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Making Forecasts for Chaotic Physical Processes
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Making a prediction for a chaotic physical process involves specifying the probability associated with
each possible outcome. Ensembles of solutions are frequently used to estimate this probability distribu-
tion. However, for a typical chaotic physical system H and model L of that system, no solution of L
remains close to H for all time. We propose an alternative. This Letter shows how to inflate or
systematically perturb the ensemble of solutions of L so that some ensemble member remains close to
H for orders of magnitude longer than unperturbed solutions of L. This is true even when the perturbations
are significantly smaller than the model error.
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Many scientific disciplines require accurate predictions
of the future state of chaotic physical systems. Astrono-
mers attempt to predict the trajectories of bodies in the
solar system for thousands of years into the future [1], as
well as the evolution of galactic clusters [2]. Plasma phys-
icists use nonlinear models to predict magnetic storms and
solar wind [3]. Oceanographers forecast sea-surface tem-
peratures in an attempt to predict the likelihood of El Niño
Southern Oscillation (ENSO) events in the major oceans
up to a year in advance [4]. Meteorologists attempt to
predict the path of violent hurricanes with hours of lead
time, and larger scale patterns up to a week in advance [5].

Predicting the behavior of a chaotic physical system H
using a model L has three obstacles: uncertainty in the
initial state, chaos, and model errors, i.e., differences be-
tween L and H. Given the initial state p0 of H, the initial
state of L which will yield the trajectory that best matches
the physical system is unknown. The accepted procedure is
to choose a large collection or ensemble of initial states and
follow their L trajectories.

For example, when L is a global weather model andH is
the behavior of the atmosphere, an initial state for L is an
estimate of the state of the atmosphere over the entire
planet. Forecasters view the initial state of the atmosphere
as uncertain, but lying within a known ball in state space.
The radius � of this ball corresponds to measurement
uncertainties. They choose a finite ensemble of initial
states in this ball. Forecasters then take the trajectories of
L for each initial state in the ensemble, for example, at time
T � 3 days later, as predictions. If all such trajectories
yield similar behavior at time T, e.g., rain, then the fore-
caster predicts rain. If the trajectories of L disagree at time
T, then the prediction is a nontrivial probability distribu-
tion. Even if the model error is small, such a probabilistic
forecast will be completely wrong if the H trajectory
diverges from the ensemble.

For a chaotic system with imprecise initial state, a
perfect L forecast at time T consists of a probability
distribution which accurately describes the likelihood of
all possible outcomes. Denote the state of H at time T by
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pT . A forecaster hopes that the ensemble is quite close to
pT at time T. However, only a finite ensemble is followed.
Given this limitation, the modeler’s goal is that some linear
combination of ensemble members remains within the
�-ball around pt for the duration of the forecast (t �
0; 1; . . . ; T).

The above goal could likely be met if the chaos were of
the type called ‘‘hyperbolic.’’ Hyperbolicity is not defined
here, but hyperbolic systems have the following property
[6]. Let �pt�bt�a be a trajectory of a hyperbolic H. Given a
�> 0, when system L is sufficiently close to H, there
exists some trajectory �yt�bt�a of L such that jyt � ptj<
� for all t 2 �a; b�. In other words, each trajectory of H is
�-shadowed by a trajectory of L. The shadowing property
exists for hyperbolic systems in part because the number of
expanding (contracting) directions remains constant in
such systems. Much of shadowing theory has been devel-
oped for hyperbolic systems. Unfortunately, hyperbolic
systems are so special that they have been irrelevant to
the prediction of virtually all realistic chaotic physical
processes. In this Letter, we propose an improved ensemble
approach that is more likely to meet the modeler’s goal for
nonhyperbolic systems.

Do any trajectories of L give accurate predictions?—In
Fig. 1, the ensemble of initial states is represented as a
disk of radius �. J0 is the set of states within � of the true
initial state p0, Lt�J0� denotes the trajectories of L at time t
of each state in J0. Ht�p0� denotes the trajectory of H at
time t.N��pt� is the set of states within� of pt at time t. As
the trajectories of L are followed forward in time, the disk
is expected to expand in some directions and contract in
others forming a rough ellipsoid. Some ellipsoid axes
rapidly become very thin, shrinking to zero thickness ex-
ponentially fast. If � is chosen sufficiently small, after a
modest time T no state in LT�J0� is within � ofHT�p0�. On
the other hand, if � is chosen large enough, the entire
attractor will be included and shadowing is trivial. In
Fig. 1(b), � is chosen such that LT�J0� has states within
� of pT . Looking at longer prediction times jT, we ask if
any single trajectory of the ensemble remains within � of
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FIG. 3. In the 40 dimensional system discussed later, the num-
ber of expanding directions varies from 8 to 23 depending on the
state investigated. As a trajectory is followed, the same fluctua-
tions in the local number of expanding directions are observed.

FIG. 2. Most physical systems are nonhyperbolic. In (a), the
dynamics contract in one dimension as pT ! HT�pT� 	 p2T .
The ellipse E2T � LT�JT� intersects the �-ball surrounding p2T ,
the intersection is denoted J2T . As p2T ! HT�p2T� 	 p3T , the
dynamics expand in both dimensions. The intersection of
LT�J2T� and N��p3T� is empty and shadowing fails. In (b), E’2T
is the ellipse E2T inflated by ’. In (c), the intersection of E’2T and
N��p2T� is denoted J’2T . Note that J’2T contains p2T . Despite
expansion in both dimensions, the intersection of LT�J

’
2T� and

N��p3T� is nonempty. In practice, this procedure is successful at
time T � 1 if J’T contains pT .

FIG. 1. For a given initial state, models L and H will produce
different trajectories. � balls are shown around states p0, pT , p2T
of a trajectory of H. If � is small (a), shadowing fails in a single
step of the process. Increasing � (b), some trajectories of L
remain close to a trajectory of H for time T. These trajectories
are given by JT . For sufficiently close hyperbolic systems L and
H, this procedure can be carried out for arbitrarily long times
with small �.
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p0;pT; . . . ;pjT . To answer, at time T all trajectories of L
farther than � from pT are ignored. The remaining trajec-
tories lie in JT , the intersection of LT�J0� and N��pT�.
Figure 1(c) illustrates that it is possible to continue this
procedure, restricting to the trajectories of L that stay
within � of pjT for each j. As long as this set is nonempty,
some members of the ensemble of trajectories of L give
accurate predictions.

Unstable dimension variability.—Fig. 1 shows a ball of
initial states J0 contracting in one direction and expanding
in another into an ellipse. In Fig. 2(a), the behavior changes
locally from one expanding dimension to two and shadow-
ing fails. Increasing � by a factor of 10 would not prevent
such failures. When the dimension is greater than 2 and H
is chaotic, it is likely that the number of independent
contracting and expanding directions will vary from state
to state, see Fig. 3. Such ‘‘unstable dimension variability’’
has been shown to result in shadowing failures, where no
trajectory of L stays within � of an H trajectory [7,11–14].

Outline of our forecast method.—Given a set of states
that fill out an ellipsoid E’t and represent a prediction at
time t, a prediction at time t� 1 is produced as follows.
(1) Apply L for one time step, yielding L1�E

’
t � � Et�1.

(2) ‘‘Inflate’’ (see below) the ellipsoid Et�1 by ’, yield-
ing E’t�1.

Steps 1 and 2 constitute our continually inflated en-
semble approach. Strictly for notational simplicity, we
inflate only once each time unit. Current ensemble proce-
dures use only step 1. Adding step 2 is our proposed
alternative. It makes the procedure more robust in meeting
the aforementioned modeler’s goal. In practice, a limita-
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tion of the ensemble method of prediction is that one
encounters nonlinearities which distort the ellipsoids.
Therefore, the perturbations and time steps in this Letter
are chosen sufficiently small for linear approximations to
be appropriate. That is, we consider only the case whereE’t
is a very small ellipsoid.

Step 1: Calculating L1�E� for an ellipsoid E.—Given an
ellipsoid E, L1�E� is approximated as follows. Choose an
ensemble consisting of �s, the center ofE, and states sk (k �
1; 2; . . . ; K) on the surface of E so that the line from �s to sk
is the kth semiaxis ofE. Note that the ensemble is redefined
each time step 1 is applied. The image L1�E� is approxi-
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mated by the ellipsoid of linear combinations L1��s��PK
k�1�k�L1�sk��L1��s�� such that

PK
k�1�

2
k
1. Of course,

this ellipsoid is not quite L1�E�. Another limitation of the
ensemble forecasting method is that many ensemble mem-
bers may be needed to accurately represent the probability
distribution described by the ellipsoid. In this Letter, K is
chosen to be equal to the dimension of L. This choice
would be computationally prohibitive for systems with
millions of dimensions.

Step 2: How to inflate an ellipsoid.—Given an ellipsoid
E, write ek for the orthonormal basis of unit vectors
parallel to the semiaxes. Let �k > 0 be the corresponding
semiaxis lengths. ek and �k can be computed with the
singular value decomposition. The thin semiaxes are de-
fined to be those which satisfy �k < �. The ellipsoid E’

inflated by ’ is the ellipsoid with the same center as E and
with axes aligned with those of E, but with each thin
semiaxis increased by ’. The process of inflation carries
any state u in the ellipsoid E to a state u’ in E’ [8].

Testing the effect of inflation.—To test whether the
‘‘modelers’ goal’’ is met, after each inflation all states of
E’t�1 that lie more than � from pt�1 are discarded. If the
intersection (denoted J’t�1) of E’t�1 and N��pt�1� is empty,
shadowing has failed. If J’t�1 is nonempty, its complicated
shape is approximated by an ellipsoid Gt�1 lying inside
J’t�1. In doing so, even more states are discarded, but the
approximation procedure is computationally tractable.
There is no unique choice of Gt�1. The center of Gt�1 is
chosen to be the mean of a uniform distribution of states in
J’n�1. The axes of Gt�1 are chosen parallel to ek. These
approximations are repeated each time step. As long as the
procedure succeeds, the modeler’s goal is met.

Since each inflation introduces a small amount of un-
certainty into the forecast, as little inflation as possible
should be used. However, since the procedure only inflates
in thin directions, the additional uncertainty will be
damped out if the thin directions continue to contract.
Should the dynamics local to the ensemble experience
unstable dimension variability and thin directions begin
to expand, some ensemble members should remain close
to the H trajectory.

Model.—We use a simple model to represent atmos-
pheric behavior, the N-dimensional governing equations,
given by [9] are

dxi
dt
� xi�1�xi�1 � xi�2� � xi � F (1)

for i � 1; 2; . . . ; N, where the subscripts are treated as
periodic with period N. For example, xN�1 	 x1 so that
the variables form a cyclic chain. Each variable represents
an unspecified scalar meteorological quantity, such as tem-
perature, at N equally spaced grid sites on a latitude circle.
In our experiments, N � 40 and F � 8 as in [9]. This
model shares certain properties with many atmospheric
models: a nonlinear advection term, a linear term repre-
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senting loss of energy to thermal dissipation, and a constant
forcing term F to provide energy. The time unit represents
the dissipative decay time of 5 days [9]. There are 13 posi-
tive Lyapunov exponents.

Stalking.—Stalking is an aggressive form of shadowing
in which the ellipsoids Et are inflated as described above.
Let �pt�bt�a be a sequence representing the true solution (H
trajectory). Then given a shadowing distance �> 0 and an
inflation ’> 0, �pt�bt�a is ’-�-stalked so long as J’t is
nonempty for all t 2 �a; b�. The states contained in �J’t �bt�a
are called stalking trajectories. If ’ � 0 (no inflation), a
stalking trajectory is called a shadowing trajectory. The
interval �a; b� is referred to as the stalking time. If no
stalking trajectories exist for reasonable � and ’ over an
interval of time relevant to prediction, L is an inadequate
approximation of H.

An H trajectory.—Equation (1) represents L. A trajec-
tory pt representing H is obtained as follows. Given p0,
take a one-fourth order Runge-Kutta time step of size 10�2

and denote the result L1�p0�. For each t, choose pt�1

randomly from a uniform distribution such that pt�1 is
within � of L1�pt�. � represents model error, the differ-
ence between L and H. Fix � � 10�6 and repeat for t �
0; 1; . . . ; 107. We say �pt�bt�a is a �-pseudotrajectory of L
because jpt � L1�pt�1�j 
 � for all t 2 �a; b�. We then
see how long we can ’-�-stalk pt with an ensemble of
’-pseudotrajectories of (1). If ’ � �, the H trajectory is
itself trivially a ’-�-stalking trajectory.

Finding the stalking time.—The shadowing distance �
and the inflation ’ are fixed throughout each integration
and explore the parameter space in ’, recording the aver-
age stalking time. In Fig. 4, the stalking time vs the relative
inflation ’=� is plotted for model (1). When � � 1000�,
with no inflation (’ � 0) the shadowing time is approxi-
mately 2 days. Decreasing the shadowing distance by a
factor of 10 to � � 100� and inflating by ’ � 40% of the
model error � gives the same stalking time. When the H
trajectory is generated by adding systematic error during
integration, slightly more inflation is required to achieve
the same results.

Forecasting improvement.—To measure the effect of
inflation on forecasts (where Jt is unknown), 5000 inde-
pendent 25-day H trajectories are calculated. Prediction of
an H trajectory is made by following an ellipsoid of
trajectories of L, with and without inflation. Figure 5 plots
the average distance between the H trajectory and the
nearest trajectory of L for ensemble forecasts and continu-
ally inflated ensemble forecasts. Ensemble forecasts con-
tinually inflated by 50% of the model error produce
trajectories of L within � of an H trajectory for 5 times
longer than traditional ensemble forecasts.

Discussion.—We find that modest inflation substantially
increases shadowing time. Our ‘‘continually inflated en-
semble’’ approach is guaranteed to succeed in the linear
regime for inflation in all directions with ’ � �. We,
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FIG. 4. Stalking time for model (1) measured in days as a
function of relative inflation ’=�, where ’ is the inflation, � �
10�6 is model error (0<’<�), and � is shadowing distance.
Trajectories of (1) initially separated by 10�16 are uncorrelated
after 25 days. If ’=� � 0, the stalking time is the (brief)
traditional shadowing time. If ’ � �, the stalking time is
infinite. The � � 10� curve illustrates the phenomenon in
Fig. 1(a), where stalking failures occur because the shadowing
distance is too small. Increasing � by a factor of 10, the
shadowing time (’ � 0) increases by a factor of 10.
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however, inflate only thin axes and investigate cases where
’<�, so the method can fail (as illustrated in Fig. 4). In
practice, the magnitude� of the model error is unknown, it
must be estimated by trial and error. If all directions are
inflated, it may be possible to decrease �. While this Letter
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FIG. 5. The distance between an H trajectory and the nearest
trajectory of the ensemble ellipsoid is plotted vs time, averaged
over 5000 independent 25-day ensemble forecasts (solid) and
their corresponding continually inflated ensemble fore-
casts (dotted). The vertical axis is in units of the initial diameter
of the ensemble.
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deals only with a toy model where all distances are quite
small, we hope the approach can be adapted to practical
high-dimensional systems.

For any moderate shadowing distance �, no trajectory of
L remains within � of a typical complex high-dimensional
physical systemH. Orrell et al. [10]. estimate that forecasts
generated by the European Center for Medium-Range
Weather Forecasting operational weather model are domi-
nated by model errors during the first 3 days, and that
shadowing the real atmosphere fails after 6 hours, for a
reasonable �. In other words, no trajectories of L initially
within observational uncertainty � remain consistent be-
yond small T. During the first few days of an operational
forecast, inflating the contracting directions of the en-
semble of L trajectories every few hours may improve
the tracking time. Inflation is not currently used for
weather forecasting, but it is used in data assimilation,
the practice of combining observations with forecasts to
generate the initial set of states for an ensemble.
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