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In classical physics, one is taught that given the
initial state of a system, all of its future states
can be calculated. In the celebrated words of
Pierre Simon Laplace, “An intelligence which
could comprehend all the forces by which na-

ture is animated and the respective situation of the
beings who compose it—an intelligence sufficiently
vast to submit these data to analysis . . . for it, noth-
ing would be uncertain and the future, as the past,
would be present to its eyes.”1 Or, put another way,
the clockwork universe holds true. 

Herein lies the rub: Exact knowledge of a real-
world initial state is never possible—the adviser can
always demand a few more digits of experimental
precision from the student, but the result will never
be exact. Still, until the 19th century, the tacit as-
sumption had always been that approximate
knowledge of the initial state implies approximate
knowledge of the final state. Given their success de-
scribing the motion of the planets, comets, and stars
and the dynamics of countless other systems, physi-
cists had little reason to assume otherwise.

Starting in the 19th century, however, and cul-
minating with a 1963 paper by MIT meteorologist
Edward Lorenz, pictured in figure 1a, a series of
 developments revealed that the notion of determin-
istic predictability, although appealingly intuitive, is
in practice false for most systems. Small uncertainties
in an initial state can indeed become large errors in a
final one. Even simple systems for which all forces
are known can behave unpredictably. Determinism,
surprisingly enough, does not preclude chaos.

A gallery of monsters
Chaos theory, as we know it today,2 took shape
mostly during the last quarter of the 20th century.

But researchers had experienced close encounters
with the phenomenon as early as the late 1880s, be-
ginning with Henri Poincaré’s studies of the three-
body problem in celestial mechanics. Poincaré ob-
served that in such systems “it may happen that
small differences in the initial conditions produce
very great ones in the final phenomena. . . . Predic-
tion becomes impossible.”3

Dynamical systems like the three-body system
studied by Poincaré are best described in phase
space, in which dimensions correspond to the dy-
namical variables, such as position and momentum,
that allow the system to be described by a set of first-
 order ordinary differential equations. The prevail-
ing view had long been that, left alone, a conven-
tional classical system will eventually settle toward
either a steady state, described by a point in phase
space; a periodic state, described by a closed loop;
or a quasi-periodic state, which exhibits n > 1 in-
commensurable periodic modes and is described by
an n-dimensional torus in phase space. 

The three-body trajectories calculated by Poin-
caré fit into none of those categories. Rather, he ob-
served that “each curve never intersects itself, but
must fold upon itself in very complex fashion so as
to intersect infinitely often each apex of the grid.
One must be struck by the complexity of this shape,
which I do not even attempt to illustrate,” as para-
phrased in English in reference 4, page 414.

What Poincaré refused to draw is now widely
known as a homoclinic tangle, a canonical manifes-
tation of chaos having fractal geometry. (An image

Adilson Motter is a professor of physics and astronomy at Northwestern 
University in Evanston, Illinois. David Campbell is a professor of physics and 
of electrical and computer engineering at Boston University.

Adilson E. Motter and David K. Campbell

C H A O S
at 

fifty

A
LI

JA
FA

R
G

H
O

LI

In 1963 an MIT meteorologist revealed 
 deterministic predictability to be an illusion 
and gave birth to a field that still thrives.
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of the tangle can be
seen in figure 4 of the
article by David Nolte,
PHYSICS TODAY, April
2010, page 33.) 

Poincaré’s results, independent findings by
Jacques Hadamard, and experimental hints of 
chaos seen by their contemporaries were dismissed
by many as pathologies or artifacts of noise or
methodological shortcomings and were referred to as
a “gallery of monsters.”4 It would take nearly another
century for chaos theory to gain a lasting foothold.

A serendipitous discovery
In all likelihood, Lorenz was unfamiliar with Poin-
caré’s work when he began his foray into meteorol-
ogy in the mid 1900s (reference 5, page 133). With
undergraduate and master’s degrees in mathematics,
Lorenz had served as a meteorologist in World War II
before completing his doctoral studies in meteor -
ology at MIT and joining the MIT faculty in 1955. 

At the time, most meteorologists predicted
weather using linear procedures, which were based on
the premise that tomorrow’s weather is a well- defined
linear combination of features of today’s weather. By
contrast, an emerging school of dynamic meteorolo-
gists believed that weather could be more accurately
predicted by simulating the fluid dynamical equations
underlying atmospheric flows. Lorenz, who had just
purchased his first computer, a Royal McBee LGP-30
with an internal memory of 4096 32-bit words, decided
to compare the two approaches by pitting the linear
procedures against a simplified 12-variable dynamical
model. (Lorenz’s computer, though a thousand times
faster than his desk calculator, was still a million times
slower than a current laptop.)

Lorenz searched for nonperiodic solutions,
which he figured would pose the biggest challenge
for the linear procedures, and eventually found them
by imposing an external heating that varied with
 latitude and longitude—as does solar heating of the
real atmosphere. Sure enough, the linear procedures

yielded a far-from-perfect replication of the result.
Having found the nonperiodic solutions of

his model interesting in their own right, Lorenz
 decided to examine them in more detail. He repro-
duced the data, this time printing the output vari-
ables after each day of simulated weather. To save
space, he rounded them off to the third decimal
place, even though the computer calculations were
performed with higher precision. What followed is
best  appreciated in Lorenz’s own words:

At one point I decided to repeat some of the
computations in order to examine what was
happening in greater detail. I stopped the
computer, typed in a line of numbers that it
had printed out a while earlier, and set it
running again. I went down the hall for a
cup of coffee and returned after about an
hour, during which time the computer had
simulated about two months of weather.
The numbers being printed were nothing
like the old ones. I immediately suspected a
weak vacuum tube or some other computer
trouble, which was not uncommon, but be-
fore calling for service I decided to see just
where the mistake had occurred, knowing
that this could speed up the servicing
process. Instead of a sudden break, I found
that the new values at first repeated the old
ones, but soon afterward differed by one
and then several units in the last decimal
place, and then began to differ in the next
to the last place and then in the place before
that. In fact, the differences more or less
steadily doubled in size every four days or
so, until all resemblance with the original
output disappeared somewhere in the sec-
ond month. This was enough to tell me
what had happened: the numbers that I had
typed in were not the exact original num-
bers, but were the  rounded-off values that
had appeared in the original printout. The
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Figure 1. Edward Lorenz and the butterfly effect. (a) Lorenz, studying a computer-
generated time series. (Photo courtesy of the Inamori Foundation.) (b) A close-up of
Lorenz’s original printout from his discovery of the butterfly effect shows two time
 series generated with the same equations but with slightly different initial  conditions.
The series diverge exponentially with time due to sensitive dependence on initial
conditions. (Adapted from ref. 9.)

Chaos at fifty
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initial round-off errors were the culprits; they
were steadily amplifying until they domi-
nated the solution. (reference 5, page 134)

The butterfly effect
What Lorenz had observed with his model came to
be known as sensitive dependence on initial condi-
tions—a defining property of chaos. In phase space,
the phenomenon has a distinct quantitative signature:
The distance between any two nearby trajectories
grows exponentially with time. Sensitive dependence
is illustrated in figure 1b, one of Lorenz’s own plots,
which shows the gradual divergence of two time se-
ries calculated using identical equations but slightly
different initial conditions. That trademark behavior
gives chaotic systems the appearance of randomness.
But as Lorenz himself noted, the appearances are de-
ceiving: At any given time in a random system, one
of two or more things can happen next, as one usually
assumes for the throw of a die; in chaotic systems such
as Lorenz’s, outcomes are fully deterministic. (And
strictly speaking, so are those of die throws.)

Lorenz realized that if the atmosphere were to
behave like his model, forecasting the weather far in
the future would be impossible. At a 1972 meeting
of the American Association for the Advancement
of Science, in a talk titled “Predictability: Does the
flap of a butterfly’s wings in Brazil set off a tornado
in Texas?” Lorenz used a butterfly as a metaphor for
a tiny, seemingly inconsequential perturbation that
could change the course of weather. The metaphor
caught on, and sensitive dependence famously
came to be dubbed the butterfly effect.

Given that computer simulations generally intro-
duce round-off error at each time step—error that is
amplified by chaos—one must ask whether Lorenz’s
solutions can possibly provide reliable information
about real chaotic trajectories. As it happens, they can,
because of a property now known as shadowing: Al-
though for any given initial condition the numerical
trajectory diverges from the exact one, there always
exists a nearby initial condition whose exact trajectory

is approximated by the numerical one for a prespec-
ified stretch of time. In the end, it is as if one had
started from a different initial condition and calcu-
lated the trajectory exactly—a crucial result, given
that numerical calculations came to be widely used in
the study of chaotic systems. For example, the trajec-
tories Lorenz calculated using the truncated variables
were, in fact, just as representative of his model’s be-
havior as the original (as well as the exact) trajectories.

Lorenz first presented the results from his 12-
 variable model at a 1960 symposium held in Tokyo.
At that meeting, he only briefly mentioned the unex-
pected effect of round-off errors; he believed those re-
sults belonged in a different paper. In retrospect, he
was in little danger of being scooped—apparently,
most of his contemporaries failed to recognize the
broad significance of his  findings. (Meanwhile, the
work of other pioneers of chaos often went unappre-
ciated; see reference 6 for Yoshisuke Ueda’s descrip-
tion of his frustration at the lack of appreciation of his
1961 analog computer observations of the “randomly
transitional phenomenon,” later recognized as chaos.)

The Lorenz attractor
Lorenz published his serendipitous discovery in a
March 1963 paper titled “Deterministic nonperiodic
flow.”7 He had spent a significant part of his time
since the Tokyo meeting looking for the simplest pos-
sible model exhibiting sensitive dependence on ini-
tial conditions, and he eventually arrived at a three-
variable system of nonlinear ordinary differential
equations now known as the Lorenz equations (see
the box on page 31).

Like Poincaré’s three-body system, the Lorenz
equations yield phase-space trajectories that never
retrace themselves and that don’t trace out surfaces
of integer dimension. Rather, typical trajectories
tend to converge to, and then orbit along, a
bounded structure of noninteger, fractal dimension
known as a chaotic attractor. (See figure 2.)

Perhaps the most studied objects in chaos theory,
chaotic attractors tend to emerge when a dissipative
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Figure 2. The Lorenz attractor,
as revealed by the never-repeating
 trajectory of a single chaotic orbit.
The spheres shown here represent
 iterations of the so-called Lorenz
equations, calculated using the origi-
nal parameters in Edward Lorenz’s
seminal work. (Spheres are colored
according to the iteration count.)
From certain  angles, the two lobes of
the attractor resemble a butterfly, a
coincidence that helped earn sensi-
tive dependence on initial conditions
its nickname—the butterfly effect.
An animated visualization of the at-
tractor is available online. (Image
courtesy of Stefan Ganev.)
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system is regularly forced to compensate for the loss
of energy—as when a child in a swing kicks his or
her legs to keep the motion going. In the case of the
Lorenz system, forcing is by way of heating, and dis-
sipation is due to the viscosity of the fluid.

A chaotic attractor is the example par excellence
of a chaotic set. A chaotic set has uncountably many
chaotic trajectories; on such a set, any point that lies
in the neighborhood of a given point will also, with
probability one, give rise to a chaotic trajectory. Yet
no matter the proximity of those two points, in the
region between them will lie points of infinitely
many periodic orbits. In mathematical parlance, 
the periodic orbits constitute a countable, zero-
 measure, but dense set of points embedded in the
chaotic set, analogous to the rational numbers em-
bedded in the set of real numbers. Not only will tra-
jectories that lie on the attractor behave chaotically,
any point lying within the  attractor’s basin of attrac-
tion will also give rise to chaotic trajectories that
converge to the attractor.

If chaotic sets such as the Lorenz attractor are
embedded with infinitely many periodic orbits,
why doesn’t one ever see those orbits in practice?
The answer, and the key feature underlying chaos,
is that the periodic orbits are unstable; they cause
nearby orbits to diverge, just as the trajectories of a
simple pendulum diverge in the neighborhood of
the unstable “up” position. But whereas the pendu-
lum trajectories diverge at one point, periodic orbits
embedded in the chaotic set cause trajectories to
 diverge at every point. That skeleton of unstable
 periodic orbits is what leads to the irregular, chaotic
dynamics seen in Lorenz’s model and other chaotic
systems. Lorenz appears to have grasped that essen-
tial feature of chaos early on; he recognized not only
that nonperiodicity implies sensitive dependence
but that sensitive dependence is the root cause of
nonperiodicity. 

One might have expected Lorenz’s seminal pub-
lication—a model of clarity and concision—to have
attracted immediate attention. It did not. Twelve
years after its publication, the paper had accumu-

lated fewer than 20 citations. The turning point was
when mathematicians and physicists learned of the
work, largely through Tien-Yien Li and James
Yorke’s 1975 paper, “Period three implies chaos,”8

which established the name of the field, albeit with
a slightly more restrictive meaning than it has today.
By the late 1980s, not only had research on chaos sky-
rocketed, as evidenced by the thousands of scientific
publications on the topic, it was already being
widely popularized among nonscientists.9

Fractals, folding, and mille feuille
Chaotic attractors are generally fractals. The relation-
ship between the chaotic and fractal aspects can be
understood by considering the trajectories of a blob
of points in the phase space near a chaotic attractor.
The chaotic dynamics on the attractor stretches the
blob in some directions and contracts it in others,
thus forming a thin filament. But because the trajec-
tories are bounded, the filament must eventually fold
on itself. When that sequence of stretching and fold-
ing is repeated indefinitely—analogous to a baker
kneading dough or preparing mille feuille pastry—
it gives rise to a fractal set, for which the distance
 between two typical points from the original blob,
measured along the resulting attractor, is infinite. 

An attractor’s geometry can be quantitatively
related to its dynamical properties: The (fractal) di-
mension can be extracted, for example, from the rate
at which nearby trajectories diverge in phase space
or from the time series of a single variable.10 Physi-
cally, the fractal dimension represents the effective
number of degrees of freedom a system has once it
has settled on the attractor. Although Lorenz could
not  resolve it with his numerics, his attractor has a
fractal dimension of roughly 2.06. 

Figure 3a shows the asymptotic behavior of the
phase-space trajectories of another chaotic attractor,
that of the periodically driven, damped pendulum.
The fractal nature of the attractor can be seen by
zooming in on a small portion of phase space: On
magnification, the attractor appears statistically
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Figure 3. Chaos in dissipative systems. (a) The phase-space trajectories of a periodically driven, damped pendulum converge 
to a chaotic attractor, plotted here at integer multiples of the driving period; stretching and folding of volumes in phase space gives
the attractor its fractal structure. (b) For a sufficiently dissipative pendulum, the phase space contains two nonchaotic, periodic at-
tractors, indicated here with white dots on the plane of initial conditions. Nevertheless, the phase space contains a chaotic set at
the boundary between the attractors’ respective basins of attraction, indicated in red and blue. In both panels, the x and y dimen-
sions are position and angular momentum, respectively. (Adapted from T. Tél, M. Gruiz, Chaotic Dynamics: An Introduction Based on
Classical Mechanics, K. Kulacsy, trans., Cambridge U. Press, New York, 2006.)
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self-similar. Given the intimate relationship be-
tween the chaotic and fractal natures of such attrac-
tors, it was more than a coincidence that the study
of fractals reached its maturity in the 1970s, just as
chaos was becoming widely known.

Chaos can also find its way into dissipative sys-
tems whose attractors are not chaotic, as is the case
for a periodically driven pendulum that’s very
strongly damped. The phase space of such a system,
depicted in  figure 3b, contains two periodic attrac-
tors, corresponding to clockwise and counterclock-
wise rotations of the pendulum. Typical trajectories
converge to one of the two attractors with probabil-
ity one, with each attractor having its own distinct
basin of attraction, as illustrated in the  figure. How-
ever, embedded at the boundary between those
basins of attraction there is a zero- measure, fractal
chaotic set—a repeller—that transiently influences
the  evolution of nearby trajectories. A similar phe-
nomenon may occur in systems whose trajectories
are unbounded, as in chaotic scattering processes.

Hamiltonian chaos
As foreshadowed by Poincaré, chaos can also appear
in conservative systems, such as those described by
Hamiltonians. Unlike in dissipative systems, where
a high-dimensional basin of attraction may converge
to a lower-dimensional attractor, in conservative
 systems trajectories necessarily conserve volume in
phase space.

To understand how chaos arises in a conserva-
tive system, consider a Hamiltonian system—a
chain of frictionless harmonic oscillators, say—with
n degrees of freedom. The system is integrable, and
hence nonchaotic, if it has n independent integrals of
motion—that is, if it is described by n conserved
quantities such as energy and momenta. If the tra-
jectories are bounded, the system’s motion will be
constrained to surfaces that are topologically equiv-
alent to n- dimensional tori; each dimension of a
torus is associated with a periodic mode of the sys-
tem. A generic perturbation of the Hamiltonian will
destroy resonant tori, for which the various periodic
modes have frequency ratios that are easily approx-
imated by rational numbers. Some of the correspond -
ing orbits gain access to 2n–dimensional regions of
the phase space and become chaotic; others form

new families of smaller-scale tori. The resonant tori
in the new families are destroyed by the same mech-
anism, and so on. The  Kolmogorov- Arnold- Moser
theorem guarantees that nonresonant tori survive
the perturbation, but the fraction of tori, and hence
orbits, that fall into that category decreases with the
strength of the perturbation. The end result is that
the phase space of a generic Hamiltonian system
contains coexisting regular and chaotic regions,
which extend to arbitrarily small scales (see  figure 4).

Beautiful manifestations of Hamiltonian chaos
are visible in the asteroid belt and in the rings of
 Saturn, where unpopulated gaps correspond to
chaotic trajectories that were unconfined to the
nearly circular, ring-like orbits (see figure 5a).

Bifurcations and universality
Dynamical systems commonly exhibit bifurca-
tions—sudden changes in behavior as a parameter
of the system is varied, such as the sudden onset of
convection rolls in a fluid heated from below once
the temperature gradient exceeds some threshold. A
decisive moment in the development of chaos theory
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The three-equation model used by Edward Lorenz to demonstrate chaos
derives from a truncated Fourier series expansion of the partial differen-
tial equations describing a thin, horizontal layer of fluid heated from
below and cooled from above. Lorenz proposed the equations as a crude
model of the motion of a region of the atmosphere driven by solar heat-
ing of Earth. In standard notation, the equations are dX/dt = σ (−X + Y),
dY/dt = rX − Y − XZ, and dZ/dt = −bZ + XY, where X represents the intensity
of the convective motion, Y is proportional to the temperature difference
between the ascending and descending convective currents, and Z indi-
cates the deviation of the vertical temperature profile from linearity. The
 parameters b and σ capture particulars of the flow geometry and rheology,
and r, the Rayleigh number, determines the relative importance of conduc-
tive and convective heat transfer.

Lorenz fixed b and σ at 8/3 and 10, respectively, leaving only r to vary.
For small r, the system has a stable fixed point at X = Y = Z = 0, correspond -
ing to no convection. At r = 1, two symmetrical fixed points, representing
two steady convective states, emerge. For r ≳ 24.74, the convective states
lose stability, and at r = 28, the system exhibits nonperiodic trajectories like
the one shown in figure 2 of the text. Such trajectories forever orbit along
a bounded region of the three- dimensional space known as a chaotic
 attractor and never intersect themselves—otherwise they would be peri-
odic. For larger values of r, the Lorenz equations exhibit a remarkable array
of different behaviors, which are carefully cataloged in reference 18.

The Lorenz equations

Figure 4. Chaos in conservative systems. 
(a) A stroboscopic map shows the phase-space
trajectories of a periodically kicked rotor. The 
map displays periodic and quasi- periodic regions,
which correspond to the looped trajectories in the
image, and chaotic regions, which correspond to
the scattered trajectories. (b) Magnification of the
small boxed  region in the phase space illustrates
the approximately self-similar nature of the phase
space. In both panels, the x and y dimensions are
position and angular momentum, respectively.
(Adapted from D. K. Campbell, in From  Cardinals to
Chaos: Reflections on the Life and Legacy of Stanis-
law Ulam, N. G. Cooper, ed., Cambridge U. Press,
New York, 1989.)
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came in the late 1970s, when high -precision experi-
mental methods in fluids (see the article by Harry
Swinney and Jerry Gollub, PHYSICS TODAY, August
1978, page 41) and novel numerical and statistical-
physics techniques allowed researchers to explore in
quantitative detail how chaos can arise through var-
ious sequences of bifurcations. 

Mitchell Feigenbaum showed in 1978 that for 
a wide class of mathematical and experimental
 systems, one such sequence of bifurcations—the 
so-called period-doubling route to chaos—occurs the
same way, at the same normalized values of the bifur-
cation parameter. That particular form of  universality
was subsequently demonstrated in low-temperature
convection experiments by Albert Libchaber and Jean
Maurer, a development that sparked an explosion of
interest in chaos and earned Feigenbaum and Lib -
chaber the 1986 Wolf Prize in Physics.11 Since then,
theoretical and experimental studies have confirmed
the universality of period doubling in a variety of sys-
tems, including in the Lorenz equations themselves.

What have we learned?
Chaos sets itself apart from other great revolutions
in the physical sciences. In contrast to, say, relativity
or quantum mechanics, chaos is not a theory of any
particular physical phenomenon. Rather, it is a par-
adigm shift of all science, which provides a collec-
tion of concepts and methods to analyze a novel be-
havior that can arise in a wide range of disciplines.
Those traits partly explain the indifference with
which the initial hints of the phenomenon were
greeted: Early encounters with chaos took place in
disparate disciplines—celestial mechanics, mathe-
matics, and engineering—whose practitioners were
not aware of each other’s findings. Also, chaos gen-
erally defies direct analytic approaches. Only when
advances in interactive computation made experi-
mental mathe matics12 a reality could one pursue the
insights of Poincaré and the other pioneers. 

The basics of chaos have been incorporated into
physics and applied mathematics curricula, but
strong interest remains in understanding specific
manifestations of the phenomenon in fields ranging
from applied physics and engineering to physiol-
ogy, computer science, and finance.13 For instance, a

recent study reexamining a long-standing debate
suggests that a healthy human heartbeat is chaotic
due to coupling with breathing,14 much as a star–
planet system can become chaotic in the presence of
a second planet. 

Another body of research has established that,
despite sensitive dependence on initial conditions,
coupled chaotic systems can synchronize on a
shared chaotic trajectory,15 a phenomenon with
many applications in networked systems. (See the
article by one of us [Motter] and Réka Albert,
PHYSICS TODAY, April 2012, page 43.) Other work 
has established relations between chaos and the 
so-called P versus NP problem in computer science.
In particular, it has been shown that constraint-
 optimization problems can be described in terms of
dynamical  systems that become transiently chaotic
as optimization hardness increases.16

Perhaps no field of research can benefit as much
from the study of chaos as fluid dynamics. Even in
flows governed by periodic velocity fields, mi-
croscale fluid elements often move chaotically. A clas-
sic example is the transient chaotic behavior of a flow
past an obstacle, a behavior that has been proposed
to explain how competing plankton species coexist in
certain island locales. In a well-mixed  environment,
all but a handful of species would go extinct. But in
the flows that emerge in an island’s wake, the various
species can inhabit different fractal-like flow struc-
tures of high surface-to-volume ratio that may inter-
twine but do not mix.17 (See figure 5b.) Similarly,
stretching, folding, and the exponential separation of
nearby points—all hallmarks of chaos—are observed
in Lagrangian coherent structures, which are of inter-
est, for example, to forecasting contaminant trans-
port in the ocean and atmosphere. (See the article by
Thomas Peacock and George Haller, PHYSICS TODAY,
February 2013, page 41.)

Although low- dimensional chaos does not
speak directly to turbulence, spatiotemporal chaos
is observed in flows at high Reynolds numbers. Fit-
tingly, Lorenz made the connection between chaos
and turbulence at the very beginning—his first
choice for the title of his seminal 1963 paper was, in
fact, “Deterministic turbulence,” which he aban-
doned only at the urging of the editor.

32 May 2013 Physics Today www.physicstoday.org

Chaos at fifty

Figure 5. Chaos manifests itself in a diverse range of natural settings, including
(a) the rings of Saturn, where unpopulated gaps correspond to chaotic orbits, as
predicted by the  Kolmogorov- Arnold- Moser theory (courtesy of NASA/ Cassini mission); (b) phytoplankton blooms—seen here
in a satellite image of the Barents Sea—which form  fractal-like structures due to chaotic advection (adapted from NASA/Ocean
Color Web); and (c) Earth’s geomagnetic field, which, on astronomical time scales, reverses its poles at irregular, chaotic inter-
vals—a behavior captured by this simulated chaotic attractor (courtesy of Christophe Gissinger).
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Numerous fundamental problems in chaos re-
main at least partially unsettled. They range from
the implications of chaos in quantum and relativis-
tic systems to the connection between chaos, coarse
graining in phase space, and statistical mechanics.
Another fundamental activity concerns model
building. For example, the irregular polarity rever-
sals observed at astronomical time scales in Earth’s
magnetic field have recently been described with a
deterministic chaotic model not unlike the three-
equation model that begat the field a half-century
ago (see figure 5c).

The Lorenz attractor has turned out to be rep-
resentative of the asymptotic dynamics of many sys-
tems, and Lorenz’s signature contribution has rever-
berated both broadly and deeply. As summarized in
the citation of his 1991 Kyoto Prize, “He made his
boldest scientific achievement in discovering ‘deter-
ministic chaos,’ a principle which has profoundly
influenced a wide range of basic sciences and
brought about one of the most dramatic changes in
mankind’s view of nature since Sir Isaac Newton.”
There have been many other important developments in
chaos that could not be discussed in this brief, nontechnical
article. We offer our apologies to those colleagues whose con-
tributions we were not able to properly acknowledge, and we
hope the article will stimulate readers from other fields to
look more deeply into this fascinating subject.
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