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Transient laminar natural convection regimes occurring in a thermal convection loop heated from below
and cooled from above are investigated numerically for a wide range of Rayleigh numbers spanning the
interval from 103 to 2.6 � 107. In the model system, the lower half of the loop is heated and maintained at
a constant high temperature, while the upper half is cooled and maintained at a constant low tempera-
ture. A three-dimensional numerical model based on the finite volume method is used to solve the sys-
tem of governing flow equations. Simulations are performed using water as the working fluid (Pr = 5.83)
and detailed numerical results are presented and discussed for conduction, steady convection, and
unsteady flow regimes. Although this subject has attracted researchers for decades, there have been no
detailed three-dimensional numerical simulations of the dynamics of flow in the thermal convection
loop. The objective of the present study is to fill this gap by presenting the temporal evolution of the
velocity and temperature fields at key locations within the system. Emphasis is given to the analysis of
dynamical behavior of the flow during the unsteady regime. The complexity of flow in the loop, which
is characterized by vertical structures and flow recirculation, is visualized for the first time by performing
detailed 3-D numerical simulations.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Many phenomena of interest to the geophysical community are
driven by natural convective flow (e.g. mesoscale convective thun-
derstorms). In fact, initial efforts to demonstrate the chaotic nature
of the Earth’s atmosphere were undertaken through numerical
studies of the deterministic, non-periodic flow observed in a low-
dimensional model of Rayleigh–Bénard convection [9]. Indeed,
mathematical methods designed to improve the predictability of
operational weather forecast models (e.g. ensemble forecasting)
typically undergo a series of trials on increasingly complex flows,
invariably including an initial audition with the 1963 Lorenz mod-
el. Constraining the spatial geometry even further, thermal convec-
tion loops (also known as ‘‘thermosyphons’’) force convection to
occur in a single large cell, and represent potentially the simplest
physical realization of deterministic, non-periodic fluid flow.

As noted in the early reviews by Mertol and Greif [1] and by
Greif [2], the flow in natural convection loops continues to be an
area of considerable interest in engineering, geophysics and envi-
ronmental sciences. The review articles [1,2] contain a wealth of
literature on theoretical and experimental studies of this simple
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system, which exhibits typical nonlinear convective effects [3,4].
However, a detailed literature survey identified only a very limited
number of numerical studies of natural convection loops.

Lavine et al. [5,6] reported the outcome of a three-dimensional
study of natural convection, assuming steady-state conditions, and
flow symmetry about the vertical plane. In this work, the bottom
half of the loop is heated at a constant heat flux, and the top half
is cooled at a constant temperature. The differential equations
written in their elliptic form were solved using a finite difference
method. The study was undertaken in two distinct parts. In the
first part [5], the Grashof number was fixed at 1900 and the effect
of a tilted angle varying between 0� and 90� was investigated. It
was shown that the flow is strongly three-dimensional and that
the 3-D flow structure increased the flow resistance. Regions of
streamwise flow reversals were predicted for a low tilt angle caus-
ing the total buoyancy to decrease. In the second part [6], results
were presented for two different Grashof numbers and exhibited
flow behavior which had been experimentally observed at higher
Grashof numbers including flow reversals and secondary motions.
The strength of these flows was found to increase at higher Grashof
numbers whereas the total buoyancy decreased. Burroughs et al.
[7] numerically analyzed the flow in the loop at low Grashof num-
ber for a wide range of Prandtl numbers using a Fourier–Chebyshev
spectral method. Assuming that the flow is two-dimensional,
Desrayaud et al. [8] investigated, numerically, the unsteady
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Nomenclature

cp specific isobaric heat capacity, J/kg K
d diameter of the cross-section of the loop, ½¼ ro � ri�, m
e specific energy
g acceleration of gravity, m/s2

h mean convective coefficient, W/m2 K
k thermal conductivity, W/m K
_m mass flow rate, kg/s

Nu mean Nusselt number, [= hd/k]
p static pressure, Pa
Pr Prandtl number, [= m/a]
Q heat transfer rate, W
ri inner radius, m
ro outer radius, m
R radius ratio, ½¼ ðro þ riÞ=d�
Ra Rayleigh number, [= gb(TH � TC)d3/ma]
t time, s
T temperature, K

T0 reference temperature, [= (TH + TC)/2], K
u velocity vector, m/s
V velocity magnitude, m/s

Greek letters
a thermal diffusivity, [= k/qcp], m2/s
b coefficient of volumetric thermal expansion, 1/K
l viscosity, kg/m s
m kinematic viscosity, [= l/q], m2/s
q density, kg/m3

s Newtonian viscous stress tensor

Subscripts
C cold wall
H hot wall
max maximum value

TH

r  
x

y 

TH

TC

g 

TC

θ
ri = 34.5 cm 

θ = 0

r = 1.5 cm 

Fig. 1. Schematic diagram of the model system (not drawn to scale). The exterior of
the lower half is heated and maintained at a constant high temperature TH, while
the exterior of the upper half is cooled at a constant low temperature TC.
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laminar natural convection in a loop subject to a constant heat flux
over the bottom half and maintained at a constant temperature
over the top half. Results of a parametric study varying Ra and Pr
were obtained for the case of a relatively thick loop (radius ratio
R = 3). In summary, it has been demonstrated that the flow com-
plexity reported in previous experimental studies can be repro-
duced in numerical simulations: namely regimes characterized
by a steady flow, periodic flow and Lorenz-like chaotic flow [9].

Stability analyses play a key role in interpreting and under-
standing the dynamics of the flow within a thermal convection
loop. An experimental study of natural convection was reported
by Creveling et al. [4] for a glass loop filled with water and oriented
in a vertical plane. At low heat transfer rates and also at high heat
transfer rates the flow was observed to be steady. For an interme-
diate range of heating, however, the flow was found to be highly
oscillatory. Their experimental observations agreed with the theo-
retical analyses by Keller [10] and Welander [3]. Gorman et al. [11]
presented a quantitative comparison of the flow in a natural con-
vection loop with the nonlinear dynamics of the Lorenz model.
Their model featured a constant heat flux over the bottom half
and isothermal cooling over the top half. The boundaries of differ-
ent flow regimes were determined experimentally and the charac-
teristics of chaotic flow regimes were discussed. They also derived
a relationship between the parameters of the Lorenz model and the
experimental parameters of the fluid and loop.

In a combined theoretical and experimental investigation, Yuen
and Bau [12] used optimal control theory to construct a controller
to suppress chaotic flow regimes in a natural convection loop. This
technique is often used in many industrial processes to maintain
desirable flow conditions. The authors demonstrated, in both
experiments and theory, that the nature of the flow in a loop
heated from below and cooled from above can be significantly
modified and that chaos can be controlled. Tang and Bau [13–17]
studied analytically and experimentally the stabilization of the
flow in Rayleigh–Bénard convection using feedback controllers.
With the aid of a controller, they showed that the transition from
no-motion to steady convection can be significantly postponed.

The stability of single-phase loops has also been the subject of
investigation by Vijayan and Austregesilo [18]. Scaling laws were
developed and successfully verified against experimental data
using various loop geometries. The stability behavior of uniform
diameter loops can be expressed in terms of non-loop dimension-
less groups of parameters. These correlations have recently been ex-
tended to loops with non-uniform diameters by Vijayan [19]. Jiang
et al. [20] studied the effects of boundary conditions on flow stabil-
ity in a natural convection loop. The experiment was performed on a
copper torus and the observations were in contrast with those re-
ported on a glass torus. The Lorenz-like chaotic flow was not ob-
served and the authors attributed this to the fact that the high
thermal conductivity of the walls deforms the heat flux distribution
and hence affects the global flow stability. Jiang and Shoji [21] also
focused their study on the influence of thermal boundary conditions
on the spatial and temporal stabilities of the flow. Multi-scale anal-
ysis was applied to study the flow fluctuation and self-organization
in a thermal convection loop. In the analysis, a coefficient was pro-
posed to measure the differences in thermal boundary condition.
Depending on the value of this coefficient, spatial and/or temporal
instabilities may occur leading to Lorenz-like or intermittent chaos.
More recently, Ridouane et al. [22] numerically studied the chaotic
flow in a 2-D thermal convection loop driven by hot and cold iso-
thermal boundaries on the bottom and top halves of the loop,
respectively. Detailed numerical simulations of the transitions tak-
ing place as the flow reverses direction during the chaotic regime
were revealed for the first time by presenting the temporal evolu-
tion of the flow structure during these transitions. The reversal on-
set was characterized by deformations taking the form of small
circulations propagating along the wall away from the discontinuity
and against the new direction of rotation, while new cells with high-
er intensity were created at the discontinuity. This behavior, which



Table 1
Grid independence study at Ra = 1.5 � 105. The optimal computational grid is
constructed with 1,784,139 finite volume tetrahedral elements. Grid independence
was achieved within one percent of the maximum velocity magnitude, the mass flow
rate as well as the heat transfer rate at the walls.

Mesh Vmax (m/s) QH (W) QC (W) _mðkg=sÞ

350,000 6.71 � 10�3 99.02 �99.02 0.00129
905,355 7.09 � 10�3 107.55 �107.55 0.00132
1,784,139 7.28 � 10�3 103.65 �103.65 0.00135
3,623,000 7.35 � 10�3 102.87 �102.87 0.00136
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resembles the well-known Kelvin–Helmholtz instability, intensi-
fied with time after the fluid velocities had dropped significantly.
Fig. 2. Details of the computational grid illustrating the distribution of elements within t
and cold walls as marked in (a) and (c) cross-section view. The mesh is constructed wit

Fig. 3. Distributions of temperature (left) and vorticity (right) on the vertical mid-plane
cells. The circulations are limited to the regions where the temperature discontinuity occu
(b) in the figure).
The present study involves the 3-D unsteady numerical simula-
tion of laminar natural convection in a ‘‘slender’’ toroidal loop
wherein the torus radius is much larger than the pipe radius
(R = 24). No assumptions are made with regard to midplane sym-
metry, thus allowing for the possibility of fully three-dimensional
flow structures. Particular care is devoted to two aspects: (1) to
determine the existing flow regimes that can be encountered as
the Rayleigh number increased from 103 to 2.6 � 107 and (2) to
delineate the temporal changes triggered by the flow structures.
The body of the paper is divided in two sections. The physical sys-
tem and the mathematical formulations are addressed in the first
section. The second section presents a discussion of the temporal
evolution of the velocity and temperature fields. Particular empha-
he domain: (a) schematic of the loop (b) side view of the left region between the hot
h 1,784,139 tetrahedral elements.

at Ra of 25,000. The fluid motion is very slow and consists of small counter rotating
rs and the remaining fluid along the loop is motionless (indicated as regions (a) and



Fig. 4. Visualizations of steady state temperature and flow fields for Ra = 25,000. (a)
Temperature fields in the midplane of the loop and in ‘‘four’’ selected cross sections
around the loop. The thermal fields at h = ±p/2 confirms the dominance of
conduction over convection. (b) Streamline plot with a magnified view of the
recirculation zone.
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sis is placed on flow patterns during the unsteady convection
regime at high values of the Rayleigh number.

2. Computational methods

The physical system for this problem, depicted schematically in
Fig. 1, consists of a circular loop filled with water and oriented in a
vertical plane. The physical dimensions of the loop are 69 cm inner
diameter and 75 cm outer diameter, giving a radius ratio R of 24.
Initially the water is in thermal equilibrium at T0 = 300 K. To initi-
ate natural convection airflow in the closed space, the lower (h = p
to 2p) walls are heated and maintained at a high temperature
TH = 310 K while the upper (h = 0 to p) walls are cooled and main-
tained at a low temperature TC = 290 K. In all numerical results pre-
sented, a constant temperature differential (TH–TC) of 20 K is
maintained between the hot and cold walls. Variations in the Ray-
leigh number are achieved by adjusting the value of the gravita-
tional acceleration. Given this modest temperature differential,
the standard Boussinesq approximation is invoked and all thermo-
physical properties – save density – are assumed to be constant
and evaluated at the reference temperature T0. This approximation
can be justified numerically by allowing these properties to vary
linearly with temperature: the results demonstrate negligible im-
pact on the flow. Additionally, the viscous dissipation is neglected
due to low velocities. Under these assumptions, the governing
equations are the unsteady, 3-D laminar Navier–Stokes equations
along with the energy equation:

@q
@t
þr � ðquÞ ¼ 0; ð1Þ

@ðquÞ
@t
þr � ðquuÞ ¼ �rpþ qðTÞg þr � s; ð2Þ

@e
@t
þr � ðqueÞ ¼ r � ðkrTÞ; ð3Þ

e ¼ cpT þ 1
2
juj2; ð4Þ

qðTÞ ¼ q0 1þ bðT � T0Þð Þ; ð5Þ

where s is assumed to be the Newtonian viscous stress tensor. No
slip velocity boundary conditions are imposed on the walls. Pre-
scribed isothermal boundary conditions of TH and TC are imposed
on the heated and cooled lower and upper walls, respectively.

The governing equations are solved numerically using the finite
volume method (software FLUENT 6.3 [23]). An implicit segregated
solver is used and all discretization schemes employed are of
second-order accuracy or higher. The QUICK scheme is used for
the momentum, energy and density discretization. A second-order
body-force-weighted scheme is used in the pressure discretization
and the SIMPLE scheme is used in the pressure–velocity coupling.
Convergence of a simulation at each time step was assessed
through the monitoring of computed residuals (velocity, energy
and mass conservation) and also through the convergence of point
and/or surface monitors for velocity, temperature, and heat flux at
selected locations in the domain by setting their absolute conver-
gence criterion to 10�6. This numerical approach has been success-
fully used in a previous study on the 2-D natural convection loop
[22]. In this study, numerical simulations are performed using
water as a working fluid (Pr = 5.83) and for Rayleigh numbers vary-
ing from 103 to 2.6 � 107.

To ensure the numerical results were independent of the three-
dimensional grid resolution, a formal grid sensitivity study was
performed. Grid sizes ranging from 350,000 to 3,623,000 tetrahe-
dral elements were examined in the steady-state convection re-
gime at Ra = 1.5 � 105. Grid independence was achieved within
one percent with the uniform grid size of 1,784,139 tetrahedral
elements. Table 1 illustrates the effect of the grid size on the solu-
tion. Details of the computational grid employed in this study are
shown in Fig. 2. The numerical approach used was successfully ver-
ified in the previous 2-D study conducted by the authors [22].
3. Results and discussion

For the problem of the thermal convection loop it has been
demonstrated both theoretically and experimentally that multiple
flow regimes are possible. Depending on the value of the Rayleigh
number, these include cases of pure conduction, steady convective
flow and Lorenz-like chaotic flow. Numerical results for the veloc-
ity and temperature fields are presented in order to characterize
and quantify the different steady and unsteady 3-D flow regimes;
the temporal evolution of the mass flow rate is also reported. Par-
ticular emphasis is placed upon the analysis of the unsteady con-
vection flow regime.



E.H. Ridouane et al. / International Journal of Heat and Mass Transfer 54 (2011) 5253–5261 5257
3.1. Steady convection regime

We first consider ranges of Rayleigh numbers that result in stea-
dy-state convection patterns, as this is represents the most basic
flow state. At the lowest Rayleigh numbers, the convection pattern
is very weak and consists essentially of small, counter-rotating
cells. The circulations are limited to the regions near the locations
of the thermal boundary condition discontinuities (i.e., at h = 0, p);
the remaining regions of the loop are motionless. This flow state
corresponding to Ra = 25,000 is represented in Fig. 3 in terms of
distribution of temperature (left) and vorticity (right) fields. The
contour plots correspond to the vertical mid-plane of the loop in
the regions near the temperature discontinuity between the hot
Fig. 5. Temperature distributions at four cross sections along the loop during the
steady convection regime: (a) Ra = 80,000 and (b) Ra = 800,000. Isolated regions of
stagnant fluid are formed in the inner sides of the loop at h = p and h = 0. The
thermal fields at Ra = 800,000 show the existence of two fluid ‘‘pockets’’ near the
boundary discontinuities. Fluid temperatures within these pockets are either much
lower or much higher than the main flow. These pockets traverse the loop in a
vortical circulation and will create instabilities that lead the flow to oscillate at
higher Ra.
and cold walls. The isotherms show a dominant conductive mode,
with hot fluid trapped in the lower half, and cold fluid in the upper
half. The convective motion is oriented upward on the left and
downward on the right, indicating that the fluid will circulate
clockwise (CW) at a relatively higher Rayleigh number. Additional
views of the thermal and flow structures are presented in Fig. 4a
and b, respectively for this same low value of Ra. In Fig. 4a, the
temperature fields at h = �p/2 and h = p/2 confirm that only con-
duction heat transfer is present. Near the boundary thermal dis-
continuities, asymmetric temperature distributions are observed
in the horizontal cross sections, with the bulk of the fluid rising
at h = p, and sinking at h = 0. A small recirculating region results
in a steady local flow reversal on the left (h = p) and right (h = 0),
as is clearly seen in the streamlines of Fig. 4b. It was found in a pre-
vious 2-D study conducted by the authors [22] at this value of Ra,
ig. 6. Streamline visualizations of the flow field corresponding to Rayleigh
umbers of (a) Ra = 80,000 and (b) Ra = 800,000. The lateral extent of the
ecirculation zone is compressed and the helicity of the re-circulating flow

creases with Rayleigh number.
F
n
r
in
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that a steady circulation pattern with relatively high velocities ex-
ists throughout the loop. This underscores the significance of 3-D
effects by way of increased hydrodynamic resistance to initiating
the flow in a 3-D geometry compared to a 2-D geometry.

When increasing Ra gradually from Ra = 25,000, the convective
motion at the discontinuities intensifies, improving the overall
contribution of convection to the global heat transfer through the
loop. Above a certain critical value of Ra (around 45,000), a CW cir-
culation along the loop becomes steady. This new state at the crit-
ical value of Ra may also rotate counter clockwise (CCW); the
particular direction of the rotation is dictated by minute numerical
asymmetries present in the initial condition of the numerical sim-
0.012

0.016

0.02

0.024

0.028

300 800 1300 1800 2300

time (s)

m
 (

kg
/s

)

0.012

0.016

0.02

0.024

0.028

1600 2000 2400 2800 3200 3600 4000

time (s)

m
 (

kg
/s

)

• 

• 

(a) 

(b) 

0.012

0.016

0.02

0.024

0.028

3100 3500 3900 4300 4700 5100 5500

time (s)

m
 (

kg
/s

)

• 

(c) 

Fig. 7. Temporal evolution of the mass flow rate at different Rayleigh numbers of
(a) 1.5 � 107, (b) 2.02 � 107 and (c) 2.89 � 107. The flow remains unidirectional, as
the mass flow rate, _m, does not change sign.
ulation. Fig. 5 illustrates the characteristics of the steady circula-
tion state in terms of the temperature distribution at four cross
sections along the loop at Rayleigh numbers of 80,000 and
800,000. Corresponding streamline visualizations for these cases
appear in Fig. 6.

For Ra = 80,000, the steady circulation within the loop is evident
when examining the temperature distributions within the four
cross-sections. At the bottom of the loop, there is a slightly cooler
core resulting from the clockwise flow circulation bringing cooler
fluid to this location; the converse situation occurs at the top of
the loop. Note that this ‘‘core’’ is not perfectly symmetric and in
fact reverses its orientation between the top and the bottom. This
is consistent with the temperature patterns observed in the cross-
sections taken at the horizontal midplane of the loop. At these
locations there is an isothermal core that occupies much of the
cross section, whose temperature is more extreme than the sur-
rounding boundary temperature. This is due to the velocities being
greatest at these locations. However, there are also small isolated
regions of stagnant fluid adjacent to the walls whose temperature
nearly matches that of the boundary. Again there is an asymmetry
in the location of these ‘‘pockets’’ on opposite sides of the horizon-
tal midplane of the loop. Taken together, the temperature distribu-
tions at these four cross-sections indicate a vortical circulation
pattern throughout the loop. This is strictly a three-dimensional ef-
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Fig. 8. Time history of the mass flow rate along the loop when the temperature
difference DT = 40 K (Ra = 2.31 � 107). The flow oscillations show a unique beating
pattern where the magnitude increases smoothly to reach a maximum and
decreases again to become almost stable before the beginning of a new cycle.
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Fig. 9. A magnified view of the selected time window of Fig. 8 (dashed oval)
showing more details of the flow regime. Oscillations of varying amplitude sharing
the same period of approximately 70 s are observed.
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fect and one that would not be observed in two-dimensional
simulations.

As the Rayleigh number is increased to 800,000 one observes
that these features become more pronounced. The overall circula-
tion within the loop increases and, at the top and bottom of the
loop, the result is a more extensive fluid core with a greater tem-
perature differential with respect to the boundary. Meanwhile, in
the horizontal midplane the aforementioned ‘‘pockets’’ increase
in size and migrate to a different azimuthal location. There is also
a marked variation in their temperature: the temperature within
the pockets no longer matches the boundary value but rather
inversions of the core temperatures. This behavior is intimately
linked with the enhancement of the three-dimensional flow struc-
tures in these regions.
Fig. 10. Temporal evolution of the flow structure over one cycle of oscillations. Isothe
qualitative changes are observed over time in the upper and lower regions of the loop. Ho
consists of two counter rotating vortices surrounded by a thin fluid layer either much h
The streamline patterns at increasing Rayleigh numbers indi-
cate two essential modifications of the flow structure when com-
pared to the patterns observed at the much lower values. First,
recirculation zones remain present at the h = 0, p positions, the lat-
eral extent of the zone is seen to be compressed to a greater extent
by the circulating flow. This is evidently linked to the greater flow
inertia at the increased Rayleigh numbers. Second, the interaction
of the circulating and re-circulating flows at these locations leads
to the development of a helical structure to the circulating flow
in the remainder of the loop; this helical component is readily seen
in Fig. 6. As Rayleigh number is further increased, these flow struc-
tures ultimately lead to hydrodynamic instabilities that result in a
transition from a steady circulation pattern to an unsteady, oscilla-
tory one. This regime is discussed in the next section.
rms are plotted at selected times corresponding to instants a–d in Fig. 9. Minor
wever, In the vicinity of the discontinuities at h = p and h = 0 the flow is unstable and
otter or cooler than the main vortices.



Fig. 11. Visualization of the instantaneous flow field corresponding to point ‘‘d’’ of
Fig. 9. (a) Plot of the instantaneous velocity magnitude in the loop mid-plane. (b)
Plot of the instantaneous streamlines. The vertical motion within the isolated
recirculation zones is highly complex.
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3.2. Unsteady convection regime

The numerical simulations reveal that a stable, steady convec-
tive circulation pattern persists and increases in strength until a
threshold value of the Rayleigh number is reached. In this study,
this value is found to be approximately 1.5 � 106. Above this value
the convective motion becomes unstable and transitions to an
oscillatory pattern that fluctuates about some mean value; how-
ever, there is no reversal in the overall circulation pattern and
the bulk flow remains unidirectional. The flow remains fully lami-
nar and this state of seemingly random fluctuations in time is re-
garded as ‘‘chaotic convection’’. The nature of the oscillations is
depicted in Fig. 7 by the temporal evolution of the mass flow rate
at different values of the Rayleigh number of 1.5 � 107, 2.02 � 107

and 2.89 � 107. We kept the ordinate-axis the same in all the fig-
ures to observe the changes in the mass flow rate amplitude as
the Rayleigh number increases. The time window is not consistent
as the objective here is limited to the visualization of the oscilla-
tion behavior at each Rayleigh number. Again, the bulk motion of
the fluid is unidirectional – hence the mass flow rate never changes
sign �, although local flow reversals are present as in the steady
cases at the lower Rayleigh numbers. Overall, as the Rayleigh num-
ber is increased, the mean value of the mass flow rate is also in-
creased as would be expected by the greater buoyant forcing.
Furthermore, there is an accompanying increase in the amplitude
of the fluctuations. Close inspection of the plots of mass flow rate
reveals a sequence of fluctuations of relatively high amplitude fol-
lowed by periods of relatively weak fluctuations where the fluid
enters a temporary, quasi-stable state. To verify that the fluctua-
tions in the mass flow rate were sustained – and not a transient
phenomena, all simulations were performed for an extended dura-
tion of 2 � 104sec (5.5 h) and no re-stabilization was observed.

To analyze the unsteady behavior in greater detail, we select a
particular value of the Rayleigh number (Ra = 2.31 � 107) corre-
sponding to a temperature difference DT of 40 K. Fig. 8 shows the
time history of the mass flow rate along the loop. For comparison
purposes against the data displayed in Fig. 7, the scale of the
ordinate-axis was kept the same. At this particular forcing, the flow
oscillations show a unique beating pattern where the magnitude in-
creases smoothly with time to reach a maximum and decreases
again to become almost stable at an average value of about
0.021 kg/s. These patterns prevail in time despite variations in mag-
nitude and oscillation period observed from one cycle to another. For
a better understanding of the flow behavior during the chaotic re-
gime, we focused our attention on the selected cycle shown in
Fig. 8 (indicated by the dashed oval); this window of time is dis-
played in Fig. 9. More details can be extracted from this zoomed-in
image including the oscillation period of approximately 70 s.

The flow visualization over the selected cycle of Fig. 8 is pre-
sented in Fig. 10. Isotherms are plotted at selected times corre-
sponding to instants a–d in Fig. 9. These instants were chosen
based on their corresponding _m magnitude to show typical flow
structures occurring in the loop during one cycle of oscillations.
Minor qualitative changes are observed over time in the upper
and lower regions of the loop presented by the images at h = �p/
2 and h = p/2. The temperature distribution in these locations indi-
cates a large isothermal core with sharp gradients near the walls.
In the vicinity of the discontinuities at h = p and h = 0 the flow is
unstable and consists of two counter rotating vortices. At h = 0
the vortices circulate warm fluid in the central region surrounded
by a cold boundary layer. The cold pocket in Fig. 10b (h = 0) grows
over time and moves around the surface before getting absorbed
by one of the main vortices. These main vortices change in size
and interestingly the cold pocket always forms attached to the lar-
ger vortex. A similar sequence of events occurs at the other discon-
tinuity at h = p. To further correlate the observed thermal behavior
with the flow patterns, plots of the mid-plane velocity magnitude
along with the instantaneous streamline pattern appear in Fig. 11
(a) and (b), respectively for the instant ‘‘d’’ identified in Fig. 9.
The asymmetry of the flow field along the loop is clearly evident.
Although there are sizable recirculation zones centered approxi-
mately at the h = p/4 and�3p/2 positions along the loop (antipodal
points) these zones do not share the symmetry observed for the
steady convection patterns. Within these zones the vortical motion
is quite complicated. Also noteworthy is the high degree of helical
motion that is present throughout the entire loop.

To identify the dynamical regimes occurring in the loop at DT of
40 K, we proceeded to a spectral analysis of the mass flow rate _mðtÞ
signal displayed in Fig. 8, the outcome is shown in Fig. 12. It is clear
that the system response is a multi-period signal of frequencies
varying in the interval 0.01–0.02 Hz. In fact the power spectrum
peaks at a frequency f0 = 0.014 surrounded by a sequence of sec-
ondary peaks of small magnitude.
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Fig. 12. Level of the mass flow rate signal displayed in Fig. 8. It is observed that this
signal has multiple periods with frequencies varying in the interval between 0.01
and 0.02 Hz. The main peak occurs at a frequency f0 = 0.014 (70 s) surrounded by a
sequence of secondary peaks of small magnitude.
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4. Conclusions

Three-dimensional numerical results of laminar natural convec-
tion inside a thermal convection loop filled with water, heated
from below and cooled from above are presented. The equations
of mass, momentum, and energy were solved using the finite-vol-
ume method. Unsteady numerical simulations were conducted fix-
ing the Prandtl number at 5.83 and varying the Rayleigh number
from 103 to 2.6 � 107. Under these conditions, multiple flow re-
gimes including conduction, steady convection, and unsteady con-
vection were encountered in the loop as the Rayleigh number was
increased.

It was found that the onset of convection originated at the dis-
continuities between the hot and cold walls and took the form of
small vortices, while the remaining fluid along the loop was still
motionless. These vortices intensified as Ra was increased and re-
sulted in a steady fluid circulation that may rotate CW or CCW by
chance. This new state appeared and became stable as long as Ra
remained within the interval from 5 � 104 to 1.5 � 106. However,
starting at Ra of 8 � 105, the flow visualization showed the appear-
ance of two fluid pockets at the discontinuities, with temperatures
that were either much lower or much higher than the main flow.
These pockets created instabilities that led the flow to oscillate at
higher Rayleigh numbers. Above Ra of 1.5 � 106, the convective
motion became oscillatory and any increase in Ra resulted in stron-
ger oscillations. The flow oscillations showed a unique beating pat-
tern at a particular value of Ra = 2.31 � 107, which was equivalent
to DT of 40 K. The flow visualization during one cycle of oscilla-
tions, presented by the temperature distribution at selected loca-
tion within the loop, showed that minor qualitative changes
were observed over time in the upper and lower regions of the
loop. However, in the vicinity of the discontinuities at h = p and
h = 0 the flow is unstable and consists of two counter rotating vor-
tices surrounded by a thin layer that was either much cooler or
hotter that the main flow. These main vortices were highly unsta-
ble and changed size throughout the oscillation cycle. In agreement
with the results found by Lavine et al. [5], the three dimensional
flow structures increased the flow resistance, and dampened the
flow instability mechanism responsible for bulk flow reversals
observed in lower dimensional theoretical models and simulations.
The exact details describing the mechanism by which this damping
occurs are not clear.
In summary, the simulations reveal a highly complex and three-
dimensional flow behavior within the loop characterized by local-
ized recirculation zones and helical motion of the bulk circulation,
the degree of which increases with Rayleigh number. These visual-
izations underscore the need for fully three-dimensional simula-
tions to capture the detailed behavior of the toroidal convection
loop phenomena.
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