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Simon’s fundamental rich-get-richer model entails a dominant first-mover advantage
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Herbert Simon’s classic rich-get-richer model is one of the simplest empirically supported mechanisms capable
of generating heavy-tail size distributions for complex systems. Simon argued analytically that a population of
flavored elements growing by either adding a novel element or randomly replicating an existing one would
afford a distribution of group sizes with a power-law tail. Here, we show that, in fact, Simon’s model does not
produce a simple power-law size distribution as the initial element has a dominant first-mover advantage, and
will be overrepresented by a factor proportional to the inverse of the innovation probability. The first group’s
size discrepancy cannot be explained away as a transient of the model, and may therefore be many orders of
magnitude greater than expected. We demonstrate how Simon’s analysis was correct but incomplete, and expand
our alternate analysis to quantify the variability of long term rankings for all groups. We find that the expected
time for a first replication is infinite, and show how an incipient group must break the mechanism to improve
their odds of success. We present an example of citation counts for a specific field that demonstrates a first-mover
advantage consistent with our revised view of the rich-get-richer mechanism. Our findings call for a reexamination

of preceding work invoking Simon’s model and provide an expanded understanding going forward.
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I. INTRODUCTION

Across the spectrum of natural and constructed phenomena,
descriptions of the architecture and dynamical behavior of
complex systems repeatedly involve heavy-tailed distributions.
For systems involving components of variable size S, many
bear size distributions with power-law decays of the form
P(S) ~ S77 [1,2]: word usage frequency in language [3-5],
the number of species per genus [1,6], citation numbers for
scientific papers [7,8], node degree in networks [9—12], firm
sizes [13], and the extent of system failures such as forest fires
[14,15]. These size distributions are often alternately cast in
the form of a Zipf distribution [3] with components ordered by
decreasing size and S, ~ r~* where r (= 1,2, ...) is the size
rank and o = 1/(y — 1) [16].

Elucidating and understanding the most essential dynamical
models leading to power-law size distributions is an essential
task. While the mechanisms giving rise to such distributions
are diverse, they generally involve growth and replication.

In his famous 1955 paper on skewed distributions [1],
Simon built on classical urn model theory to show that a
simple, single parameter, rich-get-richer mechanism could
lead a growing population to produce a pure power-law size
distribution of groups of elements of matching type [17].
Simon’s model is governed by an innovation probability
o which Simon argued controls the group size distribution
exponent as y = 1+ 1/(1 — p) and, equivalently, the Zipf’s
law exponent as « = 1 — p (we rederive these results as part
of our analysis in Sec. III).

Simon’s model has endured because it is at once a boiled-
down, easy-to-understand toy model representative of a large
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class of rich-get-richer mechanisms, and yet it is also a
model that has a remarkable ability to capture the essential
growth dynamics of disparate, real-world complex systems.
While not without controversy, particularly for language
[18-26], Simon’s micro-to-macro link between the separately
measurable innovation rate and power-law scaling for system
component size distribution has been observed to roughly hold
for word counts in books [1], citation counts in scientific
literature [10,27,28], the early growth of the Web [11], and
the development of software such as the Linux kernel [29].

Rich-get-richer models adjacent to Simon’s model have
been employed to characterize the essential features of many
kinds of systems such as the emergence of novelties [30,31].
Arguably the most profound role of rich-get-richer mech-
anisms has been uncovered in complex networks. Simon’s
model is the explicit core of Price’s cumulative advantage
mechanism for the growth of citation networks in scientific
literature [7,8]. A modified version of Simon’s model is also
at the heart of the independently discovered growing network
model of preferential attachment due to the field-starting work
of Barabasi and Albert [9].

Here, we show analytically and through simulations that Si-
mon’s analysis, for all its successes, was strikingly incomplete:
The initial group enjoys a profound “first-mover advantage”
on the order of the inverse of the innovation probability, 1/p.
This is not a small correction to a long established theory.
As the innovation probability is typically less than 0.1 and
often much closer to 0 [2,3,5,11,29,32], the initial group’s size
may be orders of magnitude greater than would be consistent
with a simple power law. Nor, as we will show, can the first
group be dismissed as a transient or as a kind of null group
and not part of the system. Indeed, we provide evidence from
scientific citation data that a first-mover advantage manifested
by Simon’s model is a real phenomenon.
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FIG. 1. Results from simulations of Simon’s model showing an inherent dominant first-mover advantage. (a)—(d) Visualizations of group
sizes after approximately ¢ = 10° time steps for p = 0.1, 0.01, 0.001, and 0.0001. Group sizes are proportional to disk area. The colors are a
function of each simulation’s specific history but do match across groups of the same size within each system. (e)—(h) Main plots: Zipf-like
distributions for an ensemble of 200 simulations in gray and theory in red [see Eq. (5)]. Differing from the simulations for the visualizations,
these were run until N® = 10°, approximately 10’/ time steps. The dark gray curve indicates the median size of the nth arriving group and
the light gray bounds 2.5 to 97.5 percentiles. For clarity, the median sizes of the first and second groups are highlighted as log,, S; and log,, S>.
Insets: For each value of p, we show the (raw) size frequency distribution f; for a single simulation, again indicating log,, S;. The exponents
for the Zipf distribution and size distributions are connected as y = 1 + 1/«a. We provide interactive simulations for Simon’s model as part of

the paper’s online appendices [33].

In what follows, we first describe Simon’s model and
present results from simulations (Sec. II); analytically de-
termine the first mover’s advantage (Sec. III); explore the
detailed long term dynamics of all groups (Sec. 1IV); self-
referentially compare the model’s output with citation data
concerning scale-free networks [9] (Sec. V); and, finally,
consider broader implications for understanding real-world,
rich-get-richer systems (Sec. VI).

II. EVIDENCE OF A FIRST-MOVER ADVANTAGE
FROM SIMULATIONS

The algorithm for Simon’s classic rich-get-richer model is
simple. We are concerned with the growth of a population
of elements where each element has a type, and elements of
the same type form a group. In modeling real systems, types
may represent a city, a word, or the destination of a link in a
network [1,29]. Beginning with a single element at time ¢t = 1,
an element is added to the population at each discrete time step
t > 2. Representing innovation, the arriving element has, with
probability p, a new, previously unseen type. Alternately, with
probability 1 — p, the arriving element is a replication taking
on the type of a randomly chosen existing element. As one of a
number of generalizations, we will, as Simon did himselfin [1],
later consider a dynamic innovation probability p; in Sec. VI.

In Fig. 1, we provide visualizations along with Zipf-like
distributions and size distributions for Simon’s model for
p =0.1,0.01, 0.001, and 0.0001. In Figs. 1(a)-1(d), we show
results for four sample simulations corresponding to these
values of p after 10° time steps. Each disk represents a group
with area proportional to group size. Interactive simulations
from which these images are drawn are available in the paper’s
online appendices [33].

To the eye, for p = 0.1, the first group appears to be
somewhat outsized but perhaps not inconsistent. However,
for the next three (decreasing) values of p, the first group is
evidently different, increasingly accruing the bulk of all new
elements.

In Figs. 1(e)-1(h), we make clear the first-mover advantage
through Zipf-like distributions for group size (main plots) and
size distributions (inset plots) for the same ordering of p values.
The group sizes in the main plots are a function of group arrival
number rather than rank according to decreasing size (hence
Zipf-like), and come from an ensemble of simulations (median
in dark gray, 2.5 to 97.5 percentile range in light gray; see
caption for details) and overlaid theory (red). We examine the
variation in group size with group arrival order later on. As
per Simon’s analysis, median group size S, behaves as n™* for
n > 10 where o (= 1 — p) is the Zipf exponent. However, as
we demonstrate theoretically below, the dominant group S is
larger than would be expected by a factor of 1/p.
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Again for single example simulations, the inset size
frequency distributions (raw counts; notation: fy) in Figs. 1(e)
and 1(f) show the same disparity with the largest element
isolated from the main power-law-obeying size distribution.
We can now see why Simon’s analysis, while technically
correct, fell short: The size distribution he derived fit all but
one point which, if not observed and handled appropriately,
vanishes in contribution in the infinite system size limit.

III. ANALYTIC DETERMINATION OF THE
FIRST-MOVER ADVANTAGE

To understand this first-mover advantage, we carry out
a reanalysis of Simon’s model. New groups are initiated
stochastically with the nth group first appearing on average
at time t,il“it. We write the number of elements in the nth group
at time ¢ > t" as S, ,, and each group starts with a single
element: §,, i = 1 (we examine this choice later). As Simon
did, we assume an initial condition of a population of 1 element
at time t = 1 [we consider a general initial condition later in
Sec. VI, Eq. (8)]. If at time 7, we have N,(g) distinct groups, the
probability that a randomly drawn element belongs to the nth
group is then

Py = —mt = St 1)
Zn’lzl Sn’,t !

We construct an evolution equation for the size of the nth
arriving group, S, ;. At time ¢, for the nth group to increase
in number by 1, replication must be chosen (occurring with
probability 1 — p), and then an element in the nth group must
be replicated, leading to the probabilistic statement

Sn
t

(Spis1 = Sus) = (1 — p) =L (+1). 2)

In the case of Simon’s fundamental model with a fixed
innovation probability, p, = p, we proceed with a difference
equation calculation. Our primary analysis is approximate as
we drop the expectation on the left hand side of Eq. (2).

For fixed p, = p and shifting from ¢ to r — 1, Eq. (2) gives
the approximation, for r > t,il““,

- |-
S = |14+ 822 )}Sn,”. 3)
L t—1
Again given that §,, ;i = 1, we have
(1—=p)] d—-p) I—p)
S =11 l+—— |1 — 1
! [_%t—l_ L) * init

[t=p][r—1-0p thit 41— p
L1 t—2 tinit

_ T+ 1—p@™) B 11— p)
C @M+ 1— @) B@,1—p)

where B is the beta function. Our analysis thus far has been
heading towards the same conclusion as Simon’s which took
a different route following the evolution of the system’s size
distribution. Now, however, we find a distinction that renders
the initial group special. For constant p < 1, the nth group first
arrives, on average, at ti"' ~ [”’%1] where [ -] is the rounding

“4)
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operator. But this is only valid for n > 2 because ¢ = 1. For
large ¢, we find the size of the nth arriving group to be
1 171—(1=p) _

S, ~ r(z—p)[?] forn =1,

—(1—
p P[] 40 forn > 2,

(&)

where we have used the asymptotic scaling B(x,y) ~ I'(y)x ™Y
for large x, and replaced r + 1 — p with 7.

On average, we expect the groups to be ranked by
decreasing size according to their arrival number n. For large
n, Zipf’s law appears with S, ; ~ ,01”’[%]7“ with exponent
o =1 — p. Aswemove down toward n = 2, a small correction
factor arises as [”n;l]_a, maximally 2! < 2 atn = 2.

We now see that the initial and largest group manifestly
does not conform because of the absence of the p(~ term.
Moreover, as p — 0, the size of the dominant group departs
rapidly from Zipf’s law with a factor of 1p~! greater than what
would be internally consistent with S, , for n > 2.

Shifting to the size frequency distribution [16], we have
P(S) o 77 = S+ = S7(1+ﬁ), and again for values of
p consistent with real-world data [1,2], the first group is an
outlier clearly separated from the power-law size distribution.

Simon’s analysis, like many subsequent treatments
[10,27,28,34-38], was a mixture of discrete and continuous
pieces, obtaining the tail of the group size distribution through
an asymptotic expansion. Such a continuum approximation
washed out the discrete nature of the system rendering the
first-mover anomaly hidden. Further, because the first mover is
only one of an infinite number of groups fort — o0, its weight
in the distribution tends to 0 and will thus be unobserved.

While it may be tempting to interpret the first group as a so-
called “dragon king” [39,40], we see that it is an endogenously
generated product of an elementary rich-get-richer model
rather than an exogenous mechanism singularly affecting the
largest events within a system.

The preferential attachment models developed in [34] show
evidence of a first-mover advantage and may profit from an
analysis similar to the one we have laid out here.

IV. LONG TERM VARIABILITY OF GROUP SUCCESS

We now delve into how arrival order of groups (n) relates to
final rank (r), an issue arising with the Zipf-like distributions
we presented in Fig. 1 and elided in our preceding analysis.

While it is evident that Simon’s model must produce a
degree of indeterminacy in ranking, our goal here is largely
to use simulations and some specific analysis to characterize
the nature and extent of rank variability for growing network
models based on Simon’s model [8,9]. Krapivsky and Redner
[10] and Newman [27,28] have analytically determined the
distribution of citations that the nth arriving group will receive
as a function of time. Further, Newman was able to show
good agreement with citation data. Our focus on the original
Simon model and different treatment means we arrive at some
complementary findings.

In the main plot of Fig. 2(a), we show results for a single
simulation with p = 0.01, and 107 total elements (equivalent
to run time), and N® ~ 107 distinct groups. The dark points
indicate the actual size of the nth group while the blue curve
is the resulting, properly ranked Zipf distribution. While the
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FIG. 2. Simulation results for a numerical investigation of the variability of final rank r as a function of group arrival number n. All panels
are derived from an ensemble of 1000 systems with p = 0.01 evolved for 107 time steps. (a) Main panel: For a single example system, group
size as a function of group arrival number n (black) with ranked sizes overlaid (blue). Inset: Comparison of Jenson-Shannon divergences
for all pairs of group sizes as a function of time of arrival (time-ordered) and all pairs of groups sizes when ranked by size (rank-ordered).
(b) Main panel: Group rank r as a function of group arrival number n with median in light blue and the increasingly gray regions delimiting
minimum-maximum, 2.5 to 97.5 percentiles, and 25 to 75 percentiles. Inset: Rescaled distribution of group ranks for 10* < n < 10° (white
lines in main plot). (c) Main panel: Rescaled size distributions for 10> < n < 103 indicating an exponential form. Inset: Raw size distributions

for three example arrival group numbers, n = 100, 320, and 1000.

first mover dominates as expected, and the second arriving
group obtains the second ranking in this instance, we observe
substantial and increasing decoupling between arrival order
and final rank as the system grows.

To further explore this decoherence, we generate an
ensemble of 1000 simulations of the same system. The effect
on final group ordering brought about by decreasing p saturates
quickly and all of the following results regarding arrival time
and rank are essentially the same for p < 0.01 with little quan-
titative change. We first measure the variability of the resulting
distributions using the Jenson-Shannon divergence (JSD),
time-ordered against time-ordered and rank-ordered against
rank-ordered, a total of (10200) such comparisons for each. In
the inset to Fig. 2(a), we show the distributions of JSD for each
ordering, finding a typical disparity for the time-ordered size
distributions of 0.25 bits.

In the main plot of Fig. 2(b), we present overall group rank
r as a function of group arrival number n for our ensemble
of 1000 simulations. The pale blue line indicates the median,
and the surrounding gray regions mark the 25 to 75 percentile
range, the 2.5 to 97.5 percentile range, and the minimum to
maximum range. In the inset, we rescale and collapse the final
rank distribution for arrival group numbers 10% to 10* based on
Eq. (5). We see that from around just the 10th arriving group
on, 95% of a group’s final rank spans a remarkable two orders
of magnitude around the median » = n, skewed towards higher
values as shown in the inset. Thus, while by equating rank and
arrival number, our analysis is effective for the median size of
groups, the system’s specific dynamics are considerably more
complex.

Lastly, in Fig. 2(c), we examine the distribution of possible
group sizes as a function of group arrival number n. Rather
than possessing a single maximum that increases with n, we
find that an exponential distribution is a good approximation.

The inset gives three example distributions and the main plot
shows an appropriate rescaling of all 100 < n < 1000.

For all but a small initial collection of groups, the mode
group size is thus close to 1, consistent with Simon’s asymp-
totic result that 1/(2 — p) >~ 1/2 of all groups contain only
one element (hapax legomena for texts). To understand how
half of all initiated groups never grow in size, we determine
the probability of a group gaining a new member as a function
of its arrival time and current size. The probability that the nth
arriving group, which is of, say, size S, ; = k at time ¢, fails to
replicate for all of times ¢ through ¢ + v — 1 before replicating
attime r + 7 is

P(Spise =k+1]|Sy,i=kfori=0,....t—1)

-1

=11 [1 -a —p)L}a P
i r+i t+1
B(t,1) 1—p o g~ (-pk ©
B(z,t—(1—p)t+t t+t

where we have again used that B(x,y) ~ ['(y)x~” for large
x. We observe a power-law decay with two scaling regimes.
For T > t, the probability behaves as T~!=(=?%  As the nth
arriving group starts with S, jm« = 1 element, the exponent
is —(2 — p) > —2 and the expected time for replication is
infinite. Once a group has replicated, the expected time
becomes finite. A newly arriving group is therefore greatly
advantaged if it can step out of the mechanism and begin with
even just two elements. Another variation allowing for later
success is for elements to have variable inherent qualities as
has been done, for example, for the Barabasi-Albert model
[9,41,42].
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FIG. 3. Citation counts for (1) the original paper on scale-free
networks by Barabdsi and Albert [9] (larger pale red disk) and
(2) 692 subsequent papers with “scale-free networks” in their title
ordered by publication date. We obtained citation counts from the
Web of Science [44] on October 16, 2016. The blue line is the line
of best fit using standard linear regression for all articles excluding
the initiating article. A slope of —0.89 &£ 0.09 gives an estimate of
p =~ 0.11 & 0.09. The first mover is a factor of 9.78 greater than would
be consistent with the line of best fit, approximately the expected ratio
of 1/p =1/0.11 = 9.46. The inset shows the binned residuals span
two orders of magnitude, in keeping with the results shown in the
inset of Fig. 2(b).

V. EMPIRICAL EVIDENCE OF A FIRST-MOVER
ADVANTAGE OBEYING SIMON’S MODEL

While we do not expect systems with truly pure Simon
mechanisms operating from a single initial element to be
widespread (more below), one possible application lies in
citation data for papers central to the development of a
well-defined area of research. In Fig. 3, we show citation
counts for papers with titles matching “scale-free networks”
(gray dots) [43] along with citation counts for the incipient
work of Barabasi and Albert [9] (large red disk) (in the manner
of [8], we add 1 to all citation counts). We used Web of Science
[44] to find these papers and their citation counts obtaining
a total of 692 on October 16, 2016. We note that although
Barabasi and Albert introduced the term in [9], they did not
elevate it to being part of their own title. Of course, our model
is not a perfect fit structurally as the citations are from all
sources and each new paper would likely cite those coming
before, especially [9]; we are also not attempting to capture
the growth of a citation network.

Because our results show that a pure Simon model will
produce a Zipf distribution with exponent « =1 — p and a
first-mover factor of 1/p, we have two distinct measurable
quantities that estimate p. Regressing through all but the initial
paper’s citation counts (blue line), we obtain a Zipf exponent

PHYSICAL REVIEW E 95, 052301 (2017)

o = 0.89 £ 0.09 whichin turn gives theestimate p = 1 — o =
0.11 £ 0.09. The ratio of the number of citations for the first
paper relative to that indicated by the regression is 9.78 which
gives a very comparable value of p = 1/9.78 =~ 0.10, one that
is well within standard error of the first estimate.

The inset for Fig. 3 shows the binned residuals for citation
counts around the line of best fit for Zipf’s law. The two orders
of magnitude variation in citation counts conforms well with
results from simulations displayed in the inset of Fig. 2(b).

Presuming all 692 papers cite the original Barabdsi and
Albert paper, then a fraction 692/11982 =~ 0.058 of the first
paper’s citations come from papers centrally occupied with
scale-free networks. Removing these and all citations internal
to the set of 693 papers would not greatly alter the observed
congruence between the first mover’s outsized citation count
and Zipf’s law.

Improving and extending this analysis of citation data
would be natural if potentially difficult to automate at a large
scale. To be a potential fit for the pure Simon’s model with the
first-mover advantage considered a feature, a new research area
would need to be started cleanly with a single paper. The paper
would have to introduce a singular and lasting catchphrase for
the focal topic, one that subsequent researchers developing
the area would see fit to be included in a paper title. In order
to build a sufficiently large data set, the analysis may also
be successfully expanded to include papers with matches for
the catchphrase in their abstracts rather than titles. We also
note that we have ignored real time in our present analysis
and that some modification of the model will be needed to
properly accommodate the probability that the nth relevant
paper appears at time .

VI. CONCLUDING REMARKS

We close with some thoughts on how the dominant
first-mover advantage of Simon’s model and the variability
of ordering may confound empirical analyses of real-world
systems, and offer some potential resolutions.

As an idealized process, Simon’s model evidently and
purposefully fails to involve many aspects and details of
real-world systems. Nevertheless, we must address the issue
that Simon’s rich-get-richer model has performed extremely
well in analyses of real systems that do not exhibit a dominant
group. Particular successes [45] have been found in measures
of the innovation probability p and the Zipf exponent o with
the expectation @ = 1 — p, as well as in the fraction of groups
with one or two members [1,8,11,29].

In moving away from a pure Simon model, we consider
three variant conceptions. A first possibility is to treat the first
group as being of a different kind to those that come after by
declaring the first element to be a kind of unobservable null
element—its selection and replication at time ¢ represents a
failure of the system to produce any visible element. Given
our analysis above, Zipf’s law would shift with n — n — 1
and then be closely approximated by a power-law decay [45].
However, this is a problematic mechanism as it requires the
null element to be hidden from an observer of the system,
while at the same time visible and equal in nature to all other
elements from the point of view of the replication mechanism
[46]. This mechanism is not the same as the one formed by
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adding an overall master update probability to Simon’s model
(i.e., at each time step, engage the element-adding mechanism
according to some fixed probability p,qq). Such a modification
would only serve to slow the dynamics. Further, starting the
original model with no element at time t = 1 would also fail for
as soon as the first element appears, the model would then act
in the same way. The first-mover advantage of Simon’s model
cannot be dismissed by any meaningful reinterpretation of the
mechanism.

A second modification would be to allow the innovation
probability to vary with time (something Simon considered
in [1]; see also [5,47]). Such a dynamic p, is plausible for
real-world systems [48], and is exemplified by Heap’s law, the
observation that “word birth” rate decays as a function of text
or corpus length [49-52]. For example, the innovation rate may
be initially high with new groups appearing rapidly, while in
the long run, the system may stabilize in its expansion rate with
the innovation probability p, dropping and tending towards a
constant. For such a dynamic, we would obtain a power-law
tail for Zipf’s law, but early on, a high innovation probability
would suppress the first group, and smooth out the overall
distribution. While in principle p, could be estimated from
data, great care would have to be taken given the stochastic
evolution of a single run of a pure Simon model that we
have demonstrated above and observed in real-world systems
[11,29].

Finally, and perhaps more realistically, we may have a
system that is initially configured by an entirely different
growth mechanism up until some time #y at which a pure
Simon model takes over. Building on our earlier analysis, we
can instantiate a simple version of such a system with an
initial # = 1 condition of St elements spread over n™™ groups
ranked by size (S,.; > S,.1.1 for 1 < n < n'"). Allowing the
basic rich-get-richer mechanism to then go into effect, the
same approach of Egs. (2)—(5) returns

¢ __ BaMi-p
"TUB(SWitC 4 — 1,1 — p)

For large ¢, we have the approximate result

Sy %

St 1 —(1=p) init
F(pr)[Si"“thfl] for 1 <n < n™,
.t 1—p| _n—nimit —(1=p) init (8)
1Y [W] forn > n s
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which reduces to Eq. (5) if nM'=ghit=y2 5 =1.
Equation (8) shows how the first-mover advantage is dis-
tributed across the groups present when Simon’s model is
introduced, and quantifies how the likelihood for newly
arriving groups to replicate diminishes as the population size
of the initial elements increases. For real-world systems with
Zipf’s laws that have clean power-law tails leading out from
difficult-to-characterize forms for the largest groups, Eq. (8)
offers a possible fit that would also estimate a time of transition
from an establishing mechanism to a rich-get-richer one.

A parallel finding is that the initial network structure
also matters for the Barabdsi-Albert growing network model
[35,36], offering the possibility that the initial conditions
and onset of the preferential attachment mechanism may be
estimated from an observed network. For even relatively small
seed networks with average degree 10, the asymptotic behavior
of the degree distribution will not match the classic k=3 form
found in [9]. A Simon-like first-mover advantage does not arise
for the Barabdsi-Albert model with a very small seed network
as a new node appears in each time step.

In sum, we have shown through simulations and analysis
that Simon’s fundamental rich-get-richer model—now 60
years old—carries an intrinsic first-mover advantage. The first
group’s size in the idealized model is outsized by a factor of
1/p, potentially several orders of magnitude. Any attempt to
attribute Simon’s mechanism to the growth of real-world sys-
tems must take into account this potentially dominant feature
of the model, along with the complications of the variability of
final rankings for later arriving groups [10,27,28,35,36], and
past work must come under a new scrutiny.
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