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ABSTRACT

This study addresses the issue of model errors with the ensemble Kalman filter. Observations generated

from the NCEP–NCAR reanalysis fields are assimilated into a low-resolution AGCM. Without an effort to

account for model errors, the performance of the local ensemble transform Kalman filter (LETKF) is seri-

ously degraded when compared with the perfect-model scenario. Several methods to account for model er-

rors, including model bias and system noise, are investigated. The results suggest that the two pure bias

removal methods considered [Dee and Da Silva (DdSM) and low dimensional (LDM)] are not able to beat

the multiplicative or additive inflation schemes used to account for the effects of total model errors. In

contrast, when the bias removal methods are augmented by additive noise representing random errors

(DdSM1 and LDM1), they outperform the pure inflation schemes. Of these augmented methods, the LDM1,

where the constant bias, diurnal bias, and state-dependent errors are estimated from a large sample of 6-h

forecast errors, gives the best results. The advantage of the LDM1 over other methods is larger in data-sparse

regions than in data-dense regions.

1. Introduction

After more than 10 years of research, variants of the

ensemble Kalman filter (EnKF) proposed by Evensen

(1994) are now becoming viable candidates for the next

generation of data assimilation in operational NWP.

The advance is primarily due to the fact that 1) they

include a flow-dependent background error covariance;

2) they are easy to code and implement; and 3) they

automatically generate an optimal ensemble of anal-

ysis states to initialize ensemble forecasts. Many studies

to date have tested EnKF systems under the perfect-

model assumption with simulated observations, and only

within the last few years have there been tests of the

EnKF assimilating real atmospheric observations (e.g.,

Houtekamer et al. 2005; Whitaker et al. 2008; Szunyogh

et al. 2008; Torn and Hakim 2008; Meng and Zhang 2008).

Notably, an EnKF has been operational since 2005 in

the Canadian Meteorological Centre (Houtekamer and

Mitchell 2005) and when using the same model and

observations, the EnKF scores are about the same as the

scores with a four-dimensional variational data assimila-

tion (4DVAR) system (see online at http://4dvarenkf.

cima.fcen.uba.ar/Download/Session_7/Intercomparison_

4D-Var_EnKF_Buehner.pdf).

Numerical weather forecast errors grow as a result of

errors in the initial conditions and model deficiencies.

Model errors can result from approximate parameteriza-

tions of physical processes, the failure to represent sub-

grid-scale events, and numerical discretization, etc. When

preparing a data assimilation scheme for the inclusion of

real observations, assuming that the model is perfect is

overly optimistic (Dee 1995). In this case, the ‘‘true’’

forecast error covariance should include uncertainties
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from both inaccurate initial condition and model errors.

As a result, if the background error covariance in the

EnKF attributes errors only to the initial conditions, it will

be smaller than the true forecast error covariance. To

address this problem, approaches include inflating the

background error covariance with multiplicative inflation

(Anderson and Anderson 1999), additive inflation

(Mitchell and Houtekamer 2000; Mitchell et al. 2002;

Hamill and Whitaker 2005; Corazza et al. 2007; Whitaker

et al. 2008) and the covariance relaxation method (Zhang

et al. 2004). Though these techniques are easy to imple-

ment, they account for model errors in the second mo-

ment of the ensemble, not the mean. Other methods have

been proposed to deal with the mean of model errors.

Fujita et al. (2007) and Meng and Zhang (2007, 2008)

reported that using different physical parameterization

schemes resulted in both better background error co-

variance and mean estimates in their mesoscale EnKF

experiments. Aksoy et al. (2006a,b) proposed a simulta-

neous state and parameter estimation method to estimate

uncertain model parameters in an EnKF environment.

Dee and da Silva (1998) proposed a method for the online

estimation and correction of model bias. This bias cor-

rection method [i.e., the Dee and da Silva bias estimation

method (DdSM)] has been successfully tested, for ex-

ample, by Dee and Todling (2000), Carton et al. (2000),

Chepurin et al. (2005) in three-dimensional variational

data assimilation (3DVAR) and optimal interpolation

(OI) data assimilation systems, and by Keppenne et al.

(2005) in an EnKF system. Recently, Baek et al. (2006)

developed another bias correction method similar to the

DdSM except that it allows for ‘‘adjusting’’ the observa-

tions, rather than the model bias. It also accounts for the

cross correlation of uncertainties in model state and bias

ignored by the DdSM. They successfully tested this ap-

proach with the Lorenz-96 model. However, these two

bias correction methods assume that model errors are

constant in time, resulting in estimates of only the slowest

varying component of model errors. In reality, model

errors are likely to vary with time (e.g., errors in the

diurnal cycle) or with the state of the atmosphere (e.g.,

biases are different during an El Niño episode).

Danforth et al. (2007) proposed an approach where

the state-independent model error (bias) was estimated

from the average of a large ensemble of 6-h forecast

minus analysis fields (i.e., 6-h apparent forecast errors).

Diurnal errors were estimated from the dominant em-

pirical orthogonal functions (EOFs), and state-dependent

errors were determined using the leading terms in a sin-

gular value decomposition (SVD). They found this low-

dimensional method (LDM), where the state-dependent

errors are expressed in terms of very few degrees of

freedom (d.o.f.), to be very successful and computation-

ally efficient. This method has been successfully tested

with the coupled Lorenz-96 model (Danforth and Kalnay

2008) and the simple but realistic global Simplified Pa-

rametrization Primitive Equation Dynamics (SPEEDY)

model (Danforth et al. 2007). However, neither study

addressed data assimilation; the initial conditions were

taken to be a system trajectory and the National Centers

for Environmental Prediction–National Center for At-

mospheric Research (NCEP–NCAR) reanalysis, respec-

tively. Here we expand the application of the LDM to

more realistic situations where the forecast–analysis is

cycled and, as a result, forecast error includes both model

error and dynamical growing error due to the imperfect

initial condition.

In this study, we investigate the performance of an

ensemble Kalman filter in a perfect model and in the

presence of significant model errors, and then compare

approaches for dealing with model errors in ensemble

data assimilation. The local ensemble transform Kalman

filter (LETKF; Hunt et al. 2007) is used as a represen-

tative of other EnKF systems. A review of the LETKF is

given in section 2. The different techniques for treating

model errors are described in section 3. Section 4 reports

the performance of the LETKF in a perfect-model sce-

nario. In section 5, the LETKF performance in the pres-

ence of model errors due to assimilating observations

generated from the NCEP–NCAR reanalysis fields is ex-

amined. Two inflation schemes (multiplicative and addi-

tive inflation) and two bias correction methods (DdSM

and LDM) are applied to account for and/or correct

model errors. Their results are compared and discussed

in both a uniform and a rawinsonde-like observation

network. Section 6 gives our summary and discussion.

2. LETKF data assimilation scheme

The LETKF is one of the ensemble square root filters

(Tippett et al. 2003) in which the observations are as-

similated to update only the ensemble mean by

xa 5 x f 1 K[yo �H(x f )], (1)

where xa and xf are the ensemble mean of analysis and

background (forecast) respectively; K is the Kalman gain;

yo is the observations; and H() is the observation operator.

Here we use the superindex f rather than b to denote the

background (forecasts) in order to avoid confusion with

the subindex b used to denote the bias in the next section.

The ensemble perturbations are updated by trans-

forming the background perturbations through a trans-

form matrix T, as proposed by Bishop et al. (2001):

Xa 5 Xf T, (2)
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where Xa and Xf are the analysis and background en-

semble perturbations (matrices whose columns are the

difference between the ensemble members and the en-

semble mean), and the error covariances are given by

Pa,f 5 Xa,f(Xa,f )T.

In the LETKF, the Kalman gain and transform matrix

are given by

K 5 Xf ~P
a
(HXf )TR�1 and (3)

T 5 [(K � 1)~P
a
]1/2, (4)

where ~P
a
, the analysis error covariance in ensemble

space, is given by

~P
a

5 [(K � 1)I 1 (HXf )TR�1(HXf )]�1, (5)

with dimension K 3 K, where the ensemble size K is

usually much smaller than both the dimension of the

model and the number of observations. As a result, the

LETKF performs the analysis in the space spanned by

the forecast ensemble members, which greatly reduces the

computational cost. The LETKF is computed locally for

each grid point by choosing the observations that will

influence that grid point. More details about the LETKF

are available in Hunt et al. (2007) and Szunyogh et al.

(2008).

3. Methods to deal with model errors

a. Multiplicative inflation

Multiplicative inflation simply inflates the ensemble

error covariance Pe
f by a factor 1 1 D to approximate the

true error covariance Pf:

P f )(1 1 D)P f
e , (6)

where D is a tunable parameter. Equation (6) provides

for an increase in the ensemble covariance Pe
f to account

for the model errors not included in the original Pe
f. This

method implicitly assumes that model errors have the

same error structure as the internal errors so that their

error covariance is proportional to the dynamically

evolved error covariance Pe
f.

b. Additive inflation

Additive inflation parameterizes model errors by

adding random perturbations with a certain covariance

structure to each ensemble member. Following Whitaker

et al. (2008), in this study we randomly select samples

from a subset of NCEP–NCAR reanalysis (NNR; Kalnay

et al. 1996) 6-h tendency fields in January and February

for the years 1982–86. Unlike random numbers, these

randomly selected tendency fields are geostrophically

balanced. In each analysis cycle, we randomly select K

tendency fields, remove their mean, scale these zero-

mean fields (we tune the scaling factor), and add each of

these scaled fields to one background ensemble member:

x f
k 5 x f

e(k) 1 rqk, (7)

so that

qk 5 0 (8)

and denote

qkqT
k 5 Q. (9)

Here k is the index for each ensemble member, x
f
e(k)

denotes the kth ensemble forecast, qk is the field added

to ensemble member k, and r is the globally uniform

scaling factor, a tunable parameter. Our procedure is

similar to that of Whitaker et al. (2008), ensuring that

the added fields will only enlarge the background error

covariance by Q and will not change the ensemble mean.

c. DdSM

Dee and da Silva (1998) developed a two-stage bias

estimation algorithm, in which the estimation proce-

dures for the bias and the state are carried out succes-

sively. At the first step bias is estimated on every model

grid point by

ba 5 b f � K
b
[yo �H(x f � b f )] and (10)

K
b

5 P
f
bbHT(HP

f
bbHT 1 HP f

xxHT 1 R)�1, (11)

where the matrix P f
xx and P

f
bb is the forecast error

covariance for the state variables and for the bias,

respectively.

In practice the bias forecast error covariance P
f
bb is

unknown, so that following Dee and da Silva (1998) we

assume that

P
f
bb 5 aP f

xx. (12)

Substituting (12) into (11), we have

K
b

5 aP f
xxHT[(1 1 a)HP f

xxHT 1 R]�1, (13)

where a is a tunable parameter.

In the second step, the analysis for the state variables

is obtained using the standard analysis procedure with

the unbiased forecast state xf 2 ba:

xa 5 (xf � ba) 1 K
x
[yo �H(x f � ba)] and (14)
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K
x

5 P f
xxHT(HP f

xxHT 1 R)�1. (15)

As for the bias forecast model, following Carton et al.

(2000) we use damped persistence:

b f
i 5 mba

i�1, (16)

where i denotes time step, and m , 1 is a tunable

parameter.

The cost of the DdSM is about twice that of no bias

estimation, since the updated equations are solved

twice, first for the bias estimation and then for the state

variables. However, this doubling of the cost can be

avoided if a� 1 in which case Eq. (13) becomes

K
b

’ aP f
xxHT(HP f

xxHT 1 R)�1
5 aK

x
. (17)

Reversing the order of the bias estimation step and

that of the state analysis step, we obtain a simplified

version of the DdSM (Radakovich et al. 2001):

xa 5 (x f � b f ) 1 K
x
[yo �H(x f � b f )] and (18)

ba 5 b f � aK
x
[yo �H(x f � b f )]. (19)

In this approach the computation of Eq. (19) is almost

cost free after the state analysis xa has been updated by

Eq. (18), since Kx[yo 2 H(x f 2 bf)] is simply the analysis

increment for the state variables.

Above we give the general equations for the DdSM

and its simplified version. In the application of the

DdSM to an EnKF system, no additional ensemble

members are required for the bias since the bias forecast

error covariance P
f
bb is obtained directly from the state

forecast error covariance P f
xx. Therefore, the term xf in

Eqs. (10) and (19) is actually the ensemble mean forecast.

d. LDM

We assume the NNR as a reference field to approxi-

mate the true atmosphere and create a reference 6-h

model forecast initialized from the NNR without data

assimilation. The (apparent) 6-h forecast error xe is then

defined as the difference between the reference forecast

and the NNR valid at the same time.

The low-dimensional scheme (Danforth et al. 2007)

assumes that model error xm
e has three components,

namely the bias, periodic errors dominated by errors

in the diurnal cycle, and model errors that are state-

dependent:

xe
m(t) 5 b 1 �

L

l51
b

l
(t)e

l
1 �

N

n51
g

n
(t)f

n
, (20)

in which t denotes the time step. The forecast bias b is

obtained by averaging the forecast errors xeover a cer-

tain training time period b 5 hxei, and the leading EOFs

el from the anomalous error field xe9 5 xe � hxei are

used to estimate diurnal or other periodic errors. The

state-dependent model error component is given by the

leading SVD modes fn of the covariance of the coupled

model state anomalies xf 9 5 xf � hxf i and correspond-

ing error anomalies xe9. Here L and N are the number

of retained leading modes of EOFs and SVDs, respec-

tively. The spatial fields b, el, and fn are time indepen-

dent and computed offline using the training period

samples. We call this approach low-dimensional because

the spatial shape of the model errors is preestimated

separately and only the amplitudes bl(t) and gn(t), which

have a much lower dimension (L and N) than the full

model dimension, are estimated online.

During the training period, the time series of bl is

calculated by projecting xe9 onto the EOFs el. Since bl is

dominated by the bias in the diurnal cycle, the time-

dependent bl(t) can be estimated by averaging the bl

over the diurnal cycle in the training period. For ex-

ample, we can use the samples in the training period

to calculate the average of bl for 0000, 0600, 1200, and

1800 UTC separately and time interpolate them in the

current time step. For the calculation of the state-

dependent component �N
n51 g

n
(t)f

n
using SVD, the read-

ers are referred to Danforth et al. (2007).

4. The LETKF performance in perfect-model
experiments

The AGCM used in this study, SPEEDY (Molteni

2003), solves the primitive equations for prognostic

variables of zonal wind (u), meridional wind (y), tem-

perature (T), specific humidity (q), and surface pres-

sure (ps) at triangular truncation T30, corresponding to

96 3 48 grid points at each of the 7 sigma levels. First, we

assume a perfect model where a nature run is generated

by integrating the SPEEDY model from 0000 UTC

1 January 1987 to 1800 UTC 15 February 1987. The

observations are simulated by adding normally distrib-

uted random noise to the nature run, and are available at

each model grid point for ps and every second model

grid point for u, y, T, q, in both the zonal and meridional

directions (i.e., 25% of the number of model grid

points). The amplitudes of the observation errors are

1 m s21 for u, y wind, 1 K for T, 1024 kg kg21 for q, and

1 hPa for ps. For each forecast–analysis cycle, the

SPEEDY model is used to generate the 6-h forecast and

the observations are assimilated by the LETKF with

30 ensemble members and a D 5 0.05 multiplicative
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inflation parameter to deal with sample errors in the

covariance. Figure 1 shows the time series of analysis

root-mean-square error (RMSE) with respect to the

nature run, averaged over the whole globe, for zonal

wind (u), geopotential height (Z), temperature (T),

specific humidity (q) at 500 hPa, and surface pressure

(ps). It is clear that after the initial spinup period, the

analysis RMSE for all the variables is much smaller than

the observational error standard deviations.

To investigate why the LETKF performs well, the

background ensemble spread is compared with the back-

ground error. Carrying out perfect-model experiments,

the true background error with respect to the nature run

can be calculated. In order for the LETKF to perform

well, the ensemble spread should be representative of

the true background error. Figure 2 shows the 500-hPa

height background ensemble mean error field (shaded)

and the ensemble spread (contour) at 1200 UTC 3 Feb-

ruary 1987, an arbitrarily chosen time. Although noisy,

these two fields generally agree with each other in lo-

cation. The background RMSE of the height field and

the corresponding spread averaged over the whole globe

are then compared in Fig. 3. The spread is slightly

smaller at low levels and slightly larger in the upper

levels compared to the background RMSE, but they are

still quite close. Figures 2 and 3 together demonstrate

that the spread among 30 ensemble members has cap-

tured the true background error well in both structure

and magnitude.

5. Accounting for and correcting model errors in
the LETKF

To assess the performance of the LETKF in the pres-

ence of model errors, we replace the nature run in the

perfect-model experiments by the NNR fields. Since

the NNR assimilated real observations, we assume

that the NNR fields are an approximate estimate of the

unknown true atmosphere (a quantitative validation

of this assumption is beyond the scope of this research).

Random noise with the same standard deviation used

in the perfect-model experiments is added to simu-

late ‘‘NNR observations.’’ The density of observa-

tions remains the same as that in the perfect-model

experiments.

a. Effects of model errors on the LETKF

Serving as a benchmark, the control run is carried out

using the same configuration (D 5 0.05 and 30 ensemble

members) as that in section 4 but replacing the obser-

vations generated from the nature run with the NNR

observations. No additional method is applied to deal

FIG. 1. Time series of global-averaged analysis RMSE (solid

curve) for the period between 0000 UTC 1 Jan 1987 and 1800 UTC

15 Feb 1987 in a perfect-model experiment. The observational

error standard deviations are shown as dashed lines wherever ap-

plicable. (from top to bottom) Zonal wind, geopotential height,

temperature, specific humidity at 500 hPa, and surface pressure,

respectively.
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with model errors. After an initial spinup period of

15 days, the analyses and forecasts are verified against

the NNR.

The strong negative influence of the model errors

on the performance of the LETKF is very clear in the

control run (results not shown). In the presence of

model errors and without accounting for them, the

500-hPa height analysis RMSE increases from 2.4 (in

the perfect model) to 50 m because of the model errors

and their accumulated effects. An increase by more

than an order of magnitude is also observed for other

variables and regions. However, it should be noted that

with a more sophisticated and high-resolution numer-

ical model, such as those currently used in operational

centers, the negative impact of model errors would be

much smaller.

The background ensemble spread of the height field is

plotted in Fig. 4 to investigate why the LETKF performs

poorly in the presence of large model errors. It is worth

noting that the spread is very close to that obtained in

the perfect-model experiment, while ideally it should be

as large as the actual forecast error, as it happens for a

perfect model. This result indicates that when using the

same model, the forecast ensembles are blind to model

errors, and therefore the ensemble spread underesti-

mates the actual forecast error, leading to excessive

confidence in the forecasts, less weight given to the ob-

servations, and, as a result, to the poor performance of

the LETKF.

b. Accounting for and correcting model errors

The methods described in section 3 are then applied

to the SPEEDY-LETKF system to account for model

errors. As in the control run, experiments are im-

plemented for the period 0000 UTC 1 January–1800 UTC

15 February 1987 and the verification statistics are com-

puted for analyses and forecasts against the NNR fields

after the initial spinup period of 15 days.

1) MULTIPLICATIVE INFLATION VERSUS

ADDITIVE INFLATION

Figure 5 shows the analysis RMSE of 200-hPa u,

500-hPa Z, 850-hPa q, and 925-hPa T fields, from mul-

tiplicative inflation (with an optimal parameter of

D 5 1.5), additive inflation (with an optimal amplitude

of r 5 1.5), and the control run. Both inflation schemes

result in much better analyses than the control run for

all the fields. As found in previous studies (e.g., Hamill

and Whitaker 2005; Whitaker et al. 2008), additive

inflation outperforms multiplicative inflation.

2) DEE AND DA SILVA METHOD COMBINED

WITH ADDITIVE INFLATION (DDSM1)

The DdSM aims to estimate and correct model bias,

but does not account for state-dependent and random

errors. Since the performance of the additive inflation

is better than that of the multiplicative inflation, we

FIG. 2. The background (6-h forecast) error field (m, shaded)

and the ensemble spread of 500-hPa height field (m, contour) at

1200 UTC 3 Feb 1987, an arbitrarily chosen time, in a perfect-

model experiment.

FIG. 3. Height background RMSE at all pressure levels (solid)

and background ensemble spread (dashed), temporally averaged

for one-month after the initial 15-day spinup period in a perfect-

model experiment.
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combine the DdSM with additive inflation to account for

system noise. The additive noise is obtained in the same

manner as for the additive inflation scheme. We refer to

the DdSM augmented with additive noise as DdSM1.

Recall that there are two variables (m and a) to be

tuned in the pure DdSM. If additive inflation is used to

model the system noise, the amplitude (r) of additive

noise is another parameter that also needs to be tuned.

To simplify the task of tuning these three parameters,

first we fix a 5 0.5 [following the recommendation of

Dee and da Silva (1998)] and m 5 1.0 (assuming a per-

sistence model for bias prediction) and then tune the

amplitude (r) of the additive noise. We start at 0000 UTC

1 January 1987 by assuming zero bias and run the

SPEEDY–LETKF system. However, no matter how

small r is, the filter diverges, especially for temperature

fields in the lower levels, and the bigger r is, the faster the

divergence. Using the same SPEEDY–LETKF system

but with pure DdSM (r 5 0), Miyoshi (2005) observed

similar filter divergence for all choices of a when fixing

m 5 1.0. Thus, we let m be less than 1 to reduce the

impact of bias from the previous time step and find that

m 5 0.9 is successful for a wide range of choices for r and

gives better results than m 5 0.8. Fixing m 5 0.9, the pairs

of (a, r) are tuned. The results in terms of 500-hPa

RMSE computed over the 1-month period after the

initial 15-day spinup period are summarized in Table 1.

It is clear that accounting for random system noise is

essential in order for the LETKF to perform well.

Without additive noise, the pure DdSM (r 5 0) is not

competitive with pure additive inflation (a 5 0) with an

optimal amplitude of r 5 1.5. Using a small additive

noise (r 5 0.25), the DdSM1 outperforms the pure ad-

ditive inflation scheme, but the optimal choice of a is

FIG. 4. Height background ensemble spread at all pressure levels

temporally averaged over a month after the initial 15-day spinup

period in the cases of perfect model, assimilating observations

generated from the SPEEDY nature run (dashed), and imperfect

model assimilating observations generated from the NNR field

(solid).

FIG. 5. Time series of the global-averaged analysis RMSE in the

cases of the control run (dashed curve), D 5 1.5 multiplicative in-

flation (dotted curve), and r 5 1.5 additive inflation (solid curve)

assimilating the NNR observations. (from top to bottom) 200-hPa u,

500-hPa Z, 850-hPa q, and 925-hPa T fields, respectively.
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large (a 5 0.75). When r is increased to 0.5, the value of

the optimal a reduces to 0.5. These results can be better

understood by the expression of P
f
bb 5 aP f

xx where a is

an explicit parameter and r is an implicit factor (through

affecting P
f
xx) to determine the bias forecast error co-

varianceP
f
bb. When r is small, the system requires a large

value of a to obtain an optimal P
f
bb, while as r increases,

the optimal value of a decreases because the forecast

error covariance P f
xx for the state variables has already

been increased. By increasing r from 0 to 0.5, a large im-

provement is found. Beyond r 5 0.5, there is little further

improvement. Therefore, we choose (m 5 0.9, a 5 0.5, r 5

0.6) as the optimal setting of the parameters for the

DdSM1.

As for the simplified version of DdSM [Eqs. (18) and

(19)], we did similar tuning experiments for parameters

m, a, and r, the optimal result (not shown) is worse than

that from the optimal DdSM1.

3) LDM WITH ADDITIVE INFLATION (LDM1)

Since experiments are carried out for January and

February in 1987, the 5-yr climatology of the same

months for the years 1982–86 is chosen as the training

period, following Danforth et al. (2007). In this training

period, the 6-h SPEEDY forecasts initialized with the

NNR fields are conducted; the samples of forecast error

xe are then obtained by taking the differences between

the SPEEDY 6-h forecasts and the NNR fields valid at

the same time.

Three types of model errors in Eq. (20) with LDM are

corrected but, as was the case with the pure DdSM, the

pure LDM without accounting for system noise was

unable to beat pure additive inflation (Fig. 6). To pa-

rameterize system noise, randomly selected NNR 6-h

tendency fields are added to each background ensemble

member and their amplitude is tuned as was done in the

DdSM1 scheme. As seen in Fig. 6, the LDM, plus a small

amount (r 5 0.4) of additive noise (hereinafter LDM1)

significantly outperforms the pure additive inflation

scheme, suggesting the necessity to deal with both model

bias and system noise in the presence of complicated

model errors.

4) OVERALL COMPARISON

Finally all the methods with their optimal configura-

tions are compared with each other. As before, the re-

sults are verified against the NNR fields.

(i) Analysis verification

Figure 7 shows the analysis RMSE comparison. Among

all methods, the LDM1 gives the best results: it out-

performs other methods in all the fields throughout all

pressure levels, especially at lower levels. The DdSM1

generally outperforms both pure inflation schemes.

Though the pure multiplicative inflation scheme pro-

duces the worst results of the four methods, it should be

noted that all the methods have made major analysis

improvements compared to the control run (gray dotted

curve in Fig. 8). These results indicate that accounting

for model errors is essential for the EnKF and cor-

recting model biases is, in general, better than only ac-

counting for their effects in the second moment of the

ensemble, assuming we have a good method for esti-

mating them.

(ii) 48-h forecast verification

So far we have focused on the comparisons in terms of

the analysis accuracy. However, the goal of developing

TABLE 1. Analysis RMSE of 500-hPa height (m) using the

DdSM1 with different choices of (a, r) with a fixed m 5 0.9. When

r 5 0 (i.e., pure DdSM), a small parameter (D 5 0.05) of multi-

plicative inflation is applied in order to prevent filter divergence.

For the other choices of r, no multiplicative inflation is used. For

comparison, the pure addition inflation application is also shown

(a 5 0 and r 5 1.5).

a 0.0 0.25 0.50 0.75 1.00

r 5 0 37.1 35.0 33.9

r 5 0.25 22.5 22.0 18.9 19.2

r 5 0.5 19.8 17.6 20.4 20.1

r 5 0.6 17.3

r 5 1.5 23.8

FIG. 6. Time series of the global-averaged analysis RMSE of the

500-hPa Z and 925-hPa T fields, in the cases of the LDM alone

(dashed curve), r 5 1.5 additive inflation (dotted curve), and the

LDM together with additive inflation with an amplitude r 5 0.4

(solid curve).
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more accurate analyses is to improve the short-term

forecasts. Within an imperfect model, the short-term

forecast errors come from both growing errors in the

initial condition and model deficiencies. Although the

model errors could be corrected within the forecast

model, here we would like to see if the advantage of one

method in the data assimilation process can be retained

over a forecast period. Otherwise, there would be no

benefit in improving the initial analysis on short-term

forecasts. Figure 9 shows the global-averaged 48-h fore-

cast RMSE at all pressure levels. The advantage of

DdSM1 over additive inflation becomes less obvious for

most fields, but remains significant for geopotential height

fields at all levels. The large advantage of the LDM1 over

the other two methods also decreases due to the con-

tamination of the model errors. Nevertheless, it is still

quite obvious and significant, except for the zonal wind

above 200 hPa and the humidity above 700 hPa.

Above we focused on the impact of initial analysis on

the short-term forecast and did not attempt to correct

the model errors during the forecast process. The LDM

can also be used to estimate and correct the short-term

model errors in the forecast phase, as shown by Danforth

et al. (2007) with the SPEEDY model.

c. Sensitivity to observational network

Thus far, different methods have been compared us-

ing a globally uniform observation network (the upper-

right panel in Fig. 10), as if they were based only on

FIG. 7. Global-averaged analysis RMSE at all pressure levels in the cases of the LDM1 (dotted), the DdSM1

(dashed), additive inflation (solid), and multiplicative inflation (dotted–dashed). (top left) The u-wind field, (top

right) temperature field, (bottom left) height field, and (bottom right) specific humidity field. The averages are taken

for a month after the initial half-month spinup period.
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satellite observations, resulting in uniform error fields

(not shown). However, in reality there are more rawin-

sonde observations over land and fewer over the ocean.

To investigate the sensitivity of each method to the choice

of observational system, we assimilate a rawinsonde-like

network (the upper-left panel in Fig. 10) for u, y, T, q (ps

is still available everywhere) using pure additive infla-

tion, the DdSM1, and the LDM1. We retune the param-

eters and choose the optimal setting for each method.

Figure 10 (lower-left panel) shows the zonal and time-

averaged latitudinal profiles of geopotential height

analysis RMSE at 500 hPa for the three methods with a

rawinsonde-like network. For comparison, the results

from experiments described in section 5b with a uniform

observation network are shown in the lower-right panel.

With uniform observations, the performance of each

method is less latitude dependent. We note that the

sawtooth behavior of the error observed in the DdSM1

and pure additive inflation methods is due to the fact

that observations are available every other latitude.

With rawinsonde-like observations, though the DdSM1

is still better than pure additive inflation, both are far

more sensitive to observation density than LDM1. In

the Southern Hemisphere and the northern polar region

where few upper-air observations are available, the

DdSM1 and pure additive inflation behave significantly

worse than that of LDM1. Figure 10 demonstrates that

the DdSM1 and pure additive inflation schemes are

more sensitive to the choice of observation network, and

perform poorly in regions with sparse upper-air obser-

vations, while the LDM1 is more robust. This was

confirmed in an additional intercomparison in which

surface pressure was only observed at rawinsonde lo-

cations. Although there was a slight further degradation

in skill, the relative performance of the methods re-

mained similar to that in Fig. 10 (not shown), indicating

again that the advantage of the LDM1 over other two

methods is larger in data-sparse regions than in data-

dense regions. These results are not unexpected since

the LDM1 bias correction is done in model space while

the DdSM1 is performed in observation space, and

additive inflation accounts for model errors through an

inflated background error covariance that relies on the

presence of observations to affect the final analysis.

6. Summary and discussion

In this study we addressed the issue of model errors

with the ensemble Kalman filter. Though focusing on

the LETKF, an efficient approach within the EnKF

family, the results are applicable to other EnKF systems.

First, we performed data assimilation experiments using

the LETKF with the SPEEDY model under a perfect-

model scenario. It was found that the LETKF works

very well in this ideal case. Then we relaxed the perfect-

model assumption and assimilated observations gener-

ated from the NCEP–NCAR reanalysis fields. Without

any additional effort to handle model errors, the per-

formance of the LETKF was seriously degraded. The

background ensemble spread was similar to that in the

perfect model and therefore much smaller than the true

forecast error (that now includes model errors). The

‘‘blindness’’ of the LETKF to model error is likely due

to the fact that each ensemble member is integrated with

the same model. If forecasts from different systems are

available, as in the superensemble of Krishnamurti et al.

(2000), we would expect to be able to at least partially

represent model errors.

We investigated two simple ways to represent the ef-

fect of model errors and two methods to estimate and

remove model bias. Our results suggest that multipli-

cative inflation is worse than additive inflation. The pure

bias removal methods (DdSM and LDM) correct model

bias, but cannot remove system noise; as a result, they

are unable to beat inflation schemes that account for

the total model errors. Supplemented by additive noise

to represent the random errors, bias removal methods

generally outperform the pure inflation schemes. Of all

these methods, the low-dimensional method with addi-

tive inflation (LDM1) where the time-averaged model

bias, diurnal bias, and state-dependent errors are esti-

mated from a large number of 6-h forecast errors, gives

the most accurate analyses and 48-h forecasts. The ad-

vantage of the LDM1 over other methods is larger in

data-spare regions than in data-dense regions due to the

fact that its bias correction is done in model space and is

FIG. 8. As in top-left in Fig. 7, but also shows the result for the

control run (gray dotted) and for the perfect-model experiment

(gray solid). We note that in a more realistic operational model, the

negative effect of model errors would not be as large as in this

control run and a significant amount of inflation leads to better

results even in the absence of bias correction (e.g., Szunyogh et al.

2008).
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thus less sensitive to the absence of abundant observa-

tions. We note that in training the LDM we have used

a long reanalysis that has spread information from both

satellite and rawinsonde observations throughout the

atmosphere.

Although the DdSM combined with inflation (DdSM1)

produces results not as good as the LDM1, it is generally

superior to both pure inflation schemes. The disadvan-

tages of DdSM1 are the doubling of the computational

cost and exclusive reliance on observations. When the

observations are sparser, the impact of the bias correc-

tion is limited. In the worst case, where the observations

themselves are biased, it is not at all obvious that this

algorithm can work correctly. Our results of LDM esti-

mation may be too optimistic, since in our applications

we assume the NNR field is an approximation of the

unknown truth and use it to generate the samples of

model errors during the training period. In reality, the

NNR field could be biased, and generating good samples

of model errors is a challenge to the LDM1. It is not

clear whether the model error samples generated from

the NNR fields are good enough to represent the true

model errors. In practice, we could use a more advanced

reanalysis, like the 40-yr European Centre for Medium-

Range Weather Forecasts (ECMWF) Re-Analysis

(ERA-40; Uppala et al. 2005) or the Japanese 25-yr Re-

Analysis (JRA-25; Onogi et al. 2007) to replace the

NNR. We could also verify the analysis against a more

FIG. 9. 48-h forecast RMSE at all pressure levels in the cases of the LDM1 (dotted), the DdSM1 (dashed), and

additive inflation (solid). (top left) The u-wind field, (top right) temperature field, (bottom left) height field, and

(bottom right) specific humidity field. The averages are taken over all forecasts started every 6 h between 0000 UTC

1 Feb 1987 and 1800 UTC 15 Feb 1987.

OCTOBER 2009 L I E T A L . 3417



advanced reanalysis, and thus simulate the fact that the

truth is not available for training. Alternatively, the

EnKF analysis increments could also be used as model

error samples instead of using a reanalysis. For the

training of error samples to derive model bias, this would

imply a spinup of the bias correction since at first the

analyses are also biased, so that the analysis increments

cannot initially sample model error well. We intend to

explore this idea with the SPEEDY model to see

whether the final model error samples after convergence

are good enough to represent the true model errors.
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