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Abstract

Unprecedented growth in digital information has transformed data in the social sciences
from scarce to abundant. Social media in particular has created a new algorithmically
mediated sociotechnical system, one where billions of daily communications influence our
perspective on reality in poorly understood ways. Boosted by advances in high performance
computing, natural language processing, and machine learning, the digital traces left behind
by these electronic breadcrumbs hold immense promise for measuring collective attention
and sentiment at the societal scale.

In one study, using hurricane name mentions as a proxy for awareness. We find that
the exogenous temporal dynamics are remarkably similar across storms, but that overall
collective attention varies widely even among storms causing comparable deaths and dam-
age. We construct ‘hurricane attention maps’ and observe that hurricanes causing deaths
on (or economic damage to) the continental United States generate substantially more at-
tention in English language tweets than those that do not. We find that a hurricane’s
Saffir-Simpson wind scale category assignment is strongly associated with the amount of
attention it receives. Higher category storms receive higher proportional increases of at-
tention per proportional increases in number of deaths or dollars of damage, than lower
category storms. The most damaging and deadly storms of the 2010s, Hurricanes Harvey
and Maria, generated the most attention and were remembered the longest, respectively.
On average, a category 5 storm receives 4.6 times more attention than a category 1 storm
causing the same number of deaths and economic damage.

In a second study, we explore using well curated, large-scale corpora of social media posts
containing broad public opinion as an alternative data source to complement traditional
surveys. While surveys are effective at collecting representative samples and are capable of
achieving high accuracy, they can be both expensive to run and lag public opinion by up to
a month. Both of these drawbacks could be overcome with a real-time, high volume data
stream and fast analysis pipeline. A central challenge in orchestrating such a data pipeline
is devising an effective method for rapidly selecting the best corpus of relevant documents
for analysis. Querying with keywords alone often includes irrelevant documents that are
not easily disambiguated with bag-of-words natural language processing methods. Here, we
explore methods of corpus curation to filter irrelevant tweets using pre-trained transformer-
based models, fine-tuned for our binary classification task on hand-labeled tweets. We are
able to achieve F1 scores of up to 0.95. The low cost and high performance of fine-tuning
such a model suggests that our approach could be of broad benefit as a pre-processing step
for social media datasets with uncertain corpus boundaries.

In a third chapter, I describe my contributions to nearly 2 dozen studies leveraging Twit-
ter data to explore collective attention, sentiment, and language. These cover a range of top-
ics including the COVID-19 pandemic, politicians and K-pop stars, public health, and social
movements, demonstrating the broad value of social media data in interdisciplinary research.
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List of Figures

2.1 Hashtag attention map and usage rate time series for 1-grams match-
ing the case-insensitive pattern “#hurricane*” for all four hurricanes reach-
ing at least category 4 in the 2017 hurricane season. Markers along the
hurricane trajectory indicate the National Oceanic and Atmospheric Admin-
istration (NOAA) reported position for every day at noon UTC. On the map,
the smoothed rate of hashtag usage is wrapped in an envelope around the
hurricane trajectory in panel A, showing the spatial dependence of atten-
tion on Twitter. In the lower two plots, panels B and C, we show the usage
rates for hashtags and 2-grams matching hurricane* in English language
tweets on linear and logarithmic scales. Usage rates within all tweets are
indicated with a solid line, while usage rates in ‘organic’ tweets (tweets that
are not retweets), are represented by a dashed line. The day of maximum
attention on Twitter is marked with a star or a diamond for hashtags or 2-
grams, respectively. Generally, hurricanes making landfall on the continental
United States received greater attention than those not making landfall. The
hashtag usage rate for Hurricanes Harvey and Irma at their maximum were
approximately an order of magnitude larger than the maximum hashtag us-
age corresponding to hurricane Maria, and two orders of magnitude larger
than Hurricane Jose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Radar plots comparing the eight most monetarily damaging hurri-
canes in the North Atlantic basin from 2009 to 2018. For each plot,
starting at the top position and rotating clockwise the measures are: the
sum of usage rate of the hashtag, the number of days to reach 90% and 50%
of the total attention received during that season, the total cost in dollars
attributed to damage caused by the hurricane (in its year), the number of
deaths attributed to the hurricane, and maximum usage rate of the hashtag
during the year of interest. All measurements are normalized to the maxi-
mum value achieved by any hurricane. Hurricane Harvey was the most talked
about hurricane, as well as the most damaging. Hurricane Irma was the most
talked about on any single day. Hurricane Maria caused the most deaths,
and had the longest attention half-life of all measured hurricanes. Raw values
for this figure are shown in Section 6.1. Hashtag usage rate spark lines above
each radar plot are normalized to show the common decay shape, and can
not be compared to evaluate relative volume, and are shown on a log scale. 21
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2.3 Scatter plots for integrated hashtag usage rate versus the deaths
and damages caused by each storm. There is a clear positive association
between the total attention represented by hashtags and the impacts of these
storms. We reported Spearman’s rho, ρs, in the top left corner of each plot.
While for some categories, there is little evidence for a positive association,
for the entire dataset ρs ∼ 0.54. We perform a Bayesian linear regression
for each category storm between the log I and log impacts. We show the
mean model, along with the credible interval within a standard deviation
of the mean model. We use hybrid axis with logarithmic scaling for most
horizontal and vertical values and linear scaling near zero, in order to show
storms that caused zero deaths or damages, as well as storms for which
we measured a hashtag usage rate of zero. Changes in axis scaling occur
at the blue dashed lines. Generally, more powerful storms received more
attention, higher category storms received more attention even when causing
minimal damage, and high category storms had a higher regression slope.
These results suggest that for powerful storms, a given increase in impact
was associated with a larger increase in attention. While for category one
storms a 10-fold increase in deaths is associated with a two-fold increase in
attention, for category five hurricanes, this same 10-fold increase in attention
is associated with a 27-fold increase in attention. . . . . . . . . . . . . . . . 24

2.4 Posterior distributions of regression parameters for the model log10 I ∼
a0 + a1Xi,where Xi is either the log number of deaths (A and C) or log dam-
ages in dollars associated with the storm (B and D), and log10 I is the log
integrated hashtag usage rate. The trend in regression coefficients for associ-
ation between the log attention and log deaths suggests that higher category
storms receive more attention per unit impact, while the trend of intercepts
shows increasing baseline attention for a hypothetical minimally disruptive
storm causing exactly $1 in damages or one death. For regression coefficients
relating log attention to log damages, Category 4 and 5 storms receive more
attention per unit increase in log damages than lower category storms. How-
ever, the coefficients are smaller in magnitude due to damages varying across
7 orders of magnitude, as compared to deaths varying over 4 orders of mag-
nitude. There is a larger uncertainty for the category 5 intercept values, as
only 6 storms of this intensity formed between 2009 and 2019 in the Atlantic
basin. At the right of each plot, we show the coefficients for the model fit for
all hurricanes (blue violin), excluding tropical storms. Above each category,
we show the value of the mean posterior distribution for each parameter. For
a table of mean parameter values, see Table 6.1. . . . . . . . . . . . . . . . 27
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2.5 Parameter distributions for models 1, 2 and 3. Plots A–C show poste-
rior distributions for regression 1, plots D–G show distributions for regression
2, which includes the addition of an interaction term, and plots H–O show-
ing distribution for regression 3, which includes indicators variables for hur-
ricane categories two through five. The addition of the interaction term,
ad,D increases posterior variance for adeaths as well as reducing its mean
from adeaths = 0.49 in regression 1 to adeaths = 0.05 in regression 2 and
adeaths = 0.12 in regression 3, suggesting that while the number of deaths is
associated with increased attention, attention response is primed by destruc-
tion. Additionally, the hurricane category indicator variables in regression
3 show the progressive increase in attention given to higher category storms
compared to category 1 hurricanes. . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Embedded tweet distribution plot for the combined datasets. Using
a pre-trained model for semantically meaningful sentence embeddings based
on MPNet, we plot the distribution of tweets within this semantic space.
In both plots, points are tweets projected into 2D using UMAP for dimen-
sionality reduction [108]. In panel A, we perform density based, hierarchical
clustering using HDBSCAN and color by cluster. In panel B, we color by both
the keyword used to query and the classification as relevant or non-relevant
to the topic of clean energy. Relevant tweets containing the keywords ‘wind’,
‘solar’, and, to a lesser extent, ‘nuclear’ are relatively close together on
the right in the embeddings, while non-relevant tweets are more dispersed. 42

3.2 Ambient sentiment time series comparison for relevant (R), non-
relevant (NR), and combined tweet corpora, containing the key-
word ‘solar’. In the top panel, we show the number of tokens with LabMT
[42] sentiment scores in each corpus on each day. ‘Relevant’ tweets, in blue,
have more scored tokens early on, but the number tokens in ‘non-relevant’
tweets increase in relative proportion over time. The center panel shows
the average sentiment for each corpus, including a measurement of English
language tweets as a whole in gray for comparison. Before 2019, the mea-
sured sentiment for both corpora are comparable, but subsequently the mean
sentiment of ‘non-relevant’ tweets drops. In the bottom panel we plot the
standard deviation of the sentiment measurement, which captures a broader
distribution of sentiment scores for ‘non-relevant’ tweets. Without classifi-
cation filtering, the ambient sentiment measurement would be entirely mis-
leading, appearing as though the sentiment contained in tweets containing
the word ‘solar’ dropped dramatically in 2019, when in fact sentiment has
only modestly declined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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3.3 Ambient sentiment time series comparison for relevant (R), non-
relevant (NR), and combined tweet corpora, all containing the key-
word ‘wind’. In the top panel, we show the number of tokens with LabMT
sentiment scores for each corpus during each two week period [42]. R tweets,
in blue, have more than an order of magnitude fewer tokens per time window
over the entire study period. The center panel shows the average sentiment
for each corpus, including measurement of English language tweets as a whole
in gray for comparison. R ‘wind’ tweets are more positive than Twitter on av-
erage early on, but this difference is reduced over time. Because most ‘wind’
tweets are non-relevant, sentiment of the combined corpus closely follows the
NR sentiment. In the bottom panel we plot the standard deviation of the
sentiment measurement, which captures a broader distribution of sentiment
scores for ‘non-relevant’ tweets, as was the case for all case-studies we exam-
ined. Without classification filtering, the ambient sentiment measurement
would have been dominated by NR tweets. . . . . . . . . . . . . . . . . . . 50

3.4 Ambient sentiment time series comparison for relevant (R), non-
relevant (NR), and combined tweet corpora, all containing the key-
word ‘nuclear’. In the top panel, we show the number of tokens with
LabMT [42] sentiment scores for each corpus in each two week period. The
number of relevant n-grams, in blue, is consistently lower than non-relevant
n-grams. The center panel shows the average sentiment for each corpus, in-
cluding measurement of English language tweets as a whole in gray. We found
that R tweets had higher sentiment than NR tweets containing ‘nuclear’,
but had much lower sentiment than Twitter as a whole. Sentiment appears
relatively stable for both corpora with periods of higher sentiment around
2017 and 2020-2022 for the R corpus. In the bottom panel, we plot the
standard deviation of the sentiment measurement, which shows a broader
distribution of sentiment scores for NR tweets, as well as sentiment for both
corpora trending down slightly. . . . . . . . . . . . . . . . . . . . . . . . . 52
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3.5 Sentiment shift plots comparing the classified relevant (R) and non-
relevant (NR) tweet corpora for tweets containing the keywords
‘solar’, ‘wind’, and ‘nuclear’. We show the top 20 words contributing to
the difference in LabMT sentiment between the corpora. A. Relevant tweets
that are related to clean energy are more positive on average for all keywords
when compared to non-relevant tweets. Sad words that are less common
in relevant ‘solar’ tweets are ‘radiation’, ‘pressure’, and ‘humidity’, which
largely refer to the weather. Happy words like ‘energy’ and ‘power’ are more
common in relevant tweets compared to tweets non-relevant to solar energy.
B. For ‘wind’, relatively sad terms like ‘humidity’ and ‘pressure’ are less
common in relevant tweets (these appear in clearly non-related tweets about
the weather), while happy terms like ‘energy’, ‘power’, and ‘solar’ are more
common in tweets relevant to wind as a renewable energy source. C. For
‘nuclear’, relevant tweets are on average more positive due to sad words
like ‘war’, ‘weapons’, and ‘bomb’ being less common in relevant tweets, while
happy words like ‘power’ and ‘energy’ are more common. The two prominent
sad words ‘nuclear’ and ‘waste’ go against the positive difference in moving
from non-relevant to relevant tweets as they both occur more frequently in
relevant tweets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Allotaxonograph comparing the rank divergence of words classified
as relevant to solar energy discourse to those containing the key-
word ‘solar’ but classified as non-relevant. On the main 2D rank-rank
histogram panel, words appearing on the right have a higher rank in the ‘rel-
evant’ subset than in ‘non-relevant’, while phrases on the left appeared more
frequently in the ‘non-relevant’ tweets. The panel on the right shows the
words which contribute most to the rank divergence between each corpus.
We observe that many words associated with weather bots, such as ‘mph,’
‘uv,’ and ‘pressure,’ are more frequently used in non-relevant posts, while
words like ‘panels,’ ‘energy,’ and ‘power,’ used more in tweets relevant to
solar energy. Notably, commonly used function words, such as ‘the,’ ‘and,’
and ‘are,’ are off-center in the rank-rank histogram, a further indication that
many of the ‘non-relevant’ tweets are from automated accounts publishing
weather data rather than using conversational English. The balance of the
words in these two subsets is noted in the bottom right corner of the his-
togram, showing the percentage of total counts, all words, and exclusive
words. For this example the two subsets are nearly balanced, indicating that
the filtered corpus contains less than 50% of word tokens from the raw query.
See Dodds et al. [45] for a full description of the allotaxonometric instrument. 55
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4.1 An example document showing a ‘storyon’ counter objected represented within
the database. For each language, we store a collection of n-gram counters.
By querying for word we can assemble word usage rate time series. Querying
for time, we can assemble a daily Zipf distribution. More complex queries
are also enabled; future studies could query by rank to study the emergence
of slang or other new types entering a language. . . . . . . . . . . . . . . . 62

4.2 Reprint of Figure 1 from [8], with caption as follows: “For each n-gram,
we display daily rank in gray overlaid by a centered monthly rolling aver-
age (colored lines), and highlight the n-gram’s overall highest rank with a
solid disk. A. Anticipation and memory of calendar years for all of Twit-
ter. B. Annual and periodic events: Christmas in English (blue), Easter
in Italian (orange), election in Portuguese (green), and summer in Swedish
(red). C. Attention around international sports in English: Olympics (blue),
FIFA world cup (orange), and Super Bowl (red). D. Major scientific discov-
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Chapter 1

Introduction

1.1 Background

Human behavior is being digitally observed and continuously recorded at a previously un-

fathomable rate. As the world continues transitioning into the internet age, researchers

studying social systems have leveraged the data richness and complexity offered by publicly

available user generated content. But the research value of social media data in particular

has yet to be fully realized for legal, economic, and ethical reasons.

Historically, written corpora distilled from large collections of books, newspapers, aca-

demic articles, etc., reflected the perspective of a few wealthy and non-representative au-

thors, and were edited to conform to linguistic norms. During the last 20 years, the growing

adoption of social media facilitated by mobile devices has brought forth a golden era for

Computational Social Science [89]. Indeed, never before in human history has there been

such a detailed record of everyday speech and attention, notably offering indications of

consumption and popularity among average people.

For social science research, Twitter data in particular offers some notable advantages

over other large-scale texts. Twitter enables studies with high temporal resolution, not only

because tweets contain timestamps accurate to the second, but because the potential time
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lag between events occurring in the world and citizens publishing their thoughts can be

under a minute. No other readily available platform has such a high resolution timescale

for activity, such that surprisingly small slices of time contain word distributions with mea-

surable associations to events in the offline world. Finally and importantly, Twitter encodes

popularity through retweets, a critical signal for characterizing cultural amplification that

is missing from many other text data sources [110,126].

So what can we do with one hundred billion tweets? Researchers have (almost) as many

ideas; as of February 2023 over eight million studies of Twitter data have found their way

to Google Scholar. Within our modest contribution to this body of work, we transform

unstructured text into a few standardized data products, measurements, and observations

about the world. Our main aim is to render important cultural phenomenon in the social

world more quantifiable, not unlike efforts to construct instruments such as the microscope

and the telescope transformed our understanding of the natural and physical world.

Put into practice, first we tokenize human expressions found in text, breaking up sen-

tences into words and phrases, referred to as n-grams, and counting the number of occur-

rences of each. For any period in time, we can compute a usage rate and rank of n-grams.

Then, to study the dynamics of collective attention, we compute n-gram usage timeseries [8]

to characterize changes in the popularity of words and phrases over time.

We’re often interested in more than raw quantities of attention. Using the tools described

in this thesis, we can measure the sentiment of a text, either using dictionaries such as

labMT, or more black-box machine learning models [98, 129]. We often find there is value

in the interpretability of dictionary-based methods, which allow us to compute word level

contributions to differences in sentiment between corpora [55]. Comparing distributions of

text using tools like rank-turbulence divergence, we uncover changes in word usage at all

scales, from changes in frequently used function words to the rarest hashtags [45].

The computational methods that enable work with text as data, inspired by exist-
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ing tools often used in statistics and physics, have also recently improved in quality and

speed [167]. Tokenization, the process of breaking up unstructured text into discrete tokens

that can be measured, has accelerated rapidly through the use of Graphics Processing Units

(GPUs). Advanced tokenizers, such as WordPiece, have improved the effective vocabulary

size of models by breaking up unknown words into substrings that can still be represented

in a semantic space [175].

Within the past decade, text representations have improved dramatically, enabling a

range of natural language processing (NLP) classification tasks. In the 2010s, global word

embeddings like word2vec, gloVe, and FastText emerged to represent words in semantically

meaningful vector spaces [81,112,127]. Contextual embeddings based on transformers, such

as BERT, enabled distinct embeddings for words with multiple meanings that improve per-

formance on downstream tasks [35,156]. These contextual word embeddings were precursors

to today’s Large Language Models (LLMs) like ChatGPT.

The new data availability and rapid innovation in NLP methods has attracted a broad

range of interdisciplinary interest [109]. Within economics for example, there’s an interest

in how narrative shapes the economic decisions of groups, leading to irrational exuberance

or sustained collective pessimism [142]. Communications researchers studying social move-

ments such as the Arab Spring, #MeToo, and Black Lives Matter have used tweets to

explore and quantify digital activism and protest activity [78,102,173].

Prior work has explored the potential of social media to supplement gold standard

representative surveys of public opinion [121]. Measuring text in tweets containing the

keyword ‘Climate’, researchers found polarizing words [29,30].

Having described the background areas associated with the present thesis, we now move

into discussion of the technical challenges posed by doing serious computational work at

large-scale.
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1.2 Data Infrastructure

A number of conceptual and technical challenges stand in the way of unlocking the poten-

tial for using social media data to do sound computational social science. Conceptually,

researchers need to select a defensibly relevant corpus from the universe of tweets, and make

a measurement on the text or metadata contained within the corpus that reflects real-world

activity. Enabling these two steps requires solving a number of technical challenges and

evaluating each alternative. Qualities of scientific interest include:

• the relevance of a given corpus to the field of interest,

• the quality of the corpus filtering, to increase relevance of the selected content,

• the success rate in sorting algorithmically generated content from human generated

content (and hybrids in between), and

• practical considerations such as execution time, cost, and accessibility.

While each of the above issues could merit its own PhD thesis, in the following para-

graphs, I address some challenges I overcame in the design of the computational pipeline

before turning my attention to some of the former issues in the bulk of the thesis.

Minimizing query execution time is an important practical and technical consideration

given the massive size of the Twitter dataset. Response times for human/machine interac-

tions have been studied for decades to better understand the impacts on usability [58,140].

To enable interactive image view, query times should not exceed roughly two seconds,

around which user satisfaction switches from positive to negative for image loading [50].

For collaborative exploratory work, keeping the response time under two minutes is a good

approximate target; too much slower and researchers’ ability to iterate is diminished. Fi-

nally, for a full analysis, being able to execute queries within around eight hours enables

running code overnight. These execution time thresholds are helpful in considering what
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kinds of research behavior is possible at different latencies.

Our database infrastructure attempts to enable queries at each of these scales. Sto-

rywrangler, our research group’s web-based interface to explore n-gram timeseries, indexes

millions of tokens daily for nearly 15 years. It runs on a back-end capable of executing single

timeseries queries within tens of milliseconds, enabling a smooth interactive user experience.

DataMountain, the 64TB RAM database cluster I designed with UVM’s Enterprise

Technology Services to store tweets, enables query execution at both (a) the two-minute

response scale and (b) the eight hours response scale, by storing multiple corpora at different

sampling resolutions. We curate the following collections for the Computational Story Lab:

• decahose - a roughly 10% sample of all public Twitter messages between 2008 and

2023, containing 110B tweets,

• gardenhose - a 1% sample of Twitter, and

• driphose - a 0.1% sample of Twitter each derived from the decahose.

Having separate collections allows researchers to rapidly prototype with a small sample

of tweets that can be returned within a few minutes. It also enables seamlessly scaling up

the sample size to reduce variance.

For many kinds of queries, databases can reduce the number of required read operations

by orders of magnitude. Keyword queries benefit from text indexes, especially for infre-

quently used terms. For example, the term ‘Homelessness’ is used roughly two times per

every million words on Twitter. Prior to DataMountain, to search for tweets containing this

keyword in our collection, we’d need to scan 150,000 times more tweets to find matches.

This query could take hours at best, but was highly variable depending on shared compute

resource allocation, and could take days at worst. With DataMountain, a search for this

keyword takes under 20 seconds without caching, and a mere 700 milliseconds when cached.

In designing any major hardware system, there are trade-offs between costs and benefits.
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For DataMountain, a number of compromises were made to fit the specific constraints of

the University research funding environment. Money for high-performance computing is

typically awarded in the form of hardware or cloud computing grants. The low upfront

costs of cloud computing, which is appealing to businesses with long-term cash-flow, are less

attractive for a University due to the lower overall long-term costs of on-premises hardware.

We made a decision to trade latency for capacity by substituting some random access

memory (RAM) for 3D-XPoint persistent memory (PMEM). PMEM technology provides

significantly more capacity per dollar than RAM at the cost of increased latency compared

to RAM, but was still a vast improvement over reading from disk.

In building our DataMountain server, we made some non-standard design decisions

around redundancy and storage capacity. Within industry, where database uptime is

mission-critical, and any interruption in service both halts revenue streams and potentially

damages trust in a company’s brand long term, redundancy is built into database systems to

ensure nearly 100% uptime. However, high availability has a cost, with production systems

keeping at least three separate database replica sets.

For a University with limited funding, tripling the cost of the machine in order to enable

replication within the system was simply infeasible. Fortunately, for a research cluster on

campus, the risk associated with downtime is smaller. If a disk or memory module fails on

a research cluster, scientists can simply wait a few days for replacement parts or for data

to insert and index. We judged that a system with three times the memory capacity, but

only 90% the uptime, would be more valuable to researchers than a smaller memory system

with high availability. Additionally, we planned for all data to be backed-up on flat files

outside of the database cluster, so risk of data loss remains minimal.

Perhaps the most important criteria is accessibility. Without designing for user expe-

rience, resources will be underutilized, negatively impacting the research potential of the

investment. For example, if a software package is restricted to on-campus users and takes
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an hour to install, and even longer to learn to use, it will necessarily only be seen by a small

handful of participants. To address these challenges, our team secured a large grant from

the National Science Foundation to broaden access to the DataMountain infrastructure.

The Science of Online Corpora, Knowledge, and Stories (SOCKS) project, a five year $20M

Experimental Program to Stimulate Competitive Research (EPSCoR) grant from NSF, will

support development work aimed at giving academic disciplines traditionally underrepre-

sented in computing access to hi-performance tools to answer questions, e.g., in Political

Science, Cultural Anthropology, Psychology, Public Health, and many other fields.

To enable standardized, repeatable text measurements in service to hypothesis testing in

these domains, we deploy a host of lexical instruments. Our research group, the Computa-

tional Story Lab, has built up a wealth of tools over the years, such as sentiment dictionaries

like labMT [86], word-shift graphs to compare texts [55], allotaxonographs to measure rank-

turbulence divergences between texts [45], and contagiograms measuring dynamics of social

amplification [10] to name a few. Ensuring that these tools are maintained and packaged

to enable rapid exploration of text datasets is a long-term goal.

Concurrently, we have to be aware of and up front about the limitations of these tools

to answer questions about the world. While a collection of 100 billion tweets is almost

incomprehensibly large, there are still many topics of potential interest that receive relatively

little attention online. The word usage frequencies are heavy-tailed, and this limits our

ability to reduce the variance of measurements. Indeed, roughly half of the hashtags seen

each day have never been seen before, making them challenging to index. This problem

is further compounded when we’re interested in high resolution time-series, or fine-grained

spatial structures.

For research topics where the population of interest is not ‘people who tweet’, but

rather the speakers of a language or likely voters in an election, we have to heavily dis-

count the usefulness of Twitter data. Twitter’s users are not a representative sample of
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any other populations [116]. Changing demographics of users and the creation of algo-

rithmically voiced accounts should make us wary of claims that trends between these two

distinct populations would be correlated [15, 16]. As response rates for traditional polling

have declined, researchers have investigated using non-representative samples by using re-

spondents’ demographic information to reweigh responses using multilevel regression and

poststratification [159]. Each chapter in the thesis addresses the representativeness issue in

bespoke fashion.

While the systems engineering to enable research at scale has been a substantial com-

ponent of my work, the driving motivation is to enable interdisciplinary experimentation,

powered by new, interpretable measurements. The collaborative process of instrument

building provides feedback both to improve next iteration of measurement tools and to

shape a new generation of research questions.

1.3 Outline

With the computational infrastructure in place, we now describe several specific applications

of our work toward understanding real-world phenomenon through our lexical lenses.

In Chapter 2, we demonstrate how social media n-gram usage rate timeseries can be

used to study collective attention paid towards hurricanes [14]. We measure associations

between our collective attention proxies and hurricane impacts, like estimated damages and

deaths. We also validate our proxy of choice, hashtags following the form, ‘#hurricane*’,

by replicating our regression analysis on attention proxies based on 2-gram usage rate

timeseries.

For case studies examining topics blessed with unambiguous search terms, such as a

consistently used hashtag or a name without polysemy, a simple keyword search could be

sufficient to curate a corpus of tweets. Unfortunately, there are often no keywords capable

of filtering for selecting relevant tweets. Looking to examine sentiment related to car brands
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for example, we found tweets containing ‘Ford’ were a mix of topics from the American

auto-maker to allegations against Supreme Court nominee Brett Kavanaugh. Studying

attention paid to top causes of mortality, tweets containing ‘Cancer’ were dominated by

horoscope readings. Framing these questions as a supervised classification task requires

researchers to label training data, but improves our understanding of corpus quality by

enabling estimates of precision and recall. In Chapter 3, we propose addressing this corpus

curation problem with contextual sentence embedding powered text classifiers [15], and use

a case-study related to clean energy policy to demonstrate the value and performance of

our approach.

In Chapter 4, I discuss my individual contributions to a subset of the 23 scientific

manuscripts that I have had the opportunity to be a co-author on during my PhD. Story-

wrangler, on which many later projects rely, is an instrument we created to parse, store,

and serve word (and higher n-gram) usage timeseries, which capture changes in language

usage due to human attention and algorithmic influences on Twitter [8]. Along the way, I

helped establish incremental results as we worked towards a final version of Storywrangler.

For example, we identified inconsistencies with Twitter’s langauage identification software

that corrupted language based n-gram usage timeseries [40]. To address this corruption,

we performed language classification on nearly 100TB of tweets and described the changing

user base by language and sharing behavior [10].

We used Storywrangler data to study the dynamics of language around, and attention

paid to, an emerging global pandemic [9]. More broadly applicable, we developed tech-

niques to identify emergent words during periods of substantial language shifts. Further

research along these lines used unsupervised timeseries clustering to identify distinct phases

of language use during first months of the COVID-19 pandemic [36].

Attempting to quantify levels of lexical fame, we studied U.S. presidential candidates,

and the K-pop sensation BTS [41]. We found that the 1-gram‘BTS’ was briefly used more
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frequently than the word ‘the’. Using the transition to Daylight Savings Time along with

Twitter activity patterns, we estimated the delay in the onset of sleep across the United

States. In the process, I built a user location database storing city and state labels for 5%

of our tweet collection [96]. We explored the public’s social media engagement with US

presidents, finding increased controversy in the replies to President Donald Trump’s tweets

throughout his presidency as measured by the ratio of replies to retweets or favorites [115].

In the process of creating and exploring these new sociotechnical datasets, we often

found that existing measurements were poorly suited to answering research questions of

interest. We created measurements to detect patterns in timeseries [37], to compare lan-

guage distributions (or any heavy-tailed distribution) using rank-turbulence divergence [45]

and probability-turbulence divergence [47]. While sentiment or valence is likely the most

commonly measured dimension of meaning, other semantic differentials convey distinct

meanings. We introduced ousiometrics to measure meaning within a novel power-danger

framework [39].Recognizing the need to update semantic lexicons, as well as the expense as-

sociated with human ratings, we explored using word embeddings to score additional words

to augment existing lexicons [11].

Collaborations with researchers outside of the core Storywrangler team were also fruitful.

We created a lexicon to measure misogynistic language, and used Storywrangler’s parser on a

sample of tweets mentioning female politicians to track trends in hateful language [163]. We

explored the viability of using mentions of homelessness on Twitter as proxy for state-level

homelessness rates [17]. I also contributed state-level community sentiment measurements

to a study on factors associated with the onset of panic attacks [106]. Finally, we measured

the dynamics of attention paid to Black victims of fatal police violence on Twitter [173].

Following these three chapters, I conclude this dissertation with a reflection on outcomes,

along with plans for future work.
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Chapter 2

Hurricanes and hashtags: Characteriz-

ing online collective attention for nat-

ural disasters

2.1 Abstract

We study collective attention paid towards hurricanes through the lens of n-grams on Twit-

ter, a social media platform with global reach. Using hurricane name mentions as a proxy

for awareness, we find that the exogenous temporal dynamics are remarkably similar across

storms, but that overall collective attention varies widely even among storms causing com-

parable deaths and damage. We construct ‘hurricane attention maps’ and observe that

hurricanes causing deaths on (or economic damage to) the continental United States gen-

erate substantially more attention in English language tweets than those that do not. We

find that a hurricane’s Saffir-Simpson wind scale category assignment is strongly associated

with the amount of attention it receives. Higher category storms receive higher proportional

increases of attention per proportional increases in number of deaths or dollars of damage,

than lower category storms. The most damaging and deadly storms of the 2010s, Hurricanes

Harvey and Maria, generated the most attention and were remembered the longest, respec-
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tively. On average, a category 5 storm receives 4.6 times more attention than a category 1

storm causing the same number of deaths and economic damage.

2.2 Introduction

The collective understanding and memory of historic events shapes the common world

views of societies. In a narrative economy, attention is a finite resource generating intense

competition [28, 52, 53, 76, 92, 120, 142, 143, 152]. As commerce and communication shift to

online platforms, so too has the narrative economy moved to the digital realm. In 2018,

over $100 billion dollars were spent on internet advertising in the United States, nearly

overtaking the $110 billion spent on traditional media advertising—about 1% of the US

GDP [77]. Today, social media both facilitates and records an extraordinary percentage

of the world’s public communication [118, 128]. For computational social scientists, the

migration of parts of the narrative economy to the web continues to present an immense

opportunity, as the discipline becomes data-rich [111,125].

Academics have become interested in narrative spreading around newsworthy events on

social media platforms such as Twitter, as increasingly political fights for influence or narra-

tive control are fought by actors as wide ranging from activists and police departments [56],

to state censors suppressing discourse internally and state supported troll factories spread-

ing divisive narratives internationally [16, 20, 32, 69, 123, 150]. In 2019, the social media

platform Twitter boasted over 145 million daily active users [135].

Quantifying the spread of narratives and the total attention commanded by them is a

daunting task. Recent work has made progress in tracking the spread of quoted and modi-

fied phrases through the news cycle, and others have worked to identify actant-relationships

and compile contextual story graphs from social media posts [92,141]. In comparison, quan-

tifying attention directed towards a topic, person or event is a somewhat easier task. Rather

than identifying actors and identifying what they act on, as is the case for narrative atten-

12



tion, we can simply count mentions of an entity. Since increasing raw attention or number

of mentions is often the zeroth order activity in public relations campaigns, quantifying the

volume of attention, irrespective of the sentiment or narrative within which the attention

is embedded, seems a natural first step [46].

An understanding of attention has typically focused on time dynamics as measured by

the number of mentions in a given corpus, explaining either temporal decay of interest or

heavy-tailed allocation of attention given to a spectrum of topics through some preferential

attachment mechanism [23,49,63,72,73,101,155,157]. Another group of studies have worked

to classify attention time series from social media as either exogenous or endogenous to

the system, modeling the functional form of collective attention decay, or determining if

spreading crosses a critical threshold [33, 83, 91, 172]. While these studies have typically

focused on scientific works, patents, or cultural products such as movies, the rise of large

social media datasets have enabled the investigation of a wider range of topics in online

public discourse [87].

In this study we examine the collective attention focused on hurricanes, using Twitter,

which allows us to capture more natural speech intended for human readers as opposed

to search terms. Twitter data has been used to measure shifts in collective attention sur-

rounding exogenous events like earthquakes by looking for jumps in the Jensen-Shannon

divergence between tweet rate distributions between days, or creating real-time earthquake

detection using keyword based methods [134,137].

Here, we use collective attention in a more narrow sense. Instead of looking for anoma-

lous tweet rates, we study n-gram usage rates for hashtags and 2-grams associated with

individual events. Specifically, we examine the usage rates of hashtags and 2-grams match-

ing the case-insensitive pattern “#hurricane*” and “hurricane *”, respectively. Natural

disasters provide an ideal case study, since they are generally unexpected, producing the

signature of an exogenous event. However, the volume of attention given to any particular
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hurricane varies widely across several orders of magnitude, as does the severity of the storm

in terms of the lives lost and damages caused.

Prior efforts have examined the attention received by disasters by type and location,

as measured by time devoted on American television news network coverage, and striking

discrepancies: for example, to have the same estimated probability of news coverage as a

disaster in Europe, a disaster in Africa would need to cause 45 times as many deaths [51].

The same study found that in order to receive equivalent coverage to a deadly volcano, a

flood would need to cause 674 times as many deaths, a drought 2,395 times as many, and

a famine 38,920 times as many casualties.

Strong hurricanes are more likely to capture attention than weak hurricanes, and hur-

ricanes impacting the continental United States capture much more attention than those

failing to make landfall. To what degree does attention shrink when hurricanes make landfall

outside of the continental US? The 2017 hurricane season is a particularly stark example,

showing that for comparably powerful storms above category 4, those projected to make

landfall over the continental United States were talked about nearly an order of magnitude

more than Hurricane Maria, which impacted Puerto Rico, and two orders of magnitude

more than Hurricane Jose, which never made landfall.

Given the attention received by some hurricanes so unbalanced, we must ask the ques-

tion: Do government or humanitarian relief resources get dispersed with greater generosity

for storms that capture public attention, or are these organizations insulated from popular

attention? For the 2017 hurricane season, more money was spent more quickly to aid the

victims of hurricanes Harvey and Irma than victims of Hurricane Maria, contributing to

the significantly higher death toll and adverse public health outcomes in Puerto Rico [168].

While the attention and policies of government agencies are not usually dictated from

Twitter, public attention certainly has some effect on the focus of agencies and allocation of

government resources, and recently more attention has been focused on understanding the
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discourse on social media before, during, and after natural disasters [2, 7, 31,104,119,162]

We structure our paper as follows. In Section 2.4, we examine the spatial associations

between hurricanes and the attention they receive, we compute and compare measures of

total attention, maximum daily attention, and non-parametic measures of the rate of at-

tention decay for the most damaging hurricanes in the past decade. We present conclusions

in Section 2.5. Finally, we outline our methods and data sources, covering the collection

of n-gram usage rate data in English tweets as well as data sources for hurricane locations

and impacts.

2.3 Materials and methods

2.3.1 n-gram usage rates

We query the daily usage rate of hashtags referencing hurricanes are queried from a corpus

of 1-gram—words or other single word-like constructs—usage rate time series, computed

from approximately 10% of all posts (“tweets”) from 2009 to 2019 collected from Twitter’s

“decahose” [93]. We define usage rate, f , as

f(t) = cτ (t)
/ ∑

τ ′∈Dt

cτ ′(t),

with count, cτ , of a particular 1-gram divided is by the count of all 1-grams occurring on

a given day, Dt. The usage rates are based only on the usage rate of 1-grams observed in

tweets classified as English by FastText, a language classification tool [10, 81]. Our usage

rate data set includes separate usage rates for 1-grams in “organic” tweets, tweets that are

originally authored, as well as usage rates of 1-grams in all tweets (including retweets and

quote tweets). More details about the parsing of the Twitter n-gram data set are available

in [8].

For the purpose of studying attention, our usage rates are derived from the corpus with
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all tweets, including retweeted text, to better reflect not only the number of people tagging

a storm, but also the number of people who decide the information contained therein was

worth sharing.

We studied the usage rate of 1-grams exactly matching the form “#hurricane*”, where

* represents a storm’s name. We also measured the usage rate of 2-grams matching the

pattern “hurricane *” for each storm name. All string matching is case-insensitive.

For the ten years covered by the HURDAT2 dataset (described in Section 2.3.2) over-

lapping with our Twitter dataset, there have been 75 storms reaching at least category 1

in the North Atlantic Basin. Within our 10% sample of tweets, we count over all storms

a total of 1,824,842 hashtag usages within a year of each storm, and 3,643,411 instances of

the matching 2-gram.

2.3.2 Deaths, damages, and locations

To augment our usage rate data set, we downloaded data associated with all hurricanes

in the North Atlantic basin from 2008 to 2019 from Wikipedia [166]. Included in the

Wikipedia data are the damage estimates (US$) and deaths caused by each storm, as well

as the dates of activity and areas effected. We also used the HURDAT2 data set containing

the positions and various meteorological attributes of all North Atlantic hurricanes from

1900 to 2018 for the spatial component of this work [164]. HURDAT2 is compiled by the

National Hurricane Center including updated and revised data, which reflects the official

record of each cyclone’s history. For the time range overlapping with the Twitter derived

data set, HURDAT2 has 3 hour resolution.
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2.4 Results

2.4.1 Hurricane Attention Maps

In Fig. 2.1, we show hurricane positions as well as their hashtag usage rate timeseries with

a time series indicating the usage rate of the hashtag of the form #hurricane*.

We plot the same hashtag usage rate time series below on both linear and logarithmic

axes, as well as 2-gram usage rates. For clarity, we only include hurricanes reaching at least

category 4.

The hurricane map tracks are meant to show the spatial dependence of attention given

to hurricanes, while giving enough visual cues to connect locations along the path to the

time the attention was observed. We generated the map shown in Fig. 2.1 by filling in the

polygon defined by the set of points lying at the end of a line segment of length proportional

to the smoothed usage rate of the related hashtag, along the vector normal to the current

velocity of the hurricane, and centered at the hurricane position at the given time.

Our hashtag usage rate is at the day scale, while HURDAT has 3 hour resolution, so

the wrapped attention volume is smoothed with a moving average with a window size of

one day to avoid discontinuous jumps. This method obscures any sub-day scale resolution

on the map, which could be related to the daily fluctuation of tweet volume as well as

varying interest in the hurricanes. While we lose some granularity using daily usage rates,

the decays in attention are spread out over days and weeks for smaller storms, and months

for larger storms. Daily resolution is sufficient to capture the longer decays in attention,

which are our primary interest.

Examining the map, we can see the minimal attention paid to Hurricane Harvey as it

traveled across the Caribbean sea and made landfall in Mexico. It is only after crossing

the Gulf of Mexico that the hashtag registered on our instrument, and only when it was

about to make landfall over Texas did the hashtag usage rate approach its maximum rate,
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Figure 2.1: Hashtag attention map and usage rate time series for 1-grams matching the
case-insensitive pattern “#hurricane*” for all four hurricanes reaching at least category 4 in the
2017 hurricane season. Markers along the hurricane trajectory indicate the National Oceanic and
Atmospheric Administration (NOAA) reported position for every day at noon UTC. On the map, the
smoothed rate of hashtag usage is wrapped in an envelope around the hurricane trajectory in panel
A, showing the spatial dependence of attention on Twitter. In the lower two plots, panels B and C,
we show the usage rates for hashtags and 2-grams matching hurricane* in English language tweets
on linear and logarithmic scales. Usage rates within all tweets are indicated with a solid line, while
usage rates in ‘organic’ tweets (tweets that are not retweets), are represented by a dashed line. The
day of maximum attention on Twitter is marked with a star or a diamond for hashtags or 2-grams,
respectively. Generally, hurricanes making landfall on the continental United States received greater
attention than those not making landfall. The hashtag usage rate for Hurricanes Harvey and Irma at
their maximum were approximately an order of magnitude larger than the maximum hashtag usage
corresponding to hurricane Maria, and two orders of magnitude larger than Hurricane Jose.

18



approximately 3 of every 10,000 1-grams in English tweets. It appears that the devastation

wrought by Harvey primed hurricane-related conversation, as the next hurricane, Irma was

talked about long before it made landfall. While Irma was talked about with a similar usage

rate as Harvey as it impacted Puerto Rico, Hispaniola, and Cuba, it spiked while making

landfall in the Florida keys.

Comparing the attention generated by the previous two storms, Hurricane Maria gener-

ated substantially less hashtag usage. The peak of its attention gathered as it made landfall

over Puerto Rico as a category 4 storm, with less than a fifth of the attention as the hur-

ricanes making landfall on the US. Part of the reason may be due the affected area being

Spanish speaking, while our hashtag usage measurement only counts occurrences in English

tweets. We find that usage rates of the 2-gram “Huracán Maria” in Spanish tweets were

also lower than the usage rates for “Huracán Irma”, but comparable to those for “Huracán

Harvey.” See Fig. 6.1 to compare top hurricane related 2-gram time series for the 2017

hurricane season in English and Spanish.

Another potential contributing factor for the low volume of Hurricane Maria tweets

could be that Puerto Rico’s electric grid was destroyed and 95% of cell towers were down in

the aftermath of the storm, making it impossible for those directly affected to communicate

about the storm [139]. Unfortunately, due to Twitter’s usage norms in this time period, we

do not have locations for the vast majority of tweets. The number of people affected by the

storms could also help explain the different levels of attention, as both Hurricane Harvey

and Irma affected 19 million people, while Maria affected about 4 million [21].

2.4.2 Hurricane Attention Comparison

To compare the variation in attention received by different storms, we combined measure-

ments of the hashtag usage rate with deaths and damages caused by each storm from 2009

to 2019. The supplimentary materials, Section 6.1, shows these raw measured values for
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the most damaging hurricanes in this period.

In Fig. 2.2, we show radar plots (radial, categorical charts) comparing six measurements

of impact and attention for each of the eight most damaging hurricanes in the time period

of study [165].

Included measurements are:

• Max Usage Rate—peak attention on any single day

• Integrated Usage Rate—total attention over the entire hurricane season

• Quantile 0.9: Q0.9—days to 90% attention

• Quantile 0.99: Q0.99—days to 99% attention

• Damage—total damage caused by the storm in US dollars

• Deaths—total deaths associated with the storm (both direct and indirect)

The relative magnitude of each quantity is shown as a fraction of the maximum value

for any storm in the study. The quantile values are non-parametric measurements of the

attention time scale—comparable to half-lives but without the assumption of an exponential

decay. Some storms receive significant interest months after they pass, usually related to

the recovery efforts. Spark lines above each plot show the attention time series for the year

after each storm, as measured by the log usage rate, but do not convey relative scale.

The three most damaging storms, Hurricanes Harvey, Maria, and Irma, all destroyed

tens of billions of dollars of property. Storms in Fig. 2.2 are ordered by damage, with the

least damaging being Hurricane Irene in 2011, which still destroyed an estimated $14 billion

in property.

The most deadly North Atlantic hurricane in the past decade was Hurricane Maria,

killing over 3000 people over the course of the extended disaster. The next most deadly

storms were Hurricanes Matthew, Sandy, Irma, and Harvey, all killing at least 100 people.
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Figure 2.2: Radar plots comparing the eight most monetarily damaging hurricanes in
the North Atlantic basin from 2009 to 2018. For each plot, starting at the top position
and rotating clockwise the measures are: the sum of usage rate of the hashtag, the number of days
to reach 90% and 50% of the total attention received during that season, the total cost in dollars
attributed to damage caused by the hurricane (in its year), the number of deaths attributed to the
hurricane, and maximum usage rate of the hashtag during the year of interest. All measurements
are normalized to the maximum value achieved by any hurricane. Hurricane Harvey was the most
talked about hurricane, as well as the most damaging. Hurricane Irma was the most talked about on
any single day. Hurricane Maria caused the most deaths, and had the longest attention half-life of
all measured hurricanes. Raw values for this figure are shown in Section 6.1. Hashtag usage rate
spark lines above each radar plot are normalized to show the common decay shape, and can not be
compared to evaluate relative volume, and are shown on a log scale.
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Among the storms shown in the Fig. 2.2, Hurricanes Florence and Irene were the least

deadly, causing 58 and 57 deaths, respectively.

The highest hashtag usage rate on a single day was associated with Hurricane Irma,

reaching max fτ = 4.6 × 10−4, or 4.6 of every 10,000 1-grams, as the storm made landfall

over the Florida Keys. Other storms reached comparable single day usage rates, such as

Hurricanes Harvey and Matthew, reaching max f = 3.5 × 10−4 and max f = 2.6 × 10−4,

respectively. Within the top eight most damaging storms, the hashtag associated with

Hurricane Maria had the lowest maximum usage rate. The hashtag “#hurricanemaria”

appeared only five times for every 100,000 1-grams as Maria made landfall in Puerto Rico.

The highest integrated hashtag usage rate was associated with Hurricane Harvey, fol-

lowed by Hurricanes Irma, Matthew, and Florence. The integrated hashtag usage rate for

“#hurricaneharvey”, I = 2.3 × 10−3. Hashtags associated with Hurricanes Sandy and

Irene had the total attention, with I = 3.7 × 10−4 and I = 2.0 × 10−4, respectively.

Due to the extended crisis in the aftermath of Hurricane Maria, the hashtag continued

to be used at relatively high volumes even a year after the storm had passed, leading to

much larger value for Q0.9 of 175 days [132, 181]. Typical values for Q0.9 were around 1–4

days, with more prolonged and damaging storms like Harvey in 2017 taking 15 days to

reach 90% total attention. In comparison no other storm took longer than 100 days to

reach this benchmark. We chose the longer term attention timescale benchmark, Q0.99,

to describe how long until nearly all storm focused attention has passed. We observe the

hashtag associated with Hurricane Maria is the largest for this measurement as well, with

Q0.99 of 363 days, which should be interpreted as attention not dying away within a year,

since we truncate the timeseries after one year. Hurricane Michael, Sandy, and Harvey also

have triple digit values for Q0.99, as they continued to be talked about, albeit at much lower

levels than their peak. Other storms quickly lose attention, such as Hurricane Irene, which

took only 12 days to reach 99% total attention.
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We observed variation in the overall radar plot shape. More recent storms have been

more damaging and deadly, and we find higher measures of total attention and attention

decay. A number of storms like Sandy, Michael, and Matthew have relatively higher values

for both maximum usage rate and number of days to reach 99% total attention. While there

is significant variation in the magnitude of these measurements, the essential exogenous

shape of the hashtag usage rate timeseries, f , is consistent.

2.4.3 Attention and Impact Regressions by Category

We next explore the associations between damage, deaths, and attention given to hurricanes.

In Fig. 2.3, we show the scaling relationship between attention and impacts for each category

storm on the Saffir-Simpson wind scale [151]. Each sub-panel plots the integrated usage

rate, I = ∑
t f(t) for hashtag or 2-gram τ , against a measure of storm impact, where t

runs over an index of the 365 days after each storm began. I is chosen as a measure of

total attention given to the storm during its respective hurricane season, which can be

compared across years since it is already normalized to the total volume of conversation on

Twitter. Color represents the maximum category storm reached, and the smaller subplots

are breakout panels for each category. We include Spearman’s ρ, a non-parametric measure

of rank correlation, in each panel.

We perform linear regressions on storms in each category separately, a choice that models

the attention received by different category storms as separate processes. With models in

Section 2.4.4, we separately consider attention as a singular process where we account for

the hurricane’s maximum category rating using an explicit indicator variable.

Model Choice and Fitting Procedure For each category and each impact, we model

total attention as

log10 I = a0 + aimpactXimpact + ετ , (2.1)
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Figure 2.3: Scatter plots for integrated hashtag usage rate versus the deaths and damages
caused by each storm. There is a clear positive association between the total attention represented
by hashtags and the impacts of these storms. We reported Spearman’s rho, ρs, in the top left corner
of each plot. While for some categories, there is little evidence for a positive association, for the
entire dataset ρs ∼ 0.54. We perform a Bayesian linear regression for each category storm between
the log I and log impacts. We show the mean model, along with the credible interval within a standard
deviation of the mean model. We use hybrid axis with logarithmic scaling for most horizontal and
vertical values and linear scaling near zero, in order to show storms that caused zero deaths or
damages, as well as storms for which we measured a hashtag usage rate of zero. Changes in axis
scaling occur at the blue dashed lines. Generally, more powerful storms received more attention,
higher category storms received more attention even when causing minimal damage, and high category
storms had a higher regression slope. These results suggest that for powerful storms, a given increase
in impact was associated with a larger increase in attention. While for category one storms a 10-fold
increase in deaths is associated with a two-fold increase in attention, for category five hurricanes,
this same 10-fold increase in attention is associated with a 27-fold increase in attention.

where Ximpact is either log10 deaths or log10 damages caused by each storm. We use a

logarithmic model both to capture the scaling relationships between impacts and attention

and to inform on the relative changes in attention associated with storm impacts. We offset
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I by 10−8 and the log impacts, Ximpact by $10, 000 and 0.1 deaths, respectively to avoid

divergent log data where observed values are equal to zero.

We set a zero-centered normal prior on the slope of the regression model as a1 ∼

normal(0, 1). We set a normal prior on the intercept of the model with mean equal to

log10 I = −8, the minimum value of the offset added to I. We did not have strong beliefs

about the likely precision of a0 since it was not a priori clear how much attention would be

paid to hurricanes with very little associated monetary damage or few deaths. We thus set

a weak hyper-prior on the precision of a0, τ ∼ gamma(3, 1); the intercept of the regression

is distributed as a0 ∼ normal(−8, τ−1).

We found regression coefficients by sampling with the No-U-Turn-Sampler (NUTS),

using 8 chains with 2000 draws each after 1000 steps of burn-in [74]. Our models converged,

with the Gelman-Rubin statistic, R̂, never exceeding 1.004 for any parameter in the 12

models fit.

Model Posteriors and Discussion In Fig. 2.3, we show the fitted regressions for each

category. The size of the impact and attention variables vary over many orders of magnitude,

but also include zero values, corresponding to storms that cause no deaths or damage, or had

zero usage of the hashtag associated with their name during the year the storm was active.

Note that it should not be surprising that tropical storms appear to receive less attention

via our hashtag usage rate measurement, since they never officially become hurricanes, and

thus many of the tropical storm hashtags have an integrated usage rate, I = 0.

To display all data, we use symmetric log axes: logarithmic for large values and linear

for small values. We indicate the switch point from linear to log space axis as blue dotted

lines. This choice of axes causes the linear regressions on the log transformed data to appear

curved for small values.

In each of the small subplots of Fig. 2.3, we show the 1σ credible interval for the model

as a band around the mean regression model. The credible interval is noticeably wider for
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category five storms, which is reasonable given there are only seven storms reaching this

category. Generally the mean regression lines are ordered such that higher category storms

are receiving more attention than lower category storms. The slopes of the regressions are

also higher for higher category storms. However, to better understand the models, we need

to compare the model parameters individually.

In Fig. 2.4 we provide posterior distributions for model parameters, which show that,

as expected, more intense storms receive more attention per unit of log impact than weaker

storms. For category five storms, we find a mean regression co-efficient of adeaths = 1.35 ±

0.39, using the format µ ± σ where µ is the mean and σ is the standard deviation, while for

category one storms we find a mean regression co-efficient of adeaths = 0.61 ± 0.18.

Looking at associations between log damages and log attention we find adamage = 0.46±

0.07 for category 5 storms, while for category one storms we find adamage = 0.17 ± 0.05.

To interpret the regression coefficients, aimpact, as representing proportional increases in

attention per proportional increase in impact, we exponentiate the coefficient. Thus, our

model shows a 10-fold increase in deaths for a category 5 storm is associated with a 22-fold

increase in attention, while for a category 1 storm the same 10-fold increase in deaths is

associated with a 4-fold increase in attention.

The intercepts, a0, for higher category storms tend to be larger, meaning that for a the-

oretical minimally disruptive storm causing exactly $1 of damages or one death, a powerful

storm would be talked about more, as shown in Fig. 2.4. We believe this trend could con-

tinue for category 5 storms, but we have observed only n = 6 such storms for the duration

of our attention dataset. We interpret the intercepts as indications of how much attention

low-impact storms receive on average.

In Fig. 2.4, we fit another regression model on all hurricanes examining log deaths and

log attention. We find a 10-fold increase in deaths is associated with a 14-fold increase in

attention, since the mean value of ādeaths = 1.16 ± 0.15 For damages, coefficients tend to be
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Figure 2.4: Posterior distributions of regression parameters for the model log10 I ∼ a0 +
a1Xi,where Xi is either the log number of deaths (A and C) or log damages in dollars associated with
the storm (B and D), and log10 I is the log integrated hashtag usage rate. The trend in regression
coefficients for association between the log attention and log deaths suggests that higher category
storms receive more attention per unit impact, while the trend of intercepts shows increasing baseline
attention for a hypothetical minimally disruptive storm causing exactly $1 in damages or one death.
For regression coefficients relating log attention to log damages, Category 4 and 5 storms receive more
attention per unit increase in log damages than lower category storms. However, the coefficients are
smaller in magnitude due to damages varying across 7 orders of magnitude, as compared to deaths
varying over 4 orders of magnitude. There is a larger uncertainty for the category 5 intercept values,
as only 6 storms of this intensity formed between 2009 and 2019 in the Atlantic basin. At the right
of each plot, we show the coefficients for the model fit for all hurricanes (blue violin), excluding
tropical storms. Above each category, we show the value of the mean posterior distribution for each
parameter. For a table of mean parameter values, see Table 6.1.

lower than those for deaths: ādamage = 0.31 ± 0.05. We intepret this coefficient as a 10-fold

increase in damage being associated with no more than a 2-fold increase in attention.
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2.4.4 Regression Models for Impacts, Impact Interactions and Hur-

ricane Category

In order to better understand the scaling of attention with hurricane impacts, we fit a

number of models on the log transformed data. We applied the same offsets as in the

previous section to avoid non-finite log transformed data. We exclude tropical storms, since

their attention is not captured in same way as our string matching for hurricanes.

Regression 1 We fit the regression model,

log10 I = a0 + adeathXdeath + adamageXdamage + ε, (2.2)

where both predictors X are log impacts, which we be referred to as regression 1. The

regression coefficients can be interpreted as the increase in log attention received for every

unit increase in log impact. Likewise, the intercept can be interpreted as the expected

attention for a minimally damaging storm causing one death and $1 of damage. This model

is distinguished from the previous section by including both log impacts in a single model,

while not including an interaction term as later models will.

We set priors for the model as shown in Section 6.1. We chose the intercept, a0 ∼

normal(−8, 3), to be centered around -8, approximately the lowest usage rate captured in

our data, as we guess storms causing 1 death and $1 worth of damage are talked about

relatively little, but wish to allow a wide range of uncertainty spanning a few orders of

magnitude. We chose the priors for the regression coefficients, adeath ∼ normal(0, 1) and

adamage ∼ normal(0, 1), to be weakly informative and centered around zero, as to not bias

towards any association. We sampled the coefficients’ posterior distributions using NUTS,

using 8 chains with 2000 draws each, after 500 steps of burn-in [74]. We found the model

converged, with the maximum value of R̂ = 1.000.

We show the posterior distributions of model parameters for regression one in Panel A of
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Fig. 2.5, which have a positive scaling between both deaths and damages, and the amount of

attention commanded by the storm, as measured by the log hashtag usage rate. We intepret

the mean value of a0 = −7.57 ± 0.5 for the regression constant as the expected log hashtag

usage rate for a minimally destructive storm, i.e., that in English tweets, the hashtag usage

rate would integrate to 10−7.57 over the season. We provide summary statistics in Table 6.3.

At first glance, this level of attention seems remarkably low: if occurring all in a single

day, this is little more than 1 usage for every 100 million 1-grams. The most devastating

storms can have integrated usage rates of I = 2.3 × 10−3, five orders of magnitude more

attention than our regression constant. However, the least impactful storms affect relatively

few people, while the most destructive storms significantly disrupt the lives of tens of

millions, so the differences in the scale of total hashtag usage rate are not unreasonable.

See Section 6.1 for measured values corresponding to each storm.

We find adeath ≃ 0.49 and adamage ≃ 0.24. Because 100.24 ≃ 1.7, considering the results

in linear space, a 10-fold increase in damages is associated with a 1.7-fold increase in hashtag

usage rates, while a 10-fold increase in deaths is associated with a 3-fold increase.

Regression 2 For the second regression, an interaction term was introduced between the

log number of deaths and the log damages,

log10 I = a0 + adeathXdeath + adamageXdamage+

ad,DXdeathXdamage + ε. (2.3)

Prior distributions for the intercept and main effect coefficients are unchanged from re-

gression 1, and we set the prior distribution for the interaction coefficient to be ad,D ∼

normal(0, 1), a standard weakly informative prior for regression coefficients. We used

identical fitting procedures as above, and found the models converged with a maximum

value of R̂ = 1.0001.
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Here, the intercept is largely the same as the simplest regression model. Interpreting

adeath as the conditional relationship between log usage rate and log deaths when total

damage is $1, the adeath = 0.05 implies that for a 10-fold increase in deaths is associated

with a 1.12-fold increase in hashtag usage rate, though the standard error includes zero.

Similarly, adamage = 0.22 implies a 10-fold increase in damage is associated with a 1.6-fold

increase in hashtag usage rate. Finally, the interaction coefficient ad,D is small, but positive:

a 10-fold increase in XdeathXdamage is associated with a 1.14-fold increase in hashtag usage

rate. Notably, the inclusion of the interaction term significantly reduces the regression

coefficient associated with deaths, while the coefficient associated with damage is largely

unchanged. This provides evidence that storms that cause a large number of deaths and

damages are associated with higher volumes of attention, while a storm causing a large

number of deaths but relatively less damage will attract much less attention for Twitter

users. This leads us to believe that damages could act as a priming factor for human

attention, in part explaining why deadly disasters in capital-poor countries often receive

less attention than when similarly deadly storms occur in wealthy areas.

Regression 3 To better understand the effect of hurricane category on attention, we

performed a regression including this categorical variable, modeled as

log10 I = a0 + adeathXdeath + adamageXdamage+

ad,DXdeathXdamage +
∑

j

aCj XCj + ε, (2.4)

where the index j runs from 2 to 5. We did not include a variable for category 1 hurricanes

to avoid issues of multi-colinearity. Fitting procedures were identical to above, and we found

the model converged with the max value of R̂ = 1.0003.

We did not change priors for the model coefficients from above for existing parameters,

and we set the coefficients for category indicator variables to a weakly informative prior,
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aCi ∼ normal(0, 1). Since we have included our hurricane categories, the interpretation

of the intercept a0 is now the expected log integrated hashtag usage rate I for a category

one hurricane, which causes one death and $1 of damage. The value is similar to the

other regression models. Effect sizes for adamage and ad,D are reduced in magnitude slightly

compared to the preceding regression.

As measured by the integrated hashtag usage rate, compared to a category 1 storm

causing the same deaths and damages, hurricanes in:

• category 2 receive 1.14 times more attention,

• category 3 receive 1.5 times more attention,

• category 4 receive 5.6 times more attention,

• and category 5 receive 4.6 times more attention.

We show the posterior distributions for regression three in Panel C of Fig. 2.5.

2.5 Concluding Remarks

We have explored the attention given to hurricanes as measured by the hashtag and 2-gram

usage rate. We quantify the relative volume of attention time series for major storms. We

find evidence that not only are more powerful—higher maximum category rating—storms

talked about more than weaker storms, but they are talked about more when they inflict

the same amount of damage or take the same number of lives. Further, different attention

scaling relationships exist for different category storms. For the most destructive storms,

we demonstrate that a 10-fold increase in deaths is associated with a 27-fold increase in

attention, while for weaker storms the same proportional increase in deaths would lead to

only a 3-fold increase in attention on average.

How people outside of the government agencies and non-governmental organizations

(NGOs) tasked with responding to natural disasters perceive the importance of disasters
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Figure 2.5: Parameter distributions for models 1, 2 and 3. Plots A–C show posterior distri-
butions for regression 1, plots D–G show distributions for regression 2, which includes the addition
of an interaction term, and plots H–O showing distribution for regression 3, which includes indica-
tors variables for hurricane categories two through five. The addition of the interaction term, ad,D

increases posterior variance for adeaths as well as reducing its mean from adeaths = 0.49 in regres-
sion 1 to adeaths = 0.05 in regression 2 and adeaths = 0.12 in regression 3, suggesting that while the
number of deaths is associated with increased attention, attention response is primed by destruction.
Additionally, the hurricane category indicator variables in regression 3 show the progressive increase
in attention given to higher category storms compared to category 1 hurricanes.
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have real-world consequences [22, 113]. We hypothesize that monetary donations to NGOs

that assist with hurricane disaster relief efforts are strongly associated with the amount of

attention attracted by the hurricane. If this is true, it could be advantageous for NGOs to

prospect for financial contributions while collective attention is focused most strongly on a

storm [70]. It is also possible that the speed and scale of governmental relief programs are

influenced by popular attention paid to storms, and previous work has shown that relief has

been inequitable in the past [168]. Future work could compare the quantities of non-profit

and governmental assistance with attention volume.

While the users of Twitter are certainly not representative of the world, or even English

speakers, measuring the text they generate approaches measurement of the population at

large, at least more-so than published books or edited newspaper columns [75, 80, 117, 145,

169]. The digital signatures left behind by our collective online presence offers rich data for

observational studies of everyday language with unprecedented time resolution. Of course,

many tweets referencing hurricanes are authored by journalists or news organizations and

future efforts could attempt to disentangle the various motivations contributing to the

overall usage rate of hashtags and other n-grams.

Another limitation of our work, particularly relevant to any geospatial findings, is that

we only consider tweets classified as English. While the density of English speakers closely

mirrors the population density for much of the United States, we observe much lower usage

rates for the English language hashtags and 2-grams over predominately Spanish speaking

areas. While different populations may use different n-grams to reference the same storm,

for the purposes of our study we have focused only on the English-speaking population of

Twitter.

Future work could consider how to better quantify the total fraction of conversation

of Twitter focused on a storm or event of interest. Our current method only includes

counts for individual n-grams, which we believe acts as a proxy of total attention, but
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almost certainly underestimates the total fraction of text devoted to discussing a topic.

Hashtag co-occurrence network-based methods could help to identify the most prominent

hashtags associated with a given storm, or any event of interest, and to classify tweets as

relevant. Examining properties of this network changing in time, such at the integrated

usage rate of all significant hashtags within one degree could give a more unbiased view of

the total attention surrounding the hurricane than our current method. Other dynamics of

hurricanes could be explored in this way, perhaps by encoding Jenson-Shannon Divergence

shifts between hashtags as a node attribute [45], or more simply how the most frequently

used hashtags in this ego network change in rank over time, as different phases of the storm

occur. Authors of previous works studying the effectiveness of NGO hashtag usage following

natural disasters could exploit these network based methods [176].
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Chapter 3

Curating corpora with classifiers: A case

study of clean energy sentiment online

3.1 Abstract

Well curated, large-scale corpora of social media posts containing broad public opinion

offer a supplemental data source to complement traditional surveys. While surveys are

the gold standard for collecting representative samples and are capable of achieving high

accuracy, they can be both expensive to run and lag public opinion by days or weeks. Both

of these drawbacks could be addressed with a real-time, high volume data stream and fast

analysis pipeline, and provide valuable insights so long as the limitations of using these

non-representative populations are understood and acknowledged. A central challenge in

orchestrating such a data pipeline is devising an effective method for rapidly selecting the

best corpus of relevant documents for analysis. Querying with keywords alone often includes

irrelevant documents that are not easily disambiguated with bag-of-words natural language

processing methods. Here, we explore methods of corpus curation to filter irrelevant tweets

using pre-trained transformer-based models, fine-tuned for our binary classification task on

hand-labeled tweets. We are able to achieve F1 scores of up to 0.95. The low cost and

high performance of fine-tuning such a model suggests that our approach could be of broad
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benefit as a pre-processing step for social media datasets with uncertain corpus boundaries.

3.2 Introduction

The wide-spread availability of social media data has resulted in an explosion of social sci-

ence studies as researchers adjust from data scarcity to abundance in the digital age [88,89].

The potential for large scale digitized text to help understand human behavior remains im-

mense. Researchers have attempted to quantify myriad social phenomena through changes

in language use of societies over time, typically through the now massive collections of

digitized books and texts [110] or natively digital large-scale social media datasets [8].

Analysis of social media data promises to supplement traditional polling methods by

allowing for rapid, near real-time measurements of public opinion, and for historical studies

of public language [29,30,121,173]. Polling remains the gold standard for measuring public

opinion where precision matters, such as predicting the outcomes of elections. Where trends

in attention or sentiment suffice, social media data can provide insights at dramatically

lower costs [122]. However, for targeted studies using social media data, researchers need a

principled way to define the potentially arbitrary boundaries of their corpus [144].

When researchers characterize online discourse around a specific topic, a few approaches

are available. Each comes with trade-offs, both in the costs of researchers’ time, as well as

the resulting precision and recall of the corpus.

For some studies a corpus is best defined by a set of relevant users, such as a set of

politicians’ social media accounts or the set of users following a notable account [82]. Studies

that observe the behavior of networked publics often take this user-focused approach [19].

For studies of social media advertising, a list of relevant buyers can be used to define the

boundaries, whether politicians or companies [3, 90].

To curate a topic-focused corpus limited keyword filters can be an effective strategy.

Keywords can be used to match a broad cross-section of relevant posts with high precision,
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but often have low recall [100]. Relevant hashtags can signal a user’s intent to join a

specific online conversation beyond their immediate social network. Hashtag based queries

have been used by researchers to construct focused corpora of tweets ranging from sports

and music [18, 27], to public health, natural disasters, political activism, and protests [14,

54,56,57,64,78,95,102,148].

Alternatively, researchers can query for posts with an expansive set of keywords to in-

crease recall at the expense of precision. Researchers can generate such a set of keywords

algorithmically, or by asking experts with domain knowledge, or via a combination of the

two. Expert-crafted keyword lists have been used by researchers to study topics such as

social movements and responses to the COVID-19 pandemic [26, 67, 78, 144]. Other re-

searchers have generated lists of keywords algorithmically, e.g., using Term Frequency -

Inverse Document Frequency (TF-IDF) [4] and word embeddings [105], or by comparing

the distribution of words in a corpus of interest to a reference corpus and selecting words

with high rank-divergence contributions [5, 9, 45, 114, 149]. Regardless of the methods used

to choose keywords, continued expansion beyond the most relevant ones necessarily reduces

precision. Researchers can further refine the set of relevant keywords to balance precision

and recall, and add complexity to their queries with exclusion terms or Boolean operators

to require multiple keywords. The possibilities are endless [138] and reviewers receive little

information available to decide if the choices made were appropriate.

While some topic-focused social media datasets can be well curated with simple heuris-

tics or rules-based classifiers, others could benefit from an alternative paradigm. Here,

we argue for a two step pre-processing pipeline that combines broad, high recall keyword

queries with fine-tuned, transformer-based classifiers to increase precision. Our approach

can trade the labor costs associated with building rules-based filters, for the cost of labeling

social media data, which could potentially be further reduced using few-shot learning [161],

while still achieving high precision.
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The tools available for text classification have improved significantly over the past

decade. Since the introduction of Word2Vec in 2013 and GloVe in 2014, the natural language

processing community has had access to high quality, global word embeddings [112, 127].

These embeddings are trained vector representations of words from a given corpus of text,

enabling word comparisons with distance metrics. However, global embeddings average the

representations of words, making them unsuitable for document classification where key

terms have multiple meanings. The subsequent development of large pre-trained language

models enabled high performance on downstream tasks with relatively little additional com-

putational cost to fine-tune [35, 99]. Such models provide contextual, rather than global,

word embeddings.

Since 2019, pre-trained language models have become less resource intensive while

improving performance. Knowledge distillation has enabled models like DistilBert and

MiniLM, which retain the performance of full sized models while requiring significantly less

memory and performing inference more rapidly [136,160]. Smaller, faster models enable re-

searchers with limited resources to adopt these tools for NLP tasks, requiring only a laptop

for state-of-the-art performance. Improved pre-training, introduced with MPNet, combines

the benefits of masked language modeling (MLM) and permuted language modeling (PLM),

better making use of available token and position information [147].

While transformer-based language models provide state of the art performance on nat-

ural language processing tasks, they can be difficult to understand and visualize. Using

twin and triplet network structures, pre-trained models can be trained to generate seman-

tically meaningful sentence embeddings that can be compared using cosign distances [130].

Through pre-training with contrastive learning on high quality datasets, general purpose

sentence embeddings like E5 have become the new state-of-the-art [158].

Text classification still remains a difficult task. Existing models are less successful

with longer texts [59], and text classification with a large number of classes remains chal-
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lenging [25]. However, for the specific task of classifying tweets [13] as ‘relevant’ (R) or

‘non-relevant’ (NR) to a specific topic—an instance of binary classification—we feel exist-

ing models are sufficiently capable. Sophisticated, pre-trained language models are readily

accessible to researchers from Hugging Face [171] and can be easily fine-tuned with a lim-

ited amount of labeled data [161,177]. Do et al. found that fine-tuned models trained with

expert labeled data can outperform crowdworkers and match the performance of trained

research assistants [38]. Tools like ChatGPT have been shown to outperform untrained

human crowd-workers for zero-shot text classification, while costing an order of magnitude

less [61].

As a case study, we examine online language around emission-free energy technologies.

In democratic societies the social perception of technologies affects the willingness of gov-

ernments to extend subsidies, expedite permitting, or regulate competing energy sources,

ultimately effecting the energy mix of the grid. Quantifying public attitudes is useful for pol-

icy makers to be responsive to public preferences and for science communicators to respond

when public opinion does not reflect expert consensus.

To quantify public perceptions of energy on social media sites, researchers have use a

variety of methods to curate tweet corpora. This could be as simple as querying for a single

hashtag. Jain et al. choose ‘#RenewableEnergy’ to generate a corpus for a renewable energy

classification study [79]. Zhang et al. query for tweets containing a list of hashtags, before

quantifying overall attention trends and sentiment by energy source [180]. Li et al. use

a two-phase approach, querying for relevant hashtags, before filtering non-relevant tweets

with keywords, such as those containing both ‘#solar’ and ‘eclipse’, with filter keywords

built on a trial-and-error approach [94]. Alternatively, Kim et al. use keyword phrases, such

as ‘solar energy’ and ‘solar panel’, to search for relevant tweets, before using RoBERTa to

classify sentiment [85]. Vågerö et al. use a contextual language model to classify sentiment

of tweets towards wind power in Norway [154]. Using Reddit, Kim et al. study renewable
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energy discourse by collecting all messages from a particular subreddit, a page devoted to

a topic, before analyzing a word co-occurrence network [84].

Published studies use a wide range of corpus curation techniques and provide varying

levels of justification for each choice. Although we focus on the topic of renewable energy,

we hope our methods are broadly applicable to any text-based social media dataset.

We structure the remainder of this paper as follows. In the Methods and Data section

we present a description of our dataset and discuss the task of relevance classification as it

relates to corpus curation. In the Results section, we present case studies for the keywords

‘solar’, ‘wind’, and ‘nuclear’. We examine the ambient sentiment time series for each

corpus, and compare measurements between the unfiltered, relevant and non-relevant text.

To show the differences in language between these corpora, we present sentiment shift

plots [55] and allotaxonographs [45]. Finally, we share concluding remarks and potential

future research.

3.3 Materials and methods

We explore the performance of text classifiers powered by contextual sentence embeddings

for social media corpus curation through a selection of case studies related to clean energy.

3.3.1 Description of data sets

In this study, we examine ambient tweet datasets, collections of tweets that are anchored by

a single keyword or set of keywords. From Twitter’s Decahose API, a random 10% sample

of all public tweets, we select tweets containing user-provided locations [153]. We extracted

these locations from a free text location field in each user’s bio, if the text matched a valid

‘city, state’ string in the United States [66,96]. From this selection, we query for tweets

that both contain keywords of choice and are classified as being written in the language

English by FastText [81]. We define the results of this query as the unfiltered ambient
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corpus.

To illustrate the utility of our methods, we chose three keywords related to non-fossil

fuel energy generating technologies, ‘wind’, ‘solar’, and ‘nuclear’. Over the study

period from 2016 to 2022, these keywords matched 3.43M, 1.39M, and 1.29M tweets in our

subsample, respectively. In Tab. 3.1, we show example tweets from each corpus. We binned

tweets into windows of two weeks, balancing the desire for large sample sizes for each bin

with the need for higher resolution to show short term dynamics. While the terms of our

service agreement with Twitter do not allow us to publish raw tweets, we provide relevant

tweet IDs for rehydration.

3.3.2 Sentence embeddings

To better visualize the results of our classification algorithms, we chose pre-trained language

models which had been fine-tuned to perform sentence embeddings. In Fig. 3.1, we can

see the resulting distribution of tweets, colored by keyword and predicted class. We also

considered that vector representations for sentences would better align with our desired

abstraction level for the relevance classification task.

3.3.3 Relevance classification

Our task of interest is classifying if a post, in its entirety, is relevant to the researcher’s

chosen topic of interest. Conceptually, this task is related to semantic textual similarity,

for which sentence embeddings have achieved state of the art performance [24, 71]. Rather

than finding nearest neighbors in a semantic space, we are training a classifier to partition

the semantic space into relevant and non-relevant regions.

For training, we hand-label a random sample of 1000 matching tweets for each keyword

as either ‘Relevant’ (R) or ‘Non-Relevant’ (NR) to energy production. We have made tweet

IDs and corresponding labels available for both the training data as well as predicted labels
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Figure 3.1: Embedded tweet distribution plot for the combined datasets. Using a pre-trained
model for semantically meaningful sentence embeddings based on MPNet, we plot the distribution of
tweets within this semantic space. In both plots, points are tweets projected into 2D using UMAP for
dimensionality reduction [108]. In panel A, we perform density based, hierarchical clustering using
HDBSCAN and color by cluster. In panel B, we color by both the keyword used to query and the
classification as relevant or non-relevant to the topic of clean energy. Relevant tweets containing
the keywords ‘wind’, ‘solar’, and, to a lesser extent, ‘nuclear’ are relatively close together on the
right in the embeddings, while non-relevant tweets are more dispersed.
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for the full data set.

We then fine-tune nine models for comparison, based on pre-trained contextual sentence

embeddings [147,160]. We list the performance of these models in Table 3.2. For each model

we labeled a random sample of one thousand (1,000) tweets. We choose a train-test split of

67% and 33%. Tweets are limited to a max of 280 characters for the duration of our study

period, shorter than the minimum truncation length of 256 word pieces for the models we

tested.

3.4 Results

3.4.1 Interpretations of sentence embeddings

We first examine our corpus within a semantically meaningful sentence embedding, shown

in Fig. 3.1. For each tweet, we compute embeddings using all-mpnet-base-v2, a high

performing, general-purpose sentence embedding model based on MPNet. The model is

pre-trained to minimize cosign distance between a corpus of 1 billion paired texts and

accessed using the sentence transformers python package [130].

We include embeddings of all three corpora, anchored by the keywords ‘solar’, ‘wind’,

and ‘nuclear’, and project onto two dimensions for visualization using Uniform Manifold

Approximation and Projection (UMAP) for dimensionality reduction [108]. In the 2D pro-

jection, semantic distances between words are distorted. Local relationships are preserved,

but global position and structure is not.

In Fig. 3.1A, we perform unsupervised clustering using HDBSCAN and color by clus-

ter [107]. Although we cannot share the interactive version of these plots, which allow the

individual tweet texts to be read, we can summarize as follows. On the right side, a large

red cluster contains tweets that are primarily about solar energy. To the left in light blue,

we identify a dense cluster of wind and solar tweets. Nearby in light purple, we find a cluster

of wind energy related tweets. The close green cluster contains nuclear energy tweets, with
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those being closer to the solar and wind tweets more likely to mention renewable energy

source, while those further away only discuss nuclear in isolation.

We found the performance of the semantic embedding impressive, but clustering within

this embedding was unsuitable for corpus curation. For example, tweets arguing the relative

merits of multiple technologies fell into a lower density location in the embedding space,

and were classified as outliers by HDBSCAN, though they would clearly be classified as

relevant by human raters.

In Fig. 3.1B, we show the results of our three supervised text classifiers, based on MPNet

trained for sentence embeddings and fine-tuned on a dataset of 1000 labeled tweets for each

keyword. The local positioning of tweets within the embedding reflects similarity in the

sentence embedding space. Tweets classified as relevant to clean energy technologies are

clustered on the right-hand side, and overlap where they are mentioned together. For

paraphrased example tweets within each classification, refer to Tab. 3.1.

On the bottom third of the embedding, relevant ‘nuclear’ tweets smoothly transition

into non-relevant tweets, reflective of the occasionally blurry line between nuclear energy

and weapons programs.

‘Solar’ tweets, by contrast, are easily separable. Phrases like ‘solar system’, ‘solar

eclipse’, and ‘solar opposites’ (a television sitcom) are common example usages. These are

entirely unrelated to solar energy and the sentence embedding model places them in distinct

regions of the semantic space.

Relevant ‘wind’ tweets are also clearly separable from non-relevant tweets, which often

contain phrases related to the weather, such as ‘wind storm’ or ‘wind speed’, or more

rhetorical expressions like ‘wind up’ or ‘second wind’. A number of weather bots regularly

report wind speed measurements with a template format changing only speed and location.

These tweets become close neighbors in the semantic embedding and, when projected onto

two dimensions by UMAP, are split off from the larger connected component and pushed
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to the outer edge.

3.4.2 Ambient time series plots

For each case study we compare the text in the relevant corpus to the non-relevant corpus

with three figure types. The first are ambient sentiment time series plots, shown in Figs.

3.2, 3.3, and 3.4. By sentiment we broadly mean the semantic differential of good-bad

(or positive-negative). In these plots we show dynamic changes in language use for tweets

containing the selected anchor keyword over time. On the top panel, we show the number

of n-gram tokens with LabMT sentiment scores within each time bin [44]. In the center

panel, we plot the ambient sentiment, Φ, using a dictionary of LabMT sentiment values ϕτ .

For each word τ . Wee compute the ambient sentiment as the weighted average,

Φavg =
∑

τ

ϕτ pτ , (3.1)

where pτ is the probability or normalized frequency of occurrence. Error bars represent the

standard deviation of the mean, with N set conservatively as the number of tweets, rather

than number of tokens.

In the lower panel, we plot the standard deviation of ambient sentiment, which could

help indicate when the distribution of sentiment is becoming narrower, broader, or even

bimodal, indicating polarization. We plot three measurements for three corpora, tweets

classified as relevant (R), non-relevant (NR), and the combined dataset (R + NR), with the

latter reflecting the measurements we would have obtained without training a classifier.

3.4.3 Lexical calculus: Word shift plots

To examine how the average sentiment differs between the relevant and non-relevant cor-

pora, we present three sentiment shift plots in Fig. 3.5 [55]. Word shifts allow us to visualize

how words individually contribute to differences in average sentiment between two texts, a
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reference and a comparison text. Words that contribute to the comparison text having a

higher sentiment than the reference, are shown having a positive contribution, δΦτ . Bars

corresponding to words with a higher rated sentiment score than the average of the refer-

ence text are colored yellow, or blue if lower. Finally, we rank words by the absolute value

of their contribution to the difference in average sentiment, δΦavg, giving a list of the top

contributing words.

3.4.4 Allotaxonometry

We further compare language usage using an allotaxonograph in Fig. 3.6, an interpretable

instrument that provides a rank-rank histogram of word usage and a ranked list of rank-

turbulence divergence (RTD) contributions from individual words. Being able to compare

the 1-gram or 2-gram distributions of two corpora with RTD allows us to extract character-

istic words at all scales [45]. To compute RTD, we take each distinct word, τ , and compute

the ranks with each corpus, rτ,1 and rτ,2. RTD is the sum the difference between inverse

ranks, scaled with a parameter, α, and normalized to lie between 0 and 1, having the form:

Dα(R1∥R2) ∝
∑ ∣∣∣∣∣ 1

[rτ,1]α − 1
[rτ,2]α

∣∣∣∣∣
1/(α+1)

. (3.2)

x While α is a continuously tunable parameter with 0 ≤ α ≤ ∞, where α = 0 represents

the limit case where common words contribute the most to rank-turbulence divergence as

compared to uncommon words, and α = ∞ represents the limit case where uncommon

words dominate in the divergence measurement. We set α = 1/4 for social media corpus

comparisons [45], which we found was an acceptable trade-off between between these ex-

tremes to extract meaningful words based on their divergence contributions from all scales

within the Zipfian ranked word distributions. While there is not an explicit optimization

to set α, we do observe an approximate visual fit between the contours of constant α and

top contributing words when comparing social media datasets.
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We intend that the following cases studies may serve as an example set of procedures

and provide diagnostic tools for computational social scientists to adopt this approach to

social media corpus curation.

3.4.5 Solar Energy Case Study

Solar tweets were nearly evenly split with 47% of the corpus being relevant and 53% be-

ing non-relevant by volume of words. The solar tweet corpus also achieved the highest

classification performance with an F1 score of 0.95, as shown in Tab. 3.2.

Of the three case studies, we find the R ‘solar’ tweets corpus evolves most relative to

the corresponding NR corpus. Looking at the sentiment time series in Fig. 3.2, we see little

difference between the ambient sentiment of the R and NR corpora prior to 2019.

In May of 2019, NR ambient sentiment, shown in red, sharply falls while the R corpus

appears to remain on trend. For the standard deviation of ambient sentiment, which mea-

sures the width of the distribution of sentiment scores for each LabMT word in the ambient

corpus, we also observe a dramatic increase in 2019.

We find that this shift in language use in the NR corpus occurs without a change in query

terms, and demonstrates how simple keyword queries can fail. We contend that the process

of selecting relevant social media documents to include in a corpus is just as important as the

NLP measurement tools used to quantify sentiment. The difference in resulting sentiment

measurements, between what would have been measured without a classifier (the R + NR

corpus in purple) and the improved measurement after filtering with a classifier (the R

corpus in blue) is stark. Looking at only the combined R + NR measurement, researchers

could incorrectly conclude that language surrounding ‘solar’ has decreased in sentiment

dramatically since 2019.

Focusing on only the R ‘solar’ sentiment time series, we see clearly that there was

in fact no dramatic drop in sentiment around ‘solar’, and the relevant language around
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Figure 3.2: Ambient sentiment time series comparison for relevant (R), non-relevant
(NR), and combined tweet corpora, containing the keyword ‘solar’. In the top panel, we
show the number of tokens with LabMT [42] sentiment scores in each corpus on each day. ‘Rel-
evant’ tweets, in blue, have more scored tokens early on, but the number tokens in ‘non-relevant’
tweets increase in relative proportion over time. The center panel shows the average sentiment for
each corpus, including a measurement of English language tweets as a whole in gray for comparison.
Before 2019, the measured sentiment for both corpora are comparable, but subsequently the mean
sentiment of ‘non-relevant’ tweets drops. In the bottom panel we plot the standard deviation of the
sentiment measurement, which captures a broader distribution of sentiment scores for ‘non-relevant’
tweets. Without classification filtering, the ambient sentiment measurement would be entirely mis-
leading, appearing as though the sentiment contained in tweets containing the word ‘solar’ dropped
dramatically in 2019, when in fact sentiment has only modestly declined.
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solar remains more positive relative to English language tweets in general. The decrease

in observed NR sentiment is related to an influx of weather bots, which provide updates

as often as hourly on local weather conditions and contain ‘solar’ used in the context of

measuring current solar radiation. In Fig. 3.5 we see terms like ‘radiation’, ‘pressure’, and

‘humidity’ are contributing to a lower average sentiment for the NR corpus.

Examining the rank-turbulence divergence shift for ‘solar’ from January 2020 to March

2021 in Fig. 3.6, we can see terms like ‘energy’, ‘power’, and ‘panels’ are much more common

in the R corpus, all being among the top 15 most frequently used terms. On the other side

of the ledger, we find weather related terms like ‘mph’, ‘uv’, ‘radiation’, and ‘gust’ to be

top words in the NR corpus. We also observe that function words—e.g., ‘the’, ‘to’, and

‘for’—are more common in the R corpus, skewing the rank-rank histogram to the left. The

lack of function words is another result of weather bots dominating in the latter period of

our study.

3.4.6 Wind Energy Case Study

The unclassified ‘wind’ tweets corpus had the lowest proportion of relevant tweets. Only 5%

of the human labeled subset was related to clean energy. The n-gram ‘wind’ is used in many

different contexts besides energy generation, from casual discussion of today’s weather to

figurative uses like references to athletes getting their ‘second wind’ and the anticipatory

rotational phrase ‘wind up’ where ‘wind’ rhymes with ‘kind’. In the top panel of Fig. 3.3,

we see that the number of n-grams in relevant tweets with corresponding sentiment scores

is consistently around 103, while the NR corpus contains more than an order of magnitude

more text.

We found the ambient sentiment of the R ‘wind’ corpus has been slightly more positive

than average language use on Twitter. The NR corpus had distinctly lower sentiment, but

is more dynamic, rising from a low of 5.5 in 2016, to 5.9 in 2020. Because the proportion
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Figure 3.3: Ambient sentiment time series comparison for relevant (R), non-relevant
(NR), and combined tweet corpora, all containing the keyword ‘wind’. In the top panel,
we show the number of tokens with LabMT sentiment scores for each corpus during each two week
period [42]. R tweets, in blue, have more than an order of magnitude fewer tokens per time window
over the entire study period. The center panel shows the average sentiment for each corpus, including
measurement of English language tweets as a whole in gray for comparison. R ‘wind’ tweets are more
positive than Twitter on average early on, but this difference is reduced over time. Because most
‘wind’ tweets are non-relevant, sentiment of the combined corpus closely follows the NR sentiment.
In the bottom panel we plot the standard deviation of the sentiment measurement, which captures a
broader distribution of sentiment scores for ‘non-relevant’ tweets, as was the case for all case-studies
we examined. Without classification filtering, the ambient sentiment measurement would have been
dominated by NR tweets.
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of tweets relevant to energy is so low, the combined sentiment time series measurement is

dominated by the NR corpus. The standard deviation of sentiment, σ, for the R corpus

also increases from around 1.0 in 2016, before leveling off around 1.2, slightly under the NR

corpus.

The choice of ‘wind’ could seem to be a poor choice of keyword, given that the vast

majority of matching tweets are non-relevant. Under a paradigm of expert-crafted lists of

keywords, we would indeed agree such a generously matching term would not be suitable.

However, by choosing a potentially ambiguous term, we are able to capture a wider range

of users. Those who do not wish to project their thoughts into a global conversation by

attaching a hashtag, but are content with discussing among their local network, are still

included with this methodology. Also included are users writing informally or using context

of a threaded conversation, who might not use a high precision keyword phrase, like ‘wind

power’, ‘wind generation’, or ‘wind energy’. These cases make up a significant proportion of

conversation around any given topic; researchers studying more obscure topics could benefit

from the increased sample size, and temporal resolution of a higher recall set of keywords.

3.4.7 Nuclear Energy Case Study

The ‘nuclear’ case study had the lowest classification performance after fine-tuning, achiev-

ing an F1 score of 0.86. The proportion of relevant tweets, 16%, was higher than for the

‘wind’ corpus. We believe the performance was impacted negatively by the close proximity

and overlap of nuclear energy and nuclear weapons topics in the semantic embedding space.

The ambient sentiment time series, in Fig. 3.4, for the R ‘nuclear’ corpus was much

lower than average sentiment on Twitter for the entire study period, but higher than the

NR corpus. It appears that ambient sentiment around R nuclear energy tweets has been

increasing, with a higher stable level since fall 2020. We found that the standard deviation

of sentiment is also decreasing slightly, though it starts from a much higher level of around
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Figure 3.4: Ambient sentiment time series comparison for relevant (R), non-relevant
(NR), and combined tweet corpora, all containing the keyword ‘nuclear’. In the top
panel, we show the number of tokens with LabMT [42] sentiment scores for each corpus in each
two week period. The number of relevant n-grams, in blue, is consistently lower than non-relevant
n-grams. The center panel shows the average sentiment for each corpus, including measurement
of English language tweets as a whole in gray. We found that R tweets had higher sentiment than
NR tweets containing ‘nuclear’, but had much lower sentiment than Twitter as a whole. Sentiment
appears relatively stable for both corpora with periods of higher sentiment around 2017 and 2020-2022
for the R corpus. In the bottom panel, we plot the standard deviation of the sentiment measurement,
which shows a broader distribution of sentiment scores for NR tweets, as well as sentiment for both
corpora trending down slightly.
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1.7, when compared with wind and solar.

In Fig. 3.5, we can see that the ‘nuclear’ R corpus’s higher sentiment relative to that

the NR corpus is driven by more positive words like ‘power’ and ‘energy’, but also fewer

negative words, like ‘war’ and ‘weapons’. Going against the grain is the word ‘nuclear’ itself

as well as term ‘waste’ which are both negatively scored words that are used much more

frequently in the R corpus relative to the NR corpus.

3.5 Concluding remarks

Disambiguating relevant tweets has been a challenge for researchers, especially when a

natural keyword choice has a commonly used homograph [62]. We have demonstrated that

text classifiers can be trained on top of pre-trained contextual sentence embeddings, which

can accurately encode researcher discretion and infer the relevance of millions of messages

on a laptop.

Rather than defining the boundaries of a corpus by a set of expert chosen keywords

or expert crafted query rules, researchers can look at a sample of data, label messages

as relevant as they see see fit, and communicate their reasoning directly. Reviewers and

skeptical readers would be empowered to make their own judgments of what qualifies as a

relevant tweet, by labeling themselves and comparing the resulting text measurements.

Classification for social media datasets is not a panacea; Twitter’s user base remains

a non-representative sample of populations, skewing younger, more male, and more edu-

cated [116,146]. A small proportion of prolific users generate an outsized proportion of text,

while most users rarely tweet [170]. Despite these problems, the platform remains a critical

source of data on public conversations at the time of writing with a low barrier to entry

compared to traditional media.

Future work could explore better sampling methods for humans labeling tweets to reduce

the amount of labeled data needed to train the text classifier. Sampling messages by shuffling
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Figure 3.5: Sentiment shift plots comparing the classified relevant (R) and non-relevant
(NR) tweet corpora for tweets containing the keywords ‘solar’, ‘wind’, and ‘nuclear’.
We show the top 20 words contributing to the difference in LabMT sentiment between the corpora.
A. Relevant tweets that are related to clean energy are more positive on average for all keywords
when compared to non-relevant tweets. Sad words that are less common in relevant ‘solar’ tweets
are ‘radiation’, ‘pressure’, and ‘humidity’, which largely refer to the weather. Happy words like
‘energy’ and ‘power’ are more common in relevant tweets compared to tweets non-relevant to solar
energy. B. For ‘wind’, relatively sad terms like ‘humidity’ and ‘pressure’ are less common in relevant
tweets (these appear in clearly non-related tweets about the weather), while happy terms like ‘energy’,
‘power’, and ‘solar’ are more common in tweets relevant to wind as a renewable energy source. C.
For ‘nuclear’, relevant tweets are on average more positive due to sad words like ‘war’, ‘weapons’,
and ‘bomb’ being less common in relevant tweets, while happy words like ‘power’ and ‘energy’ are
more common. The two prominent sad words ‘nuclear’ and ‘waste’ go against the positive difference
in moving from non-relevant to relevant tweets as they both occur more frequently in relevant tweets.
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Figure 3.6: Allotaxonograph comparing the rank divergence of words classified as rele-
vant to solar energy discourse to those containing the keyword ‘solar’ but classified as
non-relevant. On the main 2D rank-rank histogram panel, words appearing on the right have a
higher rank in the ‘relevant’ subset than in ‘non-relevant’, while phrases on the left appeared more
frequently in the ‘non-relevant’ tweets. The panel on the right shows the words which contribute most
to the rank divergence between each corpus. We observe that many words associated with weather
bots, such as ‘mph,’ ‘uv,’ and ‘pressure,’ are more frequently used in non-relevant posts, while words
like ‘panels,’ ‘energy,’ and ‘power,’ used more in tweets relevant to solar energy. Notably, commonly
used function words, such as ‘the,’ ‘and,’ and ‘are,’ are off-center in the rank-rank histogram, a
further indication that many of the ‘non-relevant’ tweets are from automated accounts publishing
weather data rather than using conversational English. The balance of the words in these two sub-
sets is noted in the bottom right corner of the histogram, showing the percentage of total counts, all
words, and exclusive words. For this example the two subsets are nearly balanced, indicating that the
filtered corpus contains less than 50% of word tokens from the raw query. See Dodds et al. [45] for
a full description of the allotaxonometric instrument.
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risks oversampling from dense regions of the semantic embedding space. The coder sees

repetitive messages that provide little marginal information to the model. This would have

negative impacts on the generalizability of the classifier, and we would be skeptical of real-

time measurements as conversation could drift into under-explored regions of the semantic

embedding space. Other work could explore the trade-offs between optimizing for high

recall and high precision when curating social media datasets, and the impacts on resulting

measurements.

For online applications of relevance classifiers, such work would be useful in identifying

when more training data is needed. By measuring changes in language use, both by mea-

suring rank-turbulence or probability-turbulence divergence [45, 48] between the training

corpus and incoming data, and by measuring changes in the distribution of messages within

a semantic embedding, thresholds for train data updates could be determined.

Finally, researchers could explore viewing social media datasets as having uncertain

boundaries, and running measurements over data set ensembles to better capture the un-

certainly in researcher discretion inherent in corpus curation.

Overall, we hope our work here highlights a viable alternative corpus curation method

for computational social scientists studying social media datasets.
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Keyword Class Example Tweet

Solar (R) The decreasing costs of so-
lar and batteries mean a
sustainable future is closer
than we think.

(NR) Looks like there’s a solar
eclipse down here. The
space nerds bought all the
hotel rooms.

Wind (R) At this time of year wind
makes up only a fraction of
the state’s energy genera-
tion mix.

(NR) His mom caught wind of
what they were up to
and shut down their plans
pretty quickly.

Nuclear (R) Nuclear activists are ques-
tioning #MAYankee’s ac-
celerated decommissioning
plan.

(NR) The global nuclear arsenal
stands around 10,000 war-
heads, down from 70,000 at
the peak of the Cold War.

Table 3.1: Paraphrased example tweets for relevant (R) and non-relevant (NR) examples
in each case study.

To label the training data, we defined relevant tweets as those which are related to the
topic of electricity generation or clean energy. Non-relevant tweets contained the keyword,
but were wholly or primarily unrelated.
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‘solar’ ‘wind’ ‘nuclear’
% Relevant 43.7% 4.7% 16.0%
F1 - MPNet 0.951 0.903 0.860
F1 - MiniLM-L12 0.933 0.839 0.879
F1 - MiniLM-L6 0.949 0.828 0.857
F1 - DistilRoberta 0.956 0.903 0.857
F1 - paraphrase-MiniLM-L6 0.943 0.800 0.826
F1 - paraphrase-MiniLM-L3 0.918 0.714 0.814
F1 - distiluse-multilingual 0.929 0.759 0.912
F1 - e5-base 0.949 0.867 0.881
F1 - e5-large 0.949 0.828 0.895

Table 3.2: Summary statistics and model performance for each of the three case studies.

First, we report the proportion of human labeled tweets that are labeled relevant to clean
energy from our thousand tweet subsample. The ‘solar’ corpus is most evenly split, while
the ‘wind’ corpus is the most imbalanced. Second, we detail F1 evaluation scores for a
range of fine-tuned text classifiers trained on our labeled data. The model performance
does not necessarily degrade dramatically for corpora with a small proportion of relevant
documents, such as for ‘wind’.
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Chapter 4

Selected contributions to published work

Studying at the Vermont Complex Systems Center has given me the opportunity to col-

laborate on nearly 2 dozen studies published by the Computational Story Lab related to

the topic of this thesis. In what follows, I briefly describe a few key findings and my

contributions to a subset of these papers.

The papers are organized into three categories. First, a set of papers, starting with

Storywrangler (subsection 4.1.1), explore case studies using n-gram usage rates from Twit-

ter, which are broadly aggregated by language communities. These studies primarily use

n-gram usage rates as proxies of collective attention.

Second, a set of papers based on n-gram usage rate time series subset into location-

based communities with user provided location data matched to US states. The additional

spatial information allowed us to study more location specific phenomona, from community

level stress, sleep pattern changes around the spring change to daylight savings time, and

state-level estimates of homelessness rates.

Finally, I present two studies that introduce novel methods for text data, created to

solve problems as we explored the potential of social media datasets.
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4.1 Collective Attention and n-gram Usage Rate Studies

In the following section we explore a selection of works that use Twitter derived n-gram usage

rates as a proxy for collective attention paid towards topics of interest. The Storywrangler

paper introduced this dataset to the world, which enabled external researchers and the

general public to explore popularity-weighted word usage rates, without needing to access

and process hundreds of billions of tweets.

Further studies examined this dataset’s immense breadth and depth. We studied how

broad patterns of online interaction transitioned from originally authored text to ampli-

fication through retweets becoming a dominant behavior across dozens of the most used

language communities. We conducted in-depth case studies on a wide range of topics, from

pandemics to politics.

As valuable as many of these collected contributions are, certain limitations exist within

these studies. Because usage rates have already been aggregated by language group in the

Storywrangler dataset, there is no opportunity to subset the n-gram usage rates, into smaller

communities of interest. Even more problematic is the inability to easily assess the quality

of an n-gram usage rate as a proxy of attention for some topic of interest. Further work

(and computational hardware) was needed to address these short-comings when researchers

find that a Storywrangler proxy is ill-suited for their needs, whether due to polysemy in a

keyword of interest or issues of a non-representative sample.

Despite these limitations, social media derived n-gram time series can sometimes pro-

vide an immensely rich window into the dynamics of online attention. Day-level aggregation

allowed us to track the emergence of nationally impactful events with high temporal reso-

lution. The relative accessibility of the data allows for rapid, inter-disciplinary exploration

of a wide variety of topics, as demonstrated by the collection of co-authors in the following

section.
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4.1.1 Storywrangler: A massive exploratorium for sociolinguistic,

cultural, socioeconomic, and political timelines using Twitter

The first paper is Storywrangler: A massive exploratorium for sociolinguistic, cultural,

socioeconomic, and political timelines using Twitter by Thayer Alshabbi, Jane L. Adams,

Michael V. Arnold, Joshua R. Minot, David R. Dewhurst, Andrew J. Reagan, Chrisopher

M. Danforth, and Peter Sheridan Dodds, cited as [8].

Abstract

In real time, Twitter strongly imprints world events, popular culture, and the day-to-

day, recording an ever-growing compendium of language change. Vitally, and absent

from many standard corpora such as books and news archives, Twitter also encodes

popularity and spreading through retweets. Here, we describe Storywrangler, an ongo-

ing curation of over 100 billion tweets containing 1 trillion 1-grams from 2008 to 2021.

For each day, we break tweets into 1-, 2-, and 3-grams across 100+ languages, generat-

ing frequencies for words, hashtags, handles, numerals, symbols, and emojis. We make

the dataset available through an interactive time series viewer and as downloadable

time series and daily distributions. Although Storywrangler leverages Twitter data, our

method of tracking dynamic changes in n-grams can be extended to any temporally

evolving corpus. Illustrating the instrument’s potential, we present example use cases

including social amplification, the sociotechnical dynamics of famous individuals, box

office success, and social unrest.

Contribution

For this paper I contributed to the design of the backend for our n-gram database, which

is publicly accessible on the storywrangler website. I contributed to designing the story-

wrangler n-gram parser to capture Twitter-specific tokens of interest, such as hashtags and

user handles. We also engineered counters to separately count tokens that were originally
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Figure 4.1: An example document showing a ‘storyon’ counter objected represented within the
database. For each language, we store a collection of n-gram counters. By querying for word we can
assemble word usage rate time series. Querying for time, we can assemble a daily Zipf distribution.
More complex queries are also enabled; future studies could query by rank to study the emergence
of slang or other new types entering a language.

authored from those with social amplification through retweets. This involved engineering

a schema that enabled queries for both n-gram time series and daily distribution queries,

for 1-grams, 2-grams, and 3-grams at daily resolution with separate collections for over 100

languages. Flexibility is prioritized with this schema, but fast responses are enabled by

building indexes. When data streams were still incoming and insert performance was a

concern, we avoided building unnecessary indexes. Currently, that cost-benefit equilibrium

may have shifted, where it makes sense to pre-compute any likely to be used index.

I researched and directed the purchase of appropriately sized hardware to enable inter-

active queries, and administered both hardware, databases, and insert software to ensure

continuing daily updates with minimal insert times, while we retained access to Twitter’s

decahose feed. After the team collectively decided to preserve case-sensitivity when counting

n-grams, I chose our rank truncation threshold to be one million (10∗∗6), set to ensure daily

inserts across languages could execute comfortably within 24 hours, given some variance in

the number of tweets per day.

I helped to visualize the n-gram time series plots, exploring potential case-studies for

further exploration. Additionally, I worked with Thayer Alshaabi to extend this work to a
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Figure 4.2: Reprint of Figure 1 from [8], with caption as follows: “For each n-gram, we display
daily rank in gray overlaid by a centered monthly rolling average (colored lines), and highlight the
n-gram’s overall highest rank with a solid disk. A. Anticipation and memory of calendar years for all
of Twitter. B. Annual and periodic events: Christmas in English (blue), Easter in Italian (orange),
election in Portuguese (green), and summer in Swedish (red). C. Attention around international
sports in English: Olympics (blue), FIFA world cup (orange), and Super Bowl (red). D. Major
scientific discoveries and technological innovations in English. E. Three famous individuals in rel-
evant languages: Ronaldo (Portuguese), Trump (English), and Pope Francis (Italian). F. Major
infectious disease outbreaks. G. Conflicts: Gaza in Arabic (blue), Libya in French (orange), Syria
in Turkish (green), and Russia in Ukrainian (red). H. Protest and movements: Arab Spring (Arabic
word for ‘revolution’, blue), Occupy movement (English, orange), Brexit campaign (English, green),
#MeToo movement (English, brown), and Black Lives Matter protests (English, red).”
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Figure 4.3: Screenshot of the realtime, 15 minute resolution n-gram viewer available on the story-
wrangler website. The database is no longer realtime, due to the end of our data sharing agreement
with Twitter, but the final two weeks of 15 minute resolution data, from May 20th, 2023 to June 1st,
2023, remains publicly available.

realtime, 15-minute resolution n-gram viewer, as shown in Figure 4.3.

4.1.2 How the worlds collective attention is being paid to a pan-

demic: COVID-19 related n-gram time series for 24 languages

on Twitter

Paper number two is How the worlds collective attention is being paid to a pandemic:

COVID-19 related n-gram time series for 24 languages on Twitter by Thayer Alshaabi,

Michael V. Arnold, Joshua R. Minot, Jane Lydia Adams, David Rushing Dewhurst, An-

drew J. Reagan, Roby Muhamad, Christopher M. Danforth, and Peter Sheridan Dodds,

cited as [9].

Abstract

In confronting the global spread of the coronavirus disease COVID-19 pandemic we

must have coordinated medical, operational, and political responses. In all efforts,

data is crucial. Fundamentally, and in the possible absence of a vaccine for 12 to
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18 months, we need universal, well-documented testing for both the presence of the

disease as well as confirmed recovery through serological tests for antibodies, and we

need to track major socioeconomic indices. But we also need auxiliary data of all kinds,

including data related to how populations are talking about the unfolding pandemic

through news and stories. To in part help on the social media side, we curate a set of

2000 day-scale time series of 1- and 2-grams across 24 languages on Twitter that are

most ‘important’ for April 2020 with respect to April 2019. We determine importance

through our allotaxonometric instrument, rank-turbulence divergence. We make some

basic observations about some of the time series, including a comparison to numbers of

confirmed deaths due to COVID-19 over time. We broadly observe across all languages

a peak for the language-specific word for ‘virus’ in January 2020 followed by a decline

through February and then a surge through March and April. The world’s collective

attention dropped away while the virus spread out from China. We host the time series

on Gitlab, updating them on a daily basis while relevant. Our main intent is for other

researchers to use these time series to enhance whatever analyses that may be of use

during the pandemic as well as for retrospective investigations.

Contribution

For this paper, I worked closely with Thayer Alshaabi to compile lists of terms potentially

relevant to the emerging COVID-19 pandemic by measuring rank-divergences between year-

seperated, day-scale 1-, 2-, and 3-gram Zipf distributions of Twitter. We discussed how to

create a robust measurement to select emerging words, and decided on averaging rank

divergence contributions by n-gram over a month long study period. Rank divergence was

computed on the full daily Zipf distributions, rather than the truncated daily distributions

stored in the database. The daily zipf distribution for each date in 2020 was compared to

the same calendar date in 2019. I repeated these measurements for tweets written in each

of the top languages on Twitter as classified by FastText [81].

After the lists of top contributing words were compiled, I built database indexes for each
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language to enable fast n-gram queries, and wrote and diagnosed queries with Thayer to

collect n-gram time series beginning from September 1, 2019. We to run daily updates to

share publicly online so external researchers could have up-to-date data as the pandemic

continued to evolve.

Figure 4.4: Reprint of Figure 6 from [9], with caption as follows: “Time series for daily reported
case loads and death compared with a list of 10 salient 1-grams for the top language spoken in each
country. For each n-gram, we display a weekly rolling average of usage ranks at the day scale in
gray overlaid by an average of all these 1-grams in black marking their corresponding ranks using
the left vertical axis. Similarly, we use the right vertical axis to display a weekly rolling average of
daily new cases (red solid-line), and reported new deaths (orange dashed-line).”

66

https://gitlab.com/compstorylab/covid19ngrams


Figure 4.5: Reprint of Figure 2 from [9], with caption as follows: “Top 20 (of 1,000) 1-grams for
our top 12 languages for the first three weeks of April 2020 relative to a year earlier. Our intent is to
capture 1-grams that are topically and culturally important during the COVID-19 pandemic. While
overall, we see pandemic-related words dominate the lists across languages, we also find considerable
specific variation. Words for virus, quarantine, protective equipment, and testing show different
orderings (note that we do not employ stemming). Unrelated 1-grams but important to the time of
April 2020 are in evidence; the balance of these are important for our understanding of how much
the pandemic is being talked about.”
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4.1.3 Divergent modes of online collective attention to the COVID-

19 pandemic are associated with future caseload variance

Paper number three is Divergent modes of online collective attention to the COVID-19

pandemic are associated with future caseload variance by David Rushing Dewhurst, Thayer

Alshaabi, Michael V. Arnold, Joshua R. Minot, Christopher M. Danforth, Peter Sheridan

Dodds, citied as [36].

Abstract

Using a random 10% sample of tweets authored from 2019-09-01 through 2020-04-

30, we analyze the dynamic behavior of words (1-grams) used on Twitter to describe

the ongoing COVID-19 pandemic. Across 24 languages, we find two distinct dynamic

regimes: One characterizing the rise and subsequent collapse in collective attention to

the initial Coronavirus outbreak in late January, and a second that represents March

COVID-19-related discourse. Aggregating countries by dominant language use, we find

that volatility in the first dynamic regime is associated with future volatility in new cases

of COVID-19 roughly three weeks (average 22.49 ± 3.26 days) later. Our results suggest

that surveillance of change in usage of epidemiology-related words on social media may

be useful in forecasting later change in disease case numbers, but we emphasize that

our current findings are not causal or necessarily predictive.

Contribution

My primary contribution for this paper was curating the 1-gram usage time series related

to COVID-19 that were analyzed in this study. Additionally, I participated in discussions

regarding the interpretations of the resulting time series clusters, shown in Figure 4.6.
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Figure 4.6: Figure 2 from [36], with caption as follows: “We display the mean normalized log rank
timeseries of the top 20 words closest to each of E[C1] and E[C2] in dashed curves and the single
word closest to each of E[C1] and E[C2] in thin solid curves for each of the first 12 of 24 languages.
The divergent modes of dynamic behavior are consistent across most languages, with some languages
(English, French, German, and Indonesian) displaying prominently larger peaks in words closest
to E[C2] during late January through early February 2020. Other languages, such as Korean and
Tagalog, do not display this behavior.”

4.1.4 Ratioing the President: An exploration of public engagement

with Obama and Trump on Twitter

Paper number four is Ratioing the President: An exploration of public engagement with

Obama and Trump on Twitter by Joshua R. Minot, Michael V. Arnold, Thayer Alshaabi,69



Christopher M. Danforth, and Peter Sheridan Dodds, cited as [115].

Abstract

The past decade has witnessed a marked increase in the use of social media by politi-

cians, most notably exemplified by the 45th President of the United States (POTUS),

Donald Trump. On Twitter, POTUS messages consistently attract high levels of en-

gagement as measured by likes, retweets, and replies. Here, we quantify the balance of

these activities, also known as “ratios”, and study their dynamics as a proxy for col-

lective political engagement in response to presidential communications. We find that

raw activity counts increase during the period leading up to the 2016 election, accom-

panied by a regime change in the ratio of retweets-to-replies connected to the transition

between campaigning and governing. For the Trump account, we find words related to

fake news and the Mueller inquiry are more common in tweets with a high number of

replies relative to retweets. Finally, we find that Barack Obama consistently received a

higher retweet-to-reply ratio than Donald Trump. These results suggest Trump’s Twit-

ter posts are more often controversial and subject to enduring engagement as a given

news cycle unfolds.

Contribution

My contribution to this paper began as a class project for Principles of Complex Systems,

where Sarah Howerter and I scraped tweets to visualize tweets in ternary plots, where the

three axes represented the ratios of likes, retweets, and replies. We measured happiness

scores using labMT, and examined this distribution in ternary space. Later, I worked

with Josh Minot and Thayer Alshaabi to store relevant political tweets on our databases

after we found that searching the decahose for retweets could provide multiple snapshots of

engagement. I also assisted in designing the visualizations for the paper.
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Figure 4.7: Figure from preliminary class project, showing average happiness values of reply threads
averaged by user and represented with markers related to account type. We found that tweets with
a lower ratio of replies to likes were more likely to have higher happiness scores as measured by the
LabMT sentiment lexicon.

4.1.5 Twitter misogyny associated with Hillary Clinton increased

throughout the 2016 U.S. election campaign

Paper number eight Twitter misogyny associated with Hillary Clinton increased throughout

the 2016 U.S. election campaign by Morgan Weaving, Thayer Alshaabi, Michael V. Arnold,

Khandis Blake, Christopher M. Danforth, Peter S. Dodds, Nick Haslam and Cordelia Fine,

cited as [163].
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Figure 4.8: Reprint of Figure 2 from [115], with caption as follows: Ternary histograms and
Nretweets/Nreplies ratio time series for the @BarackObama (A–D) and @realDonaldTrump
(E–H) Twitter accounts. The ternary histograms (A–C and E–H) represent the count of retweet,
favorite, and reply activities normalized by the sum of all activities. White regions indicate no obser-
vations over the given time period. See Fig 4 for examples of full time series for response activity for
example tweets. Heatmap time series (D and H) consist of monthly bins representing the density of
tweets with a given ratio value. Single observations (bin counts <2) are represented by grey points.
The two dates annotated correspond to the date of Trump’s declaration of candidacy (2015–05–16)
and the 2016 general election (2016–11–09). We show the tendency for Trump tweets to have ternary
ratio values with a greater reply component—with pre-candidacy tweets having higher variability and
pre-election tweets having a higher Nretweets/Nreplies ratio value. Post-election Obama tweets have
ternary ratio values with more likes than other periods for both Obama and Trump.
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Abstract

Online misogyny has become a fixture in female politicians’ lives. Backlash theory

suggests that it may represent a threat response prompted by female politicians’ coun-

terstereotypical, power-seeking behaviors. We investigated this hypothesis by analyzing

Twitter references to Hillary Clinton before, during, and after her presidential campaign.

We collected a corpus of over 9 million tweets from 2014 to 2018 that referred to Hillary

Clinton, and employed an interrupted time series analysis on the relative frequency of

misogynistic language within the corpus. Prior to 2015, the level of misogyny associ-

ated with Clinton decreased over time, but this trend reversed when she announced

her presidential campaign. During the campaign, misogyny steadily increased and only

plateaued after the election, when the threat of her electoral success had subsided. These

findings are consistent with the notion that online misogyny towards female political

nominees is a form of backlash prompted by their ambition for power in the political

arena.

Contribution

For this paper I participated in discussions with Morgan Weaving and Thayer Alshaabi

to determine what social media data would be useful in measuring misogynistic language

surrounding female candidates on Twitter. I created exploratory figures, including ambient

sentiment plots of tweets mentioning the keywords Clinton, Trump and Biden. I worked to

parse tweets match a list of keywords relevant to Hillary Clinton into n-grams and assisted

in creating an indicator of misogyny defined by the frequency of misogynistic terms being

used within this corpus.
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4.1.6 Fame and Ultrafame: Measuring and comparing daily levels of

‘being talked about’ for United States’ presidents, their rivals,

God, countries, and K-pop.

Paper number nine is Fame and Ultrafame: Measuring and comparing daily levels of ‘being

talked about’ for United States’ presidents, their rivals, God, countries, and K-pop by Peter

Sheridan Dodds, Joshua R. Minot, Michael V. Arnold, Thayer Alshaabi, Jane Lydia Adams,

David Rushing Dewhurst, Andrew J. Reagan, Christopher M. Danforth, cited as [41].

Abstract

When building a global brand of any kind – a political actor, clothing style, or belief

system – developing widespread awareness is a primary goal. Short of knowing any of

the stories or products of a brand, being talked about in whatever fashion – raw fame

– is, as Oscar Wilde would have it, better than not being talked about at all. Here, we

measure, examine, and contrast the day-to-day raw fame dynamics on Twitter for US

Presidents and major US Presidential candidates from 2008 to 2020: Barack Obama,

John McCain, Mitt Romney, Hillary Clinton, Donald Trump, and Joe Biden. We assign

“lexical fame” to be the number and (Zipfian) rank of the (lowercased) mentions made

for each individual across all languages. We show that all five political figures have

at some point reached extraordinary volume levels of what we define to be “lexical

ultrafame”: An overall rank of approximately 300 or less which is largely the realm of

function words and demarcated by the highly stable rank of ‘god’. By this measure,

‘trump’ has become enduringly ultrafamous, from the 2016 election on. We use typical

ranks for country names and function words as standards to improve perception of scale.

We quantify relative fame rates and find that in the eight weeks leading up the 2008

and 2012 elections, ‘obama’ held a 1000:757 volume ratio over ‘mccain’ and 1000:892

over ‘romney’, well short of the 1000:544 and 1000:504 volumes favoring ‘trump’ over

‘hillary’ and ‘biden’ in the 8 weeks leading up to the 2016 and 2020 elections. Finally, we

track how only one other entity has more sustained ultrafame than ‘trump’ on Twitter:
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The K-pop (Korean pop) band BTS. We chart the dramatic rise of BTS, finding their

Twitter handle ‘@bts_twt’ has been able to compete with ‘a’ and ‘the’. Our findings

for BTS more generally point to K-pop’s growing economic, social, and political power.

Contribution

For this paper I consulted with the co-authors as part of the larger umbrella of Storywran-

gler related projects, joining discussions and giving feedback as the figures were developed.

I contributed in cleaning and parsing tweets into n-grams by language, and creating storage

solutions for the resulting 21TB dataset to enable further analysis. We were recently in-

formed by the Journal of Quantitative Description: Digital Media that this paper received

their inaugural award for best paper ever published by the journal: “Best Paper Engaged

in Quantitative Description on an Under-studied Phenomenon.”

4.1.7 Say their names: Resurgence in the collective attention to-

ward Black victims of fatal police violence following the death

of George Floyd

Paper number thirteen is Say their names: Resurgence in the collective attention toward

Black victims of fatal police violence following the death of George Floyd by Henry H. Wu,

Ryan J. Gallagher, Thayer Alshaabi, Jane L. Adams, Joshua R. Minot, Michael V. Arnold,

Brooke Foucault Welles, Randall Harp, Peter Sheridan Dodds, Christopher M. Danforth,

cited as [174].

Abstract

The murder of George Floyd by police in May 2020 sparked international protests and

brought unparalleled levels of attention to the Black Lives Matter movement. As we

show, his death set record levels of activity and amplification on Twitter, prompted

the saddest day in the platform’s history, and caused his name to appear among the
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ten most frequently used phrases in a day, where he is the only individual to have ever

received that level of attention who was not known to the public earlier that same

week. Importantly, we find that the Black Lives Matter movement’s rhetorical strategy

to connect and repeat the names of past Black victims of police violence—foregrounding

racial injustice as an ongoing pattern rather than a singular event—was exceptionally

effective following George Floyd’s death: attention given to him extended to over 185

prior Black victims, more than other past moments in the movement’s history. We

contextualize this rising tide of attention among 12 years of racial justice activism on

Twitter, demonstrating how activists and allies have used attention and amplification as

a recurring tactic to lift and memorialize the names of Black victims of police violence.

Our results show how the Black Lives Matter movement uses social media to center past

instances of police violence at an unprecedented scale and speed, while still advancing

the racial justice movement’s longstanding goal to “say their names.”

Contribution

I contributed to this paper mostly in the exploration phase. I created ambient sentiment

plots with our tweet subsamples, but these were low resolutions and not high enough quality

to be published. I advised Henry Wu about some of the tools we had created to quantify

spikes in attention, but ultimately advised him against pursuing this direction.

4.1.8 The growing amplification of social media: measuring tempo-

ral and social contagion dynamics for over 150 languages on

Twitter for 2009–2020

Paper number eleven is The growing amplification of social media: measuring temporal and

social contagion dynamics for over 150 languages on Twitter for 2009–2020 by Thayer

Alshaabi, David Rushing Dewhurst, Joshua R. Minot, Michael V. Arnold, Jane L. Adams,

Christopher M. Danforth and Peter Sheridan Dodds, cited as [10].
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Abstract

Working from a dataset of 118 billion messages running from the start of 2009 to

the end of 2019, we identify and explore the relative daily use of over 150 languages

on Twitter. We find that eight languages comprise 80% of all tweets, with English,

Japanese, Spanish, Arabic, and Portuguese being the most dominant. To quantify

social spreading in each language over time, we compute the ‘contagion ratio’: The

balance of retweets to organic messages. We find that for the most common languages

on Twitter there is a growing tendency, though not universal, to retweet rather than

share new content. By the end of 2019, the contagion ratios for half of the top 30

languages, including English and Spanish, had reached above 1—the naive contagion

threshold. In 2019, the top 5 languages with the highest average daily ratios were, in

order, Thai (7.3), Hindi, Tamil, Urdu, and Catalan, while the bottom 5 were Russian,

Swedish, Esperanto, Cebuano, and Finnish (0.26). Further, we show that over time,

the contagion ratios for most common languages are growing more strongly than those

of rare languages.

Contribution

I collaborated with the paper’s coauthors to conceptualize the retweet balance measure-

ment. I contributed in creating the paper’s primary dataset, Storywrangler, which predicts

tweet language and parses and counts n-grams at daily resolution over the study period.

Additionally, I designed a database schema and inserted a language database, which stores

metadata on language distributions by language for each day for further analysis, includ-

ing the number of tweets, n-gram tokens, unique speakers, unique n-gram types, for both

Twitter’s changing language identification algorithm, and a consistently applied language

classifier, FastText [81].
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4.2 Location-based Social Media Studies

In this section we look at a collection of papers that build on the prior Storywrangler parser

but leverage user provided location metadata to infer locations within US cities. This

additional location data allowed us to build state-level proxies of happiness, sleep behavior

based on aggregated user activity patterns, and homelessness.

While having additional metadata was helpful, continuing to subset the data into smaller

and smaller communities led to challenges. For the study of homelessness, a phenomenon

which impacts less than 1% of the US population at any given time, we found we had a

limited number of tweets after both searching for keywords and grouping by geography.

For any relatively uncommon or under-discussed phenomena, these challenges would likely

emerge.

This state level twitter dataset is still accessible and I believe it holds great potential.

States are often referred to ‘Laboratories of Democracy’, and enabling being able to com-

pare the spectrum of policies with population level data originating from the populations

governed should be valuable [1].

4.2.1 Expecting the Unexpected: Predicting Panic Attacks from Mood

and Twitter

Paper number five is Expecting the Unexpected: Predicting Panic Attacks from Mood and

Twitter by Ellen W. McGinnis, Bryn Loftness, Shania Lunna, Isabel Berman, Skylar Bag-

don, Genevieve Lewis, Michael Arnold, Christopher M. Danforth, Peter S. Dodds, Matthew

Price, William E. Copeland and Ryan S. McGinnis, cited as [106].

Abstract

Panic attacks are an impairing mental health problem that affects about one in 10 US

adults every year. Current DSM criteria describe panic attacks as unexpected, occur-

78



ring without warning or triggering events. The unexpected nature of panic attacks

not only leads to increased anxiety for the individual but has also made panic attacks

particularly challenging to study. However, recent evidence suggests that individuals

who experience such attacks could identify attack triggers. We aimed to explore both

retrospectively and prospectively, qualitative, and quantitative factors associated with

the onset of panic attacks. We remotely recruited a diverse sample of 87 individuals who

regularly experienced panic attacks from 30 states in the US. Participants responded to

daily questions relating to their panic attacks and wellness behaviors each day for 28

days. We also considered daily community level factors captured by the Hedonometer,

a metric which estimates population-level happiness daily using a random 10% of all

public tweets. Consistent with our prior work, most participants (95%) were able to

retrospectively identify a trigger for their attack. Worse individual mood was associ-

ated with greater likelihood of experiencing a same-day panic attack over and above

other individual wellness factors. Worse individually reported mood and state-based

population level mood as indicated by the Hedonometer were associated with greater

likelihood of next-day panic attack. These promising results suggest that individuals

who experience panic attacks may be able to expect the unexpected. The importance

of individual and state-based population level mood in panic attack risk could be used

to ultimately inform future prevention and intervention efforts.

Contribution

For this paper I curated a dataset of daily, state-level Twitter sentiment time series, based

on location inferred from user provided text biography fields. Additionally, I created ex-

ploratory static and video visualizations to show the spatial change in sentiment over time.

4.2.2 The sleep loss insult of Spring Daylight Savings in the US is

observable in Twitter activity

Paper number six, The sleep loss insult of Spring Daylight Savings in the US is observable in

Twitter activity by Kelsey Linnell, Michael Arnold, Thayer Alshaabi, Thomas McAndrew,
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Figure 4.9: State sentiment maps for two selected days in the study period. May 23, 2022 was the
day prior to the Uvalde, TX school shooting, and May 25, the day following the shooting.

Jeanie Lim, Peter Sheridan Dodds, and Christopher M. Danforth, cited as [97].

Abstract

Sleep loss has been linked to heart disease, diabetes, cancer, and an increase in accidents,

all of which are among the leading causes of death in the United States. Population-scale

sleep studies have the potential to advance public health by helping to identify at-risk

populations, changes in collective sleep patterns, and to inform policy change. Prior

research suggests other kinds of health indicators such as depression and obesity can

be estimated using social media activity. However, the inability to effectively measure

collective sleep with publicly available data has limited large-scale academic studies.

Here, we investigate the passive estimation of sleep loss through a proxy analysis of

Twitter activity profiles. We use “Spring Forward” events, which occur at the beginning

of Daylight Savings Time in the United States, as a natural experimental condition to

estimate spatial differences in sleep loss across the United States. On average, peak

Twitter activity occurs 15 to 30 min later on the Sunday following Spring Forward. By

Monday morning however, activity curves are realigned with the week before, suggesting

that the window of sleep opportunity is compressed in Twitter data, revealing Spring

Forward behavioral change.
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Contribution

For this paper, I worked with Kelsey Linnell to test a user location classification tool both

for accuracy and performance characteristics. With extracted city and state metadata, we

were able to store tweets with identifiable user locations into an indexed database for further

analysis. Around 5% of all tweets had an identifiable US location with our method, which

was 12% of English language tweets.

4.2.3 An assessment of measuring local levels of homelessness through

proxy social media signals

Paper number seven An assessment of measuring local levels of homelessness through proxy

social media signals by Yoshi Meke Bird, Sarah E. Grobe, Michael V. Arnold, Sean P.

Rogers, Mikaela I. Fudolig, Julia Witte Zimmerman, Christopher M. Danforth, Peter Sheri-

dan Dodds, cited as [17].

Abstract

Recent studies suggest social media activity can function as a proxy for measures of

state-level public health, detectable through natural language processing. We present

results of our efforts to apply this approach to estimate homelessness at the state level

throughout the US during the period 2010-2019 and 2022 using a dataset of roughly

1 million geotagged tweets containing the substring “homeless.” Correlations between

homelessness-related tweet counts and ranked per capita homelessness volume, but not

general-population densities, suggest a relationship between the likelihood of Twitter

users to personally encounter or observe homelessness in their everyday lives and their

likelihood to communicate about it online. An increase to the log-odds of “homeless”

appearing in an English-language tweet, as well as an acceleration in the increase in

average tweet sentiment, suggest that tweets about homelessness are also affected by

trends at the nation-scale. Additionally, changes to the lexical content of tweets over
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time suggest that reversals to the polarity of national or state-level trends may be

detectable through an increase in political or service-sector language over the semantics

of charity or direct appeals. An analysis of user account type also revealed changes

to Twitter-use patterns by accounts authored by individuals versus entities that may

provide an additional signal to confirm changes to homelessness density in a given

jurisdiction. While a computational approach to social media analysis may provide a

low-cost, real-time dataset rich with information about nationwide and localized impacts

of homelessness and homelessness policy, we find that practical issues abound, limiting

the potential of social media as a proxy to complement other measures of homelessness.

Contribution

For this paper I consulted with the primary author, Yoshi Bird, to conceptualize how social

media data could be leveraged to estimate Homelessness rates, and generate text measure-

ments like sentiment, and distributional comparisons using rank-turbulence divergence.

To further refine the corpus of homelessness related tweets, I met with Yoshi to discuss

labeling training data for a supervised classification task. After Yoshi provided labeled data

I trained a classifier to label tweets that were strictly addressing literal human homelessness,

as opposed to a wide range of different usages, from abandoned pets to usages as a hyperbolic

adjective.

Additionally, I helped to provide Twitter data matching relevant keywords with US state

tags based on user-provided text.

4.3 Novel Methods for Social Media Data

In this section, we present two studies presenting methods for social media derived data.

Over the course of our exploration of Twitter data, we often found that existing methods

were not quite sufficient to answer a question of interest. In the following section are two

examples. First is a similarity search method built to extract time-series with interesting
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Figure 4.10: Measures of collective attention and sentiment for US tweets containing homelessness
from the paper.

dynamics, specifically the kinds of dramatic shifts in attention observed in sociotechnical

systems. Second is a method to expand semantic lexicons to unrated words by leveraging

pre-trained word embeddings. This was a capability that we desired after seeing extremely

negative words like ‘pandemic’ rise in popular usage, and recognizing that our lexicons

needed to continue to be updated to reflect current language.

While these studies are quite dissimilar, dealing with time-series methods and natural

language processing, respectively, the type of method work they represent is an important

component of this dissertation and the broader work of the Computational Story lab.

4.3.1 The shocklet transform: a decomposition method for the iden-

tification of local, mechanism-driven dynamics in sociotechni-

cal time series

Paper number ten The shocklet transform: a decomposition method for the identification

of local, mechanism-driven dynamics in sociotechnical time series by David Rushing De-
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whurst, Thayer Alshaabi, Dilan Kiley, Michael V. Arnold, Joshua R. Minot, Christopher

M. Danforth and Peter Sheridan Dodds, cited as [37].

Abstract

We introduce a qualitative, shape-based, timescale-independent time-domain transform

used to extract local dynamics from sociotechnical time series—termed the Discrete

Shocklet Transform (DST)—and an associated similarity search routine, the Shocklet

Transform And Ranking (STAR) algorithm, that indicates time windows during which

panels of time series display qualitatively-similar anomalous behavior. After distin-

guishing our algorithms from other methods used in anomaly detection and time series

similarity search, such as the matrix profile, seasonal-hybrid ESD, and discrete wavelet

transform-based procedures, we demonstrate the DST’s ability to identify mechanism-

driven dynamics at a wide range of timescales and its relative insensitivity to functional

parameterization. As an application, we analyze a sociotechnical data source (usage

frequencies for a subset of words on Twitter) and highlight our algorithms’ utility by

using them to extract both a typology of mechanistic local dynamics and a data-driven

narrative of socially-important events as perceived by English-language Twitter.

Contribution

For this paper I contributed to the analysis of social media time series, generating Figure

3 in the paper, reproduced here as Figure 4.11. I contributed to parsing, storing, and

querying the relevant socio-technical time series in this world. I also created a website with

supplementary interactive figures, such as the one shown in Figure 4.12.

4.3.2 Augmenting Semantic Lexicons Using Word Embeddings and Trans-

fer Learning

Paper number twelve is Augmenting Semantic Lexicons Using Word Embeddings and Trans-

fer Learning by Thayer Alshaabi, Colin M. Van Oort, Mikaela Irene Fudolig, Michael V.
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Figure 4.11: Reprint of Figure 3 from [37], with capition as follows: A comparison between the
standard discrete wavelet transform (DWT) and our discrete shocklet transform (DST) of a so-
ciotechnical time series. Panel (B) displays the daily time series of the rank of the word “trump”
on Twitter. As a comparison with the DST, we computed the DWT of using the Ricker wavelet and
display it in panel (A). Panel (C) shows the DST of the time series using a symmetric power shock.

Arnold, Christopher M. Danforth, and Peter Sheridan Dodds, cited as [11].

Abstract

Sentiment-aware intelligent systems are essential to a wide array of applications. These

systems are driven by language models which broadly fall into two paradigms: Lexicon-

based and contextual. Although recent contextual models are increasingly dominant,

we still see demand for lexicon-based models because of their interpretability and ease

of use. For example, lexicon-based models allow researchers to readily determine which

words and phrases contribute most to a change in measured sentiment. A challenge for

any lexicon-based approach is that the lexicon needs to be routinely expanded with new

words and expressions. Here, we propose two models for automatic lexicon expansion.

85



Figure 4.12: Screenshot of one of the paper’s associated interactive online supplementary figure
showing ranked spike indicators.

Our first model establishes a baseline employing a simple and shallow neural network

initialized with pre-trained word embeddings using a non-contextual approach. Our

second model improves upon our baseline, featuring a deep Transformer-based network

that brings to bear word definitions to estimate their lexical polarity. Our evaluation

shows that both models are able to score new words with a similar accuracy to reviewers

from Amazon Mechanical Turk, but at a fraction of the cost.

Contribution

My main contribution to this paper was consulting with Thayer Alshaabi on potential mod-

els and conceptual conversations about the word-level sentiment prediction task for lexicon

augmentation. Thayer found promising results using the character level word embeddings

based on FastText. Further discussion yielded the second model, which uses dictionary

definitions to supplement the semantic features associated with words within pre-trained

embeddings.

We also discussed using ambient tweets paired with transformer based classifiers to

predict sentiment scores. Although we didn’t pursue this direction, I believe it’s a promising

option to create more dynamic sentiment scores as usage patterns change over time, but
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avoids the expense of relying on continued surveys.
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Chapter 5

Conclusions

Having described my contributions to many of the 23 manuscripts I’ve co-authored during

my time as a PhD student in Complex Systems & Data Science, I conclude here with

thoughts about potential future work.

5.1 Collective Attention Prediction

The Chapter 2 case study of U.S. based hurricanes employed n-gram usage rates to measure

associations between collective attention and impacts of the storms. Many other studies are

amenable to this style of analysis, provided we can be confident in the quality of our proxy

for collective attention, and are able to find data reflecting it. The topic of the Chapter 3

case study, validating tweets as relevant to a topic of interest, also gave promising results.

In the future, I’d like to explore a number of themes related to attention using n-gram usage

rates as a proxy including, for example:

• occupations,

• mortality,

• natural disasters, and

• sports teams.
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For example, an occupation study might try to model mentions of job titles as dependant

on work force size, salary, and required education. A mortality study might try to model

attention to causes of mortality as a function of mortality rate and demographic risk factors.

5.2 Sub-population Culturomics

Our initial attempts to create measures of n-gram timeseries relied on massive parallelization

to pre-compute separate counts for 1-grams, 2-grams, and 3-grams. This approach satisfied

the criteria of the project, but it was relatively inflexible. We created separate counts for

each language group, but this macro-community may not always be the ideal organizing

principle of interest (though sometimes language groups are the community of interest, as

in Figure 5.1.)

One can imagine situations where researchers are interested in computing proxies of

attention for a community limited to a location, such as a country, state, or city. Or

comparing proxies of attention in groups defined by demographic features such as political

leanings, education level, gender, race, etc. Given an acceptably accurate classifier, it is

computationally feasible to interactively compute a proxy for arbitrary communities using

database aggregations, rather than the computationally expensive process of parsing n-

grams. We haven’t used the fraction of tweets containing a given keyword as a proxy, but

it correlates strongly with n-gram usage rates.

To enable these aggregations, we’d need to add a new field to each document to store

the classification. It is very likely faster to drop and re-insert entire collections than it is to

attempt to update documents, due to the latency and inefficiency of document level writes

operations.

We should create fields for bot classifications as well, using the same concept and adapt-

ing an existing tool like BotometerLite, which classifies accounts based only on metadata,

so doesn’t require the access to Twitter’s API [34,178,179].
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Figure 5.1: Multi-language comparison of collective attention for the 1-gram “Russia”, translated
into 20 languages. Notably, all languages see a spike in mentions corresponding to the invasion of
Ukraine in Feburary 2022, but Ukranian and Russian see the smallest increase.

5.3 Opinion Polling

Having accurate classifications of user demographics would also be a first step to being

able to post-stratify estimates for populations of interest beyond Twitter users, such as

likely voters, or to measure text for target demographics. An alternative would be to

create a representative panel of Twitter users, if demographic classification is found to be

insufficiently accurate. To make quantitative estimates of opinion, we’d need estimates of

target population demographics. Perhaps through partnerships with polling organizations

such as Gallup, this functionality could be built out. Regrettably, the loss of real-time
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Twitter data due to ongoing litigation associated with the training of LLMs significantly

reduces the potential for this concept, since much of the value is derived from the fine

temporal resolution of passive human expression. However, ethical considerations associated

with building these capabilities should be further explored [103].

5.4 GPU Accelerated NLP

Our earlier contributions were based on bag-of-words methods or small models that could

be improved with higher performing contextual NLP tools. GPU acceleration will enable

our group to study social phenomenon faster using large social media corpora. We see

custom fine-tuned classifiers as playing a critical role in allowing researchers to curate topic

focused corpora. We hope to train language model based instruments to measure semantic

differentials like valence, arousal, and dominance to help capture trends in public opinion.

Multi-GPU inference will be needed to scale these instruments to process our 100 billion

document scale corpora. In addition to ML inference tasks, GPU acceleration is increasingly

available at all stages of the data analysis pipeline, including direct to GPU data loading,

dimensionality reduction, and clustering [131]. GPU resources would enable us to pre-

compute semantic embeddings to be stored in a vector database to allow for semantic

similarity search and lower latency interactive visualizations for exploratory research [12].

5.5 Past, Present, and Future Hedonometer

In the future, I’d like to build three versions of the Hedonometer, adding distinct estimates

of sentiment when people talk about the future and separately when they talk about the

past. Indeed, the labMT dataset on which the Hedonometer is based did demonstrate a

slight sentiment improvement associated with moving tense from past to future, a trajectory

recently shown to appear in conversations as well [133]. Twitter data would be an obvious

choice, but we could make these distinct sentiment timeseries measurements for any text.
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On a technical level, there are two steps. We would run the Storywrangler parser on text

data, creating separate counters for n-grams based on the verb tense within each clause.

Then we would perform measurements like sentiment analysis for each corpus. While it will

be more memory intensive to compute, it may be worth breaking down the tense categories

from past, present, and future into smaller groups. We could then compare difference in

language usage using sentiment shifts and rank-turbulence divergence.

This could also be structured as an ambient sentiment study, where the sentiment of

ambient text around particular verbs in difference tenses is contrasted. Unfortunately, it

would be computationally difficult to have noun-centered ambient text broken out by verb

tense, since each tweet could potentially contain verbs of multiple tenses, so documents

could not be pre-indexed.

5.6 Tweets with Locations

Our user location inferred tweet datasets are operational, representing around 5% of all

tweets, but they only match cities and states within the United States if users’ declared this

information to their biographical profile. We have done some limited validation comparing

tweets from users who both added this profile location and opted into adding precise GPS-

based metadata from their mobile device.

There are many potential future projects utilizing U.S. state-level subsets. We’re ex-

ploring looking at state-level language usage related to masking, social distancing, and vac-

cinations during the COVID-19 pandemic to state-level public health outcomes. Measuring

associations between language measures and state-level policy would also be a natural future

direction [6]. Finally, expanding our location matching to include more countries would be

valuable, though inter-language text comparisons remain challenging.

Tweets with geospatial metadata also offer possibilities, especially during the period

from 2012 to 2015 when it was more common for individuals to GPS tag their messages.
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This data is stored on DataMountain and is indexed for fast queries, but has not yet

been adequately explored. Combining this data with other spatial datasets would enable

measuring associations in language use. One example we’ve explored is using the National

Transportation Noise Map to examine the association between sentiment and exposure to

traffic noise.

Additionally, I would like to generate relative usage rate and sentiment maps for keyword

queries. For example, searching for the keyword ‘Traffic’ one might expect to see it used

relatively more frequently in urban areas relative to the overall usage rate. In Figure 5.2, we

show spatially aggregated tweet counts for two anchor n-grams, ‘Farm’ and ‘Traffic’ as an

example. Admittedly, Gelman warns that all maps of parameter estimates are misleading,

since higher variation due to small sample sizes tends to make low density areas extreme

values, while correcting for sample sizes makes low density areas too uniform [60].

5.7 Ousiometric Lexicon Generation

Our lab has put a lot of work into developing lexicons for sentiment (or other semantic dif-

ferential) analysis. We’ve also built multiple tools to understand text using these lexicons.

However, often the lexicons don’t exactly correspond to a measurement we are interested

in making. We also know that much of variance in scores for semantic differentials can

be explained by just a few orthogonal dimensions, related to ‘power’, ‘danger’ and ‘struc-

ture’ [39]. It would be worth exploring using linear combinations of scored words along these

dimensions to create specialized lexicons, without the expense of paying human raters.

5.8 BERTopic Weighting Scheme

BERTopic is a transformer powered, topic modeling technique. It has a few modular steps,

beginning with embedding documents, using dimensionality reduction on those embeddings,

and clustering. I believe we could contribute to the algorithm, which currently uses cluster
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Figure 5.2: Spatially aggregated counts of tweets containing anchors, ‘Farm’ and ‘Traffic’. While
both counts are highly correlated with population density, ‘Traffic’ counts seem to be more intensely
peaked in urban areas, while ‘Farm’ counts appear to be more broadly distributed. There seems to be
potential for further studies of spatial variation of language usage.

Term Frequency - Inverse Document Frequency (c-TF-IDF) weighting to summarize the

topics [68]. This leads to many function words being included as representative terms for

the cluster. We could replace c-TF-IDF with a tunable turbulence divergence weighting

scheme that better describes document clusters at the scale most useful to researchers.
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5.9 Additional Corpora

There would be great benefit in adding new text corpora within the same DataMountain

software environment that we currently use to access tweets. Our text comparison tools,

such as allotaxonographs and word shifts utilizing specialized lexicons, will be more acces-

sible to interdisciplinary researchers with varying levels of programming expertise.

Reddit data will likely be the first extension. As another large social media platform, it

will be natural to contextualize insights gleaned from Twitter data using comments posted

to Reddit as well. With different sociotechnical algorithms moderating interactions, one

could imagine the language usage distributions could be quite distinct [65]. The sub-reddit

community structure is substantively different from Twitter’s single public square model.

Another corpus I would like to acquire is a music lyrics dataset. The first data product

would be an n-gram viewer from the perspective of songwriters, where n-gram frequency

is computed for each publishing date, likely at the year scale [43]. This would a cultural

record, similar to how Google books encodes the words of authors or how Storywrangler

encodes the words of Twitter users.

The second music lyrics product would require a partnership with a streaming platform

like Spotify. Daily play counts of songs could be used to create a popularity weighted

n-gram count, from the perspective of listeners. From here, we can measure sentiment

or other lexicons of interest. Do people listen to happier music on holidays? Sad music

during national tragedies? With play counts aggregated by locations we could even map

the sentiment of experienced music [124].

Of course there are many more potential corpora to add, either as raw text or as parsed

n-grams. A short, non-comprehensive list:

• newspapers,

• legal texts,
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• Front Porch Forum / Nextdoor,

• TV news,

• Google Trends,

• Google Books, and

• Wikipedia.

96



Chapter 6

Supporting information for Hurricanes

and Hashtags

6.1 Summary Tables for Regressions

Provided for the reader here are tables of summary statistics of the estimated parameters

in the regression models in Section 2.4.3 and Section 2.4.4.

Mean Regression Parameters – Deaths

Tropical Storms Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 All Hurricanes
adeaths 0.25 0.61 0.31 0.72 1.39 1.35 1.16

a0 -7.65 -6.63 -6.58 -6.25 -6.01 -6.91 -6.56

Mean Regression Parameters – Damages

Tropical Storms Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 All Hurricanes
adamage 0.06 0.17 0.17 0.24 0.37 0.46 0.31

a0 -7.91 -7.41 -7.27 -7.21 -7.60 -8.22 -7.92

Table 6.1: Mean Regression Parameters fit for storms of each category. See Fig. 2.4 for full param-
eter distributions.
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a0 adeath adamage
normal(−8, 3) normal(0, 1) normal(0, 1)

Table 6.2: Priors for Regression 1: Linear in deaths and damages

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat
a0 -7.57 0.52 0.01 -8.60 -6.56 4182 1.0
Deaths 0.49 0.16 0.00 0.16 0.80 4660 1.0
Damage 0.24 0.08 0.00 0.08 0.40 4108 1.0
sd 0.89 0.08 0.00 0.75 1.05 8449 1.0

Table 6.3: Results for Regression 1: Linear in deaths and damages

a0 adeath adamage ad,D
normal(−8, 3) normal(0, 1) normal(0, 1) normal(0, 1)

Table 6.4: Priors for Regression 2: Additional interaction term

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat
a0 -7.58 0.51 0.01 -8.58 -6.58 8085 1.0
Deaths 0.05 0.34 0.00 -0.65 0.70 8326 1.0
Damage 0.22 0.08 0.00 0.06 0.38 8151 1.0
Interaction 0.06 0.04 0.00 -0.02 0.14 8676 1.0
sd 0.88 0.08 0.00 0.74 1.04 10843 1.0

Table 6.5: Results for Regression 2: Additional interaction term

6.2 2-gram Attention Proportion of “hurricane” Usage Rate

Examining the top 2-grams matching the pattern “hurricane *” in Fig. 6.1, we can get a

sense of what are the top storms during the season, and how much attention is allocated to

each at a given time. For English tweets, the first major spike of the 2017 hurricane season

is surrounding Hurricane Harvey, though attention also spikes for Hurricane Katrina, in

reference to the 2005 storm that affected a nearby region of the gulf coast. As attention

begins to decay for Hurricane Harvey, a spike in usage for the 2-gram “hurricane relief”

is observed, though it reaches only f = 3 ∗ 10−5. Next, attention turns to Hurricane Irma,

which reaches the highest 2-gram usage rate of any hurricane in our dataset. Finally, one
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a0 adeath adamage ad×D aCi

normal(−8, 3) normal(0, 1) normal(0, 1) normal(0, 1) normal(0, 1)

Table 6.6: Priors for Regression 3: Additional categorical term for hurricane category

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat
a0 -7.64 0.51 0.01 -8.60 -6.60 9916 1.0
Deaths 0.09 0.36 0.00 -0.60 0.81 9892 1.0
Damage 0.20 0.08 0.00 0.05 0.35 10580 1.0
Interaction 0.05 0.04 0.00 -0.04 0.13 10424 1.0
Cat2 0.07 0.31 0.00 -0.55 0.66 15415 1.0
Cat3 0.21 0.26 0.00 -0.32 0.72 14877 1.0
Cat4 0.76 0.28 0.00 0.20 1.29 15063 1.0
Cat5 0.66 0.44 0.00 -0.17 1.57 13237 1.0
sd 0.84 0.08 0.00 0.70 1.00 14240 1.0

Table 6.7: Results for Regression 3: Additional categorical term for hurricane category

week after attention for Irma begins to decay, attention spikes for Hurricane maria, though

at a level noticeably lower than for Harvey or Irma.

We notice that during storm events the 2-gram usage rates for storms “hurricane *”

is often between only half or a fifth the usage rate of the 1-gram “hurricane”, meaning

that about one in every 5 times the name of the storm follows the word hurricane in English

tweets during active storms.

In Spanish tweets the usage rates of “Huracàn Harvey” only reach a maximum of

around f ∼ 10−4, while “Huracàn Irma” receives much more relative attention. “Huracàn

Marìa” receives about as much attention as Harvey, and also occupies a space similar to

“Hurricane Maria” in English, around f ∼ 10−4.

6.3 Bi-exponential Decays

To quantify the characteristic time scales of attention given to storms, we examined usage

rates by fitting the bi-exponential model introduced by Candia et al. [23]. Not all storms

receive enough attention, but 50 of 75 in the Atlantic basin recorded at least 6 days of
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consecutive 2-gram usage within the year of the hurricane, and these storms were had both

their hashtag and 2-gram usage rate fit with the bi-exponential model of Candia et al.The

model here assumes two populations, u and v, which become interested in a given event.

Population u, comparable to the general population starts with a peak interest, and losses

attention as du
dt = −(p+r)u. During every unit time pu attention is lost from the system and

ru is transferred to population v. The dynamics of population v are as follows: dv
dt = ru−qv,

so attention decays from v with rate q, but increases proportionally to the total attention

of population u. The final bi-exponential model is

S(t) = N

p + r − q
[(p − q)e−(p+r)t + re−qt],

and we present the half-lives associated with this model as τ1 = ln(2)
(p+r) and τ2 = ln(2)

q , which

are the rates of decay from the two populations u and v. The distributions of τ1 and τ2 for

both hashtag usage rates and 2-gram usage rates are shown in Fig. 6.3. The mean half-life

for population u, the population with faster attention decay, is τ̄1 = 1.3 days for hashtags,

and τ̄1 = 1.1 days for 2-grams. The decays for population v were not uni-modal, due to

some storms regaining attention long after their initial impact, deviating from the model

and receiveing poor fits, and resulting in very large values of τ2, but median values were

approximately 24 days. All summary statistics are reported in Table 6.10. We speculate that

for this model the population u is largely people effected by the storm, while population v

is largely people writing about the storms or sharing information about the storm response,

eg, reporters and non-profit professionals. Further work could look to confirm who is behind

the tweets.

The fitting procedure was to first find the maximum value of the usage rate for each

storm, before fitting the above model to the decay of log usage rate after this maximum.

The resulting fits are shown in Fig. 6.6 and Fig. 6.7. The fits generally appear sensible, but

there are sometimes issues for noisy time series, where the rate parameter r becomes very
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small, corresponding to a very long half-life, and misfitting the early decay. This occurs in

the time series for Hurricane Florence. The distributions of Mean Squared Error (MSE)

are shown in Fig. 6.5.

Looking at the decay half-lives in Table 6.10 we notice can see that most hurricane

hashtags lose half their volume on the order of 1 or 2 days. The storms with relatively

more attention on Twitter, Harvey, Irma, Matthew, and Sandy, all initially decay quickly,

with a half-life on the order of a few days, but then have much longer decays associated

with τ2, on the order of a few weeks. There are some aberrations where the bi-exponential

model does a poor job of explaining the data, such as for hurricane Joaquin, where a fight

between Governor Bobby Jindal and the Obama administration over the size of a recovery

package spurred news stories and attention long after the initial activity associated with

the storm itself. This leads to increases in hashtag usage rate, and thus negative half-lives.

The longest half-life is associated with hurricane Maria, τ2 was approximately twice as long

as the next largest hurricane. The extended crisis in Puerto Rico caused by Maria may be

a reason this exceedingly long lifetime, even though the initial attention received by the

hashtag was less than storms of comparable strength.

We also fit a simple exponential model S(t) = Ne−pt. For high attention storms for

which we have more than a week of data, this model is unable to capture decays occurring

on different time scales, and thus has poor fits. For smaller storms for which attention is

lower than the resolution of our data set, the exponential model is perhaps more appropriate.

A distribution of half-lives for hashtags and 2-grams is shown in Fig. 6.4. While for larger

storms, the fits did not capture the changing rates of attention decay, it was adequate for

smaller storms that decay quickly below our instrument’s resolution. However, for storms

for which we have data for an extended decay, the bi-exponential model is more appropriate.
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Max Usage Rate τ1 [Days] τ2 [Days] Season
#hurricanealex 2.5 × 10−6 0.7 8.6 2010
#hurricanearthur 1.3 × 10−5 0.9 190.3 2014
#hurricanebarry 3.8 × 10−6 0.7 16.0 2019
#hurricanebertha 1.1 × 10−6 0.6 6.9 2014
#hurricanebill 9.4 × 10−6 0.2 693.1 2009
#hurricanechris 8.9 × 10−7 0.6 693.1 2018
#hurricanecristobal 2.0 × 10−7 2.0 6.9 2014
#hurricanedanielle 1.9 × 10−7 0.7 693.1 2010
#hurricanedanny 1.8 × 10−6 0.7 6.9 2015
#hurricanedorian 1.2 × 10−4 1.6 8.8 2019
#hurricaneearl 5.0 × 10−6 0.4 6.9 2010
#hurricaneflorence 1.8 × 10−4 2.8 323.3 2018
#hurricanegert 3.6 × 10−7 0.4 6.9 2017
#hurricanegonzalo 6.4 × 10−6 0.9 693.1 2014
#hurricaneharvey 3.5 × 10−4 2.5 30.6 2017
#hurricanehermine 1.9 × 10−5 0.8 15.9 2016
#hurricaneida 8.3 × 10−7 0.8 9.7 2009
#hurricaneigor 2.2 × 10−7 1.1 693.1 2010
#hurricaneirene 8.0 × 10−5 0.7 26.5 2011
#hurricaneirma 4.6 × 10−4 1.0 20.0 2017
#hurricaneisaac 6.1 × 10−6 0.7 693.1 2012
#hurricanejoaquin 1.1 × 10−5 1.2 57.7 2015
#hurricanejose 4.7 × 10−6 2.0 23.1 2017
#hurricanekarl 7.4 × 10−8 0.6 68.9 2010
#hurricanekatia 8.7 × 10−7 0.2 6.9 2011
#hurricanelorenzo 1.0 × 10−6 1.3 64.2 2019
#hurricanemaria 5.0 × 10−5 4.1 43.4 2017
#hurricanematthew 2.6 × 10−4 1.4 27.4 2016
#hurricanemichael 1.1 × 10−4 1.8 20.2 2018
#hurricanenate 3.1 × 10−5 0.5 10.6 2017
#hurricanenicole 5.3 × 10−6 0.6 6.9 2016
#hurricaneophelia 1.2 × 10−5 0.3 6.9 2017
#hurricanesandy 1.5 × 10−4 1.1 23.0 2012
#hurricanetomas 3.0 × 10−7 0.9 6.9 2010

Table 6.9: Fitted half-lives τ1 and τ2 for all storms with at least 10 days of hashtag usage.
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Max Usage Rate τ1 [Days] τ2 [Days] Season
Hurricane Alex 4.1 × 10−5 0.8 9.3 2010
Hurricane Arthur 2.8 × 10−5 1.0 693.1 2014
Hurricane Barry 8.9 × 10−6 0.6 6.9 2019
Hurricane Bertha 8.2 × 10−6 0.4 693.1 2014
Hurricane Bill 8.2 × 10−5 0.8 9.7 2009
Hurricane Chris 3.0 × 10−5 0.6 693.1 2018
Hurricane Cristobal 1.9 × 10−6 1.5 693.1 2014
Hurricane Danielle 1.0 × 10−5 0.9 7.1 2010
Hurricane Danny 7.6 × 10−6 0.6 693.1 2015
Hurricane Dorian 1.1 × 10−4 2.6 18.2 2019
Hurricane Earl 1.7 × 10−4 1.2 9.5 2010
Hurricane Florence 1.3 × 10−4 3.5 37.1 2018
Hurricane Gert 1.0 × 10−6 2.1 321.9 2017
Hurricane Gonzalo 1.4 × 10−5 1.7 693.1 2014
Hurricane Harvey 4.0 × 10−4 2.9 29.3 2017
Hurricane Hermine 2.0 × 10−5 0.4 6.9 2016
Hurricane Ida 4.5 × 10−5 0.7 17.1 2009
Hurricane Igor 1.1 × 10−5 1.0 25.2 2010
Hurricane Irene 3.3 × 10−4 1.2 21.8 2011
Hurricane Irma 5.0 × 10−4 2.3 24.1 2017
Hurricane Isaac 3.8 × 10−5 1.6 21.1 2012
Hurricane Joaquin 4.4 × 10−5 1.2 144.5 2015
Hurricane Jose 2.4 × 10−5 1.3 7.1 2017
Hurricane Karl 1.6 × 10−5 0.3 6.9 2010
Hurricane Katia 9.3 × 10−6 2.1 7.4 2011
Hurricane Lorenzo 2.7 × 10−6 1.7 8.1 2019
Hurricane Maria 1.1 × 10−4 0.7 6.9 2017
Hurricane Matthew 2.9 × 10−4 1.7 22.4 2016
Hurricane Michael 9.3 × 10−5 2.5 27.2 2018
Hurricane Nate 3.5 × 10−5 0.5 693.1 2017
Hurricane Nicole 1.2 × 10−5 0.3 6.9 2016
Hurricane Ophelia 1.9 × 10−5 0.5 6.9 2017
Hurricane Sandy 5.3 × 10−4 2.1 28.5 2012
Hurricane Tomas 1.4 × 10−5 0.9 6.9 2010

Table 6.10: Fitted half-lives τ1 and τ2 for all storms with at least 10 days of 2-gram usage.
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6.4 Hurricane Attention Maps

The remaining Hurricane Attention Map and time series from 2009 to 2018 are presented

for the reader’s perusal. Only storms reaching at least Category 2 are shown, and Seasons

2013 and 2014 are omitted. Earlier storms in our dataset mostly did not make landfall, and

thus appear to recieve relatively little attention. The scale of attention on the maps is held

constant between years.
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Figure 6.1: Word usage rate proportions of “hurricane *” in English tweets

Figure 6.2: Attention proportions of “Huracàn *” in Spanish. We can see that the word usage rate
surrounding “Hurricane Maria” captures a similar amount of the total attention for the 1-gram
hurricane as “Huracàn Marìa” captures. Additionally, hurricane Harvey’s 2-gram usage rate is
lower in Spanish than in English, while Hurricane Katrina is talked about considerably in English
but does not rise about the 50000th most used 2-gram in Spanish. As always, usage rates are case-
insensitive.
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Figure 6.3: Bi-exponential Hurricane decay half-lives: Distributions of fitted half-lifes for the
populations u and v. The mean half-lives for τ1 = 1.3 days and τ2 = 156 days for hashtags and
τ1 = 1.1 days and τ2 = 241 days for 2-grams. For τ2 the median half-lives are also interesting since
we suspect the longest half-lives are due to poor fits. For hashtags τ2 = 23 days, and for 2-grams
τ2 = 24 days.

Figure 6.4: Simple Exponential Hurricane decay half-lives: Distributions of fitted half-lives
for a single population. The median half-lives for τ = 5.3 days a for hashtags and τ = 5.2 days
for 2-grams. The simple exponential model fails to explain the break in attention decay for larger
storms, receiving more attention. The bi-modal distribution of half-lives for 2-grams suggests that
there are two categories of storms, ones with larger half-lives have more data, and thus the longer
decay increases the fitted half-life. Meanwhile, smaller storms receive so little attention, that we don’t
measure any after a week or so, leading to a much smaller half-live, which corresponds to τ1 in our
bi-exponential fit.
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Figure 6.5: Decay Model Comparision: Distributions of Mean Squared Error (MSE). The bi-
exponential model has the lowest average MSE, followed by the simple exponential decay. The power
law decay fails to capture the dynamics of attention decay, when the fit is compared to the data
visually, and is reflected in the higher average MSE.
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Figure 6.6: Hurricane bi-exponential decay fits for hashtag usage rates and 2-gram usage rates for
“hurricane *”
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Figure 6.7: Hurricane decays fits for all hurricanes for which we have at least 10 days of 2-gram
usage rate data. Fits are performed for the function y = N

p+r−q [(p − q)e−(p+r)t + re−qt], a simple
two population decay model as proposed by Candia et al. [23]. Here p would be interpreted as rate
of decay from population 1, r would be the transfer rate from population 1 to population 2, and r
would be the rate of decay from population 2. Population 1 might be thought of as bystandards with
a shorter attention span, while population two are those living with the ramifications, or working on
the recovery who lose attention more slowly. Reported on the graph are the half lives associated with
fitting this model for both the hashtag usage rate and 2-gram usage rate, τ1 = ln 2

p+r and τ2 = ln 2
q
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Figure 6.8: Hurricane Attention Map and time series for 2009
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Figure 6.9: Hurricane Attention Map and time series for 2010
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Figure 6.10: Hurricane Attention Map and time series for 2011
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Figure 6.11: Hurricane Attention Map and time series for 2012
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Figure 6.12: Hurricane Attention Map and time series for 2015
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Figure 6.13: Hurricane Attention Map and time series for 2016
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Figure 6.14: Hurricane Attention Map and time series Map and time series for 2018
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