation of z
s 4 Governs adaptation

xrest −1.6 Resting/equilibrium potential

α Varied Coupling strength within cortices

n′
j See Fig. 3(a) Number of connections within a cortex from the jth neuron

G′
jk See Fig. 3(c) Intra-cortical connection strength

β Varied Coupling strength between cortices

n′′
j See Fig. 3(b) Number of connections between cortices from the jth neuron

G′′
jk See Fig. 3(d) Inter-cortical connection strength

2The modification is to add in the coupling, turning it into a network model instead of a single neuron. The brain has different
connection strengths and types within cortices than it does between cortices, which is why the network is separated into intra-
and inter-cortical connections in Eq. (6).
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inter-cortical connection strengths (corresponding
to α and β) in the actual brain. The strengths
of connections and the amounts by which they
are amplified vary in time. However, they will be
treated as constant, in order to present a view of
parameter space.

Additionally, the model assumes a network of
identical nodes. This is not the case in the brain,
as there is heterogeneity of neuronal behavior,
even among neurons of similar types. The model
does allow some flexibility for creating differences
between neural masses through the Ij external
input current term. Changes to this term have
been shown to disrupt chimera states [Santos et al.,
2017], possibly due to intermediate levels of het-
erogeneity enabling optimal information encoding
[Baroni & Mazzoni, 2014]. However, a network of
identical nodes provides a good qualitative picture
of the parameter space, with room for refinement
by the introduction of noise.

3.2. Network

We implemented the model on a mesoscale mouse
connectome, which comprises of 213 fine areas,
grouped into 13 coarse areas, along with measured
connection strengths between the subcortices [Oh
et al., 2014]. We used these coarse areas as the

sets C [Eqs. (2) and (3)] for chimera and metastabil-
ity analyses. We reduced the connection strengths
to those with sufficient certainty (p < 0.01), and
segmented as follows:

Gjk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if Ojk < 10−4,

1 if 10−4 ≤ Ojk < 10−2,

2 if 10−2 ≤ Ojk < 1,

3 if 1 ≤ Ojk,

(10)

where Ojk is the raw connection strength provided
by [Oh et al., 2014]. We performed this simplifica-
tion to match the analysis of Santos et al. more
closely [Santos et al., 2017].

We show G in Fig. 2, and break it down into
its inter- and intra-connections in Fig. 3. This brain
network is a small-world network [Oh et al., 2014], a
graph topology which lends itself well to the devel-
opment of chimera states, as it facilitates nonlocal
coupling [Hizanidis et al., 2016].

Another benefit to this network is that it is
comparatively accurate and complete. Given the
complexity of brains, creating an accurate struc-
tural or functional connectome is extremely diffi-
cult. It has yet to be done to a large-scale extent in
humans, and was only recently done in mice. More-
over, as mice are common analogues for humans

(a) (b)

Fig. 2. (a) A matrix representation of the mouse connectome, with strengths as defined by (10). The cortices represented are,
left to right (top to bottom), the striatum, the olfactory areas, the isocortex, the crebellar cortex, the hippocampal formation,
the midbrain, the hypothalamus, the pallidum, the pons, the medulla, the cortical subplate, the thalamus, and the cerebellar
nuclei and (b) an embedding of the graph. Edge colors indicate the source location.
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Fig. 3. A breakdown of the network: (a) and (b) n′
j and n′′

j ,
effectively the number of nonzero elements in the jth row of
G′ and G′′, respectively. (c) and (d) G′ and G′′, which are G
[Fig. 2(a)] only within and between cortices, respectively.

in laboratory settings, the mouse seemed a fitting
“guinea pig” for the creation of chimera states.

3.3. Implementation

We coded the modified Hindmarsh–Rose model
using Python (Python version 3.7.0, NumPy version
1.15.2, Pandas version 0.23.4, SciPy version 1.1.0),
and integrated using a fourth-order Runge–Kutta
with variable step size3 dt < 0.01. We verified the
code by reproducing the results of [Santos et al.,
2017]. We ran the model for a time period of Tsim =
[−1000, 5000], where only times T = [0, 4000] were
saved. We threw away the times [−1000, 0] to
eliminate transients. The chimeras were extremely

(a)

(b)

Fig. 4. The average connection strengths for each neuron j,
within cortices (blue) and between them (orange). (a) All of
the subcortices and (b) all of the subcortices for which neither
intra- nor inter-cortical average strength was 0.

unlikely to be eliminated on such a time scale, due
to the size of the network [Wolfrum & Omel’chenko,
2011]. We calculated the times [4000, 5000] to facil-
itate analysis of the phase.

We computed the phase of the jth neuron in
the resulting waveform as

φj(t) = 2π × t − ti
ti+1 − ti

, (11)

where ti is the time at which the jth neuron fires (xj

crosses 0 in a positive direction) for the ith time.4 In
order for this calculation to be possible for all val-
ues in T , it was necessary to have each neuron fire
at least once after T had finished (i.e. there has to
be some ti+1 /∈ T in order to calculate the phase for
times ti ≤ t ≤ tmax = 4000). The calculated time
range went so far beyond tmax so that any extremely
slow-firing neurons were allowed to do so, to ensure
that as much of parameter space was in the phys-
ical region (Sec. 4.2). We then used phase to find
the chimera and metastability indices of the result
using Eqs. (2) and (3) respectively.

We repeated this process for various parameter
sweeps of α × β, summarized in Table 2. Note that
the step in each strength i ∈ {α, β} is Δi = imax

ni−1 ,
due to the fact that the ranges are inclusive of both
endpoints.

Initial conditions were drawn from uniform dis-
tributions of xj ∈ [−2, 2], yj ∈ [0, 0.2], zj ∈ [0, 0.2].
We performed all simulations on the Vermont
Advanced Computing Core, and are available
online.5

Table 2. The sweeps we used in evaluating the effects of α
and β on the chimera and metastability indices. All para-
meter sweeps started at (α, β) = (0, 0). We performed the
[0, 1] × [0, 1] sweep ten times, and averaged the resulting
chimera-like indices.

αmax, βmax Δα (nα), Δβ (nβ) Figure

1.6, 0.4 0.0203 (80), 0.0211 (20) —
3.2, 0.8 0.0405 (80), 0.0205 (40) —
0.2, 0.1 0.00253 (80), 0.00256 (40) Fig. 8
0.9, 0.9 0.0101 (80), 0.0101 (80) —
1.0, 1.0 0.0101 (100), 0.0101 (100) Fig. 7

3Step size was determined by SciPy’s internal algorithms, but was limited to a maximum of 0.01.
4This is a similar measure for the phase as was used in [Santos et al., 2017], but allows for easier discrimination between
physical and aphysical parameter sets. It is modified to keep φj ∈ (0, 2π) and to eliminate ambiguity about the meanings of
the subscripts.
5https://github.com/henmitch/chimera-2019.
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4. Results

We investigate three aspects of the model’s output.
First, we compare the output from the model to
real-world data, on a qualitative level. We then dis-
cuss the region of parameter space for which the
model produces aphysical results. Finally, we draw

Fig. 5. A typical EEG trace. The first row (“Wild type”)
shows a normal awake adult mouse EEG trace. The other four
rows (“Mutant”) show typical abnormal/epileptiform activ-
ity. Taken from [Ljungberg et al., 2009].

connections between chimera states in the model
and their physiological analogues.

4.1. Model quality

It is worthwhile to first discuss the quality of the
model used, and its relationship to reality. Figure 5
shows several types of behavior one can expect on
an EEG trace. Healthy brain behavior presents as
low-amplitude oscillations on an EEG, as the asyn-
chrony leads the firings of individual neurons to can-
cel each other out. Seizures and seizure-like activ-
ity present as higher-amplitude oscillations, as the
synchrony decreases the variance between neurons,
making the mean closer to the behavior of each
neuron. One of the main challenges of simulating
seizures is that only trained experts can truly iden-
tify seizures; as yet, there is no mathematical tech-
nique for identifying seizures [Westbrook, 2013].

The highly chimeric portion of the landscape
appears to be mostly below the β = α line.

However, one can indicate whether a model
resembles epileptiform activity on a qualitative
level. Figure 6 shows the results of a simulation

(a)

(b)

Fig. 6. A typical run of the Hindmarsh–Rose simulation. (a) The mean membrane potential within each cortex and (b) the
phase φ of the entire time-series for a simulation of the Hindmarsh–Rose network.
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of the Hindmarsh–Rose network for (α, β) =
(0.608, 0.267). Qualitatively, in our simulation, the
thalamus, the pons, and the striatum look like the
wild type EEG; the cerebellar cortex shows some
spiking behavior, as well as some spike runs; the
medulla and the hypothalamus look to be in repet-
itive spike runs; and the cortical subplate seems to
be exhibiting seizure-like behavior over some time
periods. This shows that the behavior visible on
an EEG can be approximately reproduced in this
model.

While obtaining a higher neuronal resolution
from the EEG is not possible due to the nature
of the method, we can see the neural dynamics of
the model [Fig. 6(b)]. It is evident that the tha-
lamus, the pons, and the striatum are each highly
asynchronous, which corresponds to their wild-type
presentation.

Both presentation methods have their benefits,
as Fig. 6(a) looks similar to an EEG (and therefore
lends itself well to the comparison), where Fig. 6(b)
allows us to view the individual subcortical behav-
iors leading to the net dynamics.

4.2. Aphysical region

We choose not to include figures for the first two
sweeps of Table 2 because a large portion of param-
eter space leads to an aphysical model. Specifically,
for certain value pairs of (α, β), certain neurons
never fired (increased past 1). Despite the drasti-
cally increased time of evaluation (see Sec. 3.3), a
vast swath of parameter space gave nonsense results
(the white shown in Fig. 7). The boundary between
physical and aphysical appears to be linear, with a
negative slope. This means that α can range further
when β is low, and vice versa. This makes sense, as
increased α and β influence the model in the same
way (increasing the coupling and decreasing ẋj).

Furthermore, the slope of the boundary is
greater than −1, which means that α has a greater
influence on the physicality of the model. This is
also reasonable, but for slightly less self-evident rea-
sons. To explain why, we must look specifically at
the coupling term from Eq. (6):

− α

n′
j

N∑
k=1

G′
jkΘj(xk) − β

n′′
j

N∑
k=1

G′′
jkΘj(xk).

This coupling will, in fact, be positive, as Θj(xk) <
0 if xj < 2, which is true almost all of the time.
This means that, as α and β increase, so does the

Fig. 7. The chimera-like landscape of parameter space on
(α, β) ∈ (0, 1.0) × (0, 1.0). The aphysical region of the model
is shown in white. The black rectangle in the bottom left cor-
ner indicates the region of parameter space shown in Fig. 8.
The dashed line has a slope of −1, to serve as a guide for
Sec. 4.3. The chimera-like index [defined in Eq. (2)] is nor-
malized to 1, as usual.

overall coupling strength. So, there is some thresh-
old K for which the overall coupling is too strong
if, for some j,

α

n′
j

N∑
k=1

G′
jk|Θj(xk)| + β

n′′
j

N∑
k=1

G′′
jk|Θj(xk)| > Kj .

(12)

In order for α to influence the coupling’s proximity
to K more than β does, there must exist some j such
that 1

n′
j

∑
G′

jk|Θj(xk)| > 1
n′′

j

∑
G′′

jk|Θj(xk)|. Seeing

as g′j = 1
n′

j

∑
G′

jk and g′′j = 1
n′′

j

∑
G′′

jk are the aver-

age connection strength within and between cortices
[shown in Fig. 4(a)], these are simply a function of
the topology of the graph.

It may look from Fig. 4(a) like β should have
more influence than α, as for most j, g′′j > g′j. How-
ever, for most of those cases, g′j0 > g′′j0 = 0. This

means that, for those j0,
∂Kj0
∂α = 0. So, those cases

contribute to the value of the threshold, but do not
influence the physicality’s dependence on α and β.

If we remove the j for which 0 ∈ {g′j, g′′j }, we
find that, on average, g′j = 2.100, slightly more than
g′′j = 2.079 [see Fig. 4(b)]. This explains the slope of
the boundary between the physical region and the
aphysical region.
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Fig. 8. (a) The chimera-like index χ of runs with (α, β) ∈
(0, 0.2)×(0, 0.2). As before, the chimera-like index is normal-
ized to 1

7 . Note that the values of the index are much higher
in this patch than in most of the rest of (α, β) ∈ (0, 1)× (0, 1)
(Fig. 7) and (b) the variance of the chimera-like index.

4.3. Chimera states

We show the normalized chimera-like index of the
entire physical region in Fig. 7. Near the maximal
edge of the physical region, the highest values of the
chimera index appear to follow a slope of −1. It is
unsurprising that chimera states would be prevalent
when the coupling is large (out near the boundary
of the aphysical range).

What is surprising, however, is the presence
of the chimeric patch in the bottom left corner of
Fig. 7, shown at a higher resolution in Fig. 8. Plot-
ting the results of the simulations (Fig. 9), it is evi-
dent that this is not a calculation error, but is an
actual feature of the parameter landscape.

The highly chimeric patch within the physical
portion of the landscape appears to be mostly below
the β = α line. This is reasonable, as chimera states
occur when coupling within groups is greater than
coupling between groups. A small portion of the
chimeric patch lies above the β = α line, likely
because the average strength between cortices is
greater than the average strength within cortices
[see Fig. 4(a)].

The chimera-like index χ greatly lessens at
α ≈ 0.1. A possible explanation for this comes
from comparing the order of ẋ without the coupling
terms, and the coupling terms themselves. From
our simulation, we find that ẋ without the coupling
terms ranges roughly from −6 to 3. The coupling
terms each6 range from 0 to approximately 30α.

(a)

(b)

Fig. 9. A run of the Hindmarsh–Rose simulation in the chimeric island. (a) The mean membrane potential within each
cortex and (b) the phase φ of the entire time-series for a simulation of the Hindmarsh–Rose network. Synchronization is most
consistently evident in the medulla, the hypothalamus, and the isocortex.

6Since the same can be said for both α and β, we will discuss only α, with the understanding that β could be substituted into
the proceeding sentences.
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This means that, when α > 0.1, the coupling is at
least of the same order as the sum of the rest of
the terms in the equation. This leads to a qualita-
tive difference between the two states, which likely
manifests itself as the less-chimeric states.

5. Discussion

The logical next step is to compare the simulated
EEG traces to actual data collected from mice,
with the aid of an epileptologist. With further work
in this direction, our research could potentially go
from a mathematical curiosity to an applicable ther-
apeutic and diagnostic tool. However, the initial
results are encouraging. The majority of the sim-
ulated seizures showed excessive synchrony in areas
such as the hypothalamus and the hippocampal for-
mation, which are the most common origins of ictal
activity [Maguire & Salpekar, 2013; Avoli, 2007].
The exact origin of focal seizures is poorly under-
stood, and our implementation of the model makes
it difficult to narrow in on the precise onset of
chimera states. This could be a future direction for
research in this area.

Finding an instructive phase-space embedding
of the Hindmarsh–Rose network would be challeng-
ing (seeing as it is a 639-dimensional system), but
would likely reveal potentially useful insights into
the nature of the mechanisms underlying these sys-
tems. The same could be said for Lyapunov analy-
sis, as well as finding an informative way to create
a bifurcation diagram and perform more in-depth
bifurcation analysis.

Another way our work could be extended is
by looking at chimera state collapse and its rela-
tionship to secondary seizure generalization. How-
ever, it would be extremely computationally expen-
sive, given the size of the system, and would
therefore require some clever handiwork [Wol-
frum & Omel’chenko, 2011].

Future work could also naturally be performed
on better, more up-to-date connectomes [Knox
et al., 2019].
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T., Haueisen, J. & Witte, H. [2007] “Coupled oscil-
lators for modeling and analysis of EEG/MEG oscil-
lations,” Biomedizinische Technik/Biomedical Engin.
52, 83–89.

Ljungberg, M. C., Sunnen, C. N., Lugo, J. N., Ander-
son, A. E. & D’Arcangelo, G. [2009] “Rapamycin
suppresses seizures and neuronal hypertrophy in a

2050256-10

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
3.

38
.1

62
.1

35
 o

n 
10

/3
0/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 26, 2020 8:54 WSPC/S0218-1274 2050256

Chimera States and Seizures in a Mouse Neuronal Model

mouse model of cortical dysplasia,” Diseas. Mod.
Mech. 2, 389–398.

Maguire, J. & Salpekar, J. A. [2013] “Stress, seizures,
and hypothalamic–pituitary–adrenal axis targets for
the treatment of epilepsy,” Epilep. Behav. 26, 352–
362.

Martens, E. A., Thutupalli, S., Fourriere, A. & Hallats-
chek, O. [2013] “Chimera states in mechanical oscil-
lator networks,” Proc. Natl. Acad. Sci. USA 110,
10563–10567.

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain,
N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry,
A. M., Mortrud, M. T., Ouellette, B., Nguyen, T. N.,
Sorensen, S. A., Slaughterbeck, C. R., Wakeman, W.,
Li, Y., Feng, D., Ho, A., Nicholas, E., Hirokawa, K. E.,
Bohn, P., Joines, K. M., Peng, H., Hawrylycz, M. J.,
Phillips, J. W., Hohmann, J. G., Wohnoutka, P., Ger-
fen, C. R., Koch, C., Bernard, A., Dang, C., Jones,
A. R. & Zeng, H. [2014] “A mesoscale connectome of
the mouse brain,” Nature 508, 207–214.

Panaggio, M. J. & Abrams, D. M. [2015] “Chimera
states: Coexistence of coherence and incoherence in
networks of coupled oscillators,” Nonlinearity 28,
R67–R87.

Santos, M., Szezech, J., Batista, A., Caldas, I., Viana,
R. & Lopes, S. [2015] “Recurrence quantification anal-
ysis of chimera states,” Phys. Lett. A 379, 2188–2192.

Santos, M., Szezech, J., Borges, F., Iarosz, K., Caldas, I.,
Batista, A., Viana, R. & Kurths, J. [2017] “Chimera-
like states in a neuronal network model of the cat
brain,” Chaos Solit. Fract. 101, 86–91.

Shanahan, M. [2010] “Metastable chimera states in
community-structured oscillator networks,” Chaos
20, 013108.

Taylor, P. N., Goodfellow, M., Wang, Y. & Baier, G.
[2012] “Towards a large-scale model of patient-specific
epileptic spike-wave discharges,” Biol. Cybern. 107,
83–94.

Westbrook, G. L. [2013] “50,” Seizures and Epilepsy, 5th
edition (McGraw Hill Medical), pp. 1116–1139.

Wolfrum, M. & Omel’chenko, O. E. [2011] “Chimera
states are chaotic transients,” Phys. Rev. E 84,
015201(R).

Xie, J., Knobloch, E. & Kao, H.-C. [2014] “Multiclus-
ter and traveling chimera states in nonlocal phase-
coupled oscillators,” Phys. Rev. E 90, 022919.

Appendix A

Additional Figures

Figure 10 shows some additional analyses of the
parameter landscape.

Fig. 10. Additional analyses of the parameter landscape. (a) The number of runs (out of ten) which gave physical results. All
parameter sets which are not yellow in (A) were excluded from the other analyses, (b) the variance of the chimera-like index,
(c) the metastability index, (d) the variance of the metastability index, (e) the mean order parameter over time, averaged
across runs and (f) the variance between runs of the mean order parameter.
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