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This computational study investigates nonlinear dynamics of unstable convection in a 3D toroidal shaped
thermal convection loop (i.e., thermosyphon) with heat flux boundary conditions; results are compared
to prior 2D simulations. The lower half of the thermosyphon is subjected to a positive heat flux into the
system while the upper half is cooled by an equal-but-opposite heat flux out of the system. Water is
employed as the working fluid with fully temperature dependent thermophysical properties and the sys-
tem of governing equations is solved using a finite volume method. Numerical simulations are performed
for varying magnitudes of heat flux ð1:0 W=m2

6 q00 6 1:0� 104 W=m2Þ to yield Rayleigh numbers (i.e.,
buoyant forcing) ranging from 2:83� 104

6 Ra 6 2:83� 108. Delineation of multiple convective flow
regimes is achieved through evolution of the bulk-mass-flow time-series and the trajectory of the mass
flow attractor. Simulation results demonstrate that multiple regimes are possible and include: (1) con-
duction, (2) damped, stable convection that asymptotes to steady-state, (3) unstable, Lorenz-like chaotic
convection with flow reversals, and (4) high Rayleigh, aperiodic stable convection without flow reversals.
For the Rayleigh numbers considered, it is observed that certain flow regimes are not accessible in
toroidal simulations owing to the constraints of additional surface boundaries in a 3D system. The RMS
of mass flow rate, power spectra of oscillatory behavior, dominant oscillatory frequency, and residence
time are also described as a function of the buoyant forcing in the system.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection and buoyancy driven dynamic systems exist
over a wide range of length scales and are of notable import to the
scientific, mathematic, and engineering communities. On a geo-
physical scale, counter-rotating convection cells within the
asthenospheric layer of the Earth’s upper mantle are composed of
ductile rock (owing to the extremely high temperatures and pres-
sures) and produce much of the plate tectonic behavior such as
the formation of large scale ridges, trenches, and volcanic activity
[1]. On a regional scale, Hadley Cells in the planetary atmosphere
are intimately related to the behavior of the jet stream via Rossby
waves and aid to explain large scale motions of the Earth’s
atmosphere as well as weather pattern dynamics as quantified by
ensemble averages of teleconnection indices [2]. For example, the
North Atlantic Oscillation Index ðNAOÞ, which pertains to the
North–East US weather, is commonly used by meteorologists to
quantify the oscillatory and chaotic fluctuations of the jet stream
in an attempt to improve the accuracy of medium range
(10–30 days) weather forecasting. On a local scale, convective
thunderstorms (derechos, downbursts, and straight-line wind-
storms), micro-climates, and land/sea breezes are all the result of
unstable, differential heating in a thermal–fluid system [3–5].
Examples of natural convection employed in engineered systems
include: (1) solar water heaters, (2) nuclear reactors, (3) gas turbine
blade cooling, and (4) roads and railways that pass over permafrost,
among many others [6–8]. The buoyant forces resulting from
thermal gradients within these fluid systems can give rise to
complex mass flow circulations and aperiodic behavior.

The nonlinear dynamics of unstable convection have been stud-
ied by Lorenz [9] in his 1963 differential equation model for natural
convection in Rayleigh–Bénard convection cells. This work has been
studied extensively in an attempt to improve mathematical models
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Nomenclature

CCW counter-clockwise
CW clockwise
cp specific heat capacity at constant pressure kJ

kg�K

� �
e specific internal energy ðkJÞ
g gravitational acceleration ðm=s2Þ
h convection coefficient W

m�K
� �

I identity matrix
k thermal conductivity W

m�K
� �

L characteristic length scale ðmÞ
_m mass flow rate ðkg=sÞ

p pressure (Pa)
q00 heat flux ð�W=m2Þ

Ra Rayleigh no.
T static temperature (K)
t time (s)
V velocity vector (m/s)
a thermal diffusivity (m2/s)
b thermal expansion coefficient (1/K)
h azimuth coordinate (radians)
s viscous stress tensor (Pa)
m kinematic viscosity (m2/s)
l dynamic viscosity kg

m2 �s

� �
q density ðkg=m3Þ
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of the earth’s atmosphere. Physical and/or numerical models such
as thermal convection loops, or ‘thermosyphons’, are a simplified
geometry that represents a viable tool for studying the behavior
of natural convection cells [10]. Thermosyphons are a useful con-
struct for performing scientific studies as they limit convection to
a single, large cell and thus provide the simplest physical model
which allows for examination of the various flow regimes that
occur in convection cells.

Thermosyphons are fluid systems in which convective flow is
induced via buoyant forces that occur when sufficiently large
unstable temperature gradients exist (i.e., heating from the bottom
and cooling from the top). The fluid circulates within a closed, cir-
cular tube (e.g., torus) that is oriented vertically in space with the
direction of gravity. The resulting thermal gradient may be accom-
modated by conduction, or, if the gradient is sufficiently large,
buoyancy driven convection. Thermosyphons exhibit many of the
typical nonlinear system dynamical effects, particularly, natural
convection flow regimes wherein instabilities may grow large and
significantly alter the flow behavior within the thermosyphon.
The various flow regimes are typically delineated as (1) conduction
and/or quasi-conduction, (2) asymptotic, stable convection with
unidirectional flow, (3) unstable, Lorenz-like chaotic convection
with flow reversals, and (4) high Rayleigh number, aperiodic stable,
convection without flow reversals.

Comprehensive review articles written by Yang [11], Raithby
and Hollands [12], and Jaluria [13] discuss several important
closed-loop thermosyphon problems in various branches of engi-
neering, geophysics, environmental sciences. The review articles
[6–13] contain a wealth of literature on theoretical and experimen-
tal studies of this simple system, which exhibits typical nonlinear
convective effects. Early thermosyphon studies employed 1D mod-
els in order to study flow behavior in a thermosyphon with the
assumption that all governing parameters are uniform over any
given cross section at any moment in time [14,15]. Periodic oscilla-
tions were found analytically by Keller [14] in a 1D model consist-
ing of a fluid-filled tube bent into a rectangular shape and standing
in a vertical plane. Gorman et al. [16] presented a quantitative com-
parison of the flow in a thermal convection loop with the nonlinear
dynamics of the Lorenz model. Here the system was heated with
constant flux over the bottom half and cooled isothermally over
the top half. The boundaries of different flow regimes were deter-
mined experimentally and the characteristics of chaotic flow
regimes were discussed. They also derive a relationship between
the parameters of the Lorenz model and the experimental parame-
ters of the fluid and loop. Several flow stability studies have been
performed by Vijayan et al. [17] and Jiang et al. [18,19] while
Desrayaud et al. [20] completed a numerical investigation of
unsteady, laminar natural convection in a 2D convection loop
maintained at a constant heat flux over the bottom half and cooled
at a constant temperature over the top half. For a particular range of
forcing (i.e., Rayleigh number), it has been observed that the bulk
fluid motion in a thermosyphon is chaotic and undergoes flow
reversals. Creveling et al. [21] proposed a positive feedback
mechanism in order to explain these flow reversals in a
thermosyphon.

Within the extensive body of literature pertaining to ther-
mosyphons, only a minimal subset of studies have examined the
spatiotemporal behavior of the flow-field dynamics within a ther-
mosyphon. The thermal structure of the flow and velocity-field
where characterized in time by Ridouane et al. [22,23] where they
examine thermosyphons with isothermal boundary conditions in
2D and 3D geometries. It was found that for 2D thermosyphons,
chaotic flow regimes and the associated flow reversals occur for
Rayleigh numbers 9:5� 104 < Ra < 4:0� 105. However, in the 3D
isothermal work [23], flow reversals where not observed for
Rayleigh numbers ranging from 103 < Ra < 2:3� 107 with isother-
mal boundaries. Ridouane et al. suggest that 3D flow structures
increase flow resistance and thus damp the flow instability mecha-
nism responsible for bulk flow reversals observed in 2D loops.

The basis for exploring the heat flux boundary condition in 3D is
driven from multiple fronts. First, the flux boundary provides a bet-
ter correlation with actual laboratory experiments. And second is
the fact that flow reversals were not found in 3D isothermal simu-
lations [23] but are known to occur in experiments with heat flux
boundary conditions. In an earlier works by Louisos et al. [24,25]
a chaotic flow regime with flow reversals was found in 2D simula-
tions with heat flux boundary conditions. We thus seek to extend
this prior work by examining a 3D thermosyphon with toroidal
geometry and heat flux boundaries.

The present study considers 3D toroidal thermosyphon simula-
tions with iso-heat flux boundaries: heating on the bottom-half of
the loop ðþq00Þ and an equal but opposite iso-heat flux cooling on
the top half ð�q00Þ over the range of Rayleigh numbers from
2:83� 104 to 2:83� 108. Here we examine both the temporal
evolution and the RMS value of the mass flow rate in the
thermosyphon. Particular focus is placed on characterizing flow
reversals as defined by the transition from clockwise ðCWÞ to
counter-clockwise ðCCWÞ flow around the convection loop (or vice
versa). The trajectory of the thermosyphon mass flow rate solution
is plotted on an attractor diagram and the fixed convective equilib-
rium solutions are shown as ‘orbital centers’ for both decaying,
periodic, and chaotic flow regimes. A frequency analysis is per-
formed in order to examine the power spectra of the system and



Fig. 1. The computational mesh employed in previous 2D thermosyphon studies. The geometry shown provides the starting point for 3D studies.

Fig. 2. The computational domain employed in 3D thermosyphon simulations. The inset ‘A’ shows a sample of the numerical mesh around an outer circumferential section of
the thermosyphon while the inset ‘B’ shows the mesh along a typical cross-section.
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to determine the dominant frequency and residence time of a
particular circulatory direction. Finally, special emphasis is placed
on delineating the flow regimes that are encountered as a function
of the Rayleigh number.
2. Model of physical system

The geometry of the thermosyphon system employed for this
study is depicted in Fig. 1 for 2D simulations and in Fig. 2 for 3D
simulations. The geometry consists of a closed, circular loop filled
with liquid water at atmospheric pressure and oriented in a vertical
plane with the force of gravity in the downward direction as shown.
The physical dimensions of the loop are 69 cm inner diameter and
75 cm outer diameter; the 3D toroidal thermosyphon has a uniform
3.0 cm cross-sectional diameter.

The initial condition of the thermosyphon system is such that
the water is uniformly quiescent throughout the domain and in
thermal equilibrium at T0 ¼ 300 K. In order to create a thermal
instability within the closed space, both the inner and outer upper
walls ð0 < h < pÞ are imposed with a heat flux ð�qÞ out of the sys-
tem while both the inner and outer lower walls ðp < h < 2pÞ are
Fig. 3. The temperature contours as a function of increasing time from ðAÞ 19 s to ðFÞ 325
flow shown in ðDÞ at time t ¼ 208 s. As a reference for the reader, a complete animatio
imposed with an equal in magnitude but opposite direction heat
flux ðþqÞ into the system. The equal and opposite heat fluxes are
held constant along with the acceleration of gravity while the fluid
system is monitored as it evolves in time.

In this study, our focus is the delineation of natural convection
flow regimes for varying magnitudes of heat flux and gravity as
characterized by the Rayleigh number. The Rayleigh number seeks
to capture the relative strengths of buoyancy compared to viscous
forces multiplied by the ratio of momentum and thermal diffusivity
for thermally driven fluid systems. The Rayleigh number is tradi-
tionally defined as

Ra ¼ qgbDTL3

la
ð1Þ

where q is the fluid density ðkg=m3Þ; g is the acceleration of gravity
ðm=s2Þ; b is the thermal expansion coefficient ð1=KÞ; DT is the tem-
perature difference between the hot a cold boundaries ðKÞ; L is the
characteristic length scale ðmÞ; l is the dynamic viscosity
ðkg=ðm � sÞÞ, and a is the thermal diffusivity ðm2=sÞ. In this work with
heat flux boundary conditions, as opposed to isothermal boundaries,
various combinations of flow parameters (i.e., gravity and heat flux)
s for toroidal thermosyphon flow at Ra ¼ 2:13� 107. Note the large magnitude CCW
n of this flow-field is provided as a part of the on-line supplemental materials.
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may yield the same Rayleigh number. Put another way, a unique set
of flow parameters does not exist for a particular Rayleigh number.
While the Rayleigh number formulation of Eq. (1) is readily
employed for isothermal boundary conditions, it must be modified
in order to account for the expected non-isothermal heat flux
boundaries in this work. For the case of heat flux boundary condi-
tions, some characteristic temperature differential is required to
compute the Rayleigh number. To obtain a representation of the
temperature differential, we appeal to Fourier’s law of heat
conduction

q00 ¼ k
DT
L

ð2Þ

in order to estimate temperature difference DT in terms of the heat
flux q00ðW=m2Þ and thermal conductivity k ðW=ðm � KÞÞ. This readily
provides a redefinition of the Rayleigh number in a form appropriate
for the heat flux boundary condition. As such, with DT ¼ q00L=k, the
resulting Rayleigh number formulation used throughout this work is

Ra ¼ qgbL4

lak
q00: ð3Þ

This definition of the Rayleigh number in terms of a heat flux
boundary has been validated over a large range of forcing condi-
tions (i.e., gravity, heat flux) in prior work [24,25]. Variations of
the Rayleigh number are achieved by adjusting the value of the
heat flux ð1:0 6 q00 6 1:0� 104 W=m2Þ with the gravitational
acceleration ð0:5 m=s2 < g < 9:8 m=s2Þ in order to yield Rayleigh
numbers ranging from 1:45� 103

6 Ra 6 2:8� 108.
3. Computational methods

The working fluid in this thermosyphon system is liquid water
at an operating pressure of one atmosphere ð101:325 kPaÞ and all
thermophysical properties, including density ðqÞ, specific heat
ðcpÞ, thermal conductivity ðkÞ, and dynamic viscosity ðlÞ, are
Fig. 4. The RMS value of the measured thermosyphon wall temperature as a function o
provided as a measure of forcing.
modeled as temperature dependent via a piecewise linear function
that includes 31 data points.

Computational domains are based the geometry described
above and have been generated using Fluent Inc.’s Gambit grid
generation software and the numerical grid for 2D simulations is
provided in Fig. 1 while the 3D mesh is provided in Fig. 2. A section
of the grid on the outer face of the toroidal thermosyphon is
provided in Inset (A) of Fig. 2 and the mesh cross-section shown
in Inset (B) of Fig. 2 is identically repeated around the entire
thermosyphon loop. A formal grid-independence study has been
performed for the 3D geometry and follows the procedure as
described in Ridouane et al. [22] The 3D grid sensitivity study yields
a final production grid that contains 1.56 million tetrahedral finite
volumes with no symmetry assumption. The flow field is governed
by the conservation of mass, momentum, and energy according to

@

@t
qð Þ þ r � qVð Þ ¼ 0 ð4Þ
@

@t
qVð Þ þ r � qVVð Þ ¼ �rpþ q Tð Þg þr � s ð5Þ
@

@t
qeð Þ þ r � qVeð Þ ¼ r � krT þ s � Vð Þð Þ ð6Þ
e ¼ cpT þ 1
2
jVj2 ð7Þ
s ¼ l rV þrVT
� �

� 2
3
r � VI

� �
ð8Þ

where e is the specific internal energy, cp is the specific heat at con-
stant pressure, and s is the Newtonian viscous stress tensor. The
no-slip velocity boundary condition is imposed on the inner and
outer walls of the computational domain. Owing to the low flow
velocities and Reynolds numbers, a laminar viscous model is
employed without viscous heating.
f the Rayleigh number for equal and opposite wall heat flux. Note that DTwall is also
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The governing equations are solved numerically using the finite
volume method (FLUENT 6.3 [26]). An implicit, pressure-based,
segregated solver is employed and all discretization schemes are
of second-order accuracy or higher. The QUICK scheme is used for
the momentum and energy discretization while the Green–Gauss
scheme is used for the spatial discretization. Pressure discretization
employs the body-force weighted model and pressure–velocity
coupling is handled by the SIMPLE pressure correction algorithm.

In this work, we seek to resolve the temporal evolution of the
flow-field from an initial condition of thermal equilibrium at
T0 ¼ 300 K and zero velocity throughout the domain. The unsteady
numerical model is second-order implicit in time as utilizes a time-
step size of Dt ¼ 0:25 s in order to render the solution insensitive to
Fig. 5. The mass flow rate time series (Top) and the associated attractor plot (Bottom) w
the oscillations decay to the steady, convective RMS value.
time-step size. Convergence at each time-step is assessed via
computed residuals (mass, momentum, and energy) and flow
monitors (e.g., _m; T) at key locations within the domain. The solu-
tion at a given time-step is deemed converged when the numerical
residuals have fallen below 10�5 and flow monitors change by less
than 0.01% with further iterations. In this work, we numerically
simulate the first 10;000þ s of flow time (P 40;000 time-steps) in
order to analyze flow-field from start-up at time t ¼ 0 (i.e., thermal
equilibrium throughout the domain at a temperature of 300 K and
no flow) to the point where the low regime is able to be well char-
acterized. The efficacy of this computational strategy as it pertains
to this model of the thermosyphon has been demonstrated in the
previous works by Ridouane et al. [22,23] and Louisos et al. [24,25]
ith a time delay s ¼ 20 and a heat flux q00 ¼ �1:0 W=m2 ðRa ¼ 2:83� 104Þ. Note that
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4. Results & discussion

In this section, we present and discuss the numerical results
from natural convection simulations in a toroidal thermosyphon.
First, thermal illustrations and an animation of the flow-field are
presented in order to orient the reader. Thermosyphon boundary
temperatures along with the DTwall are plotted as a function of
the Rayleigh number (i.e., iso-heat flux). Next, the mass flow pulsa-
tions are provided as a time-series along with the mass flow attrac-
tor plot in order to quantify bulk fluid flow as a function of the
forcing in the system; the root-mean-square ðRMSÞ of the mass flow
rate as a function of the Rayleigh number is also provided. We then
discuss the residence time (i.e., CCW vs CW) and perform a fre-
quency analysis of the mass-flow time-series in order to extract
dominant oscillatory frequencies and compare the power spectra
Fig. 6. The mass flow rate time series (Top) and the associated attractor plot (Bottom) w
oscillations centered on the RMS value approach a stable limit cycle orbiting around th
of the 3D toroidal thermosyphon to existing 2D data from the liter-
ature. Finally, we close this section with a summary of flow regime
delineation using a two-parameter bifurcation diagram.
4.1. Overview of flow field characteristics

As a point of illustration and orientation for the reader, typical
flow-field characteristics are illustrated in Fig. 3 which portrays
the temperature contours in the toroidal thermosyphon for
selected time-steps with the forcing corresponding to
Ra ¼ 2:13� 107. Here we show contours on the vertical x–y sym-
metry plane along with cross-sections at the h ¼ 0; p2 ;p;

3p
2

� �
posi-

tions. Note that all 6 panels (A–F) in Fig. 3 utilize the same
contour color-map scale for comparison purposes.
ith a time delay s ¼ 10 and a heat flux q00 ¼ �20 W=m2 ðRa ¼ 5:67� 105Þ. Here the
e unstable convective equilibrium.
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Panel A shows an early time step at time t ¼ 19 s where the
flow-field is still nearly isothermal with a small hot layer on the
upper-portion of the bottom-half of the thermosyphon and vice
versa for the cold layer on the bottom-portion of the upper-half
of the loop; this can readily be observed at the h ¼ p and h ¼ 3p

2

cross-section insets. Moreover, mixing is observed at the iso-heat
flux boundary discontinuity at the h ¼ 0 and h ¼ p positions where
the updraft of warm fluid is mixing with the downdraft of cool
fluid. The result is localized, counter-rotating convection cells that
distinctly resemble looking ‘downward’ on the well-known
Rayleigh–Bénard cellular pattern.
Fig. 7. The mass flow rate time series (Top) and the associated attractor plot (Bottom) w
transient flow reversal is observed and oscillations exhibit a beating pattern.
Panels B and C at 71 and 133 s, respectively, illustrate the unsta-
ble thermal condition where the buoyant, hot fluid is submerged
below the colder, dense fluid on the top; note still the mixing at
the h ¼ 0 and h ¼ p positions. In panel D at 208 s, a large magnitude
CCW flow is observed which results in the thermally stable state
found in panel E at 240 s with the hot, buoyant fluid above the cold,
more dense fluid below.

Finally, in Fig. 3 panel F we see a small, residual oscillation as
both the hot and cold fluid ‘pockets’ have surpassed their respective
equilibrium positions as the cold fluid is warmed by the incoming
heat flux and the hot fluid is cooled by the outgoing heat flux on
ith a time delay s ¼ 10 and a heat flux q00 ¼ �100 W=m2 ðRa ¼ 2:83� 106Þ. Here, a



Fig. 8. The mass flow rate time series (Top) and the associated attractor plot (Bottom) with a time delay s ¼ 5 and a heat flux q00 ¼ �200 W=m2 ðRa ¼ 5:67� 106Þ. This regime
demonstrates chaotic flow reversals.
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the top-half of the thermosyphon. As a reference for the reader, a
complete animation of this flow-field is provided as a part of the
on-line supplemental materials.

Forcing within the thermosyphon is numerically controlled via
the ±iso-heat flux at the thermosyphon wall boundaries, i.e., a lar-
ger heat flux generates larger forcing and thus a larger Rayleigh
number. As the forcing is increased, it is expected to result in larger
mass flow rates which will in turn transport the heat away from the
boundaries. In Fig. 4 we characterize the RMS of the thermosyphon
wall temperature measured from simulation data as a function of
the Rayleigh number; the DTwall between the heated-lower and
cooled-upper wall boundaries is also plotted. This figure provides
a reference to the reader and illustrates a ‘‘mapping’’ from the
classically defined Rayleigh number (in terms of DT (Eq. (1))) to
the flux-based form of the Rayleigh number employed in this work
(Eq. (3)).

4.2. Temporal dynamics: time series & attractor plots

The typical progression of flow regimes with increased forcing is
as follows: (1) pure-conduction and/or quasi-conduction character-
ized by no bulk circulation and weak, localized mixing at the ±heat
flux discontinuity; (2) stable convection with continuous, unidirec-
tional bulk mass-flow (i.e., no flow reversals); (3) Lorenz like chao-
tic flow characterized by oscillations that grow in amplitude with
time and result in flow reversals where the bulk mass flow
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transitions from CCW to CW and back to CCW many times through-
out a given simulation; and (4) high-Rayleigh, stable convection
characterized by unidirectional flow with high frequency, low
amplitude, aperiodic oscillations centered about a particular mass
flow rate [25]. However, for the lowest Rayleigh numbers consid-
ered in this study, neither the pure-conduction nor
quasi-conduction flow regime was observed. This suggests that a
conduction dominated regime in 3D thermosyphons exists at a
forcing with Ra < 2:83� 104.

Moreover, a significant disparity between the 2D and 3D simu-
lations is that a high-Rayleigh, stable convective regime is not
observed in 3D toroidal thermosyphon simulations up to a
Rayleigh number of Ra ¼ 2:83� 108. In 2D simulations, the
Fig. 9. The mass flow rate time series (Top) and the associated attractor plot (Botto
high-Rayleigh, stable flow regime was found at Rayleigh numbers
as low as 107. We mention here that thermosyphons with
Ra > 108 were not considered in this work owing to the fact that
localized regions in the flow were shown to reach their saturation
temperature and thus result in a phase change (freezing/boiling)
that is not compatible with the current model.

The temporal evolution of the mass-flow-rate time-series and
the associated attractor plots are presented in Figs. 5–10 for the tor-
oidal thermosyphon as the Rayleigh number is increased from
2:83� 104 to 5:67� 107. It is important to note that in Figs. 5–10
the ordinate axis in the time-series plots (mass flow rate) and both
axes in the attractor plot are scaled so as to provide detailed reso-
lution of the oscillatory flow evolution.
m) with a time delay s ¼ 5 and a heat flux q00 ¼ �800 W=m2 ðRa ¼ 2:27� 107Þ.
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Fig. 5 shows a typical stable convective flow regime with
damped oscillations that asymptote to a steady-state RMS value.
The attractor plot (Fig. 5, bottom) shows the measured state vari-
able (mass flow rate) experiencing a inward-spiraling, degrading
orbit with sequentially smaller radii upon each orbit; the state vari-
able will eventually land on the RMS value and experience steady,
stable convection in perpetuity.

Fig. 6 illustrates the behavior of a system with oscillations that
are centered on the RMS value and approach a stable limit cycle
that orbits around the unstable convective equilibrium. The
behavior shown in Fig. 7 is very similar to that of Fig. 6 save for
the fact that a flow reversal is observed along with a subsequent
Fig. 10. The mass flow rate time series (Top) and the associated attractor plot (Bottom
regime demonstrates chaotic flow reversals.
‘‘beating’’ pattern. As such, Fig. 7 represents a flow regime that is
transitional between steady convection and chaotic behavior.

Figs. 8–10 illustrate the classic Lorenz chaotic behavior. As the
forcing is increased within this regime, flow reversals become more
frequent and the orbital patterns of the attractor plot become more
dispersed. However, immediately following a flow reversal, the
orbiting state variable tends to approach the RMS value much more
closely – and with small amplitude oscillations – before the orbit-
ing radii increases and the system is yet again thrown into a
reversed flow direction. This is in direct contrast to the low forcing
cases were the orbit decays to the steady RMS value and the stable,
oscillatory cases where the orbiting radii remains nearly constant.
) with a time delay s ¼ 2 and a heat flux q00 ¼ �2000 W=m2 ðRa ¼ 5:67� 107Þ. This



Fig. 11. A semi-log plot of the RMS of the mass flow rate signal for both 2D and 3D simulations as a function of the Rayleigh. Note that the RMS of the mass flow rate scales as
_m � Ra0:41.
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For the Lorenz-like chaotic flow regimes, the attractor plot shows
an initially small radius orbital that grows larger with time until
a flow reversal is achieved; it is this growing orbital radii that gen-
erates the appearance of a dispersed attractor plot.

We now demonstrate the sole dependency of the flow behavior
on the dimensionless Rayleigh number for both 2D and 3D toroidal
thermosyphons. To do so, the results of all parametric cases (i.e., all
values of g; q00) have been used to calculate the RMS value of the
mass flow rate from the time-series of Figs. 5–10 as a function of
the Rayleigh number. The RMS values of mass flow rate, along with
the RMS of the Reynolds number, is plotted in Fig. 11. Here we see
the collapse of the RMS time-series mass-flow signal onto a single
curve which captures both 2D and 3D behavior up to Ra ¼ 108.
Also shown is an exponential curve-fit as Ra0:41 on a semi-log plot
(regression coefficient of 0.98) which is consistent with power
law scalings found in typical natural convection systems with inter-
nal flow [27].

4.3. Frequency analysis & residence time

In this section, we turn our attention to the frequency character-
istics of the flow pulsations and flow reversals observed in the
time-series data of Figs. 5–10. The mass flow rate is used as the
input signal to a Fourier transform and power spectra have been
computed for each of the cases. Fig. 12 shows representative power
spectra for selected thermosyphon flow regimes. The computa-
tional parameters implemented in this study (time-step size, data
reporting interval) allow the power spectra to capture frequencies
up to 8:0� 10�2 Hz. This is approximately 1/10–1/40 of the average
time required for a fluid particle to circulate once around the entire
thermosyphon circumference depending on the particular strength
of the forcing and the convective flow rate.

Fig. 12(A) corresponds to the mass flow signal shown in Fig. 5
ðRa ¼ 2:83� 104Þ and is representative of convective flow with
damped, asymptotic oscillations that decay to steady-state convec-
tion equal to the RMS value of the mass flow rate. The dominant
oscillatory frequency is well defined at 4� 10�4 Hz and the power
spectrum rapidly weakens at frequencies greater than 10�3 Hz.
Fig. 12(B) corresponds to the mass flow signal of Fig. 7
ðRa ¼ 2:83� 106Þ and is representative of a flow regime that is
transitional between stable and unstable convection. Here the peak
in the power spectrum is less pronounced and shifted to a higher
frequency ð2:5� 10�3 HzÞ while the amplitude of the spectrum
has increased in the higher frequency range.

The power spectra of chaotic natural convection is shown in
Fig. 12(C) and (D) for Rayleigh numbers corresponding to
2:27� 107 and 2:27� 108, respectively. In this flow regime, the
power spectra do not exhibit a dominant frequency but rather a
broad-bandwidth from the lowest frequencies and up to greater
than 10�2 Hz. This is a notable characteristic of 3D thermosyphons
that is not observed in the 2D counterparts.

When considering Fig. 12 we note two observations: First, at low
forcing, the dominant frequency is low and rather pronounced
while the power spectrum exhibits a rapid drop in amplitude at
higher frequencies. And second, as the forcing in the system
increases, there is not a well defined, dominant oscillatory fre-
quency but rather a broad-band power spectra is observed which
weakens only at very high frequencies. This is a notable disparity
from prior 2D simulations detailed in Louisos et al. [25] where
the dominant oscillatory frequency is more pronounced at higher
forcing. We now turn our attention to a comparison of 2D and 3D
thermosyphon results wherein both the similarities and disparities
are explored in further detail.

The dominant oscillatory frequency has been extracted from the
power spectra and is plotted as a function of the Rayleigh number
in Fig. 13. Here is observed that the 2D and 3D cases share a nearly
identical behavior for Ra � 2:83� 106 at which point the trends
noticeably diverge. The dominant frequency is coincident and
increasing with Rayleigh number for both cases until the toroidal
geometry begins to reveal chaotic behavior. At this point, the 3D
toroidal thermosyphon no longer exhibits a well-defined dominant
frequency but instead enters a region of broad power spectra. The
2D thermosyphon on the other hand maintains the trend while
the dominant frequency actually becomes more pronounced.



Fig. 12. A summary plot of the FFT power spectrum of the mass flow evolutions: (A) the stable oscillatory, decaying flow shown in Fig. 5; (B) the low forcing, weakly chaotic
flow shown in Fig. 7; (C) the high forcing chaotic flow shown in Fig. 9; and (D) a high forcing chaotic flow regime at Ra ¼ 2:27� 108.
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The average time in which the thermosyphon resides in either
the CW or CCW directions prior to experiencing a flow reversal
has been measured from mass-flow time-series simulation data
and is characterized in Fig. 14 on a log–log plot for both 2D and
3D geometries as a function of the Rayleigh number. In general,
the residence time scales as Ra�0:41 as shown on the figure. For
Ra < 5:67� 106 the toroidal thermosyphon does not experience
flow reversals and thus the residence time is not applicable. For
Ra > 5:67� 106, the 2D thermosyphon is in a high-Rayleigh, aperi-
odic, stable flow regime and the only flow reversals observed are of
the transient, start-up kind [25] and thus the 2D curve exhibits the
sharp rise in residence time as shown in Fig. 14. It is worthy of note
that, for increasing Rayleigh numbers, as the 2D thermosyphon
enters the high Rayleigh, stable regime at Ra ¼ 5:67� 106, the 3D
toroidal thermosyphon enters the chaotic flow regime and the
trend of residence time scaling as Ra�0:41 is maintained from 2D
to 3D geometries. Furthermore, there is no high-Rayleigh, stable
flow regime found for the 3D geometry as discussed in
Section 4.2 above.
4.4. Flow regime delineation

We end our discussion of results by delineating the various flow
regimes according the forcing in the system as a function of the
Rayleigh number. Fig. 15 shows a flow regime bifurcation diagram
in the gravity vs. heat flux parametric space with lines of constant
Rayleigh number superimposed. Note that the Rayleigh number
scale is shown on the upper horizontal axis in Fig. 15 with curves
of constant Ra emanating from said axis. Flow regimes have been
characterized and delineated for all 2D and 3D cases discussed in
this study.

From Fig. 15 it can be seen that, in general, the flow regime tran-
sitions in 3D reside at 10� the forcing of the 2D counterpart. For
example, 2D stable convection begins at Ra � 5� 104 whereas in
3D stable convection does not begin until Ra � 5� 105. Similarly,
the onset of chaotic flow behavior in 2D occurs at Ra � 5� 105 while
chaotic flow in the toroidal geometry is suppressed to Ra � 5� 106.
It is thus apparent that additional forcing is required in toroidal
thermosyphons owing to the increased dissipation of additional



Fig. 13. A comparison of the dominant oscillatory frequency as a function of Rayleigh number for 2D and 3D toroidal thermosyphons. Note that 3D chaotic flows do not
exhibit a well defined oscillatory frequency but rather a region of broad-band power spectra.

Fig. 14. A plot of the flow-direction residence-time as a function of the Rayleigh number. The spike in residence time for 2D cases corresponds to the high Rayleigh, stable
flow regime not observed in 3D simulations. In general, the residence time scales as Ra�0:41 for both 2D and toroidal thermosyphons.
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surface boundaries in fully 3D simulations. Furthermore, it is essen-
tial to note that while high-Rayleigh, aperiodic, stable convection is
observed at Ra � 2� 107 in 2D simulations, this regime is not found
in 3D toroidal simulations up through Ra ¼ 2:83� 108 and thus the
factor of 10� does not appear to be valid for the return of high
Rayleigh, stable convection for 3D geometries.



Fig. 15. A flow regime bifurcation diagram for both 2D and 3D thermosyphons as a function of Rayleigh number with gravity and heat flux as shown. Note that the high
Rayleigh, aperiodic, stable convective regime is not found for 3D toroidal thermosyphons up to Ra � 108.
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5. Conclusions

In this study, we have numerically modeled a 3D thermosyphon
convection loop with toroidal geometry where an iso-heat flux
boundary condition has been employed to provide buoyant forcing
in a gravitational field. While prior 3D studies with an isothermal
boundary condition did not demonstrate chaotic behavior nor flow
reversals [23], here we find that the heat flux boundary condition
did indeed produce an unstable, convective flow regime character-
ized by chaotic flow reversals. However, a stable, high-Rayleigh
number convection regime was not observed with heat flux
boundaries.

The dimensionless Rayleigh number has been shown to accu-
rately capture the physics of the flow and fully characterize the
observed behavior. Thermosyphon behavior has thus been charac-
terized in terms the Rayleigh number according to the following:
(1) the RMS wall temperature; (2) the temporal evolution and the
RMS of the mass flow rate signal along with the associated attractor
plots; (3) a frequency analysis including power spectrum, dominant
frequency, and residence time; and (4) a flow regime bifurcation
diagram. Computational results have also been compared to prior
2D thermosyphon data from the literature with iso-heat flux
boundary conditions in order to provide insight to the reader.

When comparing 2D and 3D simulation results with heat flux
boundaries, there are a few disparities that are worthy of note.
First, all convective 2D simulations, including the stable,
non-reversing flow regimes, exhibit one or more transient flow
reversals during establishment of the initial convective flow [25];
these transient reversals are not observed in any 3D toroidal simu-
lations. Second, flow regime delineation in 3D generally occurs at a
Rayleigh number that is 10� that of the comparable 2D simulation
owing to the increased dissipation from additional solid boundaries
in the confined 3D toroidal geometry. Finally, numerical results
show that only three of the four distinct flow regimes exist in 3D
toroidal thermosyphons, namely: (1) conduction, (2) damped,
stable convection without flow reversals, and (3) Lorenz-like chao-
tic convection with flow reversals; there is no high-Rayleigh, stable
convective regime observed in 3D systems for thermal forcing up to
the limit where phase change begins ðRa � 2� 108Þ. In comparison,
for 2D thermosyphon systems, the high Rayleigh, stable convective
regime is observed at Ra > 2� 107.

Analysis of the mass-flow time-series data indicate that the RMS
of the bulk mass circulation depends solely on the Rayleigh number
as Ra0:41 and is consistent in both 2D and 3D systems. A comparison
of the power spectra generated from the mass-flow time-series sig-
nal shows strong agreement of the dominant oscillatory frequency
up to Ra � 3� 106 at which point the trends diverge. For
Ra > 3:0� 106, the 2D thermosyphon reveals a dominant oscilla-
tory frequency that becomes more pronounced and increases with
Ra while the toroidal thermosyphon exhibits broad-band power
spectra. The residence time in a particular circulation direction
for both 2D and 3D systems show excellent agreement with the

general trend as 1=Ra0:41; the notable exception is the 2D
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thermosyphon diverging from this trend as it enters the high
Rayleigh, aperiodic, stable convection regime that is not found in
the toroidal geometry.
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