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Predicting Critical Transitions From Time Series
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Abstract—The dynamical behavior of power systems under
stress frequently deviates from the predictions of deterministic
models. Model-free methods for detecting signs of excessive stress
before instability occurs would therefore be valuable. The math-
ematical frameworks of “fast-slow systems” and “critical slowing
down” can describe the statistical behavior of dynamical systems
that are subjected to random perturbations as they approach
points of instability. This paper builds from existing literature on
fast-slow systems to provide evidence that time series data alone
can be useful to estimate the temporal distance of a power system
to a critical transition, such as voltage collapse. Our method is
based on identifying evidence of critical slowing down in a single
stream of synchronized phasor measurements. Results from a
single machine, stochastic infinite bus model, a three machine/nine
bus system and the Western North American disturbance of 10
August 1996 illustrate the utility of the proposed method.

Index Terms—Criticality, power system monitoring, synchro-
nized phasor measurements.

I. INTRODUCTION

I NCREASING evidence suggests that electric power sys-
tems frequently operate near critical points at which a small

disturbance could trigger instability. The disturbances of, for ex-
ample, 14 August 2003 and 8 September 2011 in North America
[1], [2], 4 November 2006 in Europe [3] and 10 November 2009
in South America [4] accentuate the continuing need for new
technology that can warn operators when a power system ap-
proaches critical operating points.
Many changes in which a power system moves from a stable,

secure operating state to one that could result in degraded net-
work performance can be studied using the framework of crit-
ical transitions. Voltage collapse, for example, can be described
as a saddle-node bifurcation [5]. Small-signal instability typi-
cally results in critically- or under-damped oscillations, which
can be understood using the theory of Hopf bifurcations [6].
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There is a long history of using eigenvalue analysis to evaluate
these types of critical transitions. Extensive research shows that
the eigenvalues of the linearized system equations can be used
to predict proximity to voltage collapse and small-signal insta-
bility [7]–[12]. Recent research [13] shows that linearization can
be avoided by using the nonlinear Koopman operator to estimate
the proximity of a system to critical points. However, accurately
estimating eigenvalue (or mode) trajectories in a large system
requires accurate models and large quantities of sensor data.
The parameters in most power system models naturally

include some error, particularly in the ways that bordering
balancing areas affect the area being modeled. Furthermore,
random fluctuations, such as from noisy loads or variable
sources like wind and solar, can affect system dynamics in
ways that are not captured by standard eigenvalue analysis
methods. Methods that can identify emerging risks without
detailed network models may be helpful in such cases. With the
deployment of synchronized phasor measurement units (PMUs
or synchrophasors) operators have increasing access to large
quantities of high-resolution, time-synchronized data. Methods
that can turn these data into information about operating risk,
without relying on network models, could dramatically increase
the value of synchrophasor technology, and help operators to
make better decisions about when or if to implement risk
mitigating operating procedures.
A number of methods for estimating blackout risk from

phase-angle data exist in the power systems literature. Recent
advances in the use of PMU data are described in [14]–[16].
[17] describes a method for measuring phase differences be-
tween groups of generators from time series data. Relatedly,
[18] describes a method for estimating voltage differences
between areas based on PMU measurements and circuit theory.
In [19], the authors illustrate how to calculate stability margins
utilizing a “ball-on-concave-surface” dynamic equivalent.
Other methods that extract frequency information from PMU
data are described in [20]–[24]. Some of these approaches
proved useful for tracking the progression of slow oscillations
[21] and the assessment of post-fault stability [24].
This paper takes a somewhat different approach by building

on recent research in the area of nonlinear stochastic dynamical
systems, which shows that large, complex systems frequently
show evidence of “critical slowing down” (CSD) before they
reach points of critical transition [25]. We leverage the methods
described in [25], [26] to obtain metrics that use a single time
series of PMU data and appear to provide a strong indication
of proximity to system failure. Results from a single machine
stochastic infinite bus power system model, a three machine,
nine bus power system model, and data from the 10 August
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1996 blackout in the Western North American interconnection
indicate that there is substantial information regarding system
health in even a single stream of PMU data.
The remainder of this paper is organized as follows.

Section II provides a summary of the mathematical framework
of fast-slow critical transitions that underly the methods pro-
posed in this paper. Section III describes our adaption of these
concepts to the task of measuring critical slowing down in a
power system. Section IV discusses the results obtained from
three test systems. Lastly, Section V discusses the implications
of this work.

II. CRITICAL TRANSITIONS AND FAST-SLOW SYSTEMS

Numerous recent articles suggest that the properties of data
from stochastic dynamical systems can be used to signal the
proximity of a system to a tipping point, catastrophic shift, or
critical transition. This section discuses how these results may
be useful for predicting critical transitions in power systems.
A dynamical system described by differential equations ex-

periences a bifurcation when a change in its parameters pro-
voke a qualitative change in the motion of the system. Some
bifurcations are benign, such as the transition from a state with
over-damped oscillations (complex eigenvalues in the left-half
plane) to a state with over-damped exponential recovery. In this
case the stability of the system is not compromised. However,
other bifurcations result in instability. Critical bifurcations (or
critical transitions) of this sort result in a shift from a stable
regime to an unstable one. Systems that undergo a critical tran-
sition will settle (if at all) at a point that is far from the original
equilibrium operating state. This paper focuses on identifying
proximity of a power system to critical transition.
Physical systems are constantly subject to stochastic forcings

that perturb the system state from its attractor. While random
perturbations can excite instabilities in a system, they can also
produce statistical patterns that provide early-warning signs of
proximity to critical transition. Several recent articles show that
statistical patterns emerge in time series data from a variety of
complex systems before they reach a critical transition (see the
review in [25]). Examples in which such early warning signs ap-
pear include ecosystem models before extinction [27], climate
models before abrupt climate change [26], the human body be-
fore an epileptic seizure [28], and financial markets before a col-
lapse [29]. These examples suggest a type of universality in the
dynamics of stochastic complex systems. In each case, time-do-
main measurements taken from the system before the transition
show the following statistical patterns:
1) increased recovery times from perturbations;
2) increased signal variance from the mean trajectory;
3) increased flicker and asymmetry (increased kurtosis) in the
signal.

Together, these properties are commonly referred to as “critical
slowing down” (CSD), a phenomenon originally observed in
models of emergent magnetic fields in ferro-magnetic materials
[30]. As described in [25], these three properties can be identi-
fied by statistical tests for increasing variance and autocorrela-
tion (or autoregression) in time series measurements taken from
the system.

A. Fast-Slow Systems

The mathematical framework of fast-slow systems pro-
vides some explanation for why variance and autocorrelation
increase in stochastic differential systems before critical tran-
sitions occur. A fast-slow system is one that can be described
by two sets of ordinary differential equations (ODE): one that
moves slowly toward a critical point, and the other that has
shorter time constants [31]. Equation (1) is the general form for
a system with a fast variable (or vector) , and a slow one :

(1)

In (1) is a small parameter that makes vary
slowly relative to the shorter time variation in . In a power
system might represent, for instance, the rate at which a load
gradually increases toward voltage collapse. Interactions be-
tween the dynamics of the fast subsystem and the slowly
varying variables can precipitate a critical transition away
from a stable operating point.
Many critical bifurcations can be classified as either fold,

Hopf, Pitchfork, or transcritical. Fold (or saddle node) and
Hopf bifurcations are particularly relevant to power systems
because they can be used to describe common instabilities such
as voltage collapse and the onset of oscillatory behavior. In the
following paragraphs we review common, simplified examples
(known as the “normal forms,” adapted from [31], [32]) that
illustrate the properties of fold and Hopf bifurcations.
A system with a fold bifurcation has two stable operating

points, which gradually approach one another as the slow vari-
able increases. When the two operating points collide, the
two equilibrium conditions are eliminated, resulting in an un-
stable system. Voltage collapse is a familiar example of a fold
bifurcation. Equation (2) illustrates a simple two-variable fast-
slow fold bifurcation, with a critical transition when the slow
variable reaches zero.

(2)

An example of a simple power system that exhibits a fold bi-
furcation is the single machine infinite bus (SMIB) [33]. In the
baseline SMIB model that we use in this paper the generator
is located at Bus 1, with terminal voltage . The
generator is a lossless round rotor, and produces elec-
tric power as a result of mechanical forcing. The gener-
ator has a constant field voltage magnitude behind a syn-
chronous reactance . The rotor dynamics are governed by
the classic swing equation [34] with subject to the net-
work equations for this specific circuit:

(3)

(4)

where is the machine rotor angle, relative to the phase
angle of the infinite bus , and are machine
damping and inertia constants and is the reactance of
the transmission line between the two buses. From (4) it
is clear that the SMIB model becomes unstable when
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reaches . When
there are two equilibrium solutions for that satisfy (4). With

the system Jacobian becomes singular, and the
system unstable. For a detailed discussion of this model, see
[33]. Section IV-A discusses an extension of the SMIB model
to a stochastic case.
In a Hopf bifurcation, a system with exponential recovery

rates transitions to one in which oscillations are critically- or
under-damped; i.e., a pair of real-valued and negative eigen-
values become a complex conjugate pair with non-negative real
parts. Equation (5), from [35], describes such a system:

(5)

where is the first Lyapunov coefficient. [36], [37] discuss
ways in which Hopf bifurcations appear in the SMIB model,
after adding an exciter, for various combinations of and .
In summary, there is extensive literature showing that many

types of power system instability can be understood using (2)
and (5). Numerous bifurcation analyses in the power system lit-
erature expand on the two examples described above and study
transitions (including Pitchfork and transcritical bifurcations)
that result from the introduction of more detailed component
models, such as generator exciters and limiters (e.g., [5], [8],
[33], [36]–[38]). Many of these analyses are reviewed in the
IEEE/PES committee report [39].

B. Stochastic Fast-Slow Systems

The above examples show critical transitions as they move
smoothly past the critical point (at ). Real systems, how-
ever, are subject to random external fluctuations that can sub-
stantially change the dynamical properties of the critical transi-
tions [40]. The theory of fast-slow stochastic differential equa-
tions (fast-slow SDEs) can provide formal insight into the be-
havior of stochastic systems as they approach critical transition.
SDEs are challenging because with the introduction of noise,
not only do systems inherit the deterministic bifurcations from
the original ODEs, but they also show “noise-induced transi-
tions,” which were not present in the deterministic system. If
the magnitude of the noise is small relative to the variance of the
process, the stochastic transitions occur in the neighborhood of
the corresponding deterministic transitions [31].When the noise
is larger, transitions can occur at many locations.
The following example, similar to those derived in [31], [32],

illustrates how a relatively simple fast-slow SDE show signs of
critical slowing down when approaching a tipping point. Let us
consider the stochastic extension of (2) with one fast variable

and one slow variable with a bifurcation at
:

(6)

where is a constant and is a Wiener process. [31]
shows that solving (6) for the probability density function (pdf)
of , for a given , is

(7)

Fig. 1. Probability density functions for the random variable in (6) and (7),
for different values of as it increases toward the critical transition at .
As increases toward the critical point, the variance in increases.

Fig. 2. An illustration of increasing autocorrelation and variance in generator
bus voltages (after subtracting the mean) in a stochastic SMIB model. The
left panel compares voltage changes, with a one second time delay, in an un-
stressed regime. The right panel shows time-delayed voltage deviations shortly
before the critical transition (see Section IV-A).

where is a normalization constant that depends on the
boundary points chosen to solve the Fokker-Planck equation
resulting from (6) and evaluated around the singular limit

. Plotting this pdf (Fig. 1), we see that as approaches
the bifurcation at the variance in the random signal
increases. [32] demonstrates that for a given realization of this
process with additive noise, the variance scales as:

(8)

Therefore, holding all other things constant, the signal variance
will increase with near the critical transition. Using sim-
ulations, [31], [32] also show that autocorrelation in increases
as the system approaches the critical transition. Fig. 2 illustrates
this increase in autocorrelation for a stochastically forced ver-
sion of the SMIB model (see Section IV-A). Because this same
pair of trends is apparent in many large complex systems [25]
we conjecture that increasing signal autocorrelation and vari-
ance will provide early warning of critical transitions in a va-
riety of power system models.
In large power systems the stochastic differential-algebraic

equations (SDAEs) are sufficiently large and uncertain to make
analytical solutions, such as (7), impractical. [41] shows that
under some conditions one can linearize the system equations
and use Itō calculus to solve the stochastic ODEs to obtain es-
timates of proximity to critical bifurcations. However, this ap-
proach remains computationally expensive, and relies on net-
work models that are not perfectly accurate. The results from
stochastic fast-slow systems indicate that there is significant in-
formation about proximity to critical transition in raw time se-
ries data, which can be extracted with minimal computational
effort and is insensitive to modeling errors. A more formal and
comprehensive review of the link between power system ODEs
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and stochastic fast-slow systems is a valuable direction for fu-
ture work, given that some of the theoretical results that we dis-
cuss in this section are still being developed within the applied
mathematics literature.

III. METHODS: MEASURING CRITICAL SLOWING DOWN

Given that critical slowing down (CSD), as evidenced by an
increase in signal variance and autocorrelation, can provide an
early warning for critical transitions, we need good methods to
detect statistically significant increases in these measures. This
section describes a procedure for detecting statistically signifi-
cant CSD in a signal. Our method is an adapted version of the
procedure in [26], which was used to measure proximity to tran-
sition in global climate models. The following steps summarize
the proposed procedure for identifying CSD in any time domain
signal . In our examples we replace with streams of
voltage magnitude , phase angle or frequency
measurements.
1) Choose a window size within which to test for au-
tocorrelation and variance. This window should be large
enough to minimize the impact of spurious changes in the
signal and to include multiple periods from signal frequen-
cies that might be indicators of stress (common oscillatory
modes, for example), yet small enough such that changes
in the signal do not become excessively averaged. In this
paper we use a 2-minute window size. In the appendix we
show that the quality of our proximity indicator is quite ro-
bust to changes in .

2) Detrend the signal. Filter the data in each window to re-
move slow trends that are not the result of CSD. This
detrending should, for example, remove slow changes in
phase angles due to gradual changes in system load. Fol-
lowing the method in [26] we use a low-pass filter based on
a Gaussian Kernel Smoothing (GKS) function to capture
the dc and low-frequency portions of within the window,
and then subtract the filtered signal from the original (10).
The smoothing comes from convolving the sampled signal

with a discretized Gaussian function:

(9)

where determines the bandwidth of the filter and is
an index for the number of samples from the origin.
should be chosen to ensure that only the dc component and
very gradual trends remain in the filtered signal GKS .
The final detrended signal is the difference
between the original and the filtered signal:

(10)

For the results in this paper we use or .
In the appendix we show that the results are not highly
sensitive to the choice of . Experimental results indicate
that the GKS detrending technique is effective in removing
gradual trends in the data. However, it is important to note
that are likely to be many detrendingmethods that are simi-
larly effective for this step in the algorithm (see, e.g., [42]).

3) Measure for autocorrelation. In this paper we assume that
has been sampled at 30 Hz (as is common for pro-

cessed PMU data), which means that consecutive samples
and are separated by 1/30 s. As in [26], we

fit an auto-regressive (AR) model of order 1 (11) to the de-
trended, discretized signal :

(11)

The AR coefficient , is found by minimizing the error
term , using the ordinary least squaresmethod. Because

is detrended, and thus zero mean, the AR model does
not require an intercept. When the signal is purely random

is large, and is relatively small. As a system be-
comes progressively stressed, increases indicating in-
creased recovery rates from stochastic disturbances. While
higher order AR models can be used to gain additional
information about the signal, we find that the first-order
model provides good predictions of proximity to transi-
tion. The appendix includes some results for higher order
models.

4) Measure the variance of the discrete detrended signal
using the same rolling window obtained in step 1.

If there are samples within the time window , the
variance is

(12)

As described in Section II-B, tends to increase when
systems approach critical transition. Thus, is our second
metric of proximity to critical transition.

5) Test for statistical significance. We test for statistically sig-
nificant increases in and using the nonparametric
Kendall’s coefficient [43]. Kendall’s tests for serial
dependence (i.e., a statistically significant increase) in a
signal, against the null hypothesis that the signal is random.
In our results we report and for each one-minute in-
terval before the transition.

In order to corroborate the findings from Kendall’s , we also
measure the power spectral density (PSD) of using a Welch
spectral estimator [44], which will show an increase in low-
frequency components if the system is slowing down. The PSD
of a signal can be found from the coefficients of higher order
AR models and is thus related to the calculation of .
Based on prior research [25], [26], [45], we consider a system

to be critically slowing if the variance and autocorrelation are
significantly higher than “normal” values, and if Kendall’s
for each show a statistically significant upward trend. Practical
implementation of this algorithm for power system operations
would require that these two measures be observed under
normal conditions for a period of time.

IV. RESULTS

This section discusses results from applying the method de-
scribed in Section III to three test cases: a single-machine, sto-
chastic infinite bus model (SMSIB), a three-machine nine-bus
power system model (9 bus) [46] and data from the 10 August
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1996 blackout in the Western North American Interconnection
(WECC).

A. Single-Machine Stochastic-Infinite-Bus Model (SMSIB)

In our initial analysis, we modified the classic single ma-
chine infinite bus model ((3) and (4)) to determine the condi-
tions under which critical slowing down appears in a power
system model. In the stochastic version of the model, we gradu-
ally increase stress by linearly increasing the mechanical power
of the generator . To inject noise, we add noise to the infinite
bus voltage ( , with angle 0). We model the noise as a band-
width-limited Gaussian white noise, where the voltage at Bus 2
is:

(13)

and is a Gaussian random variable of zero mean and standard
deviation . Between the discrete, 100 ms noise time steps,

is interpolated using a cubic spline. The noise magnitude
is set to 0.01 p.u. The stochastic infinite bus simulates the

effect of small, exogenous voltage flicker in the larger system
to which the generator is connected [47]. A similar model, with
noise in the generator power rather than the infinite bus voltage,
is explored in [48].
The remaining set of parameters inherited from the classic

SMIB model are set as follows: , ,
, and The tra-

jectories of and are calculated using a variable step size,
explicit trapezoidal differential-algebraic equation solver [49].
The output data from the DAE solver (most notably and

) are subsequently sampled at 30 Hz to obtain simulated
synchrophasor data.
Critical slowing down becomes apparent in this model in sev-

eral ways. As the dominant frequency of the system decreases,
the relaxation time will increase, which is a symptom of CSD.
Also, as the system approaches the point of transition, small
changes in or in the noise will substantially change the
dominant frequencies in the system, resulting in a wider range
of frequencies being present in the signal. This phenomena is
sometimes apparent as flicker, which is another sign of CSD.
Both of these phenomena can be observed in the power spectral
density of the signal as an increase in the power of lower-fre-
quency components, as well as an increase in the order 1 AR
coefficient.
Fig. 3 shows the results that emerge from the two bus model

as it is forced toward the maximum power transfer limit. Pro-
viding evidence in support of our conjecture that CSD is present
before the critical transition, the order 1 AR coefficient
and variance in the phase angle data at Bus 1 increase
notably minutes before the system hits the point of maximum
power transfer. Kendall’s (Table I) indicates that these in-
creases are statistically significant. Furthermore the power spec-
tral density of the signal (middle panel in Fig. 3) shows sub-
stantial increases in low-frequency signal power, relative to the
power of the noise, as the system approaches the critical transi-
tion.

Fig. 3. Evidence of critical slowing down in a two-bus (SMSIB) power grid
model being driven toward the point of maximum power transfer. The top panel
shows the bus 1 voltage phase angle before and after detrending. The middle
panel shows the power spectral density of the detrended signal and the input
noise for vertically projected time intervals. The lower panel shows the first
order autoregression coefficient and the signal variance.

TABLE I
KENDALL’S , AND SIGNAL-TO-NOISE RATIOS FROM THE SMSIB MODEL

B. Three-Machine, Nine-Bus Power System Model (9 Bus)

As a classic example multi-machine system, we utilize the
Anderson and Fouad nine-bus test case [46] for the second
set of experiments. The generators were modeled with order
IV machines controlled by IEEE Type II exciters and turbine
governors. As in Section IV-A, we injected bandwidth-limited
Gaussian white noise into the system; in this case perturbing
the loads. In order to stress the system and drive it toward a
bifurcation, we steadily increase the baseline load and calculate
the DAE trajectories with fixed a 1 ms time-step trapezoidal in-
tegration (using the PSAT simulator [50]). The output variables
are subsequently sampled at 30 Hz. Fig. 4 illustrates the results
of applying the CSD detection method to the nine-bus case.
As with the single machine case, evidence of CSD is present
minutes before the critical transition occurs.
These initial results indicate that when CSD is apparent, the

stressed system processes noise differently than would a less-
stressed one. In order to illustrate this, we represent the 9-bus
system with the set of DAEs:

(14)

where are the state variables and are the algebraic vari-
ables (voltages). If we linearize the system we can obtain the
following state-space matrix:
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Fig. 4. Evidence of critical slowing down in a three-machine, nine-bus power
grid model being driven toward a bifurcation. The top panel shows the bus 3
voltage magnitude before and after detrending. The middle panel shows the
power spectral density of the detrended signal and the input noise for vertically
projected time intervals. The lower panel shows the first order AR coefficient
and the signal variance.

TABLE II
KENDALL’S , AND SIGNAL-TO-NOISE RATIOS FOR THE 9-BUS CASE

which can be interpreted as the dynamic power flow sensitivity
matrix [50]. The frequency response of the 9 bus network can
be observed by selecting the combination of input and output
channels. Fig. 5 shows the magnitude response of to a noisy
load connected at Bus 5 , for a high load and a low load
case. At high load, the network is less able to damp out noise
over a broad range of frequencies.
In order to illustrate how an aggregated measure derived from

our four CSD indicators would be useful in assisting real time
decisions, we performed the following experiment. First, we
randomly generated 120 different load cases for 9 bus model.
In each case the load at the three load buses increased at a dif-
ferent rate (between 21% and 27% per minute). The first 100
cases were used to calibrate a combined metric of proximity to
transition, and the last 20 were used to test the metric. The data
from the calibration cases were used to construct a multivariate
regression model, as shown in (15). The output of the model

is the estimated time to blackout in seconds. At a given
time the predictors are .

(15)

The resulting regression coefficients from 100 training simu-
lations were , , ,

, .
Finally, in order to test the model in (15) we measured each

of , , , for each second during the last 3 min before
the transition for the 20 test cases, and used (15) to estimate the
time until the critical transition. Fig. 6 shows the mean, 10th,

Fig. 5. Bode plot showing the magnitude response of the voltage magnitude at
bus 3 to a load noise at bus five in the 9 bus power network for a high and a low
load case. When the system is stressed, it is less able to damp out noise across
a wide range of frequencies.

Fig. 6. Predicted distance to critical transition for 20 load stress scenarios of the
three-machine, nine-bus (NB) model. Solid dots represent the mean output of
the multivariate regression model for the set of test scenarios. The cross markers
represent the percentile 10 (lower line) and 90 (upper line) outputs of the model
for the set of test scenarios. The dashed line represents a perfect prediction.

and 90th percentiles for the 20 test runs. Samples with nega-
tive were not included in the figure. As the critical transition
approaches, this simple regression model provides a good es-
timate of the distance between the current operating point and
the critical transition. It is certainly possible that more sophisti-
cated models would yield a better prediction. However, the fact
that good predictions resulted from the simple model provides
evidence that this approach is useful.

C. Western Interconnect Blackout of August 1996 (WECC)

On 10 August 1996 a long sequence of events resulted in
the separation of the North America Western Interconnection
into five sub-grids and the interruption of electric service to
7.5 million customers. [51] describes the sequence of events
leading up to the blackout, and [52] provides a detailed anal-
ysis of the power system dynamics during the event. In [51],
theWSCC (nowWECC) disturbance study committee provided
about 10 min of measured bus voltage frequency data from the
Bonneville Power Administration territory, up until the point of
separation. In order to test for CSD in these data, the printed fre-
quency charts were scanned and translated into a numerical time
series and the tests described abovewere repeated. Aswas found
with the two and nine bus models, the order 1 autoregression



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

COTILLA-SANCHEZ et al.: PREDICTING CRITICAL TRANSITIONS FROM TIME SERIES SYNCHROPHASOR DATA 7

Fig. 7. Evidence of critical slowing down in the frequency as measured at the
Bonneville Power Administration, immediately before the blackout of 10 Au-
gust 1996. As in Figs. 3 and 4, the low-frequency components of the signal
(middle panel) increase notably immediately before the transition occurs. In
this case, our “distance to critical transition” model (see (15)) would predict the
blackout 3 min before the major separation.

TABLE III
KENDALL’S FOR THE WECC CASE

coefficient and variance in the frequency signal increase signif-
icantly as the critical transition approaches, as does the density
of low frequency changes (See Fig. 7). Kendall’s shows that
the increases in autocorrelation are statistically significant.

V. CONCLUSIONS

This paper describes a method for estimating the proximity of
a given power system operating point to a point of critical tran-
sition (which would typically lead to instability). The proposed
predictor is unique in that it is based solely on themeasured vari-
ance and autocorrelation in a single stream of high sample-rate
voltage data, such as would proceed from a synchronized phasor
measurement unit. Because of the minimal computational re-
quirements and the increased availability of PMU technology,
our method can be easily deployed as a component of real-time
energy management systems.
Theoretical and empirical results from the study of critical

slowing down and stochastic fast-slow systems show that in-
creases in variance and autocorrelation signal proximity to crit-
ical transitions in many complex systems. We find these same
indicators in a single machine, two bus model, a nine bus model,
and in data from the large Western U.S. disturbance of August,
1996. In the 9-bus model, the indicator predicted the temporal
distance to critical transition with substantial accuracy, particu-
larly as the critical transition approached. We also found that, as
the size and complexity of the benchmark system increased, the
predictive ability of the indicators increased. Unlike traditional
stabilitymethods, the proposed statistical approach does not rely
on network models and could therefore be useful even if state

Fig. 8. The coefficient of determination, , for the predicted distance-to-tran-
sition values versus the empirical values given different ranges of parameters as
inputs for the method described in Section III. The marked values at .
and . correspond to the experiments in Section IV.

estimators fail, so long as the operator has access to time-syn-
chronized phasor data. Our method is also robust against faulty
data from PMUs, assuming that latency and null samples from
PMU data can be detected and filtered out of the noise streams.
In the future, as more PMU data become available, this ap-
proach may be improved with the simultaneous use of multiple
data streams. Additionally, an improvement of the detrending
method to filter out discrete events could be used to remove dis-
crete jumps in the data, such as those that would result from
line tripping or islanding. The remaining signal could be tested
for CSD without being biased by the spurious signals resulting
from discrete changes.
It is important to note that the proposed proximity indicator,

because it is statistical, does not indicate with certainty whether
a given operating trajectory will result in instability. In order to
transform the proposed analog indicator into a binary alarm, one
would need to calibrate the alarm using historical PMU data to
adjust for the local operators’ tolerance for false positive and
false negative errors.
While the general approach described here is simple, the re-

sults suggest that it is feasible to obtain useful real-time infor-
mation about distance to instability from a small quantity of
time-series synchrophasor data.

APPENDIX

The CSD identification method that this paper proposes re-
quires the selection of a few parameters that depend on the spe-
cific nature of the dynamical system in question. Steps 1 and 2
of the algorithm (Section III) make use of two of these param-
eters: the window size and the GKS filter width . This
appendix describes results from sensitivity analysis on the 120
transition test runs shown in Fig. 6. For each of the 120 cases
we computed the coefficient of determination for a range of
values for and (see Fig. 8).
Lastly, we studied the impact of using the first order autore-

gression models instead of higher order models. Fig. 9 illus-
trates that the first order autoregression coefficient shows sim-
ilar trends relative to the higher order coefficients. Both the first
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Fig. 9. Higher order autoregression coefficients corresponding to the nine-bus,
three machine scenario experiment in Section IV-B (see also Fig. 4).

and higher order coefficients identify a shift in signal power
from higher frequencies toward lower frequencies.
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