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The Lorenz ’96 model is an adjustable dimension system of ODEs exhibiting chaotic behavior
representative of the dynamics observed in the Earth’s atmosphere. In the present study, we
characterize statistical properties of the chaotic dynamics while varying the degrees of freedom
and the forcing. Tuning the dimensionality of the system, we find regions of parameter space
with surprising stability in the form of standing waves traveling amongst the slow oscillators.
The boundaries of these stable regions fluctuate regularly with the number of slow oscillators.
These results demonstrate hidden order in the Lorenz ’96 system, strengthening the evidence
for its role as a hallmark representative of nonlinear dynamical behavior.
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1. Introduction

Modern society often depends on accurate weather
forecasting for daily planning, efficient air-travel,
and disaster preparation [Kerr, 2012]. Predicting
the future state of physical systems, such as the
atmosphere, proves to be difficult; chaotic systems
exhibit sensitive dependence on initial conditions,
meaning that small errors in any state approxi-
mation will lead to exponential error growth [Alli-
good et al., 1997]. Furthermore, weather prediction
requires the use of computationally expensive
numerical models for representing the atmosphere.
Most scientists trying to advance current predictive

techniques cannot afford to run experiments using
these real-world weather models. To this end, com-
putationally manageable “simple models” are used
instead to represent interesting atmospheric char-
acteristics while reducing the overall computational
cost.

Scientists have long wrestled with chaotic
behavior limiting the predictability of weather
in the Earth’s atmosphere [Lorenz, 1963, 1968;
Farmer & Sidorowich, 1978; Lorenz & Emanuel,
1998; Danforth & Yorke, 2006]. In the case of atmo-
spheric forecasting, simple models exhibiting expo-
nential error growth provide an ideal environment
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for basic research in predictability. Edward Lorenz,
one of the great pioneers in predictability research,
introduced the following I-dimensional model which
exhibits chaotic behavior when subject to sufficient
forcing

dxi

dt
= xi−1(xi+1 − xi−2) − xi + F, (1)

where i = 1, 2, . . . , I and F is the forcing parameter
[Lorenz, 1996]. Each xi can be thought of as some
atmospheric quantity, e.g. temperature, evenly dis-
tributed about a given latitude of the globe, and
hence there is a modularity in the indexing that is
described by xi+I = xi−I = xi.

In an effort to produce a more realistic growth
rate of the large-scale errors, Lorenz went on to
introduce a multiscale model by coupling two sys-
tems similar to the model in Eq. (1), but differing in
time scales. The equations for the Lorenz ’96 model
[Lorenz, 1996] are given as

dxi

dt
= xi−1(xi+1 − xi−2)

−xi + F − hc

b

J∑

j=1

y(j,i), (2)

dy(j,i)

dt
= cby(j+1,i)(y(j−1,i) − y(j+2,i))

− cy(j,i) +
hc

b
xi, (3)

where i= 1, 2, . . . , I and j = 1, 2, . . . , J . The param-
eters b and c indicate the time scale of solutions
to Eq. (3) relative to solutions of Eq. (2), and h
is the coupling parameter. The coupling term can
be thought of as a parametrization of dynamics
occurring at a spatial and temporal scale unresolved
by the x variables. Again, each xi can be thought
of as an atmospheric quantity about a latitude that
oscillates in slow time, and the set of y(j,i) are a
set of J fast time oscillators that act as a damping
force on xi. The y’s exhibit a similar modularity
described by y(j+IJ ,i) = y(j−IJ ,i) = y(j,i). A snap-
shot of a solution state is shown as an example
in Fig. 1.

This system has been used to represent weather
related dynamics in several previous studies as
a low-dimensional model of atmospheric dynam-
ics [Orrell, 2002; Wilks, 2005; Danforth & Kalnay,
2008; Lieb-Lappen & Danforth, 2012]. There are

(a)

  10

  20

  30

  40

30

210

60

240

90

270

120

300

150

330

180 0

I=30, J=5, F=14

Slow Osc.
Fast Osc.

(b)

Fig. 1. (a) A visual representation for the coupling of the
fast and slow time systems in the Lorenz ’96 model. There
are I = 10 slow large amplitude oscillators, each of which
are coupled to J = 3 fast small amplitude oscillators. The
slow oscillators are arranged in a circle representing a given
latitude and (b) an example snapshot from an actual tra-
jectory with I = 30, J = 5, and F = 14. The blue dots
represent the slow oscillators, and the green represents the
flow of information among the fast oscillators. See Fig. 5 for
further examples and a more detailed explanation.

many advantages to using the Lorenz ’96 model.
Primarily, the model allows for flexibility in
parameter tuning to achieve varying relative levels
of nonlinearity, coupling of timescales, and spatial
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degrees of freedom. Unless otherwise noted, we fix
the time scaling parameters b = c = 10 and the
coupling parameter h = 1 for the remainder of this
study. These parameter choices are consistent with
the literature in terms of producing chaotic dynam-
ics quantitatively similar to those observed in the
atmosphere [Karimi & Paul, 2010]. We vary I, J ,
and F to explore different spatial degrees of free-
dom and different levels of nonlinearity in the sys-
tem dynamics.

In this study, we characterize the parameter
space of the Lorenz ’96 system revealing patterns
of order and chaos in the system. We discuss our
methods in Sec. 2. In Secs. 3 and 4, we provide
our results along with evidence for stability in the
Lorenz ’96 model in the form of standing waves
traveling around the slow oscillators. We discuss the
implications of our findings in Sec. 4.

2. Methods

We examine the Lorenz ’96 model for forcings F ∈
[1, 18], and integer spatial dimensions I ∈ [4, 50]
and J ∈ [0, 50]. For each choice of F , I, and J ,
we integrate the Lorenz ’96 model with a randomly
selected initial condition in the basin of attraction
for the system attractor. We use the Runge–Kutta
method of order-4 [England, 1969] with a time step
of 0.001 to integrate the initial point along its tra-
jectory. Initially, we iterate the point 500 time units
without performing any analysis so that the trajec-
tory is allowed to approach the attractor; thus tran-
sient activity is ignored. From here, we integrate an
additional 500 time units for analysis. Results were
insensitive to increases in integration time, specific
choices of initial condition, and decreases in time
step size. We show examples of stable and chaotic
trajectories in Fig. 2.

We use the largest Lyapunov exponent, the
percentage of positive Lyapunov exponents, and
the normalized Lyapunov dimension to characterize
the nonlinearity of the system. We approximate the
Lyapunov exponent for the ith dimension of the
slow modes X along the trajectory v as

Li(v) ≈ 1
∆ timetotal

N∑

n=1

ln(|f(v(n)
i )|) (4)

where N is the number of iterations, v(n)
i is the

ith coordinate of the trajectory at the nth iterate,
∆ timetotal is the total model integration time, and

f is the stretch factor measured from the trajecto-
ries of an I-dimensional ensemble near a point on
the trajectory over a unit time step. This calculation
can be thought of as an average of the natural-log
of the stretching/shrinking dynamics of the system
acting on an ensemble of points very near to the
trajectory over time. The Lyapunov dimension is
given by

L = D +
1

|LD+1(v)|

D∑

d=1

Ld(v) (5)

where D is the largest whole number such that∑D
d=1 Ld(v) ≥ 0. This calculation yields an approx-

imation of the slow mode attractor fractal dimen-
sion. In general, the fractal dimension compared to
the number of slow mode dimensions in the model
(namely I) provides a reasonable measure of the
nonlinearity in the system which we can subse-
quently compare to the dynamics resulting from dif-
ferent parameter choices [Kaplan & Yorke, 1979].

From the one-dimensional time series in Fig. 2,
we see examples of the dynamics exhibited by the
slow variables X (x1 is a representative example
of X). We also measure nonlinearity by looking
at the frequency spectrum for the trajectories of
individual slow oscillators. Given a time series, the
frequency spectrum can be approximated using the
Fourier transform [Orrell, 2002, 2003]. Chaotic sys-
tems typically exhibit power at a large number of
frequencies, while stable systems will exhibit power
at only a small number of frequencies. Furthermore,
the frequency spectrum illuminates which frequen-
cies the X variables will tend to exhibit.

Lorenz suggested that the slow oscillators rep-
resent measurements of some atmospheric quan-
tity about a given latitude [Lorenz, 1996]. With
this in mind, it is meaningful to visualize the sys-
tem accordingly. Different from the images provided
in Fig. 2, we will visualize states for all of the
slow oscillators during a given trajectory as points
evenly spaced around a circle centered at the ori-
gin, where the origin represents the lowest value
(xmin) obtained by any of the slow oscillators along
their respective trajectories. Each point’s distance
from the origin is given by xi’s current value minus
xmin. Treating the points in polar-coordinates (r, θ),
where r is the oscillator’s distance from xmin and
θ indicates the subscript of the oscillator, we fit
a cubic spline to the shifted slow oscillator values
to obtain approximations for the flow of the atmo-
spheric quantity between the slow oscillators. For
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clarity, the slow oscillators’ radial positions (θ)
remain fixed, while their distance from the ori-
gin varies over the course of the trajectory [see
Fig. 1(b)]. Note that this method of visualization

allows us to observe all of the slow oscillators at once
for any state on a trajectory. A similar method is
performed to represent the activity of the fast oscil-
lators in the same plot (the outer ring).
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Fig. 2. Two example trajectories of the Lorenz ’96 model, along with periodograms for the corresponding trajectories of the
slow oscillators. (a), (c), (e), (g) I = 4, J = 8, and F = 14. We observe a fairly regular trajectory. The periodogram for this
system supports this by showing that only a few isolated frequencies have significant power. (b), (d), (f), (h) I = 10, J = 5,
and F = 14. We observe an irregular trajectory. The periodogram exhibits some power at many frequencies.

1430027-4



October 20, 2014 8:46 WSPC/S0218-1274 1430027

Standing Swells Surveyed Showing Stable Solutions for the Lorenz ’96 Model

10
−2

10
0

10
210

0

10
2

104

10
6

Frequency (Hz)

P
ow

er

10
−2

10
0

10
210

0

10
2

104

10
6

Frequency (Hz)

P
ow

er

(g) (h)

Fig. 2. (Continued)

3. Results

It is common in the literature referencing the Lorenz
’96 model to see the parameters I, J , and F cho-
sen to ensure that the system exhibits sufficient
amounts of chaos to make the prediction prob-
lem interesting. For example, it is well-known that
F > 6 will usually result in a weakly chaotic sys-
tem for reasonable choices of I and J [Wilks, 2005;
Karimi & Paul, 2010]. Beyond this, I = 8 and J = 4
for a total of 40 oscillators is a popular choice, so
much so that it is commonly known as the “Lorenz
40-variable” model [Li et al., 2009]. Generalizing
from these standards, we explore the parameter
space for I, J , and F systematically and charac-
terize the resulting dynamical systems.

We first measure the largest Lyapunov expo-
nent for several choices of I, J , and F in Fig. 3
(top row). We observe that the lower portion of the
plots (i.e. small J) exhibit strong, positive largest
Lyapunov exponents (red and yellow regions). As
J is increased, we observe the emergence of greatly
reduced largest Lyapunov exponent (blue regions).
This region of reduced chaotic activity returns to
a region of increased largest Lyapunov exponent
as we continue to increment J . Furthermore, we
observe that the top and bottom borders of the blue
regions oscillate with increasing I. The blue region
of reduced chaos appears to occur at larger values
of J as F is increased, while the range of the blue
regions remain fairly constant in J .

We observe the percentage of positive Lya-
punov exponents in the middle row of Fig. 3. Green
vertical windows of increased percentage of posi-
tive Lyapunov exponents correspond to the peaks
of the blue regions observed in the largest Lyapunov

exponent plots. Interestingly, we find that as we
continue to increment J beyond these green vertical
strips, the percentage of positive Lyapunov expo-
nents sharply declines.

The normalized Lyapunov dimension is shown
in the bottom row of Fig. 3. Here, we observe green
and yellow vertical striations representing regions of
reduced fractal dimensionality relative to the high
fractal dimensionality red regions around them.
These unstable dimension striations are in locations
corresponding to the observed regions of reduced
largest Lyapunov exponent, and the vertical stria-
tions of increased percentage of positive Lyapunov
exponents. A periodicity in I is again apparent here.

We are surprised by these regions of reduced
chaotic activity and endeavor to explore them using
a frequency spectrum analysis. To this end, we
examine frequency spectrum bifurcation diagrams
representing slices through I–J space with a fixed
F [Orrell, 2002]. A subset of these slices are pre-
sented in Fig. 4. We fix J = 15 and increase the
forcing F moving from left-to-right along the top
row of Fig. 4. Along the bottom row of Fig. 4, we
fix F = 12 while increasing the number of fast vari-
ables J moving from left-to-right.

Examining the top row of Fig. 4 for 8 ≤ F ≤ 12,
we find increased power at many frequencies for
most choices of I, but, interestingly, we also observe
periodic windows in the frequency spectrum bifur-
cation diagram where power is organized into just
two different frequencies. Furthermore, these peri-
odic windows of reduced spectral dispersion cor-
respond to choices of I that result in the stable
behavior found in Fig. 3. We observe that when
F ≥ 14 there is power at many frequencies for I ≥ 6
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Fig. 3. For these plots, the axes represent integer values of the model dimensions I (slow) and J (fast). Each cell in the resulting plot represents a single integration
with 500 unit time steps (or 106 iterations) of the Lorenz ’96 model. Note that these images are insensitive to changes in initial condition. (Far left column) F = 8.
(Center left column) F = 10. (Center right column) F = 12. (Far right column) F = 14. (Top row) The largest Lyapunov exponent. (Middle row) The percent of
positive Lyapunov exponents. (Bottom row) The normalized Lyapunov dimension.
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Fig. 4. For these plots, the x-axis represents choices of I , the y-axis represents different frequencies, and the color represents the power spectrum of the trajectory
of a slow oscillator at the corresponding parameter choice. (Top row) J = 15 while F ∈ [8, 10, 12, 14]. (Bottom row) F = 12 while J ∈ [10, 15, 20, 25].
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Fig. 5. (a) For I = 21, J = 30, and F = 12, we plot the trajectories of the fast and slow oscillators. This parameter choice
yields a stable attractor as indicated by four snapshots of the standing waves, which travel clockwise around the ring of slow
modes and (b) we show different parameter choices yielding different numbers of standing waves (from 2–9). The plot in the
bottom right corner represents a snapshot of a trajectory on a chaotic attractor and shows much more irregularity than the
standing waves. Animations of these time series can be found here (full link in references [Frank, 2014a]).
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and periodic windows do not exist. This obser-
vation corresponds to the rise of the blue region
of reduced largest Lyapunov exponent as F is
increased (Fig. 3).

We look at the frequency spectrum bifurca-
tion diagram in the bottom row of Fig. 4 by fix-
ing F = 12 and varying J . Figure 3 suggests that
we will observe reduced largest Lyapunov exponent
for 10 ≤ I ≤ 35 for most choices of I, and this is
reflected in Fig. 4 where we observe power at many
frequencies for J = 10. We take steps through this
region of reduced chaotic activity as we increase J ,
and again find periodic windows in the frequency
spectrum bifurcation diagram, where large amounts
of power are only found at a finite number of dif-
ferent frequencies. Again these windows of reduced
spectral activity occur at I values corresponding to
peaks in the blue regions from Fig. 3. Furthermore,
we see evidence that increasing J may have similar
effects as reducing F .

Through further analysis of the frequency bifur-
cation spectrum diagrams, we observe that in gen-
eral frequencies between one and two have more
power, suggesting that slow oscillators tend to
exhibit these frequencies even for parameter choices
resulting in chaotic dynamics. We find more inter-
esting frequency behavior in the many windows
of organized spectral activity, where the dominant
and subdominant frequencies, namely the frequency
with the most power and the frequency with the sec-
ond most power, appear to oscillate as a function of
I. For J = 20 and J = 25 in the bottom row of
Fig. 4, we see that the dominant and subdominant
frequencies fluctuate every fifth or sixth increment
as we increase I. Also, the fluctuations become less
severe as I approaches 50.

The frequency spectrum bifurcation diagrams
show us that several parameter choices constrain
the slow oscillators to two distinct frequencies. This
suggests that we should see a strong regularity in
the time series for these parameter choices. In Fig. 5,
we provide example snapshots of stable attractors,
which resemble rose-plots in polar coordinates, and
a chaotic attractor with a large positive largest Lya-
punov exponent, which resembles an amoeba (bot-
tom right). Each petal of the stable attractors is in
fact a standing wave traveling around the slow oscil-
lators over time as shown by Fig. 5(a). We see that
the oscillations of the stable attractors show signs
of being comprised of two frequencies, as individual
slow oscillators seem to achieve both a relative local

maximum and a global maximum. Furthermore, as
we increase I, we see additional petals added to
the stable attractor. If I is chosen so that it falls
between two windows of increased spectral organi-
zation, then we see the dynamics attempt to add
an additional petal, but this petal will dissipate over
time in a repeating process that prevents the trajec-
tory from stabilizing. We propose a simple function
describing the stable behavior in the Appendix.

Figure 6 quantifies the wavelengths preferred
by the stable attractors and the chaotic attractor
in Fig. 5 by examining spatial fast Fourier trans-
forms. The colored lines represent the stable attrac-
tors, and we observe that these curves exhibit peaks
around a wavelength of 5 indicating that the stand-
ing waves in the stable attractors usually involve
about five slow oscillators. The black solid line rep-
resents the same analysis for the chaotic attractor in
Fig. 5, and we observe a smoother curve indicating
that many different wavelengths are more equally
preferred by flow traveling around the slow oscilla-
tors in the chaotic attractor.

We have provided evidence that stability
emerges amongst regions of chaos in parameter
space for the Lorenz ’96 system, and that there
appears to be a relationship between the usual
bifurcation parameter, F , and the parameters
controlling the dimension of the system, I and J .
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Fig. 6. We measure the wavelength for the attractors in each
of the nine example plots in Fig. 5 by examining the states
of the slow oscillators in the frequency domain. The colored
lines represent the stable attractors, and the black solid line
represents the same analysis for the chaotic attractor.
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Figure 7 shows a few bifurcation diagrams where I,
the number of slow oscillators, is used as a bifurca-
tion parameter. These bifurcation diagrams clearly
display regions of stability and chaos as a function
of I. Furthermore, we again observe evidence of the
regularity in the trajectories of the slow oscillators
for parameter choices leading to stability since the
values of the local maxima of the slow oscillators in
such regions are roughly constant across each bifur-
cation diagram.

Figures 7(a) and 7(b) are example trajecto-
ries corresponding to the dashed lines in Figs. 7(g)
and 7(h), respectively. The dots in these time series
indicate local maxima of the trajectories [Lorenz,
1968]. Figure 7(a) demonstrates that values of the
local maxima can fluctuate wildly, while Fig. 7(b)
shows a parameter choice for which local max-
ima tend towards only two different values. Fig-
ures 7(c)–7(f) exhibit windows of both stable and
chaotic dynamics as a function of the dimensional
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(a) (b)

(c) (d)

Fig. 7. In the top row (a) and (b), we show two example trajectories representative of I = 20, J = 10, F = 12 and I = 20,
J = 30, F = 12, respectively. Black circles indicate local maxima of the trajectories. These time series are example trajectories
taken from the bifurcation diagrams; (a) corresponds to the dashed line in (g), and (b) corresponds to the dashed line in (h).
In the middle row (c)–(f), we provide bifurcation diagrams for several choices of J and F while I is varied as the bifurcation
parameter. The y-axis indicates the values of the x1 local maxima. Note that ranges of the y-axes are different for each figure.
The x-axis represents different choices of F in the bottom row (g)–(j) for a few choices of I and J . We observe both windows
of stability and windows of chaos.
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(e) (f)

(g) (h)

(i) (j)

Fig. 7. (Continued)
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Fig. 8. We examine the largest Lyapunov exponent as we
vary I on the x-axis and h, the coupling parameter, on the
y-axis. J is fixed to be 50. We find a pattern similar to the
ones observed in Fig. 3.

parameter I. We again observe windows of stabil-
ity and chaos in Figs. 7(g)–7(j) where F , a physical
parameter, is tuned as the bifurcation parameter for
several choices of I and J . For a fixed I, increasing J
seems to condense the dynamics, constraining them
to the envelope of values observed.

Figure 8 allows us to relate the effects of varying
the dimensional parameter J to varying the physical
coupling parameter h. We vary I from 4 to 50 and
vary h from 0 to 1 while holding fixed J = 50 (note
that h = 1 in all previous figures, consistent with
the literature). We observe a pattern reminiscent
of those observed in the top row of Fig. 3, which
suggests that the parameters h and J may have an
analogous effect on the system.

4. Discussion

The Lorenz ’96 model is a popular choice for atmo-
spheric scientists attempting to improve prediction
techniques. This is largely due to the reduction
in degrees of freedom offered by the Lorenz ’96
system in comparison to more sophisticated mod-
els used to make real-world weather predictions.
Despite this simplification, the Lorenz ’96 model
is known for being a computationally manageable
model that exhibits tunable levels of chaos, making
it an appropriate tool for testing prediction tech-
niques. However, our inspection of parameter space
reveals regions of unexpected structural stability. In
matters of complexity, adding simple agents often

leads to more complexity, but in the case of the
Lorenz ’96 model we see that there exists a bounded
range of J which organizes the dynamics and results
in a systemic dampening of chaos.

We attempt to explain the observed regions of
stability by inspecting the equations for the Lorenz
’96 system. Considering Eq. (2), the sum of the
fast oscillators coupled with a given slow oscillator
has a dampening effect on the velocity of the slow
oscillator, while we also find that the slow oscillator
provides positive feedback to the fast oscillators to
which it is coupled in Eq. (3). Therefore, since each
slow oscillator has many fast oscillators coupled to
it, we expect any excitement of the slow oscillator
to be quickly damped away by the fast oscillators.
We find evidence of this in Fig. 5, where peaks in
the trajectories of the slow oscillators (points on the
inner circle) correspond to increased activity in the
fast oscillators coupled to it (the radially adja-
cent region in the outer circle). If one continues to
increase J beyond the observed regions of stability,
then the increasingly chaotic dynamics observed in
Fig. 3 may be a result of increased apparent forcing.
The magnitude of the sum of the fast oscillators for
a given slow oscillator may be large enough to act
as a driving force for the dynamics of the slow oscil-
lator [see Eq. (2)].

To test this theory, Fig. 8 shows the largest Lya-
punov exponents as we vary I and h, the coupling
parameter, while holding J fixed at 50. Recalling
Eq. (2), we see that reducing h dampens the sum of
the fast oscillators coupled to each slow oscillator.
We observe that Fig. 8 exhibits a similar pattern to
Fig. 3, supporting the claim that reducing the sum
of the fast oscillators leads to the stable behavior
we observe.

The frequency spectrum bifurcation diagrams
in Fig. 4 reveal that the parameter choices for
reduced chaotic activity in Fig. 3 yield surprisingly
regular stable attractors with slow oscillators whose
trajectories are comprised of only two frequencies.
In fact, so long as the choices of I, J , and F are
such that the Lorenz ’96 system is in one of the sta-
ble regions of parameter space, the trajectories of
any slow oscillator exhibits approximately the same
dynamics since the dominant and subdominant fre-
quencies for stable attractors lie between 1–2, and
2.5–3, respectively, as seen in the frequency spec-
trum bifurcation diagrams in Fig. 4. Indeed, the
local maxima of the trajectories of the slow oscil-
lators remain roughly constant across parameter
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choices leading to stability as shown in Fig. 6. For
a given choice of F and J , as I is increased from
one stable region in parameter space to the next,
we observe the addition of a petal, or a wave, to the
attractor. When I lies in between regions of stabil-
ity in parameter space, we observe attractors that
periodically try to grow an additional petal that
will eventually dissipate over time. These interest-
ing attractor behaviors appear to occur periodically
as a function of I.

Finally, we note that interactive versions of
many of the figures in this manuscript can be found
in an online Appendix (full url [Frank, 2014b]).
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Appendix A

We attempt to further understand the stable behav-
ior observed in the Lorenz ’96 model by proposing
a parametrization of the petals observed in Fig. 5.
We model the normalized magnitude of a standing
wave among the slow modes (as observed in Fig. 5)
with N(≈ I/5) waves at time t using

r(θ, t) =
sin(N(θ + 2πf · t)) + 1

2
, (A.1)

where f is the frequency of a representative slow
mode. The frequency of the slow mode can be
obtained by looking at the dominant frequency from
the spectra illustrated in Fig. 4 (a function of I
and F ). Scaling f by 2π and by the number of waves
(N) yield the desired angular velocity for the stand-
ing waves resulting from the model. Example waves
resulting from the model at t = 0 are presented in
Fig. 9.
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Fig. 9. Example trajectories from the model for stable behavior. We examine the results from the model for t = 0 with
N ∈ {2, 3, 4, 5, 6, 7, 8, 9}. The resulting trajectories are comparable to the stable trajectories shown in Fig. 5.
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