
Fractals Chapter 4

Term coined by Benoit Mandelbrot in the 1960’s
to describe roughness.

Zoom in on function and it becomes a line. Not
true in real world (e.g. coast of england).

fractal-candy-3d, Mandelbrot NOVA (cellphone an-
tenna), wiki, tweet:

• complicated structure at a range of length scales
(e.g. stock prices, clouds)

• self-similarity (e.g. broccoli)

• non-integer or ‘fractal’ dimension

4.1 Middle-thirds Cantor Set:

K0 = [0,1]
K1 = [0,1/3]∪ [2/3,1]
K2 = [0,1/9]∪ [2/9,1/3]∪ [2/3,7/9]∪ [8/9,1]
· · ·= K∞

1. What is the length of K∞?

2. Does K∞ contain any intervals?

3. Is K∞ simply the endpoints of the intervals re-
moved at each stage? (vote) Note that the fram-
ing ”endpoints in K∞” is confusing, as there are
an uncountable number of points.

Well, K∞ ⊆ Kn for each n, and Kn consists of 2n

intervals, each of length 3−n.

So the total length is (2
3)

n which goes to zero as
n→ ∞, so K∞ has length 0.

A set is countable if it can be put into a 1-1
correspondence with N. A set is uncountable if it is
not countable.

Deck of cards? No, finite. Not a correspondence.

Integers? Rationals in [0,1]? Winding argument.
Why can’t I simply count down the first column?
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2
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1
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2
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Its ok that 1/2, for example, is counted many times,
since a subset of a countable set is countable.

A countable collection of countable sets is also
countable (how?), so the set of all rational numbers
is countable.

A set S has measure zero if it can be covered by a
countable number of intervals whose total length is
arbitrarily small.

ex) {1,2,3,4,5},N rationals, K∞ are measure zero

non-ex) irrational numbers in any interval, reals in
any interval. [0,1] is measure 1.

Theorem: The Middle-thirds Cantor Set K∞ con-
sists of all numbers in the interval [0,1] that can be
expressed in base 3 (ternary) using only the digits 0
and 2. Proof to come. Consider

r = 0.023 ∈ K∞

= 0 ·3−1 +2 ·3−2 +0 ·3−3 +2 ·3−4 + . . .

=
2
9
(1+3−2 +3−4 + . . .) =

2
9

( 1
1− 1

9

)
= 1/4

1/4 is in the bottom third (not removed at the first
step), in the top third of the bottom third, in the
bottom third of that, in the top third of that, and so
on... alternating between top and bottom thirds.

Since it is never in one of the middle thirds, it
is never removed, and yet it is also not one of the
endpoints of any middle third.

ex) the set of left endpoints of Middle thirds Cantor
Set intervals is countable.

The subset of K∞ with a finite number of repeating
ternary digits (e.g. ending in 0,2, or 202) is countable.

However, K∞ is uncountable. Why? Lets try and
list the numbers in K∞.
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N ternary # in K∞

1 r1 = 0.a11a12a13 . . .

2 r2 = 0.a21a22a23 . . .

3 r3 = 0.a31a32a33 . . .

· · · · · ·
n rn = 0.an1 . . .ann . . .

· · · · · ·

where ai j ∈ {0,2}. Is this all of the numbers in K∞?

Define r = 0.b1b2b3 . . . such that b1 = 0 if a11 = 2
and b1 = 2 if a11 = 0.

Do this for all bi including bn 6= ann. Then r ∈ K∞

but has no corresponding integer in N.

If our list contained only rationals, this number r
would be an irrational and not in the list.

Therefore K∞ is uncountable.

The same is true of [0,1] and the irrationals. This is
why the probability of choosing a rational at random
in [0,1] is zero.

K∞ is a pathological example. An uncountable set
with measure 0.

Make it to HERE on day 1 back from spring break.

4.2 Probabilistic Construction of Fractals: Start
with any point in the interval [0,1] and flip a coin. If
heads, move the point two-thirds of the way to 1. If
tails, move the point two-thirds of the way to 0.

This is the same process as iterating the maps
f1(x) = x/3 and f2(x) = (2+ x)/3 with equal proba-
bility. Show matlab script probability_cantor.m
K∞ is the attractor for this process.

After k flips of the coin, the randomly generated
orbit must lie within 1

3k6 of a point in K∞. Why?

Furthermore, K∞ is invariant under this operation,
i.e. if you move a point in K∞ two-thirds of the way

to either 0 or 1, the resulting point is still in K∞. Why?

f1 moves ternary point to the left. f2 moves ternary
point to the left and then places 2 in the thirds digit.

Sets with repeated patterns on smaller scales are
called self-similar. Show figures 4.7 (an orbit) and
4.8 (basins).

4.4 Fractal Basin Boundaries: Consider a square
R ⊆ R2 whose image under a function f : R2 → R2

is an S (i.e. stretch east-west by a factor of roughly
10 and bend).

Points outside R are attracted to either sink.
F R AC TA L S
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Figure 4.9 Construction of a fractal basin boundary.
(a) The image of the rectangle R is an S-shaped strip. Points that map outside and
to the left of R are attracted to the sink A1, and points that map outside and to the
right of R are attracted to the sink A2. (b) The shaded regions are mapped out of
the rectangle in one iteration. Each of the three remaining vertical strips will lose
4 shaded substrips on the next iteration, and so on. The points remaining inside
forever form a Cantor set.

on whether the third iterate goes to the left, goes to the right, or stays in the
square.

This analysis implies that the subset of R that remains inside the square for
n iterates consists of 3n vertical strips. Each of these segments has three substrips
that will remain inside R for a total of n ! 1 iterates. If we have set up the map
in a reasonable manner, the width of the vertical strips at the nth stage will
shrink geometrically to zero as n tends to infinity. Thus we have a Cantor set
construction; that is, there is a Cantor set of vertical curves whose images will
remain inside R for all future times. Each of these vertical curves stretches from
the top of the square to the bottom, and each point in the union of the curves
has nearby points which go to A1 and nearby points which go to A2. Therefore,
the Cantor set of vertical curves is the boundary between the basin of A1 and the
basin of A2.

EXAM PLE 4 .12

(Julia sets.) We return to the quadratic map, but with a difference: We now
view it as a function of one complex variable. Let Pc(z) " z2 ! c, where z is a
complex variable and c " a ! bi is a complex constant. Notice that Pc is a planar
map; one complex variable z " x ! yi is composed of two real variables, x and y.

Multiplication of two complex numbers follows the rule

(u ! vi)(x ! yi) " ux # vy ! (uy ! vx)i

166

The three remaining vertical white strips in R stay
in R for one iterate of f .

Pick one of these vertical strips (far right is top
horizontal strip). On the next iteration it is stretched
into an S and loses two substrips to A1, two to A2.
Continuing, the subset of R remaining inside R after
n iterates consists of 3n vertical strips whose width
goes to zero as n→ ∞.

Therefore there is a Cantor Set of vertical curves
whose images remain inside R for all n. Each curve
stretches the vertical length of R, and each point in
the set has nearby points, as close as you want, that
go to A1, same for A2.

The Cantor Set is the boundary between the basins
of attraction of the sinks A1 and A2. Think regimes of
the climate.

tweet: https://youtu.be/ovJcsL7vyrk
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4 . 3 F R AC TA L S F RO M D E T E R M I N I S T I C S YS T E M S

(a) (b)

(c) (d)

Figure 4.7 Self-similarity of the Hénon attractor.
(a) An attracting orbit of (4.1). Parts (b),(c),(d) are successive magni-
fications, showing the striated structure repeated on smaller and smaller
scales. This sequence is zooming in on a fixed point. (a) [!2.5, 2.5] "

[!2.5, 2.5]. (b) [0.78, 0.94] " [0.78, 0.94]. (c) [0.865, 0.895] " [0.865, 0.895]. (d)
[0.881, 0.886] " [0.881, 0.886].

EXAM PLE 4 .10

Figure 4.7(a) depicts an orbit of the Hénon map of the plane

f(x, y) # (1.4 ! x2 $ 0.3y, x). (4.1)

After ten million iterations, the orbit remains in the region shown but (appar-
ently) does not converge to a periodic orbit. M. Hénon proposed this map as an
example of a dynamical system with a fractal attractor. The orbit of almost any
initial point in this region will converge to this attractor. In Figure 4.7(b)(c)(d),
the attractor is shown on progressively smaller scales.
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4 . 4 F R AC TA L B A S I N B O U N DA R I E S

(a)

(b) (c)

Figure 4.8 Self-similarity of the Hénon basin.
The points in white are attracted to the period-two attractor !(1, 0.3), (0.3, 1)"
of (4.2), marked with crosses. The points in black are attracted to infinity
with iteration. (a) The region [!2.5, 2.5] " [!2.5, 2.5]. (b) The subregion
[!1.88, !1.6] " [!0.52, !0.24], which is the box in part (a). (c) The subregion
[!1.88, !1.86] " [!0.52, !0.5], the box in the lower left corner of part (b).
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Julia Sets

Consider the quadratic map Pc(z) = z2 + c where
z = x+ yi and c = a+ bi are complex numbers (i =√
−1). Evaluating the map, we find

Pc(z) = (x+ yi)2 +a+bi = x2− y2 +a+(2xy+b)i

If c = 0, the map P0(z) = z2 has an attracting fixed
point at the origin with basin {z : |z| < 1} (i.e. the
interior of the unit disk).

Points on the unit disk have their angle doubled,
but stay on the disk. Points outside the disk are in the
basin of infinity.

For nonzero c, the equation z2 + c = z has roots,
implying Pc has fixed points.

Since Pc has only one critical point (P′c(z) = 0),
namely the origin, it can have at most one sink (by
Schwarzian thm).

Lets try c = −i, i.e. a = 0,b = −1. Our map is
P−i(z) = z2− i.

Iterating the origin, i.e. x = 0,y = 0, write these out
and draw points in complex plane

P−i(0) =−i
P−i(−i) =−1− i

P−i(−1− i) = i
P−i(i) =−1− i

The orbit {−1− i, i} is a period-2 source to which
the origin is eventually periodic.

Now, every attracting orbit for a polynomial map
P attracts at least one critical point of P (Fatou).

Since Pc(z) has only one critical point, and P−i(0)
is EP to a repelling period-2 orbit, there is no sink!
i.e. P−1 has no attractor.

For other values of c, some initial points will re-
main bounded under Pc, others will diverge to infinity.

Try these values on the computer using
julia_gui.m

• c = 0, c =−i

• c =−0.17+0.78i, period-3 sink

• c = 0.38+0.32i, period-5 sink

• c = 0.32+0.043i, period-11 sink

The boundary between bounded and unbounded
points is the Julia Set J of Pc (after Gaston Julia,
French Mathematician). The boundary points are
bounded (black), but not in the basin of the sink to
which all other black points are AP.

The filled Julia Set is given by the set J and the
points in its interior. For disconnected J, the filled
Julia Set is simply J.

• J is invariant, if z0 ∈ J, so is z1 = Pc(z0),z2,z3, ...

• orbits in J are either periodic sources, ep to pe-
riodic sources, or chaotic

• all unstable periodic points of Pc are in J

• J is either totally connected or totally discon-
nected, i.e. intervals or dust

• J is connected iff the orbit of the origin is
bounded

• J repels orbits (finding it can be tricky, HW5)

http://universefactory.net/test/julia/

The Mandelbrot Set M is then defined to contain
all values c such that the origin is not in the basin of
infinity for the map Pc(z) = z2 + c.

So c = 0 and c = −i are in M. We can give
these points a color by plotting c = a+ bi as (a,b)
Typically, points in M are colored black, points not in
M are given a color based on their rate of divergence
towards infinity.

Show mandelbrot_points.m, Fractal Domains
application, mandelbrot-zoom-hires.avi, tweet
http://www.youtube.com/watch?v=Ehwy4Gq27uY
http://acko.net/blog/

how-to-fold-a-julia-fractal/ https:

//youtu.be/4LQvjSf6SSw

• c = −0.17 + 0.78i, period-3 sink lobe at 12
o’clock

• c = 0.38+0.32i, period-5 sink lobe at 2 o’clock
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Show color figure of riddled basin.

The union of the three lines contains the attracting
sets for the map. Figure shows basins of second
iterate of the map (6 attractors, basins are colored,
basin of infinity is black).

The basins are riddled in the that any disk in the
colored region contains points whose orbits move to
different attractors.

Infinite accuracy would be required to predict the
behavior of any point. The entire basin is boundary.

4.5 Fractal Dimension:

We’ll start with a poorly motivated question. Other
measures of dimension will have a more physically
satisfying foundation, they came first.

Imagine laying a grid of equal spacing on top of
a set. How does the number of boxes necessary to
cover the set vary as the grid size is decreased?

ex) For the interval [0,1], we need n boxes (subin-
tervals) of size 1

n . Draw.

In general, the number of boxes of size ε (small),
N(ε), required to cover an interval is less than or
equal to C

ε
where C is a constant analogous to area.

In other words, N(ε) scales as 1
ε
.

ex) Consider the square [0,2]× [0,2] in R2

N(ε) log2 (N) ε log2(1/ε)

1 0 21 -1

4 2 20 0

16 4 2−1 1

64 6 2−2 2

· · · · · · · · · · · ·
4
ε2 2(1+ log2(1/ε)) ε log2(1/ε)

Plot log2

(
N(ε)

)
as a function of log2

(
1
ε

)
, the

square is covered by 4
ε2 boxes of side length ε.

More generally, a set S ⊆ Rm is said to be d-
dimensional if it can be covered by a N(ε) = C

εd

boxes of side length ε in the limit as ε→ 0.

C can be as large as is needed, provided the ε−d

scaling holds as ε→ 0. d need not be an integer.

d =
ln
(

N(ε)
)
− lnC

ln 1
ε

In the limit as ε → 0, lnC becomes negligible. A
bounded set S in Rn has box-counting dimension

boxdim(S) = lim
ε→0

ln
(

N(ε)
)

ln 1
ε

if the limit exists. To make the definition easier to
use, we’ll make three simplifications.

1. the limit as ε→ 0 need only be checked at dis-
crete box sizes, provided sequence goes to 0.

2. boxes need not sit on a grid, they can be moved
around. e.g. we could simply take the minimum
number of boxes of size ε required to cover the
set, arranged anyway we please.

3. sets other than boxes (discs, triangles, etc.) will
be fine

Tweet these:

http://www.ams.org/journals/notices/

201209/rtx120901208p.pdf

http://www.ted.com/talks/kevin_slavin_

how_algorithms_shape_our_world

http://www.wired.com/wiredscience/2012/

01/the-fractal-dimension-of-zip-codes
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4 . 4 F R AC TA L B A S I N B O U N DA R I E S

1.5

!1.5
!1.5 1.5

(a)

1.09

0.89
!0.19 0.01

(b)

1.3

!1.3
!1.3 1.3

(c)

1.3

!1.3
!1.3 1.3

(d)

Figure 4.11 Julia sets for the map f (z) ! z2 " c.
(a) The constant is set at c " !0.17 # 0.78i. The white points are the basin of
a period-three sink, marked with crosses, while the black points are the basin of
infinity. The fractal basin boundary between black and white is the Julia set. (b) The
uppermost rabbit of (a) is magnified by a factor of 15. (c) c " 0.38 # 0.32i. The white
points are the basin of a period-five sink, marked with crosses. (d) c " 0.32 # 0.043i.
The white points are the basin of a period-11 sink.
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4.6 Computing the Box-Counting Dimension:

ex) Middle-thirds Cantor Set, recall that K∞ ⊆ Kn
where Kn consists of 2n intervals of length 3−n.

We’ll use these intervals as our boxes, i.e. we’ll
cover Kn with 2n boxes of size 3−n. Then

boxdim(K∞) = lim
n→∞

ln(2n)

ln(3n)
=

ln2
ln3
≈ 0.63092...

ex) Henon map attractor (which we have seen to
be self-similar), show figures 4.13, 4.15.

Boxes N containing

piece of attractor log2 (N) Box side length ε

76 ≈ 6.3 2−2

177 ≈ 7.5 2−3

433 ≈ 8.8 2−4

1037 ≈ 10 2−5

2467 ≈ 11.2 2−6

5763 ≈ 12.5 2−7

Now again lets plot log2

(
N(ε)

)
vs log2

(
1
ε

)
and

find the slope of the line. On the computer, this is
the best we can do b/c N(ε) becomes less reliable as
ε→ 0.

Least squares is generally the best way to do this,
mention 237.

boxdim(S) = lim
ε→0

ln
(

N(ε)
)

ln 1
ε

≈ 1.27

Note that the slope would be the same in any base
logarithm.

In Rn there are ε−n boxes in the unit cube. ex) in
10 dimensions using boxes of size ε = 0.01, there
are 1020 boxes to check. So we may need another
method.

Theorem Let A be a bounded subset of Rm with
boxdim(A) = d < m. Then A is a measure zero set.

• a point has measure 0 in R

• a line has measure 0 in R2

• a disk has measure 0 in R3

Proof: We know

d = lim
ε→0

ln
(

N(ε)
)

ln 1
ε

= lim
ε→0
−

ln
(

N(ε)
)

lnε

where m−d > 0, so

lim
ε→0

m lnε+ ln
(

N(ε)
)

lnε
> 0

lim
ε→0

ln
(

εmN(ε)
)

lnε
> 0

and since
lim
ε→0

lnε =−∞

we know
lim
ε→0

ln
(

ε
mN(ε)

)
=−∞

also b/c anything else would imply m−d ≤ 0.

So εmN(ε)→ 0 as ε→ 0. In other words, there
exist ε-boxes covering A whose total volume εmN(ε)
can be made as small as we want.

Therefore A has measure zero. Other examples:

• the rationals have measure 0

• K∞ has measure 0 (but is uncountable)

• the irrationals in [0,1] have measure 1

https://www.youtube.com/watch?v=

gB9n2gHsHN4
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F R AC TA L S

-2

0

2

-2 0 2

Figure 4.13 Grid of boxes for dimension measurement.
The Hénon attractor of Example 4.10 is shown beneath a grid of boxes with side-
length ! ! 1! 4. Of the 256 boxes shown, 76 contain a piece of the attractor.

dimension d gives us

d !
ln N(!) " ln C

ln(1 ! !)
.

If C is constant for all small !, the contribution of the second term in the
numerator of this formula will be negligible for small !. This justifies the following:

Definition 4.14 A bounded set S in !n has box-counting dimension

boxdim(S) ! lim
!→0

ln N(!)
ln(1 ! !)

,

when the limit exists.

We can check that this definition of dimension gives the correct answer for
a line segment in the plane. Let S be a line segment of length L. The number of
boxes intersected by S will depend on how it is situated in the plane, but roughly
speaking, will be at least L ! ! (if it lies along the vertical or the horizontal) and no
more than 2L ! ! (if it lies diagonally with respect to the grid, and straddles pairs
of neighboring boxes). As we expect, N(!) scales as 1 ! ! for this one-dimensional
set. In fact, N(!) is between L times 1 ! ! and 2L times 1 ! !. This remains true for
infinitesimally small !. Then Definition 4.14 gives d ! 1.

174

F R AC TA L S
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0
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-2 0 2
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0
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Figure 4.15 Finding the box-counting dimension of the Hénon attractor.
Two grids are shown, with gridsize ! ! 1! 8 and 1 ! 16 respectively.

For a more complicated example such as the Hénon attractor of Example
4.10, no exact formula can be found for the box-counting dimension. We are
stuck with drawing pictures and counting boxes, and using the results to form an
estimate of the dimension. In Figure 4.15, we extend the grid of Figure 4.13 to
smaller boxes. The side-length ! of the boxes is 1 ! 8 and 1 ! 16, respectively, in
the two plots. A careful count reveals a total of 177 boxes hit by the attractor for
! ! 1 ! 8, 433 for ! ! 1 ! 16, 1037 for ! ! 1 ! 32, 2467 for ! ! 1 ! 64, and 5763 for
! ! 1 ! 128.

In Figure 4.16 we graph the results of the box count. We graph the quantity
log2 N(!) versus log2(1 ! !) because its ratio is the same as lnN(!)! ln(1 ! !), which
defines box-counting dimension in the limit as ! → 0. We used box sizes ! ! 2"2

through 2"7, and take log2 of the box counts given above. The box-counting
dimension corresponds to the slope in the graph. Ideally, Figure 4.16 would be
extended as far as possible to the right, in order to make the best approximation
possible to the limit. The slope in the picture gives a value for the box-counting
dimension approximately equal to 1.27.

! C O M P U T E R E X P E R I M E N T 4 . 4

Write a program for calculating box-counting dimension of planar sets. Test
the program by applying it to a long trajectory of the iterated function system

178
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If you need to skip a lecture to get back on track
for assignment 9, this is the one.

4.7 Correlation Dimension: Easier to compute,
defined for an orbit rather than a set. It won’t require
boxes.

Let S = {~v0,~v1, · · ·} be an orbit of the map ~f in Rn,
and SN denote the first N points on the orbit. For each
r > 0, define the correlation function C(r) to be the
proportion of pairs of orbit points within r units of
one another, i.e. C(r) =

lim
N→∞

#{pairs{~w1, ~w2} : ~w1, ~w2 ∈ SN , |~w1− ~w2|< r}
#{pairs{~w1, ~w2} : ~w1, ~w2 ∈ SN}

Total pairs of points is N(N−1)
2 .

Clearly C(r) increases from 0 to 1 as r goes from
0 to ∞, and for a set of equally spaced points C(r)
will look much like a phase transition. Draw example.

The correlation dimension of the orbit S is d where
C(r)≈ rd for sufficiently small r, i.e.

cordim(S) = lim
r→0

logC(r)
logr

Qualitatively, in higher dimensions, there are more
ways for points to be close to each other. So the
number of pairs close to each other will rise more
rapidly in higher dimensions.

Show Fig 4.17.

This was created by iterating the Henon Map
N = 1000 times. Of the N(N−1)

2 ≈ 500,000 possible
pairs of points, the proportion within r of each other
are counted for r = 2−2,2−3, ...,2−8.

Lab visit 4: Measuring fractal dimension of an
experimental attractor. Show Taylor-Couette flow in
/fluids/ directory.

Show figure 4.19. Silicon oil fills annulus. Outer
diameter 2 inches glass (fixed), inner 1 inch rotating
at a rate controlled to within 10−4s. h/d can be
varied between 0 and 10, aspect of 0.374 used for
this attractor.

Light scatters off of particles in the oil, velocity is
measured at one point in physical space with a laser

Doppler anemometer every 0.02 seconds.

The attractor is time-delay recon-
structed by plotting vectors of the form
(yt ,yt+T ,yt+2T , · · · ,yt+(m−1)T ) in Rm.

This technique approximates the attractor because
quantities not measured are likely to depend some-
how on velocity, but lagged at some time scale which
the delay is designed to sample.

For the picture T = 0.1s or 5 sampling units.

The embedding dimension, the number of degrees
of freedom sufficient to describe properties of the
state space via the time delay, is chosen to be m = 2
for this data.

Show figure 4.20a. Axes are velocity vs. velocity
0.1s later.

Show figure 4.20b. Axes are log2(r) and the slope
estimate returned for fitting a line to [log2(C(r))
vs log2(r)] using all r values to the right. Messy
business.

Curves for m = 2,3, ...,20 shown in figure 4.20b. The
correlation dimension estimate is defined as the limit
as r→ 0, this is −∞ on the x-axis.

However, at the left end of the figure we see the
impact of experimental noise, the straight line fit to
[log2(C(r)) vs log2(r)] degrades as r→ 0.

The range 2−5 < r < 2−2 shows agreement on a
dimension of about 3.

This method can also be used to calculate the
LE (model free) of data by measuring the rate of
divergence of nearest neighbors and looking for
consistency across various embedding dimensions.
However, stochasticity can fool this method.

Show Lathrop 3 meter sphere video in /fluids/,
liquid sodium explodes on contact with water.

Show fractal network structure of leaves in
Pictures/science/fractals/leaves, benefits of self
similarity and branching structure, slime mold Japan.
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4 . 7 C O R R E L AT I O N D I M E N S I O N

The correlation function C(r) increases from 0 to 1 as r increases from 0 to !. If
C(r) ! rd for small r, we say that the correlation dimension of the orbit S is d.
More precisely:

cordim(S) " lim
r→0

log C(r)
log(r)

, (4.10)

if the limit exists.
Figure 4.17 shows an attempt to measure the correlation dimension of the

orbit of the Hénon attractor shown in Figure 4.13. An orbit of length N " 1000
was generated, and of the (1000)(999)! 2 possible pairs, the proportion that lie
within r was counted for r " 2#2, . . . , 2#8. According to the definition (4.10),
we should graph log C(r) versus log r and try to estimate the slope as r → 0. This
estimate gives cordim(S) ! 1.23 for the Hénon attractor, slightly less than the
box-counting dimension estimate.

For dimension measurements in high-dimensional spaces, correlation di-
mension can be quite practical when compared with counting boxes. The number
of !-boxes in the unit “cube” of !n is !#n. If ! " 0.01 and n " 10, there are poten-
tially 1020 boxes that need to be tracked, leading to a significant data structures
problem. Because no boxes are necessary to compute correlation dimension, this
problem doesn’t arise.
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g2
(C
(r
))

log2(r)

Figure 4.17 Correlation dimension of the Hénon attractor.
A graphical report of the results of the correlation dimension estimate for the
Hénon attractor. The correlation dimension is the limit of log2 C(r) ! log2(r). The
dimension corresponds to the limiting slope of the line shown, as r → 0, which is
toward the left. The line shown has slope ! 1.23.
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Fractal Dimension in Experiments

FINDING THE fractal dimension of an attractor measured in the laboratory
requires careful experimental technique. Fractal structure by its nature covers
many length scales, so the construction of a “clean” experiment, where only
the phenomenon under investigation will be gathered as data, is important. This
ideal can never be achieved exactly in a laboratory. For this reason, computational
techniques which “filter” unwanted noise from the measured data can sometimes
help.

A consortium of experts in laboratory physics and data filtering, from Ger-
many and Switzerland, combined forces to produce careful estimates of fractal
dimension for two experimental chaotic attractors. The first experiment is the
hydrodynamic characteristics of a fluid caught between rotating cylinders, called
the Taylor-Couette flow. The second is an NMR laser which is being driven by a
sinusoidal input.

The Taylor-Couette apparatus is shown in Figure 4.19. The outside glass
cylinder, which has a diameter of about 2 inches, is fixed, and the inner steel

h

d

Figure 4.19 Setup of the Taylor-Couette flow experiment.
As the inner steel cylinder rotates, the viscous fluid between the cylinders undergoes
complicated but organized motion.

Kantz, H., Schreiber, T., Hoffman, I., Buzug, T., Pfister, G., Flepp, L. G., Simonet, J.,
Badii, R., Brun, E., 1993. Nonlinear noise reduction: A case study on experimental
data. Physical Review E 48:1529-1538.
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cylinder, which has a diameter of 1 inch, rotates at a constant rate. Silicon oil,
a viscous fluid, fills the region between cylinders. Care was taken to regulate the
temperature of the oil, so that it was constant to within 0.01◦ C. The speed of
the rotating inner cylinder could be controlled to within one part in 10,000. As
shown in the figure, the top of the chamber is not flat, but set at a tiny angle,
to destroy unwanted effects due to symmetries of the boundary conditions. The
top surface is movable so that the “aspect ratio” h" d can be varied between 0 and

Figure 4.20 The Taylor-Couette data and its dimension.
(a) A two-dimensional projection of the reconstructed attractor obtained after
filtering the experimental data. The time delay is T ! 5. (b) Slope estimates of the
correlation sum. There are 19 curves, each corresponding to correlation dimension
estimates for an embedding dimension between 2 and 20. The 32,000 points plotted
in Figure 4.20(a) were used in the left half, and only 2000 points in the right half, for
comparison. The conclusion is that the correlation dimension is approximately 3.
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